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1 Introduction

Succinctly, a phase of matter is defined by an equivalence class of physical systems sharing

certain common features of interest. The subtlety in this definition is then to describe

equivalence relations which capture physically insightful properties. Our best description

of quantum many-body systems is manifest through the language of quantum field theory.

In this way a quantum phases of matter may be defined by an equivalence classes of

quantum field theories whereby each quantum model constitutes a concrete realisation

of the given phase. For gapped quantum field theories, the infra-red limit of the theory

admits an effective field theory description in terms of a topological quantum field theory

(TQFT) [1–4]. From this observation, an important class of quantum phases of matter is

given by so-called topological phases of matter, which are typically defined by homotopy

classes of gapped quantum models whose low energy effective field theories realise given

TQFTs. A consequence of this definition is that two quantum states are described by

the same TQFT if, and only if, they can be related by an adiabatic evolution which does

not close the energy gap. In practice, this signifies that ground states of a given gapped

system must remain in the same phase under local unitary transformations. In the discrete

setting, local unitary transformations can be performed in order to implement a wave

function renormalisation group flow. Equivalence classes of wave functions under such

transformations can therefore be interpreted as so-called fixed point wave functions. These

fixed point wave functions admit a TQFT description and are thus expected to capture

the defining long-range entanglement pattern signifying topological order [5].

In this paper, we are interested in physical realisations of topological phases that have

a gauge theory interpretation. Such models are referred to as gauge models of topological

phases. The low energy limit of the corresponding phases are described by a particularly

manageable class of fully-extended topological quantum field theories known as Dijkgraaf-

Witten theories [6]. Given a closed (d+1)-manifold, the input data of a Dijkgraaf-Witten

theory is a finite group G and a cohomology class [ω] ∈ Hd+1(BG,U(1)). The correspond-

ing partition function can be conveniently defined by summing over homotopy classes of

maps from the (d+1)-manifold to the classifying space BG of G. Given a triangulated

manifold, the partition function can be recast as a lattice gauge theory so that the sum

is now performed over G-colourings, i.e. G-labelings of the one-skeleton of the triangula-

tion that are subject to local constraints. This latter formulation turns out to be also

valid in the case of manifolds with boundary. The definition of the partition function for

a special family of cobordisms can then be utilised to define lattice Hamiltonian realisa-

tions of the theory [7, 8]. These constitute the exactly solvable models of interest for the

present manuscript.

In (2+1)d, it is well-known that the Dijkgraaf-Witten lattice Hamiltonian yields point-

like bulk excitations that are classified by the irreducible representations of the twisted

Drinfel’d quantum double [9–11]. These bulk excitations come in three types, namely

electric charges, magnetic fluxes and dyons, i.e. electric charge-magnetic flux composites.

The quantum double, which is an example of quasi-triangular quasi-Hopf algebra, not only

provides the classification of these (anyonic) excitations but also their fusion and braiding
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statistics. More precisely, as a Hopf algebra, the quantum double comes equipped with a

comultiplication rule from which the tensor product of irreducible representations can be

defined, while as a quasi-triangular Hopf algebra it comes equipped with a so-called R-

matrix from which a braid group representation on the irreducible modules can be derived.

In the case where the input cocycle is chosen to be trivial, the model reduces to the so-called

Kitaev’s quantum double model [12].

There exist several strategies to uncover that the algebraic structure underlying the

(2+1)d bulk excitations is indeed the twisted quantum double. One fruitful approach

consists of defining explicit operators from the algebra of local symmetries that generate and

measure the excitations [12]. Alternatively, we can consider a generalization of Ocneanu’s

tube algebra [13–17]. This approach relies on the crucial remark that the physical properties

of a given excitation localized within a subregion are encoded into the boundary conditions

of the open manifold obtained after removing this subregion. This is the approach we follow

in this manuscript. More specifically, the tube algebra approach utilises the length scale

invariance of the renormalisation flow fixed point in order to define an algebra defined by

gluing states of the twice-punctured sphere along the boundary, which in turn reproduces

the multiplication rule of the twisted quantum double.

It turns out that the tube algebra approach can be generalized to all dimensions [18–

20]. For instance, in (3+1)d the relevant manifold is the one obtained by cutting open the

three-torus along one direction. We show in detail that this tube algebra yields a gener-

alization of the twisted quantum double referred to as the twisted quantum triple whose

irreducible modules classify the simple bulk loop-like excitations [18, 20]. More precisely,

the irreducible modules can be labeled by three components, namely two magnetic fluxes

and one electric charge quantum numbers, so that one of the flux quantum numbers, re-

ferred to as the threading flux, constraints the remaining magnetic flux and electric charge

quantum numbers of the loop excitation. Similarly to its (2+1)d counterpart, the twisted

quantum triple comes equipped with a coalgebraic- and quasi-triangular-like structure that

allows a description of the fusion and the braiding of the bulk excitations. Specifically, we

show these correspond to the fusion and the braiding processes of two loop-like excita-

tions labeled by a magnetic flux and an electric charge, sharing the same threading flux.

More generally, the braiding structure of loop-like objects in the 3-disk is governed by

the so-called necklace groups [21, 22] when the threading flux is non-trivial and the loop-

braid group [23–25] when the threading flux is trivial. It can be shown that the loop-like

excitations of the twisted quantum triple naturally define representations of such motion

groups [26]. In this way, the twisted quantum triple algebra provides a rigorous framework

to describe the processes of interest in the condensed matter literature.

In the literature, fusion and braiding processes of loop-like excitations have often been

described through dimensional reduction arguments [27–30]. This approach relies on the

idea that upon compactification of one of the spatial directions, a given topological model

can be expressed in terms of another model in one lower dimension. In such context, the

statistics of loop-like excitations in (3+1)d can be expressed in terms of the statistics of

point-like excitations in (2+1)d.

This approach has most notably been applied in (3+1)d by considering the ground state

subspace of the Dijkgraaf-Witten model for the 3-torus T3 [8, 28, 31, 32]. In the (2+1)d
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Dijkgraaf-Witten model the topological spin, fusion and braiding statistics of anyons can be

understood from the ground state subspace of the torus T2 by considering the action of the

mapping class group of the torus SL(2,Z) on the corresponding states. Most investigations

of the (3+1)d Dijkgraaf-Witten model have then utilised dimensional reduction techniques

to consider the action of the SL(2,Z) subgroup of the mapping class group of the 3-torus

SL(3,Z) on the ground state subspace of the 3-torus so as to infer the spin and braiding

in analogy with the (2+1)d model. Although the notion of dimensional reduction and the

statistics of loop-like excitations are indeed related, we explain that it is not necessary

to use the former to describe the latter. In order to emphasize this point, we make the

mechanisms at play precise by constructing explicitly the equivalent lower-dimensional

model using the technology of loop-groupoids [33, 34]. We refer throughout the manuscript

to such models as lifted models. With this approach, we can not only clarify the nature

of the input data of the lifted model, namely a loop-groupoid cocycle, but also construct

explicitly the relevant Hilbert spaces in terms of loop-groupoid coloured graph-states.

This notion of lifted models in terms of loop groupoid is valid in any dimensions.

Furthermore it can be iterated. This means that given a manifold that is n-times com-

pactified, it is possible to express the original model in terms of another model in n-lower

dimensions. In particular, we use this result in order to recast the higher-dimensional tube

algebras in terms of the (1+1)d one, hence allowing for a particularly compact derivation

and definition of the twisted quantum double and twisted quantum triple algebras.

In (2+1)d, the fusion and the braiding of point-like excitations can be made rather

intuitive by means of a graphical calculus. In some cases, it may also make tedious compu-

tations a lot easier to perform. In this manuscript, we make a first step towards defining a

graphical calculus for the statistics of loop-like excitations. In some ways, this provides a

more physical description of the processes compared to the more rigorous and mathematical

treatment provided by the twisted quantum triple. To do so, we propose a definition of the

(3+1)d Hamiltonian realisation of the Dijkgraaf-Witten theory in terms of membrane-nets

condensate and exploit the notion of lifted models. This alternative picture suggests a way

to derive graphical identities that correspond to the algebraic definitions. For simplicity

and in order to focus on the specificity of dealing with loop-like objects, we do so in the

abelian case.

Organization of the paper. In section 2, we review the definition of the Dijkgraaf-

Witten theory both as a sigma model and as a lattice gauge theory. We pay particular

attention to the definition of the partition function in the case where the manifold has

a boundary. This is subsequently used to define the lattice Hamiltonian realisation of

Dijkgraaf-Witten theory. In section 3, a general framework in terms of tube algebras is

presented to study excitations yielded by the Hamiltonian model in general dimensions.

Three examples are studied in detail, namely the (1+1)d, the (2+1)d and the loop (3+1)d

tube algebras. The notion of lifted models is also introduced in this section. The irre-

ducible representations of these tube algebras that classify the simple excitations of the

corresponding models are introduced in section 4. Furthermore, the compatible comultipli-

cation and R-matrices are defined, which in turn determine the fusion and the braiding of
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the excitations. In particular, we explain how the R-matrix of the twisted quantum triple

algebra gives rise to the loop-braiding statistics as usually studied in the condensed matter

literature. Section 5 reviews among other things the concept of loop groupoids. Apart from

clarifying the meaning of the 2-cochains twisting the multiplication and comultiplication

rules of the tube algebras, it makes more precise the notion of lifted models introduced in

section 3. Specifically, we show that given a manifold with one direction compactified, there

exist a lower-dimensional model defined in terms of loop-groupoid colourings that is equiv-

alent. This is finally used to express the n-dimensional tube algebra as an n-times lifted

version of the (1+1)d one. In appendix A we introduce in the abelian case an alternative

formulation of the (3+1)d model in terms of membrane-net condensation.

2 Dijkgraaf-Witten model

In this section, we review the construction of the Dijkgraaf-Witten partition function, as

well as the definition and the main properties of its lattice Hamiltonian realisation.

2.1 Partition function for closed manifolds

In [6], Dijkgraaf and Witten introduced a topological gauge theory for any finite group

G in spacetime dimension d+1. They further showed that different G-gauge models are

classified by cohomology classes [ω] ∈ Hd+1(BG,U(1)) where BG is the classifying space

of the group G, that is the topological space whose only non-vanishing homotopy group is

the fundamental group and it equals the group itself, i.e. π1(BG) = G [35]. Given a finite

group G and a closed oriented (d+1)-manifoldM, the partition function is performed over

homotopy classes of maps [γ] :M→ BG, while the topological action is provided by the

canonical pairing 〈γ?ω, [M]〉 between the pull-back of the cocycle ω ∈ Zd+1(BG,R/Z) onto

M and the fundamental class [M] ∈ Hd+1(M,Z) of M. Putting everything together, we

obtain a sigma model with target space the classifying space BG and the partition function

explicitly reads

ZGω [M] =
1

|G|b0
∑

[γ]:M→BG

〈γ?ω, [M]〉 (2.1)

where the 0-th Betti number b0 counts the number of connected components of M. Since

the fundamental group is the only non-vanishing homotopy group of BG, homotopy classes

of maps M → BG can be expressed as homomorphisms from the fundamental group

π1(M) into G, up to simultaneous conjugation. We notate the set of such maps via

Hom(π1(M), G)/G. This statement is merely the fact that the topology can be detected

by holonomies along non-contractible closed curves only. Utilising this relation the partition

function can be rewritten as:

ZGω [M] =
1

|G|b0
∑

γ∈Hom(π1(M),G)/G

〈γ?ω, [M]〉 . (2.2)

Note that the expression above is only valid in the case where the manifold is closed.

Indeed, if the manifold has a boundary, the fundamental class [M] of the manifold cannot

be defined and therefore the topological action cannot be written as 〈γ?ω, [M]〉. We will
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now derive another expression for the partition function that can be extended to open

manifolds, ie. compact manifolds with boundary.

