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We discuss a self-contained spin-boson model for a measurement-driven engine, in which a demon
generates work from random thermal excitations of a quantum spin via measurement and feedback
control. Instead of granting it full direct access to the spin state and to Landauer’s erasure strokes for
optimal performance, we restrict this lesser demon’s action to pointer measurements, i.e. random or
continuous interrogations of a damped mechanical oscillator that assumes macroscopically distinct
positions depending on the spin state. The engine could reach simultaneously high output powers
and efficiencies and can operate in temperature regimes where quantum Otto engines would fail.

Conventionally, thermal machines operate through the
interaction of a working medium with hot and cold reser-
voirs. In the context of quantum thermodynamics, inter-
est has been raised in finding non-thermal resources such
as coherence [1–5], squeezed baths [6–8] or measurement
channels [9–12] that could induce advantages to standard
thermal machines.

Specifically, the role of measurement in relation to
thermodynamics and information flow has been studied
rigorously. For example, models of thermal machines fa-
cilitated by Maxwell’s demon – an external agent that
acquires information of the system and performs appro-
priate feedback – have been proposed in order to provide
accurate thermodynamic description of information flow
[13–18]. More recently, a measurement channel has been
deemed a source of “quantum heat” [9] due to the in-
creased entropy following a measurement, which could
be exploited for both cooling [11] and work extraction
[10, 12, 19, 20]. However, proper treatment of actual era-
sure cost of pointers [21–23] as well as the interpretation
of incoherent measurement schemes as a form of heat and
work exchange [24–26] still remain a contentious topic for
such measurement-based thermal machines.

In this paper, we investigate the role of measurement
by considering a self-contained engine built from the
standard ingredients (hot and cold reservoirs and a work-
ing medium) as well as an embedded pointer, modelled
by a damped mechanical degree of freedom. In contrast
to regular Maxwell-demon type engines where the demon
has access to the state of the working medium and stores
it in its memory, we restrict our demon’s access to the
pointer only, i.e. work can only be extracted from the
medium by reading off the pointer position and applying
appropriate feedback. We show that such a setup gen-
erates a new type of engine with features different from
standard quantum engines. In particular, we see that
the typical trade-off between work and efficiency is ab-
sent and it is possible to attain simultaneous high powers
and efficiencies. The regime of operation is also generally
wider than a typical Otto engine. More fundamentally,
our proposed autonomous scheme serves as a platform to
revisit the definitions of work and heat in a measurement-

FIG. 1. Sketch of the demon system consisting of a qubit
(working medium) and a harmonic oscillator (pointer). The
qubit can be thermally excited by a hot bath at the rate κh

and temperature Th, and it displaces the equilibrium position
of the pointer to ±x0 depending on its state. A cold bath of
temperature Tc thermalizes the pointer around its equilibrium
point at the rate κc. Work can be extracted coherently or in-
coherently from the excited spin by the demon’s interrogation
of the pointer position.

feedback scheme and sets precedence to the incorporation
of thermal baths as a means of a realistic erasure or reset
protocol.
Spin-boson model.— We consider a qubit with bare

transition frequency Ω representing the working medium
for heat-to-work conversion. A harmonic oscillator
pointer of frequency ω couples to the qubit and is dis-
placed to the left or right depending on the internal state
of the qubit, see Fig. 1. The model Hamiltonian reads as

Ĥ =
~Ω

2
σ̂z + ~ω

(
â†â+

1

2

)
+ ~ωx0σ̂z

â+ â†√
2

=
~Ω

2
σ̂z + ~ωb̂†b̂+ const, (1)

with σ̂z = |e〉〈e|− |g〉〈g|, â the oscillator’s mode operator

and b̂ = â+ σ̂zx0/
√

2 the displaced mode operator. The
Hamiltonian is found to be diagonal in the basis of qubit
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state-dependent displaced Fock states,

|g, ng〉 := |g〉 ⊗ D̂
(
x0√

2

)
|n〉 = |g〉D̂|n〉,

|e, ne〉 := |e〉 ⊗ D̂
(
− x0√

2

)
|n〉 = |e〉D̂†|n〉, (2)

where the energy eigenvalues are Ee,g
n = ±~Ω/2 + ~ωn

modulo a constant, and D̂(α) = exp(αâ† − α∗â).
Let us discuss now the meaningful parameter regimes

for the pointer. First, we work in the limit ω � Ω, in
which the energy scales of the working medium and the
pointer are separated and the pointer does not contribute
appreciably to the energy balance of the engine.

The qubit-oscillator coupling strength has been ex-
pressed in terms of the state-dependent displacement
±x0 of the position quadrature x̂ = (â + â†)/

√
2, which

also describes a shift of the qubit transition frequency
by ±2ωx2

0. For sufficiently large x0, the pointer states
become “macroscopically distinguishable” through their
spatial separation [21, 23]. A demon would be functional
so long as it possesses the ability to resolve this sepa-
ration. This is unlike the case of a finite-dimensional
pointer (e.g. a qubit), whose states would not remain
distinguishable in the presence of noise. Furthermore, if
the demon is able to measure a qubit, it could measure
the system directly and the pointer would be redundant
[27].

Besides the unitary dynamics, we now describe the
roles of the hot and cold thermal reservoirs. The qubit
is coupled to a hot thermal reservoir where heat flow is
mediated by dissipators

Lhρ =
∑
k

κh(Ω + kω)

{
[n̄h(Ω + kω) + 1] (3)

×D

[∑
n

d∗n,−k|g, (n− k)g〉〈e, ne|

]
ρ

+ n̄h(Ω + kω)D

[∑
n

dn,k|e, (n+ k)e〉〈g, ng|

]
ρ

}
,

with D[Â]ρ = ÂρÂ†−{Â†Â, ρ}/2 and coefficients dn,k =

〈n|D̂2 |n+ k〉, derived from secular approximation of the
weak coupling master equation, see App. A.

The cold reservoir is not coupled to the qubit, but
to the pointer: it takes care of erasing the information
stored in it, through a continuous coupling with the dis-

placed mode operator b̂ described by the dissipators [28]

Lcρ = κc(n̄c + 1)D[b̂]ρ+ κcn̄cD[b̂†]ρ. (4)

In the case where the displacement from equilibrium x0 is

greater than the thermal width xth = coth1/2 ~ω/2kBTc,
i.e. when the pointer positions for the two qubit states are
distinct, the overall time evolution governed by Eqs. (1)-
(4) brings the system to an approximate mixed steady
state of the form

ρ∞ ≈ (1− p∞)|g〉〈g| ⊗ D̂ρgD̂†+ p∞|e〉〈e| ⊗ D̂†ρeD̂. (5)

In particular, when the hot thermal contact is weak,
κh � κc, we have p∞ ≈ n̄h/(2n̄h + 1) and ρe,g ≈
exp(−~ωâ†â/kBTc)/Zc to lowest order, i.e. a Th-thermal
mixture of displaced Tc-thermal pointer states encoding
the qubit state.

Having set the model, we consider two variants of work
extraction by a demon: an active control agent perform-
ing random measurement-feedback operations, and a co-
herent control field continuously monitoring the pointer.
Random measurement-feedback scheme.— An active

demon would interrogate the pointer position and per-
form necessary feedback operations based on the mea-
surement outcome. We shall consider the following
measurement-feedback protocol occurring at a rate γ: (i)

a dichotomic projective measurement (P̂ and 1 − P̂ ) of
the pointer to detect whether it is on the left (〈x̂〉 < 0),
followed by (ii) work extraction via a Rabi flip σ̂x in-
duced by a strong control pulse if the pointer is on the
left, i.e. the qubit is most probably excited. For suffi-
ciently sparse Poisson-distributed events, the process can
be effectively described by the coarse-grained generator
[29–32]

Lmρ = γD[σ̂xP̂ ]ρ+ γD[P̂ ]ρ, (6)

assuming an ideal feedback mechanism at infinitesimally
short times. In order to minimize the demon’s invasive
influence on the pointer, the interrogation rate should be
lower than the damping rate of the pointer, γ � κc.