We begin by endowing the oriented (d+1)-manifoldM with a triangulationM4. More

specifically, throughout this manuscript we will consider triangulations M4 of a manifold

M as a 4-complex whose geometric realisation is homeomorphic to M. Furthermore, we

will require that all triangulations are equipped with a complete ordering of the vertex set

v0 < v1 < . . . < v|M0
4|

where |M0
4| is the total number of vertices. The ordering of the

vertex set has the important feature that it naturally equips the edges (1-simplices) of M
with the structure of a directed graph, where we choose the convention that each edge is di-

rected from the lowest to highest order vertex. Given a (d+1)-simplex 4(d+1) ∈M4, there

are two possible configurations for the vertices which determines an orientation we notate

via ε(4(d+1)) = ±1. Since in the following we mainly focus on (3+1)d Dijkgraaf-Witten

theory, we only provide below the explicit orientation conventions for 3- and 4-simplices:

Convention 2.1 (Orientation of a 3-simplex ). Consider a 3-simplex 4(3) ≡ (v0v1v2v3)

such that v0 < v1 < v2 < v3. Pick the 2-simplex (v0v1v2) and look at the remaining vertex

(v3) through the 2-simplex. If the vertices v0, v1 and v2 are organized in an clockwise

fashion, the orientation of the 3-simplex ε(4(3)) is +1, and −1 otherwise.

Convention 2.2 (Orientation of a 4-simplex ). Consider a 4-simplex 4(4), pick one of

the 3-simplices 4(3) ≡ (v0v1v2v3) ⊂ 4(4) such that v0 < v1 < v2 < v3 and determine

its orientation according to conv. 2.1. The remaining vertex is denoted by v. If it takes

an even number of permutations to bring the list {v, v0, v1, v2, v3} to the ascending ordered

one, then ε(v0v1v2v3v) = ε(v0v1v2v3), and ε(v0v1v2v3v) = −ε(v0v1v2v3) otherwise.

The fundamental class of M can now be expressed as

[M] =
∑

4(d+1)⊂M4

ε(4(d+1))4(d+1) (2.3)

so that the topological action in (2.2) can be decomposed as

〈γ?ω, [M]〉 =
∏

4(d+1)⊂M4

〈ω,4(d+1)〉 ≡
∏

4(d+1)⊂M4

ω(4(d+1))ε(4
(d+1)) . (2.4)

This last expression is also valid in the case where the manifold has a boundary. It remains

to find an explicit expression for ω(4(d+1)).

Due to the path-connectedness of the classifying space BG, one may smoothly deform

maps γ ∈ Hom(π1(M), G)/G such that every 0-simplex inM is mapped to the same point

in BG and such that the space of paths in BG, which is G up to homotopy, is mapped to

the 1-simplices ofM4. Contractible paths are thus mapped to the identity group element.

In practice, this means that every directed 1-simplex (v0v1) ⊂ M4 is assigned a group

element gv0v1 such that for every 2-simplex (v0v1v2) whose boundary is associated with a

contractible path, the 1-cocycle condition (or flatness constraint) gv0v1 · gv1v2 · g−1
v0v2

= 1 is

imposed. Such a labeling of the 1-simplices defines a local description of a G-flat connection

and is referred to as a G-colouring. We denote the set of G-colourings by Col(M4, G).

– 6 –
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This provides an algebraic expression for the topological action ω(4(d+1)). Given

a (d+1)-simplex 4(d+1) ≡ (v0v1 . . . vd+1) ∈ M4 such that v0 < v1 < . . . < vd+1 and

g ∈ Col(M4, G), we notate by g[4d+1] the restriction of the colouring g to the edges

of 4(d+1) which is specified by the d+1 independent gauge fields gv0v1 , gv1v2 , . . . , gvdvd+1
.

Using these conventions, we define the evaluation of the cocycle ω on the G-coloured (d+1)-

simplex (v0v1 . . . vd+1) as

ω(g[v0v1 . . . vd+1]) ≡ ω(gv0v1 , gv1v2 , . . . , gvdvd+1
) . (2.5)

It is implicit in this construction that the cohomology Hd+1(BG,U(1)) of simplicial cocycles

of BG is equal to the group cohomology Hd+1(G,U(1)) of algebraic cocycles on G whose

definition is briefly recalled below:

Definition 2.1 (Group cohomology). Let G be a finite group and A a G-module whose

action is denoted by .. We define an n-cochain on G as a function ωn : Gn → A.1 The

space of n-cochains on G is denoted by Cn(G,A). A coboundary operator d(n) : Cn(G,A)→
Cn+1(G,A) can be defined on the space of n-cochains via

d(n)ωn(g1, . . . , gn+1) = g1 . ωn(g2, . . . , gn+1)ωn(g1, . . . gn)(−1)n+1

×
n∏
i=1

ωn(g1, . . . , gi−1, gi · gi+1, gi+2, . . . , gn+1)(−1)i . (2.6)

It follows from the definition that d(n+1) ◦ d(n) = 0. An n-cochain satisfying the equation

d(n)ωn = 1 is referred to as an n-cocycle and the space of n-cocycles is denoted by Zn(G,A).

We define an n-coboundary as an n-cocycle of the form ωn = d(n−1)ωn−1. The subgroup of

n-coboundaries is denoted by Bn(G,A) and finally the n-th cohomology group of algebraic

cocycles reads

Hn(G,A) =
Zn(G,A)

Bn(G,A)
=

Ker d(n)

Im d(n−1)
. (2.7)

Throughout this manuscript, we take the G-module A to be the abelian group U(1)

and the group action . to be trivial. The partition function of a closed manifold M for

the discrete version of the Dijkgraaf-Witten partition function finally reads:

ZGω [M] =
1

|G||M0
4|

∑
g∈Col(M4,G)

∏
4(d+1)⊂M4

ω(g[4(d+1)])ε(4
(d+1)) . (2.8)

The evaluation ZGω [M] ∈ C is independent of the choice of triangulation M4 of M. In

particular, this means that the partition function in invariant under so-called Pachner

moves.2 This follows from the cocycle condition d(d+1)ω = 1 where d(d+1) is the group

coboundary operator as defined in (2.6).

1When no confusion is possible, we will often drop the subscript n in ωn.
2Given a piecewise linear manifoldM endowed with a triangulationM4, a Pachner move replacesM4

by another triangulation M′4 homeomorphic to M. In other words, given two triangulations of the same

manifold, it is always possible to obtain one from the other via a finite sequence of Pachner moves.

– 7 –
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2.2 Partition function for open manifolds

As announced earlier, formula (2.8) can be extended to the case of open manifolds. A

particularly important class of open manifolds in the following is provided by so-called

cobordisms. Given a pair of oriented closed d-dimensional manifolds C0 and C1, a (d+1)-

dimensional cobordism from C0 to C1 is a compact oriented (d+1)-manifold C with boundary

∂C = C0 t C1 where C0 is the manifold C0 with orientation reversed. Given a triangulation

C4 of C with boundary triangulation ∂C4 = C4,0 t C4,1, the partition function defines a

linear operator

ZGω [C4] : HGω [C4,0]→ HGω [C4,1] with HGω [C4,∗] ≡
⊗

4(1)⊂C4,∗

C[G] , (2.9)

where C[G] is the Hilbert space spanned by complex linear combinations of the orthonormal

basis elements {|g〉}∀g∈G. More explicitly, one has

ZGω [C4] =
1

|G||C0
4|−

1
2
|∂C0
4|

∑
g∈Col(C4,G)

∏
4(d+1)⊂C4

ω(g[4(d+1)])ε(4
(d+1))

⊗
4(1)⊂C4,1

|g[4(1)]〉
⊗

4(1)⊂C4,0

〈g[4(1)]| .

The operator ZGω [C4] is boundary relative triangulation independent, i.e. it is independent

of the choice of triangulation of int(C4) := C4\∂C4 but does depend on the choice of

boundary triangulation.

Given a pair of triangulated cobordisms C and C′ with boundaries ∂C4 = C4,0 t C4,1
and ∂C′4 = C4,1tC4,2, we can consider a new triangulated cobordism C4∪C4,1C′4 obtained

by gluing C4 and C′4 along their common boundary component C4,1 such that

ZGω [C′4]ZGω [C4] = ZGω [C4 ∪C4,1 C′4] . (2.10)

Additionally, operators of this form satisfy the unitarity condition

ZGω [C4] = ZGω [C4]† . (2.11)

Let us now focus on a special kind of cobordisms. Let Σ be a d-dimensional surface,

ΣI ≡ Σ×[0, 1] ≡ Σ×I defines a cobordism with triangulation ΣI
4 such that ∂ΣI

4 = Σ4tΣ4.

As a consequence of the boundary relative triangulation independence of ZGω , we find

the relations

ZGω [ΣI
4]ZGω [ΣI

4] = ZGω [ΣI
4]

ZGω [ΣI
4] = ZGω [ΣI

4]† , (2.12)

so that ZGω [ΣI
4] defines an Hermitian projector. In this way, we define

ImZGω [ΣI
4] ≡ VGω [Σ4] ⊆ HGω [Σ4] (2.13)

– 8 –
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to be the physical state space of ZGω associated to the triangulation Σ4. A consequence of

this definition is that for all states |ψ〉 ∈ VGω [Σ4]

ZGω [ΣI
4] . |ψ〉 = |ψ〉 . (2.14)

In section 2.3, we will define an exactly solvable model that is the lattice Hamiltonian

realisation of the Dijkgraaf-Witten model given by a sum of local mutually commuting

projection operators. The Hamiltonian is defined in such a way that the ground state

subspace for a closed triangulated d-manifold Σ4 is naturally identified with the physical

state space VGω [Σ4], and the ground state projector is identified with ZGω [ΣI
4].

Note that in order to recover equation (2.8) as the limiting case of equation (2.10)

for ∂C4 = ∅, we choose the convention that the empty set ∅ can be thought of as a

closed oriented d-manifold such that ∅ = ∅. Thus, it follows that any closed (d+1)-

manifold M can be seen as a cobordism with boundary ∂M = ∅ t ∅. Accordingly, we

choose the conventions HGω [∅] := C and g[∅] = 1, for all G-colourings g ∈ Col(M, G).

Putting everything together, this ensures that (2.10) does reduce to (2.8) when C4 is a

closed manifold.

Let us finally introduce yet another special class of open manifolds which will be

particularly useful in the subsequent discussion, namely pinched intervals :

Definition 2.2 (Pinched interval). Let Ξ be an oriented d-manifold with possibly non-

empty boundary, the pinched interval Ξ×p I of Ξ is the quotient manifold

Ξ×p I ≡ Ξ× I / ∼ (2.15)

where the equivalence relation ∼ is defined such that (a, i) ∼ (a, i′), for all (a, i), (a, i′) ∈
∂Ξ× I.

An immediate consequence of def. 2.2 is that ∂(Ξ×p I) = Ξ∪∂Ξ Ξ and Ξ∩Ξ = ∂Ξ. By

comparison ∂(Ξ× I) = Ξ∪Ξ∪ (∂Ξ× I). In order to illustrate this property, let us consider

the following simple examples:

[0, 1]×p [0, 1] = , [0, 1]× [0, 1] = . (2.16)

Additionally, if ∂Ξ = ∅, then we can directly identify Ξ ×p I = Ξ× I.
We now define the partition function ZGω for pinched interval cobordisms. Let Ξ4,Ξ4′

be a pair of triangulations of Ξ such that ∂Ξ4 = ∂Ξ4′ and 4Ξ4′ a triangulation of Ξ×p I
such that ∂(4Ξ4′) = Ξ4 ∪∂Ξ4′ Ξ4′ , then

ZGω [4Ξ4′ ] =
1

|G|#(4Ξ4′ )

∑
g∈Col(4Ξ4′ ,G)

∏
4(d+1)⊂4Ξ4′

ω(g[4(d+1)])ε(4
(d+1)) (2.17)⊗

4(1)⊂Ξ4′

|g[4(1)]〉
⊗

4(1)⊂Ξ4

〈g[4(1)]|

– 9 –



J
H
E
P
1
0
(
2
0
1
9
)
2
1
6

where #(4Ξ4′) := |4Ξ4′
0|− 1

2 |∂4Ξ4′
0|− 1

2 |∂Ξ0
4|. Given an oriented d-dimensional mani-

fold equipped with triangulation Σ4 and Ξ4 ⊆ Σ4 a subcomplex, there is a natural action

of ZGω [4Ξ4′ ] that defines a linear map

ZGω [4Ξ4′ ] : HGω [Σ4]→ HGω [Σ4′ ] , (2.18)

which in turn descends to a unitary isomorphism

ZGω [4Ξ4′ ] : VGω [Σ4]
∼−→ VGω [Σ4′ ] (2.19)

where Σ4′ is a triangulation of Σ for which the subcomplex Ξ4 replaced by Ξ4′ . The fact

ZGω [4Ξ4′ ] is a unitary isomorphism on the physical state space follows from the relations

ZGω [4Ξ4′ ]
†ZGω [4Ξ4′ ] = ZGω [4Ξ4] (2.20)

and

ZGω [4Ξ4]ZGω [ΣI
4] = ZGω [ΣI

4] = ZGω [ΣI
4]ZGω [4Ξ4] (2.21)

which are a consequence of the boundary relative triangulation independence of ZGω . Most

importantly, this isomorphism implies that for a closed oriented d-manifold Σ, any two

triangulations Σ4,Σ4′ give rise to isomorphic state spaces VGω [Σ4] ' VGω [Σ4′ ], and hence

the dimension of the state space is a triangulation independent quantity.

2.3 Lattice Hamiltonian realisation of Dijkgraaf-Witten theory

In this section, we present the lattice Hamiltonian realisation of the partition func-

tion (2.8) [7, 8] whose ground state subspace corresponds to the physical Hilbert space

defined in equation (2.13). Let Σ be a closed oriented d-manifold equipped with a triangu-

lation Σ4. The input for the model is given by a pair (G,ω), where G is a finite group and

ω is a representative normalised3 (d+1)-cocycle in a cohomology class [ω] ∈ Hd+1(G,U(1)).

The microscopic Hilbert space of the model is given by

HGω [Σ4] ≡
⊗

4(1)⊂Σ4

C[G] . (2.22)

Letting g be a G-labeling of Σ4, we call the state |g〉 ∈ HGω [Σ4] a graph-state. Given

a graph-state |g〉, we use the notation gv0v1 ≡ g[v0v1] ∈ G to define the group element

associated to the oriented edge (v0v1) ≡ 4(1) ⊂ Σ4.

The Hamiltonian is defined in terms of two classes of operators, namely B4(2) which

act on the 2-simplices of Σ4, and A4(0) which act on a local neighbourhood of the vertices

of Σ4, such that

HG
ω (Σ4) = −

∑
4(2)⊂Σ4

B4(2) −
∑

4(0)⊂Σ4

A4(0) . (2.23)

3A normalised (d+1)-cocycle ω is cocycle which gives the identity when any of the input group elements

are the group identity.
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The operator B(v0v1v2) for (v0v1v2) ⊂ Σ4 is defined by its action on a graph-state |g〉 ∈
HGω [Σ4] as follows:

B(v0v1v2) . |g〉 = δgv0v1gv1v2 , gv0v2 |g〉 (2.24)

which can be extended linearly to an operator on any state |ψ〉 ∈ HGω [Σ4]. The B-operators

provide an energy penalty for non-flat G-connections of Σ4.

For every vertex 4(0) ≡ (v0) of Σ4, the operator A(v0) acts on the subcomplex Ξv0 :=

cl ◦ st(v0) ⊂ Σ4. Here cl(∗) is the closure operation and st(∗) is the star operation such

that Ξv0 is the smallest subcomplex of Σ4 that contains all the simplices which share v0

as a subsimplex [36]. We define A(v0) in terms of the triangulated pinched interval Ξv0
Ξ Ξv0

of which we choose a triangulation via

Ξv0
Ξ Ξv0

:= (v′0) tj cl ◦ st(v0) . (2.25)

Here ∗ tj ∗ is the join operation, where the join of two simplices 4(p) ≡ (v0v1 . . . vp)

and 4(q) ≡ (vp+1vp+2 . . . vp+q+1) is a new simplex 4(p) tj 4(q) ≡ (v0v1 . . . vp+q+1) and

v0 < v0′ < v1 is an auxiliary vertex which respects the ordering of v0 with respect to all other

vertices in Σ4. Let us illustrate these different definitions with a two-dimensional example:

Σ2d,4 = 0 (2.26)

so that

(0′) tj cl ◦ st(0) = (0′) tj 0 =

0′

0 . (2.27)

In this notation, for a given |ψ〉 ∈ HGω [Σ4], we finally define the action of A(v0) via

Av0 . |ψ〉 = ZGω [(v′0) tj cl ◦ st(v0)]|ψ〉 . (2.28)

For instance, in (3+1)d the action of the operator A(4) on a vertex (4) shared by four

3-simplices explicitly reads

A(4) .

∣∣∣∣∣
0

1

2

3

4

〉
= ZGπ

[ 0

1

2

3

4′

4

] ∣∣∣∣∣
0

1

2

3

4

〉
(2.29)

=
1

|G|
∑
k∈G

π(ab, c, d, k)π(a, b, cd, k)

π(b, c, d, k)π(a, bc, d, k)

∣∣∣∣∣
0

1

2

3

4′

〉
.
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where π ∈ Z4(G,U(1)). Note that the G-colouring was left implicit and we made use of

the shorthand notation g01 ≡ a, g12 ≡ b, g23 ≡ c, g34 ≡ d and g44′ ≡ k.

It follows directly from the definitions that the B-operators are mutually commuting

projection operators and that any A-operator commutes with any B-operator, and vice

versa. The only non-trivial commutation relation corresponds to the situation where two

A-operators act on two vertices that are shared by the same 1-simplex. Let us consider for

instance a 1-simplex (v0v1) and let us compare the action of A(v0) ◦A(v1) and A(v1) ◦A(v0). It

follows from the definition that the amplitudes of A(v0) and A(v1) are ZGω [(v′0)tj cl ◦ st(v0)]

and ZGω [(v′1) tj cl ◦ st(v1)], respectively. However, the results of cl ◦ st(v1) and cl ◦ st(v0)

depends on the order in which we act with the operators. Indeed, the action of A(v0) ◦A(v1)

is such that (v0) ⊂ cl ◦ st(v1) and (v′1) ⊂ cl ◦ st(v0), while the action of A(v1) ◦ A(v0) is

such that (v1) ⊂ cl ◦ st(v0) and (v′0) ⊂ cl ◦ st(v1). In both cases, the overall amplitude

is provided by ZGω [((v′0) tj cl ◦ st(v0)) ∪ ((v′1) tj cl ◦ st(v1))]. However, in the former case,

the simplicial complex ((v′0) tj cl ◦ st(v0)) ∪ ((v′1) tj cl ◦ st(v1)) contains the 1-simplex

(v0v
′
1) while in the latter case it contains (v′0v1). These two complexes share the same

topology and boundary so that they can be related by a finite sequence of Pachner moves.

Topological invariance of the partition function then guarantees that the amplitudes are

the same, and therefore that the operators A(v0) and A(v1) commute. Furthermore, that

A(v0) is a projection operator follows directly from the definition in terms of ZGω applied

to a triangulated pinched interval. Consequently, the Hamiltonian is a sum of mutually

commuting projection operators such that the model is exactly solvable.

Let us conclude the definition of the Hamiltonian realisation by elucidating the relation

between the ground state subspace of the Hamiltonian and the corresponding physical state

space of the Dijkgraaf-Witten model. By definition, a ground state |ψ〉 of HG
ω (Σ4) is given

by a linear superposition of graph-states such that the conditions A4(0) . |ψ〉 = |ψ〉 and

B4(2) . |ψ〉 = |ψ〉 are satisfied for all 4(0),4(2) ⊂ Σ4. Noting that the set of operators

{A4(0) ,B4(2)}∀4(0),4(2)⊂Σ4
are all mutually commuting projection operators, we define the

ground state projector PΣ4 via:

PΣ4 :=
∏

4(0)⊂Σ4

A4(0)

∏
4(2)⊂Σ4

B4(2) =
∏

4(0)⊂Σ4

A4(0) . (2.30)

The second equality in the above follows from the fact that the operator A(v0) naturally

enforces the flatness condition in cl ◦ st(v0) ⊆ Σ4, but ∪(v0)⊂Σ4cl ◦ st(v0) = Σ4, and

thus the term
∏
4(2)⊂Σ4

B4(2) is superfluous in the definition of the ground state projector

PΣ4 . Utilising the definition A(v0) = ZGω [(v′0) tj cl ◦ st(v0)], we can naturally make the

identification: ∏
4(0)⊂Σ4

A4(0) = ZGω [ΣI
4] (2.31)

where each ordering of the product of A4(0) defines a different boundary relative triangu-

lation of ΣI
4. But the operator ZGω is invariant under such choices, hence the equality.

In this way we can identify the ground state subspace of HG
ω (Σ4) with the physical state
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ω(
g[0

23
45
])

ω(g[01235])

ω(g[01234])

ω(g[12345])

ω(g[01245])

ω(
g[0

13
45
])

Figure 1. Coherence relation of the 2 � 3 Pachner moves. Given a complex obtained as the

gluing of three 3-simplices, two different sequences of 2 � 3 Pachner moves result in the same

complex obtained as the gluing of six 3-simplices. Each arrow is decorated by the amplitude of the

corresponding move obtained as the evaluation of ω on the 4-simplex whose boundary provides the

3-simplices involved in the corresponding 2 � 3 move. This coherence relation is satisfied if ω is a

4-cocycle.

space VGω [Σ4] of the Dijkgraaf-Witten model where

Im PΣ4 = ImZGω [ΣI
4] ≡ VGω [Σ4] (2.32)

following from equation (2.13).

2.4 Fixed point wave functions

In equation (2.19), it was shown using the language of pinched interval operators that

given a pair of triangulations Σ4 and Σ4′ of a closed oriented three-manifold Σ, the cor-

responding state spaces were isomorphic, i.e. VGω [Σ4] ' VGω [Σ4′ ]. In light of the identifica-

tion (2.32) between the physical state space of the topological theory and the Hamiltonian

ground state subspace, this informs us that under a local change of triangulation, ground

states remain in the same gapped phase. In other words, to a change of triangulation

corresponds a local unitary transformation that performs an adiabatic evolution of the

system that preserves the gap. These local transformations can in turn be used in order

to generate a renormaliation group flow so that gapped ground states can be interpreted

as fixed point wave functions [5].

An important class of pinched interval operators for the following discussion are the

so-called Pachner operators. For a given compact Σ, any two triangulations of Σ can be

mutated between each other by a finite set of Pachner moves [37]. For instance, in three

dimensions, we distinguish two sets of invertible Pachner moves given by the 1 � 4 and
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2� 3 moves:

4−1−−⇀↽−−
1−4

,
3−2−−⇀↽−−
2−3

. (2.33)

Each d-dimensional Pachner move is derived from a (d+1)-simplex 4(d+1), which defines a

triangulation of the (d+1)-disk, and such that the boundary ∂4(d+1) defines a triangulation

of the d-sphere Sd. But a hemispherical decomposition of ∂4(d+1) = N ∪∂S=∂N S into

two subcomplexes N and S (the north and south hemispheres) is such that the (d+1)-

simplex defines a pinched interval which changes a subcomplex given by N of a triangulated

three-manifold to have triangulation S. Using the Dijkgraaf-Witten partition function ZGω ,

such a pinched interval can be lifted to a unitary isomorphism on VGω [Σ4]. Furthermore,

boundary relative triangulation independence of the partition function guarantees that

the isomorphism is independent of the order or choices of Pachner operators between two

triangulated three-manifolds as illustrated in figure 1 for the three-dimensional Pachner

moves. For the sake of concreteness, we consider below two examples of three-dimensional

Pachner operators:

P4⇀1 :=
1

|G| 12
∑

g∈Col((01234),G)

ω(g[01234])ε(01234)

∣∣∣∣∣g
[ ]〉〈

g

[ ]∣∣∣∣∣
(2.34)

P3⇀2 :=
∑

g∈Col((01234),G)

ω(g[01234])ε(01234)

∣∣∣∣∣g
[ ]〉〈

g

[ ]∣∣∣∣∣ (2.35)

where the vertex enumeration is left implicit, since such enumeration defines an orientation

for the corresponding 4-simplex according to conv. 2.2, and instead insert the orientation

dependency in the amplitude. Finally, we define P1⇀4 = P†4⇀1 and P2⇀3 = P†3⇀2.