Ideally, the demon would be able to generate a maxi-
mum energy output of Wmax = ~(Ω − 2ωx2

0)p∞ per in-
terrogation, assuming vanishing overlap between the two
displaced pointer states in (5). In fact, such an intu-
itive scheme is sufficient for extracting energy close to
the ergotropy [33] contained in the state (5), Werg ≈
~(Ω − ω)p∞ − ~ωn̄c, which eliminates the need for a
cyclic unitary operation that would most likely require
a non-trivial implementation.

Alternatively, measurements could also be described
by POVMs with a smooth position dependence, as could
be obtained e.g. from position-dependent exchange inter-
actions with a stream of ancillary qubits extracting the
excitation [24, 26].

The present scheme is autonomous in the sense that it
does not rely on externally imposed engine strokes with
synchronized switching of control pulses or couplings to
thermal reservoirs. The random measurement process
not only facilitates a convenient assessment of station-
ary energy flows, Q̇c,h,m = tr{ĤLc,h,mρ∞}, but it also
does not depend on the precise timing of “measurement
strokes”. Note that even though we model the overall ef-
fect of the control operations on the system state by a dis-
sipative channel Lm, the corresponding change in steady-
state energy contains both heat input and work output.
Specifically, Q̇m = Q̇ba − Ẇ , where Ẇ denotes the out-
put power extracted via the feedback control pulse, and
Q̇ba accounts for the effective increase in entropy due to
the measurement back-action on the pointer, more com-
monly interpreted as a form of “quantum heat” [9]. More
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FIG. 2. Steady-state output power (a) and efficiency (b)
against cold bath temperature expressed in terms of the ther-
mal width xth of the pointer (zero temperature on the right).
The blue, red, purple, and green curves correspond to mea-
surement rates γ/ω = 10−1, 10−2, 10−3, and 10−4, respec-
tively. The horizontal dotted lines represent the approxima-
tions γWmax and (8), the shaded region marks where n̄c ≥ n̄h.
We fix Ω = 100ω, x0 = 2.5, κh = 10−3ω, κc = 0.1ω, n̄h = 1.

explicitly, Q̇ba can be re-expressed in terms of a unital (or

entropy-increasing) channel Q̇ba = 2γ~ω tr{b̂†b̂D[P̂ ]ρ∞},
which describes the pure pointer measurement without
feedback in the protocol.

The output power is given by the average excitation
energy of the qubit contained in the post-measurement
state,

Ẇ = γtr
{
P̂ ρ∞P̂ [~Ω + 2~ωx0x̂] σ̂z

}
. (7)

When the measurement rate γ � κc and the pointer
separation x0 � 1, the projector would reduce the state
to the excited branch in (5) resulting in the benchmark
power γWmax. The repeated measurements however di-
minish the branch weight, p∞ ≈ n̄h/(2n̄h + 1 + γ/κh),

see App. A. For the efficiency, η = Ẇ/Q̇h, we find the
approximate upper bound

ηmax ≈
1− 2ωx2

0/Ω

1 + 2[1 + (2n̄h + 2)κh/γ]ωx2
0/Ω

. (8)

Both the output power and efficiency grow with γ until
an optimum is reached around γ . κc. At higher rates,
the repeated measurements would effectively freeze the
pointer dynamics.