3 Tube algebras and excitations

In this section, we present an approach to study and classify excitations in topological

models. This approach consists in revealing the algebraic structure underlying the exci-

tations yielded by the lattice Hamiltonian. First, we present the general framework, then

we provide some lower-dimensional examples, and finally we reveal and study in detail the

algebraic structure relevant for the (3+1)d model.
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3.1 General framework

Given a closed oriented d-manifold Σ equipped with a choice of triangulation Σ4, we

introduced in equation (2.23) the lattice Hamiltonian HG
ω (Σ4) whose ground state subspace

VGω [Σ4] is spanned by linear combinations of graph-states on Σ4 that satisfy the stabiliser

conditions A4(0) . |ψ〉 = |ψ〉 and B4(2) . |ψ〉 = |ψ〉 for all 4(0),4(2) ⊂ Σ4. This ground

state subspace corresponds to a translational invariant state with constant energy density

for all local neighbourhoods of Σ4.

We define an excitation in the model to be a connected subcomplex of Σ4 with an

energy density higher than that of the ground state. In terms of the Hamiltonian, an excita-

tion is obtained by violating the stabiliser constraints A4(0) .|ψ〉 = |ψ〉 and B4(2) .|ψ〉 = |ψ〉
at 0- and 2-simplices of the subcomplex. Recalling that the Hamiltonian constraints A4(0)

and B4(2) enforce twisted gauge invariance and flatness, respectively, we call a state |ψ〉
whereby A4(0) . |ψ〉 = 0 for one vertex 4(0) an electric charge excitation, and a state for

which B4(2) . |ψ〉 = 0 for one 2-simplex 4(2) a magnetic flux excitation. There are numer-

ous equivalent approaches to classifying excitations in the theory, such as the construction

of string and membrane operators from the algebra of local symmetries. In this section,

we instead utilise a generalisation of the Ocneanu’s tube algebra [13, 14]. The corner-

stone of this approach is that the physical properties of any excitation associated with a

given subcomplex of Σ4 are encoded as boundary conditions of the triangulation obtained

by removing this subcomplex from Σ4. As such, it is possible to classify excitations by

classifying boundary conditions.

Given an open manifold Σo with triangulation Σo
4 we define the Hamiltonian of equa-

tion (2.23) as follows:

HG
ω (Σo

4) = −
∑

4(2)⊂int(Σo
4)

B4(2) −
∑

4(0)⊂int(Σo
4)

A4(0) , (3.1)

where int(Σo
4) := Σo

4\∂Σo
4. Since the Hamiltonian does not mix graph-states with differ-

ent G-connections on ∂Σo
4, we say HG

ω (Σo
4) has open boundary conditions. In the presence

of such open boundary conditions, the ground state subspace naturally admits a decom-

position via

VGω [Σo
4] =

⊕
a∈Col(∂Σo

4,G)

VGω [Σo
4]a (3.2)

where Col(∂Σo
4, G) notates the set of G-colourings (or flat G-connections) of ∂Σo

4, and

for a ∈ Col(∂Σo
4, G), VGω [Σo

4]a is the ground state subspace consisting of linear super-

positions of graph-states with boundary colouring a. Generically, a boundary condition

a ∈ Col(∂Σo
4, G) defines a set of excitations which are a linear superposition of magnetic

flux and electric charge excitations. In order to find states with well-defined electric charge

and magnetic flux, we will instead find an alternative basis for VGω [Σo
4], namely the so-called

fusion basis [16, 18, 20].

We demonstrated previously that for closed spatial manifolds, there exists unitary

isomorphisms between the ground state subspace associated with different choices of trian-

gulation. Moreover, the corresponding equivalence classes can be interpreted as fixed point
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wave functions and are in one-to-one correspondence with the ground state wave functions

of the lattice Hamiltonian. For open spatial manifolds this triangulation independence is

not manifest on the triangulation choice of the boundary. We will now introduce a related

‘symmetry’ of the ground state subspace for open manifolds with respect to the gluing of

spatial tubes.4

Let us begin with a simple observation: given a manifold Σo with non-empty boundary,

we can always glue a copy of ∂Σo × I to Σo without modifying the topology, i.e. there

exists an orientation preserving diffeomorphism such that ∂Σo × I ∪∂Σo Σo ' Σo. Let us

illustrate this property with a lower-dimensional example: let Σo
2d be a 2-manifold with

boundary S1, we can glue a copy of the cylinder S1 × I along ∂Σo
2d = S1 in order to form

S1 × I ∪S1 Σo
2d ' Σo

2d. This gluing operation can be depicted as follows:

S1 × I Σo
2d

gluing−−−−→

S1 × I ∪S1 Σo
2d

'

Σo
2d

. (3.3)

In general spatial dimensions, making use of the operators that perform triangulation

changes, this gluing process can be extended to a generalised symmetry of the ground

state subspace. Let Σo
4 be a d-dimensional open manifold and Ξ4 = ∂Σo

4 its boundary,

we define T[Ξ4] to be a triangulation of Ξ4 × I with ∂T[Ξ4] = Ξ4 t Ξ4. Henceforth, we

call T[Ξ4] the tube of Ξ4. Following from (3.2), we decompose VGω [T[Ξ4]] via

VGω [T[Ξ4]] ≡
⊕

a∈Col(Ξ4×{0},G)

b∈Col(Ξ4×{1},G)

VGω [T[Ξ4]]a,b . (3.4)

We then define the injective map

G : VGω [Σo
4]⊗ VGω [T[Ξ4]] −−→

⊕
a∈Col(∂Σo

4,G)

a′∈Col(Ξ4×{0},G)

b∈Col(Ξ4×{1},G)

VGω [Σo
4]a ⊗ VGω [T[Ξ4]]a′,b (3.5)

⊆ HGω [Σo
4 ∪Ξ4 T[Ξ4]]

which acts on states |ψa〉 ∈ VGω [Σo
4]a and |ϕa′,b〉 ∈ VGω [T[Ξ4]]a′,b by identifying boundary

conditions on the gluing interface, i.e.

G : |ψa〉 ⊗ |ϕa′,b〉 7→ δa,a′ |ψa〉 ⊗ |ϕa′,b〉 . (3.6)

This can be linearly extended to states with mixed grading. Most importantly, the image

of the map G is a subspace of HGω [Σo
4 ∪Ξ4 T[Ξ4]] which differs from the ground state

subspace VGω [Σo
4 ∪Ξ4 T[Ξ4]] because the Hamiltonian operators may be violated on the

gluing interface. Letting VGω [Σo
4 ∪Ξ4 T[Ξ4]]

∼−→ VGω [Σo
4] define the triangulation changing

4We use the terminology ‘symmetry’ here loosely as the symmetry is given by an algebra rather than a

group as in the usual context.
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unitary isomorphism between the two ground state subspaces, we define the operator ? as

the following composition of maps:

? : VGω [Σo
4]⊗ VGω [T[Ξ4]]

G−→ HGω [Σo
4 ∪Ξ4 T[Ξ4]]

PΣo
4∪Ξ4

T[Ξ4]

−−−−−−−−−→ VGω [Σo
4 ∪Ξ4 T[Ξ4]]

∼−→ VGω [Σo
4] ,

where P is the projection map defined in (2.30). In particular, this implies a map

? : VGω [T[Ξ4]]⊗ VGω [T[Ξ4]]→ VGω [T[Ξ4]] (3.7)

that enriches the Hilbert space VGω [T[Ξ4]] with the structure of a finite dimensional algebra

denoted by TubeGω (Ξ4). Similarly, we can interpret VGω [Σo
4] as defining a module over

TubeGω (Ξ4). It was shown in [20] that the algebra TubeGω (Ξ4) is an associative semi-simple

∗-algebra for any choice of triangulated boundary Ξ4, so that the ground state subspace

VGω [Σo
4] can be decomposed in terms of simple modules under the action on TubeGω (Ξ4) by

VGω [Σo
4] =

⊕
m∈M

VGω [Σo
4]m , (3.8)

where VGω [Σo
4]m is a simple TubeGω (Ξ4) module and M denotes the set of simple TubeGω (Ξ4)

modules up to isomorphism.

The approach described above can be used to classify the excitations of the theory.

First, let us make a simple observation: given an open manifold Σo, it is always possible to

find a collar neighbourhood of ∂Σo that is diffeomorphic to ∂Σo×I. More specifically, given

a triangulated manifold Σo
4 with a connected boundary component Ξ4, using triangulation

changes we can always pick a representative ground state Hilbert VGω [Σo
4′ ] isomorphic to

VGω [Σo
4] whereby Σo

4′ is a triangulation equivalent to Σ4 such that a local neighbourhood

of the boundary Ξ4 is of the form T[Ξ4]. Using this isomorphism, we can localise the

above gluing map to act only on degrees of freedom restricted to the local neighbourhood

of the boundary given by T[Ξ4]. This means that we can classify boundary conditions

for Ξ4, and hence excitations contained in a subcomplex bounded by Ξ4, in terms of the

simple modules of the regular module of T[Ξ4], i.e. T[Ξ4] considered as a T[Ξ4]-module.

A consequence of the semi-simplicity of TubeGω (Ξ4) is that there are only finitely many

irreducible excitations in the theory and all other excitations are a linear superposition

of such excitations. In practice there are two non-canonical choices in defining the tube

algebra. First a triangulation of the boundary Ξ4 and then a triangulation of T[Ξ4]. For a

given choice of boundary triangulation Ξ4 it was shown in [20] that any two triangulations

of T[Ξ4] define isomorphic algebras. Independence of the choice of boundary triangulation

is slightly more subtle. Although the tube algebra, and a fortiori the simple modules,

depends on the choice of triangulation of the boundary, any two triangulations of the same

boundary manifold yields Morita equivalent tube algebras. Morita equivalence is a weaker

relation between two algebras than isomorphism in the sense that two algebras can have
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different dimension while maintaining Morita equivalence. Instead, Morita equivalence

states that the simple modules of two algebras are in one-one correspondence.5

3.2 Tube algebra in (1+1)d

Ultimately we are interested in the excitations yielded by the (3+1)d lattice Hamiltonian

model described in section 2.3, but it is instructive to first consider some lower-dimensional

examples. Here we present the simplest non-trivial example of the tube algebra approach

for the lattice Hamiltonian realisation of (1+1)d Dijkgraaf-Witten theory.

Let Σ1d be a 1d surface equipped with a triangulation Σ1d,4. The input for the model

is given by a pair (G, β), where G is a finite group and β is a representative normalised

2-cocycle in a cohomology class [β] ∈ H2(G,U(1)). As explained earlier in the general case,

the models assigns to every oriented edge (v0v1) ≡ 4(1) ⊂ Σ1d,4 a group element g[v0v1]

such that the microscopic Hilbert space of the model is given by

HGβ [Σ1d,4] ≡
⊗

4(1)⊂Σ1d,4

C[G] . (3.9)

In (1+1)d there is a unique choice of boundary, namely the 0-dimensional point o. Taking

the triangulation of the point to be 0-simplex, we can define its tube T[o] = 4(1) as a

1-simplex. Any other triangulation would give rise to an isomorphic vector space and thus

isomorphic algebra, so that we are free to choose the simplest triangulation without loss of

generality. Graphically, we depict this 1d tube as

T[o] := 0 1• • (3.10)

so that the corresponding Hilbert space VGβ [T[o]] reads

VGβ [T[o]] = SpanC

{ ∣∣g[ 0 1• • ]
〉 }
∀g∈Col(T[o],G)

≡ SpanC

{ ∣∣ a
0 1• •

〉 }
∀a∈G ,

(3.11)

which is equipped with the canonical inner product

〈 a
0 1• •

∣∣ b
0 1• •

〉
= δa,b . (3.12)

Note that since there is a unique configuration of the point o, the grading (3.4) is in this

case trivial. Utilising the previous discussion, we can now define the algebra product on

5Morita equivalence is defined as follows: let A1 and A2 be two associative algebras. Then A1 is

Morita equivalent to A2 if and only if there exists a pair (A1PA2 ,A2 QA1) of A1–A2- and A2–A1-bimodules,

respectively, such that A1PA2 ⊗A2 A2QA1 ' A1 and A2PA1 ⊗A1 A1QA2 ' A2. Morita equivalence is an

important concept in the study of tube algebras as the dimension of the tube algebra has a strict dependency

on the triangulation choice of the boundary. However, any two choices of boundary triangulations define

Morita equivalent algebras such that the simple excitations of the two algebras are in one-one correspondence

and thus the Morita equivalence class of simple modules is a triangulation independent quantity.
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VGβ [T[o]] as follows:

∣∣ a
0 1• •

〉
?
∣∣ b
1 2• •

〉
= PT[o]∪oT[o] ◦G .

( ∣∣ a
0 1• •

〉
⊗
∣∣ b
1 2• •

〉 )
(3.13)

= PT[o]∪oT[o] .
( ∣∣ a b

0
1

2• • •
〉 )

. (3.14)

Applying definition (2.28), the action of the operator P is expressed in terms of the partition

function ZGβ as follows:

PT[o]∪oT[o] .
( ∣∣ a b

0
1

2• • •
〉 )

= ZGβ

[
a b

0

1′

1
2

]∣∣ a b
0

1
2• • •
〉

(3.15)

=
1

|G|
∑
k

β(a, k)

β(k, k−1b)

∣∣ ak k−1b
0

1′
2• • •
〉
.

It now remains to apply the triangulation changing isomorphism between ground states

subspaces so as to recover the initial triangulation. Following section 2.2 and 2.4, this

isomorphism is expressed as the 2d partition function for the pinched interval cobordism

given by the 2-simplex (012). Explicitly, the triangulation changing operator reads

ZGβ

[ 0 2

1′

]
=

1

|G| 12
∑
c,d∈G

β(c, d)
∣∣ cd

0 2• •
〉〈 c d

0
1′

2• • •
∣∣

(3.16)

so that ∣∣ ak k−1b
0

1′
2• • •
〉
' 1

|G| 12
β(ak, k−1b)

∣∣ ab
0 2• •

〉
. (3.17)

Putting everything together, the algebra product of TubeGβ (o) is given by

∣∣ a
0 1• •

〉
?
∣∣ b
1 2• •

〉
=

1

|G| 12
β(a, b)

∣∣ ab
0 2• •

〉
, (3.18)

where we made use of the 2-cocycle condition d(2)β(a, k, k−1b) = 1.

3.3 Tube algebra in (2+1)d: twisted quantum double

We continue our discussion with a second example of tube algebra for the lattice Hamilto-

nian realisation of (2+1)d Dijkgraaf-Witten model. Given a 2d surface Σ2d equipped with

a triangulation Σ2d,4, the input data of the model is a pair (G,α), where G is a finite group
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and α is a representative normalised 3-cocycle in a cohomology class [α] ∈ H3(G,U(1)). As

before, the models assigns to every oriented edge (v0v1) ≡ 4(1) ⊂ Σ2d,4 a group element

g[v0v1] such that the microscopic Hilbert space of the model is given by

HGα [Σ2d,4] ≡
⊗

4(1)⊂Σ2d,4

C[G] . (3.19)

As explained earlier in the general case, given a compact two-dimensional surface, any two

triangulations can be mutated between each other by a finite set of Pachner moves. In two

dimensions, we distinguish two sets of invertible Pachner moves given by the 1 � 3 and

2 � 2 moves. Each Pachner move is now derived from a 3-simplex 4(3) which defines a

pinched interval. Using the 3d Dijkgraaf-Witten partition function, such a pinched interval

can in turn be lifted to a unitary isomorphism on the corresponding ground state subspace.

For instance the Pachner operator associated with the 2 ⇀ 2 move explicitly reads

P2⇀2 :=
1

|G| 12
∑

g∈Col((0123),G)

α(g[0123])ε(0123)

∣∣∣∣∣g
[ ]〉〈

g

[ ]∣∣∣∣∣ (3.20)

where the vertex enumeration is left implicit.

In (2+1)d there is a unique choice of closed boundary manifold, namely the circle (or

1-sphere) S1. Up to Morita equivalence we can choose the circle to be triangulated by a

single 1-simplex with both vertices identified, and we refer to this triangulation as S1
4. It

follows that the corresponding tube T[S1
4] of S1

4 is provided by a triangulated quadrilateral

with two opposite edges identified, i.e.

T[S1
4] :=

0 1

0′ 1′

≡ (3.21)

with the identification of vertices (0) ≡ (0′), (1) ≡ (1′) and edge (01) ≡ (0′1′). The Hilbert

space VGα [T[S1
4]] is thus spanned by G-coloured graph-states of the form

VGα [T[S1
4]] = SpanC

{∣∣∣∣∣g
[ 0 1

0′ 1′

]〉}
∀g∈Col(T[S1

4],G)

≡ SpanC

{∣∣∣∣∣
a

x a−1xa

a

xa

0 1

0′ 1′

〉}
∀a,x∈G

=: SpanC

{
|(
x

• )
a−→〉
}
∀a,x∈G , (3.22)

where the shorthand notation introduced in the last line will be justified in section 5.

Since we can distinguish several boundary configurations, this Hilbert space admits a non-
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trivial grading:

VGα [T[S1
4]] ≡

⊕
a,x∈G
VGα [T[S1

4]]x,a−1xa . (3.23)

Following exactly the same steps as before, we define the algebra product on VGα [T[S1
4]]

as follows:

∣∣∣∣∣
a

x1

a

0 1

0′ 1′

〉
?

∣∣∣∣∣
b

x2

b

1 2

1′ 2′

〉

= PT[S1
4]∪S1

4
T[S1
4] ◦G .

(∣∣∣∣∣
a

x1

a

0 1

0′ 1′

〉
⊗
∣∣∣∣∣

b

x2

b

1 2

1′ 2′

〉)

= δx2,a−1x1a PT[S1
4]∪S1

4
T[S1
4] .

(∣∣∣∣∣
a

x1

a

b

b

0 1

0′ 1′

2

2′

〉)
,

where some of the G-labels are left implicit since they can be deduced from the flatness

constraints. Applying definition (2.28), the action of the operator P then reads

P .

∣∣∣∣∣
a

x1

a

b

b

0 1

0′ 1′

2

2′

〉)
=

1

|G|
∑
k

τx1(α)(a, k)

τa−1x1a(α)(k, k−1b)

∣∣∣∣∣
ak

x1

ak

k−1b

k−1b

0 1

0′ 1′

2

2′

〉

where we defined

τx(α)(a, b) :=
α(x, a, b)α(a, b, (ab)−1xab)

α(a, a−1xa, b)
. (3.24)

Henceforth, we refer to the function τ(α) as the S1-transgression of α, for reasons that will

be clarified in section 5.6 Repeated application of the 3-cocycle condition d(3)α = 1 implies

the following properties:

τa−1xa(α)(b, c) τx(α)(a, bc)

τx(α)(ab, c) τx(α)(a, b)
= 1 , (3.25)

τ1G(α)(a, b) = τx(α)(1G, b) = τx(α)(a, 1G) = 1 and τx(α)(a, a−1) = τa−1xa(α)(a−1, a) ,

(3.26)

for all x, a, b, c ∈ G. It now remains to apply the triangulation changing isomorphism

between ground states subspaces so as to recover the initial triangulation. Following sec-

tion 2.2 and 2.4, this isomorphism is expressed as the 3d partition function for the pinched

6Note that if the group G is abelian, then τ(α) defines a normalised group 2-cocycle.
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interval cobordism whose triangulation is provided by the cartesian product (012)+ × S1:

(012)+ × S1 :=

2 0

1

2′ 0′

1′
≡ (00′1′2′)+ ∪ (011′2′)− ∪ (0122′)+ . (3.27)

The corresponding triangulation changing operator reads

ZGα [(012)+ × S1] =
1

|G| 12
∑

y,c,d∈G
τy(α)(c, d)

∣∣∣∣∣
cd

y

cd

0 1

0′ 1′

〉〈 c

y

c

d

d

0 1

0′ 1′

2

2′

∣∣∣∣∣
so that

∣∣∣∣∣
ak

x1

ak

k−1b

k−1b

0 1

0′ 1′

2

2′

〉
' 1

|G| 12
τx1(α)(ak, k−1b)

∣∣∣∣∣
ab

x1

ab

0 2

0′ 2′

〉
. (3.28)

Putting everything together, and using the notation introduced in eq. (3.22), the algebra

product of TubeGα (S1
4) is given by

|(
x1

• )
a−→〉 ? |(

x2

• )
b−→〉 = δx2,a−1x1a

1

|G| 12
τx1(α)(a, b) |(

x1

• )
ab−→〉 (3.29)

where we made use of the condition

τx1(α)(a, k)τx1(α)(ak, k−1b)

τa−1xa(α)(k, k−1b)
= τx1(α)(a, b) (3.30)

which follows from (3.25). This algebra was first defined by Roche, Dijkgraaf et al. and

is often referred to as the twisted quantum double of a finite group [10]. Interestingly, we

note there are strong similarities between the (1+1)d and the (2+1)d cases. It turns out

that these similarities will persist in the (3+1)d case. As a matter of fact, we will explain

in section 5 how these can be exploited in order to define higher-dimensional tube algebras

in terms of the (1+1)d one.

3.4 Loop tube algebra in (3+1)d: twisted quantum triple

In this section we consider an example of the (3+1)d tube algebra. Let Σ3d be a 3d surface

equipped with a triangulation Σ3d,4. The input for the model is given by a pair (G, π),

where G is a finite group and π is a representative normalised 4-cocycle in a cohomology

class [π] ∈ H4(G,U(1)). As before, the models assigns to every oriented edge (v0v1) ≡
4(1) ⊂ Σ1d,4 a group element g[v0v1] such that the microscopic Hilbert space is the same

as earlier.

Generally in (3+1)d, a boundary can be defined by each closed surface which in turn

can be classified by its genus. Here we derive the tube algebra for the lattice Hamiltonian
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realisation of (3+1)d Dijkgraaf-Witten theory associated to a triangulation of the torus

T2. The representation theory of this algebra will then be derived and utilised in order

to classify the loop-like excitations of the model, where by loop-like excitation we mean

an excitation with the topology of the circle S1. Given a spatial 3-manifold Σ, a regular

neighbourhood of a loop is given by the solid torus D2×S1, and as such loop-like excitations

are classified by the boundary conditions of the torus T2 = ∂(D2 × S1). This means that

we need to derive the tube algebra associated with the manifold T2 × I. We define a

triangulation of T2 × I as follows

T[T2
4] :=

0′ 1′

10

0̃′
1̃′

1̃0̃

≡ (3.31)

where we make the identifications (0) ≡ (0′) ≡ (0̃) ≡ (0̃′), (1) ≡ (1′) ≡ (1̃) ≡ (1̃′), (01) ≡
(0′1′) ≡ (0̃1̃) ≡ (0̃′1̃′), (00′) ≡ (0̃0̃′), (00̃) ≡ (0′0̃′), (11′) ≡ (1̃1̃′) and (11̃) ≡ (1′1̃′). The ground

state subspace VGπ [T[T2
4]] is then provided by all superpositions of G-coloured graph-states

of the form

VGπ [T[T2
4]] ≡ SpanC

{∣∣∣∣∣
a

x

y

0′ 1′

10

0̃′
1̃′

1̃0̃ 〉}
∀a,y∈G
∀x∈Zy

=: SpanC

{
|(

x

•
y

)
a−→〉
}
∀a,y∈G
∀x∈Zy

, (3.32)

where Zy = {x ∈ G |xy = yx} so that the G-colouring is specified by a := g[01], x := g[00′]

and y := g[0′0̃′] with xy = yx. As before the G-colouring of the remaining edges is left

implicit since it follows from the different identifications and flatness constraints. Once

again, the specific choice of shorthand notation we make will be justified in section 5.