For simplicity and numerical stability in our simula-
tions, we now consider the measurement by a projection
onto a finite subspace of left-displaced Fock states, P̂ =∑N

n=0 D̂
†|n〉〈n|D̂. Here, the cutoff N is chosen such that

the included pointer levels contain at least the ground
state, but otherwise do not exceed the potential energy
of the left-displaced oscillator at x = 0, i.e. 2N + 1 ≤
max{x2

0, 1}. This should be comparable in effect to an

ideal position measurement P̂x =
∫ 0

−∞ dx |x〉〈x| in the en-
visaged operation regime x0 � xth, while avoiding con-
vergence issues due to discontinuities in position repre-
sentation.

Figure 2 shows (a) the output powers and (b) efficien-
cies as a function of Tc for various rates γ. Here, Tc is
expressed in terms of the ratio between pointer displace-
ment x0 and characteristic thermal width xth ≥ 1. This
is an exemplary case where x0 = 2.5, which should lead
to a clear separation of the ground- and excited-state
distributions so long as the cold bath temperature is suf-
ficiently low (x0 > xth). In fact, in this low-temperature
limit, the efficiencies approach the analytical benchmarks
given by (8). The actual output powers, however, fall be-
low the benchmark value γWmax as γ increases.

At high temperatures, the model stops working and the
output power becomes negative due to the larger overlap
between the two displaced thermal states, which leads to
inaccurate readout of the qubit state. Moreover, we see
in Fig. 2 that low measurement rates will decrease the
output. The optimum is reached when γ approaches κc
(blue curves). Further simulations reveal that greater γ
will make it worse again; this amounts to a Zeno limit
where the frequent measurement hinders the pointer from
moving between the left and the right equilibrium.

At vanishing κh, the efficiency in (8) would not exceed
the Otto efficiency, η ≈ 1 − 4x2

0ω/Ω < 1 − ω/Ω = ηOtto.
However, this engine is not an Otto engine in the typical
sense. We see in Fig. 2 (shaded region) that the en-
gine operates outside the standard Otto operation win-
dow (ω/Ω > Tc/Th, i.e. n̄h > n̄c), albeit at lower out-
put power and efficiency. In fact, this wider opera-
tion window is a manifestation of using a mechanical
pointer with “macroscopically distinguishable” states. If
it were replaced by a qubit pointer, operation would be
restricted to the Otto window n̄h > n̄c, because mea-
surement errors leading to work consumption instead of
extraction would proliferate with growing n̄c and the
net work output per interrogation would be limited by
~(Ω − ω)(n̄h − n̄c)/(2n̄h + 1)(2n̄c + 1), regardless of the
system-pointer interaction strength [34].

Even though the maximum efficiency does not reach
ηOtto (0.99 in this case), such a demon engine has its
advantages over standard Otto engines where a trade-
off between efficiency and work output is inevitable and
ηOtto is attainable only in the limiting scenario of van-
ishing work output [35].
Integrated demon scheme.— Instead of an incoher-

ent scheme based on random monitoring by an external
agent, it would be insightful to formulate an integrated
setup in which the measurement-feedback takes place in-
ternally and all energy exchanges become transparent.
To this end, we consider a position-dependent driving
field of strength ζ with detuning ∆, which now plays the
role of the demon that probes the qubit in a non-invasive,
coherent manner. We can describe the effect of such a
demon by a time-dependent Rabi term

V̂ (t) = ~ζf(x̂)e−i(Ω−∆)t|e〉〈g|+ h.c., (9)

which serves as an interface for work extraction depend-
ing on the position-dependent function f(x̂). Possible
choices of f(x) include a Heaviside function Θ(−x) or a
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FIG. 3. Output power (a) and efficiency (b) against the de-
tuning ∆ of the driving field for f(x) = Θ(−x) (solid) and
f(x) = 1 (dotted). We fix Ω = 100ω, x0 = 2.5, κh = 10−3ω,
κc = 0.1ω, ζ = 0.1ω and the same hot and cold bath occu-
pancy n̄c = n̄h = 1.

Gaussian centred around x = −x0.
To assess the scheme’s steady-state performance, we

consider the weak driving limit, ζ � ω,Ω, where cor-
rections to the thermal dissipators Lh,c can be omitted
[36, 37]. In the frame rotating at the driving frequency,
the time dependence due to (9) conveniently disappears

and the time evolution follows from L̃h,c = Lh,c and
ˆ̃H/~ = ∆σ̂z/2 + ωb̂†b̂ + ζf(x̂)σ̂x. The corresponding
steady state ρ̃∞ describes the engine’s limit cycle and
yields the average output power [38]

Ẇ = −tr
{
ρ∞(t)∂tV̂ (t)

}
= −~ζ(Ω−∆)tr {f(x̂)σ̂yρ̃∞} .

(10)
The heat fluxes from the hot and cold reservoirs read as

Q̇h,c = tr

{[
ˆ̃H + ~

Ω−∆

2
σ̂z

]
Lh,cρ̃∞

}
. (11)

Figure 3 shows the engine’s output powers and effi-
ciencies at its limit cycle as a function of the detun-
ing for an exemplary set of engine parameters and var-
ious cold bath temperatures. Here, the optimal output
power is much smaller than the driving rate times the
extractable excitation energy, ζWmax ≈ 29~Ωκh. This
was not the case for the previously discussed incoher-
ent measurement-feedback scheme, which exhibits a work
power of up to γWmax, because that scheme implicitly as-
sumes a large driving strength and short feedback time
such that the feedback is essentially described by a condi-
tional spin flip depending on the position of the pointer.
In the current scheme, the driving field would not cause
a full spin flip. Nevertheless, the output power can be
comparable to what the measurement-feedback scheme
predicts for similar settings, see also Fig. 4.

Here, we achieve a maximum work power (and effi-
ciency) when ∆ ≈ 2ωx2

0. This is because the frequency
of the qubit is modulated by the pointer position, and
at this driving frequency, the field addresses predomi-
nantly the qubit only when the pointer is located at −x0,
i.e. the qubit is excited and the field is able to extract a
positive net energy from it. Hence one can modify the

FIG. 4. Output power (a) and efficiency (b) against the rate
γ or ζ, comparing the measurement-feedback scheme (black)
with the integrated scheme (blue) at optimal detuning ∆ =
2ωx20 and f(x) = Θ(−x). The other parameters are taken
from Fig. 3. Note that underlying master equation model
may no longer be reliable for ζ ∼ ω.

scheme by removing the position dependence f(x) and
consider a non-invasive interrogation of the qubit state
solely through the application of a red-detuned field of
∆ ≈ 2ωx2

0. This does not cause a backaction-induced
direct flow of energy to the pointer, a minor contribution
to the energy balance when Ω � ω, which is inherent
to the position-dependent case and appears explicitly as
Q̇ba in the previous measurement-feedback scheme.

The dotted line in Fig. 3 shows the output power and
efficiency achievable by non-invasive interrogation as a
function of the detuning. Close to the optimal working
point, the performance is almost the same as the position-
dependent case, but the position-independent driving will
cease to produce work as the detuning approaches zero;
indeed, we would obtain a heat pump consuming work
at negative detunings.

Finally, Figure 4 compares the random measurement-
feedback scheme with the integrated scheme at optimal
detuning and position-dependent driving in terms of their
powers and efficiencies. We plot them as a function of
the respective interrogation rates γ and ζ. The former
scheme performs well over a broad range of small mea-
surement rates γ, but it stops working when the Zeno
effect kicks in at γ > κc. The integrated scheme eventu-
ally catches up at strong driving rates ζ.
Conclusion & outlook.— We have presented a self-

contained engine model in which useful energy is ex-
tracted from thermal excitations of a quantum spin by a
handicapped Maxwell demon. It is allowed to interrogate
the spin state only indirectly, by inquiring the position of
a macroscopic mechanical pointer attached to the spin.
While this comes at the cost of measurement backaction,
mechanical damping from a cold thermal reservoir stabi-
lizes the pointer and alleviates the need for an explicit
Landauer erasure protocol upon extraction. We studied
the engine performance both for an active demon per-
forming measurement-feedback events at random times
and for an integrated demon in the form of a station-
ary control field. Both cases can operate at simultane-
ously high output power and efficiency, and also outside
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the thermal operation window of typical quantum Otto
engines, which puts forth the paradigm of continuous
measurement-driven engines.