Let us now define the algebra product on VGπ [T[T2
4]]. Since the derivation follows

exactly the same steps as for the two previous examples, we will present it in a more

succinct way. In terms of the basis states provided above, we have

∣∣∣∣∣
a

x1

y1

0′ 1′

10

0̃′
1̃′

1̃0̃ 〉
?

∣∣∣∣∣
b

x2

y2

1′ 2′

21

1̃′
2̃′

2̃1̃ 〉
(3.33)

= δx2,a−1x1a δy2,a−1y1a PT[T2
4]∪T2

4
T[T2
4] .

∣∣∣∣∣
a

x1

y1

b0′ 1′

1
0 2

2′

0̃′ 1̃′

1̃0̃

2̃′
2̃ 〉

.
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The action of the projection operator P then reads

P .

∣∣∣∣∣
a

x1

y1

b0′ 1′

1
0 2

2′

0̃′ 1̃′

1̃0̃

2̃′
2̃ 〉

=
1

|G|
∑
k

τx1,y1(π)(a, k)

τxa1 ,ya1 (π)(k, k−1b)

∣∣∣∣∣
ak

x1

y1

k−1b0′ 1′

1
0 2

2′

0̃′ 1̃′

1̃0̃

2̃′
2̃ 〉

where we introduced the notation xa := a−1xa and defined

τ2
x,y(π)(a, b) :=

τy(π)(x, a, b) τy(π)(a, b, xab)

τy(π)(a, xa, b)
(3.34)

as the S1-transgression of τ(π) that is itself defined according to

τy(π)(a, b, c) =
π(a, ya, b, c)π(a, b, c, yabc)

π(y, a, b, c)π(a, b, yab, c)
. (3.35)

We also refer to τ(π) as the S1-transgression of π so that τ2(π) is the S1-transgression of

the S1-transgression of π. Henceforth, we will therefore refer to the function τ2(π) as the

T2-transgression of π, for reasons that will be clarified in section 5. Repeated application

of the 4-cocycle condition d(4)π = 1 implies the following properties:

τa−1ya(π)(b, c, d) τy(π)(a, bc, d) τy(π)(a, b, c)

τy(π)(ab, c, d) τy(π)(a, b, cd)
= 1 , (3.36)

τ1G(π)(a, b, c) = τy(π)(1G, b, c) = τy(π)(a, 1G, c) = τy(π)(a, b, 1G) = 1 , (3.37)

τy(π)(a, a−1, a) = τa−1ya(π)−1(a−1, a, a−1) (3.38)

for all y, a, b, c ∈ G. Repeated application of (3.36) in turn implies the subsequent

properties:

τ2
a−1xa,a−1ya(π)(b, c) τ2

x,y(π)(a, bc)

τ2
x,y(π)(ab, c) τ2

x,y(π)(a, b)
= 1 , (3.39)

τ2
1G,y(π)(a, b) = τ2

x,1G(π)(a, b) = τ2
x,y(π)(1G, b) = τ2

x,y(π)(a, 1G) = 1 , (3.40)

τ2
x,y(π)(a, a−1) = τ2

a−1xa,a−1ya(π)(a−1, a) , (3.41)

for all y, a, b, c ∈ G and x ∈ Zy. It now remains to apply the triangulation changing

isomorphism between ground states subspaces so as to recover the initial triangulation.

Following section 2.2 and 2.4, this isomorphism is expressed as the 4d partition function
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for the pinched interval cobordism whose triangulation is provided by the cartesian prod-

uct (012)+ × T2:

(012)+ × T2 =
(
(0122′)+ ∪ (011′2′)− ∪ (00′1′2′)+

)
×S1

= (0122′2̃′)
+ ∪ (0122̃2̃′)

− ∪ (011̃2̃2̃′)
+ ∪ (00̃1̃2̃2̃′)

−

∪ (011′2′2̃′)
− ∪ (011′1̃′2̃′)

+ ∪ (011̃1̃′2̃′)
− ∪ (00̃1̃1̃′2̃′)

+

∪ (00′1′2′2̃′)
+ ∪ (00′1′1̃′2̃′)

− ∪ (00′0̃′1̃′2̃′)
+ ∪ (00̃0̃′1̃′2̃′)

−
. (3.42)

The corresponding triangulation changing operator is ZGπ [(012)+ × T2] such that

∣∣∣∣∣
ak

x1

y1

k−1b0′ 1′

1
0 2

2′

0̃′ 1̃′

1̃0̃

2̃′
2̃ 〉

' τ2
x,y(π)(ak, k−1b)

∣∣∣∣∣
ab

x1

y1

0′ 2′

20

0̃′
2̃′

2̃0̃ 〉
. (3.43)

Putting everything together, and using the notation introduced in eq. (3.32), the algebra

product of TubeGπ (T2
4) is given by

|(
x1

•
y1

)
a−→〉 ? |(

x1

•
y2

)
b−→〉 = δx2,a−1x1a δy2,a−1y1a

1

|G| 12
τ2
x1,y1

(π)(a, b) |(
x1

•
y1

)
ab−→〉 (3.44)

where we made use of the condition (3.39).

3.5 Compactification and lifted models

Before studying in more detail these tube algebras and their representation theory, we

would like to make several comments regarding compactification. In the previous part,

we presented in detail the tube algebras for the (1+1)d, (2+1)d and (3+1)d Hamiltonian

realisations of Dijkgraaf-Witten theory, the input data for these models being a finite group

G and a group 2-, 3- and 4-cocycle, respectively. Regardless of the spacetime dimension,

the multiplication of the tube algebra is always ‘twisted’ by a 2-cochain. In (1+1)d, this

2-cochain happens to be the input group 2-cocycle, and in higher dimensions it is provided

by iterated S1-transgression of the input cocycle. We have only treated the (2+1)d and

(3+1)d cases, but this result persists for any tube algebra associated with a manifold of the

form S1×· · ·×S1×I. This suggests a way to express a given (d+1)-dimensional tube algebra

in terms of lower-dimensional ones. Relatedly, upon compactification of one of the spatial

directions, a given model can be decomposed into a ‘sum’ of lower-dimensional topological

models labeled by a group variable corresponding to the holonomy along the compactified

direction, hence an effective dimensional reduction. We sketch this compactification mech-

anism here and postpone its rigorous treatment to section 5 after the necessary tools have

been introduced.

We consider the (d+1)-dimensional Dijkgraaf-Witten model applied to (d+1)-

cobordisms of the form C × S1, where C is a d-dimensional cobordism. Henceforth, we call

such cobordisms lifted. Recall that the discrete partition function of the (d+1)-dimensional
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Dijkgraaf-Witten model is obtained by summing over G-colourings of the triangulation,

while the topological action is provided by a (d+1)-cocycle. We would like to show that

this partition function for a lifted cobordism C×S1 can be expressed in terms of a partition

function for C. Let us begin by defining a convention for lifting an oriented and compact

triangulated d-manifold M4 to a triangulation of M4 × S1:

Convention 3.1 (Lifting of a d-dimensional triangulation). Let M be an oriented d-

dimensional manifold endowed with a homogeneous triangulation M4. We construct an

oriented triangulation MS1

4 for MS1
:= M× S1 as follows: For each d-simplex 4(d) ≡

(v0v1v2 . . . vd) ⊂M4 with orientation ε(4(d)) = ±1 we define a d-prism to be

(v0v
′
0v
′
1 . . . v

′
d)

(−1)dε(4(d)) ∪ (v0v1v
′
1v
′
2 . . . v

′
d)

(−1)d−1ε(4(d)) ∪ · · · ∪ (v0v1 . . . vdv
′
d)
ε(4(d))

with vertex ordering v0 < · · · < vd < v0′ < · · · < vd′. The union of all such prisms forms

a triangulation of M4 × I. In order to obtain the oriented triangulation MS1

4 , it remains

to compactify the triangulation by identifying (v0 . . . vd) and (v′0 . . . v
′
d) for each d-simplex.

For instance, the lifted triangulation 4(2) × S1 of the 2-simplex 4(2) ≡ (012)+ reads

0 1

2

× S1 :=

0 1

2

0′ 1′
2′

(3.45)

such that (0) < (1) < (2) < (0′) < (1′) < (2′), (0) ≡ (0′), (1) ≡ (1′), (2) ≡ (2′), (01) ≡ (0′1′),

(12) ≡ (1′2′) and (02) ≡ (0′2′).

In order to construct the Dijkgraaf-Witten partition function of a lifted triangulated

cobordism, we need to describe the set of G-colourings Col(C4×S1, G) in terms of colourings

of C4. Recall that a G-colouring assigns to every directed 1-simplex (v0v1) ⊂ C4 a group

element gv0v1 ≡ g[v0v1] such that for every 2-simplex (v0v1v2) whose boundary is associated

with a contractible path, the 1-cocycle condition (or flatness constraint) gv0v1 ·gv1v2 ·g−1
v0v2

=

1 is imposed. Note that no matter the dimension of C4, the set Col(C4, G) of G-colourings

on C4 only depends on the 0-, 1- and 2-simplices of the triangulation. But all the 0-,1- and

2-simplices of C4×S1 that are not included in C4 arises from the lifting of the 1-simplices

in C4 according to conv. 3.1. This means that to determine a G-colouring of C4×S1, it is

enough to consider the lifting of every one-simplex in C4.

Let g ∈ Col(C4, G) be a G-colouring such that g[v0v1] = gv0v1 ∈ G. In order to specify

a G-colouring of (v0v1) × S1 from g ∈ Col(C4, G), it is enough to specify a colouring

gv0v′0
∈ G of (v0v

′
0) ⊂ (v0v1) × S1. Indeed, the G-colouring of the remaining edges can be

deduced from the identifications and the flatness constraints holding at every 2-simplex,

i.e. gv′0v′1 = gv0v1 , gv′0v1
= g−1

v0v1
gv0v′0

and gv1v′1
= g−1

v0v1
gv0v′0

gv0v1 ≡ g
gv0v1
v0v′0

. By proceeding this

way, we can define a G-colouring g of C4×S1 in terms of a colouring g of C4 which specifies

a G-labeling for both 0- and 1-simplices. Given a 1-simplex (v0v1), this colouring assigns
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g[v0v1] = g[v0v1] = gv0v1 to the bulk of the 1-simplex as before, and g[v0] = g[v0v
′
0] = gv0v′0

,

g[v1] = g[v1v
′
1] = g

gv0v1
v0v′0

to its boundary 0-simplices.

In order to provide the discrete version of the partition function ZGω [C4×S1] in terms

of a lower-dimensional partition function, it remains to provide an algebraic expression

for the corresponding topological action. Recall that given a (d+1)-simplex in C4 × S1,

an algebraic expression for the topological action ω(4(d+1)) is provided as follows: let

4(d+1) ≡ (v0v1 . . . vd+1) ⊂ C4×S1 such that v0 < v1 < . . . < vd+1 and g ∈ Col(C4×S1, G),

the restriction g[4(d+1)] of the G-colouring g to the edges of 4(d+1) is specified by the d+1

independent gauge fields gv0v1 , gv1v2 , . . . , gvdvd+1
. Using these conventions, the evaluation of

the cocycle ω on the G-coloured (d+1)-simplex (v0v1 . . . vd+1) reads ω(g[v0v1 . . . vd+1]) :=

ω(gv0v1 , gv1v2 , . . . , gvdvd+1
).

Let us now consider a positively oriented d-simplex 4(d) ≡ (v0 . . . vd)
+ which we lift

to (v0 . . . vd)× S1 according convention 3.1. Given a G-colouring g ∈ Col(C4 × S1, G), the

amplitude associated with this lifted d-simplex reads:

ω(g[v0v
′
0v
′
1v
′
2 . . . v

′
d])

(−1)d ω(g[v0v1v
′
1v
′
2 . . . v

′
d])

(−1)d−1 · · ·ω(g[v0v1v2 . . . vdv
′
d]) . (3.46)

Choosing the notation g[v0v
′
0] ≡ x and g[vi−1vi] ≡ gi, we write this cocycle data

τx(ω)(g1, . . . , gd). It turns out that in (2+1)d and (3+1)d, this corresponds exactly to equa-

tions (3.24) and (3.35) that defines the S1-transgression of a 3- and 4-cocycle, respectively.