Regarding implementations, a suitable experimental
platform for the presented model can be found in molec-
ular batteries [39]: molecules with an optical elec-
tronic transition strongly coupled to an infrared vibration
mode. In fact, the spin-boson Hamiltonian (1) resem-
bles the Holstein Hamiltonian for a molecule undergoing
fast vibrational relaxation [40]. Displacements can reach
magnitudes x0 ∼ 1, while the vibrational relaxation time
is short compared to the optical lifetime, i.e. κh � κc.

A broadband optical light source (e.g. filtered sunlight)
could serve as the hot bath exciting the electron, and a
resonant IR cavity mode could be employed to monitor
the vibration mode displacement [41, 42]. Alternatively,
our scheme could be realized in a tailored trapped-ion
setup similar to the recently demonstrated spin-flywheel
engine [43].
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A. Auffèves, Phys. Rev. Lett. 118, 260603 (2017).

[20] A. Aydin, A. Sisman, and R. Kosloff, arXiv:1908.04400
(2019).

[21] R. Alicki, arXiv:1305.4910 (2013).

[22] P. Faist, F. Dupuis, J. Oppenheim, and R. Renner,
Nat. Commun. 6, 7669 (2015).

[23] R. Alicki and M. Horodecki, J. Phys. A: Math. Theor.
52, 204001 (2019).

[24] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito,
Phys. Rev. X 7, 021003 (2017).

[25] P. Strasberg, arXiv:1810.00698 (2018).
[26] S. Seah, S. Nimmrichter, and V. Scarani, Phys. Rev. E

99, 042103 (2019).
[27] G. Sewell, in AIP Conference Proceedings, Vol. 962 (AIP,

2007) pp. 215–222.
[28] Eq. (4) can be obtained from the usual Born-Markov sec-

ular approximation [29, 39], assuming an oscillator bath
linearly coupled to the x̂-quadrature. This would also
result in an additional pure dephasing term ∝ D[σ̂z]ρ,
which however scales with the bath spectral density at
zero frequency and is thus often negligible.

[29] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, 2002).

[30] K. Hornberger, Europhys. Lett. 77, 50007 (2007).
[31] H. M. Wiseman and G. J. Milburn, Quantum Measure-

ment and Control (Cambridge University Press, 2009).
[32] K. Jacobs, Quantum Measurement Theory and its Appli-

cations (Cambridge University Press, Cambridge, 2014).
[33] A. E. Allahverdyan, R. Balian, and T. M. Nieuwen-

huizen, Europhys. Lett. 67, 565 (2004).
[34] S. Lloyd, Phys. Rev. A 56, 3374 (1997).
[35] R. Kosloff and Y. Rezek, Entropy 19, 136 (2017).
[36] H. J. Carmichael, Statistical Methods in Quantum Optics

1 (Springer, Berlin, Heidelberg, 1999).
[37] K. Szczygielski, D. Gelbwaser-Klimovsky, and R. Alicki,

Phys. Rev. E 87, 012120 (2013).
[38] R. Alicki, J. Phys. A: Math. Gen. 12, L103 (1979).
[39] R. Alicki, J. Chem. Phys. 150, 214110 (2019).
[40] M. Reitz, C. Sommer, and C. Genes, Phys. Rev. Lett.