More generally, the amplitude associated with a lifted d-simplex provides the defining for-

mula for the S1-transgression of a (d+1)-cocycle. Let us now consider the colouring g of

C4 compatible with the G-colouring of C4×S1, i.e. such that g[v0] = x and g[vi−1vi] = gi.

The amplitude associated with the G-coloured lifted d-simplex (v0 . . . vd)×S1 is then equal

to the evaluation of the S1-transgression τ(ω) of ω on the d-simplex coloured by g, i.e.

τ(ω)(g[v0 . . . vd]) := τg[v0](ω)(g[v0v1], g[v1v2], . . . , g[vd−1vd]) = τx(g1, . . . , gd) . (3.47)

Using these conventions, we can write the (d+1)-dimensional Dijkgraaf-Witten partition

for C4 × S1 as a d-dimensional Dijkgraaf-Witten model where the sum is over colourings

g as defined above, while the topological action is provided by the S1-transgression of the

original (d+1)-cocycle.

Since the lattice Hamiltonian realisation of the theory is defined solely in terms of the

partition function, it is now easy to define a lifted d-dimensional model on a d-dimensional

surface Σ that is equivalent to a (d+1)-dimensional model on Σ × S1. The resulting

Hamiltonian model in turn provides yet another interpretation to the S1-transgression of a

cocycle which we illustrate here for the (3+1)d case. Recall that in (2+1)d the 3-cocycle α

provides the topological action of the 3d partition function and, relatedly, it arises as the

amplitude of the 2 � 2 Pachner operators as defined in (3.20). In light of the discussion

above, we expect the S1-transgression τ(π) of π ∈ Z4(G,U(1)) to arise as the amplitude of

the pinched interval operator related to a lifted version of the 2 � 2 Pachner move. More

specifically, τ(π) appears as the amplitude of the move obtained by lifting the complexes

appearing in the definition of the 2 � 2 move according to conv. 3.1. This move can be
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heuristically depicted as

0 3

21

× S1 −−−−−→
0 3

21

× S1 (3.48)

where the 3-complexes on the l.h.s. and the r.h.s. are obtained by lifting the 2d triangula-

tions to three dimensions so as to obtain cubes whose top and bottom faces are identified.

Once we apply conv. 3.1 to both sides of (3.48), we obtain two complexes made of six

3-simplices. It turns out that these two complexes are related via a sequence of 2 � 3

moves. Graphically, this sequence of transformations reads

0 3

2
1

0′ 3′
2′

1′

π(g[00′1′2′3′])−1

−−−−−−−−−−→

0 3

2
1

0′ 3′
2′

1′

(3.49)

π(g[0122′3′])−1

−−−−−−−−−→
π(g[011′2′3′])

0 3

2
1

0′ 3′
2′

1′

π(g[01233′])−−−−−−−→

0 3

2
1

0′ 3′
2′

1′

1−−−−→

0 3

2
1

0′ 3′
2′

1′

(3.50)

where each arrow is decorated by the amplitude associated with the corresponding Pachner

operator according to (2.35). Note that during the second step as well as the last one, a

trivial 2 � 3 move (obtained by setting one of the edge colourings to the identity) is

used, which does not contribute to the collective amplitude. Setting g[0′0] ≡ x, g[01] ≡
g[0′1′] = a, g[12] ≡ g[1′2′] ≡ b and g[23] = g[2′3′] ≡ c, the collective amplitude of the local

transformations performed above reads

τx(π)(a, b, c) =
π(a, a−1xa, b, c)π(a, b, c, (abc)−1xabc)

π(x, a, b, c)π(a, b, (ab)−1xab, c)
, (3.51)

which is precisely the definition (3.35) of the S1-transgression of π as expected. Henceforth,

we refer to the move defined above as the lifted 2
 2 move, and notate it (2
 2)×S1. Note

finally that it is now possible to express the isomorphism in eq. (3.43) as a sequence of three

lifted 2
 2 moves so that the collective amplitude is provided by the T2-transgression of π.

All the ideas presented in this part are made more precise in section 5 using the tech-

nology of loop groupoid. There we also explain in detail how higher tube algebras can be

expressed in terms of the (1+1)d one as suggested earlier.
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4 Representation theory and simple excitations statistics

In this section, we construct explicitly the simple modules of the tube algebras introduced

previously. These simple modules in turn classify the simple excitations of the corre-

sponding model. Furthermore, we introduce the comultiplication maps and the R-matrices

compatible with the tube algebras multiplications rules. These can then be used to describe

the statistics of the simple excitations.

4.1 Simple representations of the (1+1)d tube algebra

Let us first discuss the simple excitations in the (1+1)d Dijkgraaf-Witten Hamiltonian

model using the language of projective group representations. This discussion will be

further generalised in the proceeding sections to discuss the simple excitations in the (2+1)d

and (3+1)d models.

Given a pair G, β where G is a finite group and β ∈ Z2(G,U(1)) a normalised 2-

cocycle, the β-twisted group algebra Cβ [G] is the algebra defined by the vector space

SpanC{|
a−→〉}∀a∈G with algebra product defined by

| a−→〉 ? | b−→〉 = β(a, b)| ab−→〉 , ∀ a, b ∈ G . (4.1)

It is useful to note how the conditions satisfied by β defining a normalised 2-cocycle manifest

in the properties of Cβ [G]. Firstly, the normalisation of β, i.e. β(1G, a) = β(a, 1G) = 1 for

all a ∈ G, ensures the relation

| a−→〉 ? | 1G−−→〉 = | a−→〉 = | 1G−−→〉 ? | a−→〉 , ∀ a ∈ G . (4.2)

Secondly, the 2-cocycle equation

d(2)β(a, b, c) =
β(b, c)β(a, bc)

β(ab, c)β(a, b)
= 1 (4.3)

for all a, b, c ∈ G, ensures that Cβ [G] is an associative algebra, i.e.

(| a−→〉 ? | b−→〉) ? | c−→〉 = | a−→〉 ? (| b−→〉 ? | c−→〉) , ∀ a, b, c ∈ G . (4.4)

Finally, similarly to the untwisted group algebra, each element admits an inverse that takes

the form

| a−→〉−1 =
1

β(a, a−1)
| a
−1

−−→〉 , ∀ a ∈ G (4.5)

such that

| a−→〉−1 ? | a−→〉 = | 1G−−→〉 = | a−→〉 ? | a−→〉−1 , (4.6)

as expected. We note that in the limiting case where β is a trivial 2-cocycle, i.e. β(a, b) = 1

for all a, b ∈ G, the twisted group algebra reduces to the untwisted group algebra C[G].

Comparing with equation (3.18), we realize that, up to the normalisation factor |G|− 1
2 ,

the (1+1)d tube algebra corresponds to a β-twisted group algebra. It follows that we can
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classify simple excitations in the (1+1)d Dijkgraaf-Witten model as simple representations

of Cβ [G]. In the study of simple representations of Cβ [G], many of the familiar results

from the complex representation theory of the group algebra still apply. In particular,

a representation of Cβ [G] is provided by a pair (DR, VR) where VR is a complex vector

space and D : Cβ [G] → End(V ) is an algebra homomorphism. A representation (DR, VR)

is called simple if the only proper subspace W ⊂ VR, whereby DR(a) . w ∈ W for all

w ∈ W and a ∈ G, is the trivial vector space. Akin to the untwisted case, Cβ [G] is a

semi-simple algebra such that all representations are isomorphic to a direct sum of simple

representations.

Let (DR, VR) define a simple representation of Cβ [G]. In light of the correspondence

with the (1+1)d tube algebra, we interpret the vector space VR with the internal Hilbert

space of a point particle localised on the boundary of the interval. The homomorphism

DR then defines how the internal vector space of the point particle is acted upon by the

linearised symmetry of gluing. We then interpret the label R of the simple representation

as the charge quantum number, which is well defined since such a label is invariant under

the action of both the Hamiltonian and the tube algebra.

For the following discussion, it is useful to collect some basic properties of the rep-

resentations of Cβ [G]. Let {(DR, VR)}R denote the set of simple representations of Cβ [G]

up to isomorphism, the corresponding matrix elements DRmn for m,n ∈ {1, . . . , dim(VR)}
satisfy the following conditions:

dim(VR)∑
n=1

DRmn(| a−→〉)DRno(|
b−→〉) = β(a, b)DRmo(|

ab−→〉) (Linearity) (4.7)

DRmn(| a−→〉) =
1

β(a, a−1)
DRnm(| a

−1

−−→〉) (Complex conjugation) (4.8)

1

|G|
∑
a∈G
DRmn(| a−→〉)DR′m′n′(|

a−→)〉 =
δDR,DR′

dim(VR)
δm,m′δn,n′ (Orthogonality) (4.9)

1

|G|
∑
{DR}

∑
m,n

dim(VR)DRmn(| a−→〉)DRmn(| a′−→〉) = δa,a′ (Completeness) (4.10)

for all a, b ∈ G.

4.2 Simple representations of the (2+1)d tube algebra

We now consider the simple excitations of the (2+1)d Hamiltonian model whose tube

algebra was shown to be equivalent to the twisted quantum double algebra. In order to

find the simple excitations, we first choose to decompose the algebra into a direct sum

of simpler sub-algebras whose simple representations can be described in terms of simple

twisted group representations as discussed above. To this end we begin with a simple

observation: let C1, C2 ⊂ G be two disjoint conjugacy classes of G, then for any pair of

G-coloured graph-states of the form

|(
x1

• )
a−→〉 , |(

x2

• )
b−→〉
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such that x1 ∈ C1 and x2 ∈ C2 it follows from the TubeGα (S1
4) algebra product defined

in (3.29) that

|(
x1

• )
a−→〉 ? |(

x2

• )
b−→〉 = 0 . (4.11)

A consequence of this observation is that each conjugacy class C ⊂ G naturally defines a

sub-algebra TubeGα (S1
4)C ⊂ TubeGα (S1

4) given by

TubeGα (S1
4)C := SpanC

{
|(
x

• )
a−→〉
}
∀x∈C
∀a∈G

. (4.12)

Noting that the set of conjugacy classes forms a partition of G it follows that

TubeGα (S1
4) =

⊕
C

TubeGα (S1
4)C , (4.13)

where the direct sum is over the set of all conjugacy classes of G. Utilising this decom-

position of TubeGα (S1
4), we can find the simple modules in terms of the simple modules of

TubeGα (S1
4)C for each C ⊂ G. At this point it is illustrative to note that when C = {1G} is

the conjugacy class of the identity element of G, the corresponding sub-algebra is given by

the (1+1)d tube algebra of section 3.2 with β given by the trivial 2-cocycle, i.e. β(a, b) = 1

for all a, b ∈ G. The corresponding simple representations are then discussed in section 4.1.

Given a conjugacy class C, we now describe the simple modules of TubeGα (S1
4)C . To

this end we first introduce some notation. We begin by notating each element in C by ci for

i ∈ {1, . . . , |C|}. In the following, we will call c1 ∈ C the representative element of C. We

next define the set QC := {q1, . . . , q|C|} such that each qi ∈ G is defined by a non-canonical

choice of element in G satisfying the conditions c1 = q−1
i ciqi and q1 := 1G. Finally, we

define the stabiliser group of C by ZC := {a ∈ G | c1 = a−1c1a}, i.e. the subgroup of

G consisting of elements of G that commute with c1. In the extreme case that we take

the group G to be abelian each group element forms a conjugacy class and the stabiliser

subgroup is just the group itself vastly simplifying the previous construction.