122, 203602 (2019).
[41] J. P. Long and B. S. Simpkins, ACS Photonics 2, 130

(2015).
[42] A. Shalabney, J. George, J. Hutchison, G. Pupillo,

C. Genet, and T. W. Ebbesen, Nat. Commun. 6, 5981
(2015).

[43] D. von Lindenfels, O. Gräb, C. T. Schmiegelow,
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Appendix A: Validity of the hot bath dissipator

Here we compare the local and global secular form of the hot bath dissipator that arises in the usual manner from
a linear exchange interaction of the qubit with a thermal oscillator bath. For the local model, one simply employs the
standard dissipator for an isolated qubit,

Lloc
h ρ = κh(Ω)[n̄h(Ω) + 1]D[σ̂−]ρ+ κh(Ω)n̄h(Ω)D[σ̂+]ρ, (A1)

assuming that the qubit-pointer coupling and thus the influence of the pointer on the qubit energy are negligible.
For an isolated qubit, the jump operators σ̂± can mediate only a single transition of frequency Ω, given the thermal
coupling rate κh and the mean thermal bath occupation n̄h at this frequency. In the combined qubit-pointer system,
the same operators now induce a family of transitions Ω + kω with k ∈ Z. Specifically, we can expand in terms of the
combined energy basis (2),

σ̂+ = |e〉〈g| =
∞∑

m,n=0

〈m|D̂2|n〉|e,me〉〈g, ng| =
∞∑

n=0

∞∑
k=−n

〈n+ k|D̂2|n〉︸ ︷︷ ︸
≡dn,k

|e, (n+ k)e〉〈g, ng|, (A2)

with the weight coefficients dn,k. The above local dissipator contains cross-terms between different transitions k 6= k′,
which means that it preserves a certain amount of coherences between different energy levels of the system. Moreover,
using it implies that one can neglect the frequency dependence of the bath parameters, κh(Ω + kω) ≈ κh and
n̄h(Ω + kω) ≈ n̄h, which is only valid when Ω� ω.

The global secular model does not preserve any coherences between different Fock numbers, because it contains
only resonant jump terms,

Lglo
h ρ =

∑
k

κh(Ω + kω) [n̄h(Ω + kω) + 1]D

[∑
n

d∗n,−k|g, (n− k)g〉〈e, ne|

]
ρ

+
∑
k

κh(Ω + kω)n̄h(Ω + kω)D

[∑
n

dn,k|e, (n+ k)e〉〈g, ng|

]
ρ. (A3)

For the demon models studied in the main text, we find that both dissipators yield approximately the same results.
The reason is, on the one hand, that we indeed consider Ω � ω and can thus assume constant κh and n̄h. On the
other hand, our model also includes a cold bath with stronger damping rate κc > κh, which suppresses any coherences
between Fock states of the pointer that Lloc

h alone would have preserved.
The steady-state heat input for κh � κc can then be approximated using the local dissipator, too,

Q̇h ≈ tr

{(
~Ω

2
+ ~ωx0x̂

)
σ̂zLloc

h ρ∞

}
≈ ~κh

[
n̄h(1− p∞)(Ω + 2ωx2

0)− (n̄h + 1)p∞(Ω− 2ωx2
0)
]
. (A4)

For the qubit excitation probability, the same approximation yields

∂tpe(t) ≈ tr
{
|e〉〈e|(Lloc

h + Lm)ρ
}

= −κh(n̄h + 1)pe(t) + κhn̄h[1− pe(t)]− γtr
{
σ̂zP̂ ρP̂

}
≈ −κh(n̄h + 1)pe(t) + κhn̄h[1− pe(t)]− γpe(t). (A5)

Here the second line holds in the ideal operation regime of γ � κc and x0 � 1, when P̂ reduces the state to its
excited branch. At steady state, we obtain p∞ = pe(∞) = n̄h/(2n̄h + 1 + γ/κh), as used in the main text.
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