Utilising the conventions outlined above, it follows from equations (3.25), (3.26) that

τc1(α) ∈ Z2(ZC ,U(1)) defines a normalised 2-cocycle of ZC when α ∈ Z3(G,U(1)) is

a normalised 3-cocycle of G. For each simple τc1(α)-projective representation (DR, VR)

of ZC we can then define a simple representation of the twisted quantum double by a

homomorphism DC,R : TubeGα (S1
4)C → End(VC,R) where

VC,R := SpanC{|ci, vm〉 | ∀ i = 1, . . . , |C| and m = 1, . . . , dim(VR)} (4.14)

and for i, j ∈ {1, . . . , |C|}, m,n ∈ {1, . . . , dim(VR)} we define

DC,Rim,jn

(
|(
x

• )
a−→〉
)

:= δx,ciδxa,cj
τc1(α)(q−1

i , a)

τc1(α)(q−1
i aqj , q

−1
j )
DRm,n(| q

−1
i aqj−−−−→〉) (4.15)

such that

DC,R
(
|(
x

• )
a−→〉
)

:=
1

|G| 12

|C|∑
i,j=1

dim(VR)∑
m,n=1

DC,Rim,jn

(
|(
x

• )
a−→〉
)
|ci, vm〉〈cj , vn| . (4.16)
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If follows from the definition and the linearity condition (4.7) that these matrices indeed

define an algebra homomorphism, i.e.∑
j,n

DC,Rim,jn

(
|(
x1

• )
a−→〉
)
DC,Rjn,ko

(
|(
x2

• )
b−→〉
)

= δx2,xa1
τx1(α)(a, b)DC,Rim,ko

(
|(
x

• )
ab−→〉
)
. (4.17)

Furthermore, the matrices satisfy the following conjugation relation

DC,Rim,jn(|(
x

• )
a−→〉) =

1

τx(α)(a, a−1)
DC,Rjn,im

(
|(
xa

• )
a−1

−−→〉
)
, (4.18)

as well as the following orthogonality and completeness conditions

1

|G|
∑
x,a∈G

DC,Rim,jn

(
|(
x

• )
a−→〉
)
DC′,R′i′m′,j′n′

(
|(
x

• )
a−→〉
)

=
δC,C′δDR,DR′

|C|dim(VR)
δi,i′δj,j′δm,m′δn,n′ (4.19)

1

|G|
∑
{C,DR}

∑
i,m
j,n

|C|dim(VR)DC,Rim,jn

(
|(
x

• )
a−→〉
)
DC,Rim,jn

(
|(
x′

• )
a′−→〉
)

= δx,x′δa,a′ (4.20)

generalising (4.8) for projective group representations.

From the previous discussion follows that a simple representation of TubeGα (S1
4) can be

specified by a pair (C,R) where C is a conjugacy class of G and R is a simple representation

of Cτc1 (α)[ZC ]. The conjugacy class C represents the set of boundary colourings that are

related by the action of the tube algebra, whereas the representation R decomposes the

action of the tube algebra that leaves the boundary colouring invariant. In other words, R

describes the symmetries of the boundary under the action of the tube algebra. Therefore,

we interpret the label C as a magnetic flux quantum number and R as an electric charge

quantum number. The vector space VC,R defined in (4.14) thus describes the internal

Hilbert space of a point particle in the (2+1)d Dijkgraaf-Witten model so that an element

|ci, vm〉 ∈ VC,R defines a particle with well defined flux ci ∈ C and charge vm ∈ VR.

A general excitation is finally obtained as a superposition of simple excitations with the

corresponding internal vector space given by the direct sum of simple representations.

4.3 Twisted quantum double comultiplication and fusion of point-like excita-

tions

In this section we expand on the properties of the twisted quantum double in relation to the

fusion of point particles in (2+1)d Dijkgraaf-Witten model. This structure will be gener-

alised in section 4.7 to the case of loop-like excitations in (3+1)d Dijkgraaf-Witten theory.

Given a pair of simple point particles with internal Hilbert spaces VC1,R1 and VC2,R2 ,

respectively, we can consider their joint Hilbert in the absence of any external constraints

as the space given by the tensor product VC1,R1 ⊗ VC2,R2 . In order to understand how

the twisted quantum double algebra acts on the corresponding two-particle Hilbert space

VC1,R1 ⊗ VC2,R2 , we introduce the comultiplication map ∆ : TubeGα (S1
4) → TubeGα (S1

4) ⊗
TubeGα (S1

4) defined as

∆
(
|(
x

• )
a−→〉
)

:=
∑
x1,x2

δx1x2,xγa(α)(x1, x2) |(
x1

• )
a−→〉 ⊗ |(

x2

• )
a−→〉 (4.21)
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where

γa(α)(x1, x2) :=
α(x1, x2, a)α(a, xa1, x

a
2)

α(x1, a, xa2)
. (4.22)

Most importantly, ∆ defines an algebra homomorphism, i.e.

∆
(
|(
x1

• )
a−→〉 ? |(

x2

• )
b−→〉
)

= ∆
(
|(
x1

• )
a−→〉
)
?∆
(
|(
x2

• )
b−→〉
)
, (4.23)

which follows from

τx1(α)(a, b) τx2(α)(a, b) γa(α)(x1, x2) γb(α)(xa1, x
a
2) = τx1x2(α)(a, b) γab(x1, x2) . (4.24)

This last relation descends from the definitions of τ(α) and γ(α) together with the 3-

cocycle condition satisfied by α. In general, the comultiplication is not associative but

instead satisfies the quasi-coassociativity relation:

(∆⊗ id) ◦∆
(
|(
x

• )
a−→〉
)

= φ (id⊗∆) ◦∆
(
|(
x

• )
a−→〉
)
φ−1 (4.25)

where we introduced the twist φ defined as

φ =
∑

x1,x2,x3

α−1(x1, x2, x3) |(
x1

• )
1G−−→〉 ⊗ |(

x2

• )
1G−−→〉 ⊗ |(

x3

• )
1G−−→〉 . (4.26)

Given a three-particle vector space (V ⊗ W ) ⊗ Z, the twist φ induces the module

isomorphism

φ : (V ⊗W )⊗ Z ∼−→ V ⊗ (W ⊗ Z) . (4.27)

The quasi-coassociativity follows from the cocycle data relation

γa(α)(x1, x2) γa(α)(x1x2, x3)α(xa1, x
a
2, x

a
3) = γa(α)(x2, x3) γa(α)(x1, x2x3)α(x1, x2, x3) .

(4.28)

Given a pair of representations (DC1,R1 , VC1,R1) and (DC2,R2 , VC2,R2) of the twisted

quantum double, the comultiplication ∆ allows us to define the tensor product represen-

tation DC1,R1 ⊗DC2,R2(∆) : TubeGα (S1
4)⊗ TubeGα (S1

4)→ VC1,R1 ⊗ VC2,R2 where

DC1,R1 ⊗DC2,R2
(
∆
(
|(
x

• )
a−→〉
))

=
∑
x1,x2

δx1x2,x γa(α)(x1, x2)DC1,R1
(
|(
x1

• )
a−→〉
)
⊗DC2,R2

(
|(
x2

• )
a−→〉
)

(4.29)

which is compatible with the algebra product since ∆ defines an algebra homomorphism.

The semi-simplicity of TubeGα (S1
4) implies that such tensor product representations are

generically not simple and as such admit a decomposition into a direct sum of irreducible

representations:

VC1,R1 ⊗ VC2,R2 '
⊕

{(C3,R3)}

N
(C3,R3)
(C1,R1),(C2,R2)VC3,R3 . (4.30)
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Here N
(C3,R3)
(C1,R1),(C2,R2) ∈ Z+

0 is a non-negative integer, called the fusion multiplicity, that

defines how many times each irreducible representation (DC3,R3 , VC3,R3) occurs in the de-

composition of (DC1,R1 ⊗DC2,R2(∆), VC1,R1 ⊗ VC2,R2). Using the orthogonality relations

of the representations, we find the following expression for the fusion multiplicities:

N
(C3,R3)
(C1,R1),(C2,R2) :=

1

|G|
∑
x,a∈G

tr

(
DC1,R1 ⊗DC2,R2

(
∆
(
|(
x

• )
a−→〉
))
DC3,R3

(
|(
x

• )
a−→〉
))

.

(4.31)

4.4 Twisted quantum double R-matrix and braiding of point-like excitations

Given a set of identical particles, the transformation properties of their joint wave func-

tion by permuting their spatial location is referred to as their exchange statistics. For

spacetime dimensions d+ 1 ≥ 4, the exchange statistics of n point particles is governed by

representations of the symmetric group Sn. Experimentally, such systems are observed to

transform under the two one-dimensional irreducible representations of Sn, often referred

to as the trivial and the sign representations, which in turn classify point particles into

bosons and fermions, respectively. However, it is well-know that in (2+1)d the exchange

statistics of point particles is not characterised by the symmetric group, but instead by the

braid group. Given n particles arranged along a line in the interior of the 2-disk D2, the

braid group is defined via n−1 generators {σi}i=1,...,n−1 that satisfy the relation:

σiσi+1σi = σi+1σiσi+1 , ∀ i ∈ {1, . . . , n− 2} . (4.32)

Enumerating the n particles from left to right by the integers 1, 2, 3, . . . , n, we can interpret

each σi as corresponding to the clockwise exchange of the particles i and i+ 1.

Building on the tensor structure defined by the comultiplication map ∆, it was shown

that the representations of the twisted quantum double algebra admit a representation of

the braid group. This representation is interpreted as the exchange statistics of point-like

particles in the (2+1)d Dijkgraaf-Witten model. In order to define such braid statistics,

we first need to introduce an invertible element of TubeGα (S1
4) ⊗ TubeGα (S1

4) called the

R-matrix :

R :=
∑
x,y∈G

|(
x

• )
1G−−→〉 ⊗ |(

y

• )
x−→〉 . (4.33)

The R-matrix is compatible with the comultiplication map via the relation

R∆
(
|(
x

• )
a−→〉
)
R−1 = σ ◦∆

(
|(
x

• )
a−→〉
)

(4.34)

for all |(
x

• )
a−→〉 ∈ TubeGα (S1

4), where σ is the transposition map

σ : V ⊗W →W ⊗ V , (4.35)

which permutes the order of vector spaces in the tensor product. It follows from this

relation that, for any two modules V and W of the twisted quantum double, the operator
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R̂ := σ ◦R defines a map

R̂ : V ⊗W ∼−→W ⊗ V , (4.36)

which is also a module isomorphism via

R̂ ◦∆
(
|(
x

• )
a−→〉
)
. (V ⊗W ) = ∆

(
|(
x

• )
a−→〉
)
◦ R̂ . (V ⊗W ) . (4.37)

Given the three-particle vector space (V ⊗W ) ⊗ Z, it follows that R̂ fulfills the hexagon

equations :

(id⊗∆)R̂ = φ−1 (id⊗ R̂)φ (R̂⊗ id)φ−1 , (∆⊗ id)R̂ = φ (R̂⊗ id)φ−1 (id⊗ R̂)φ ,

(4.38)

which can be equivalently represented in terms of commutative diagrams as in definition 5.3.

These equations in turn ensure the quasi-Yang-Baxter equation

(V ⊗W )⊗ Z

(W ⊗ V )⊗ Z V ⊗ (W ⊗ Z)

W ⊗ (V ⊗ Z) V ⊗ (Z ⊗W )

W ⊗ (Z ⊗ V ) (V ⊗ Z)⊗W

(W ⊗ Z)⊗ V (Z ⊗ V )⊗W

(Z ⊗W )⊗ V Z ⊗ (V ⊗W )

Z ⊗ (W ⊗ V )

R̂⊗ id φ

φ

id⊗ R̂

φ−1

R̂⊗ id

φ

id⊗ R̂

φ−1

R̂⊗ id

φ−1

id⊗ R̂

(4.39)

such that the composition of operators on the dodecagon are equal, and as such R̂ defines

a braid group representation on the modules of TubeGα (S1
4).

4.5 Simple representations of the (3+1)d tube algebra

We derived in section 3.4 the twisted quantum triple algebra TubeGπ (T2
4). In the following,

we describe its representation theory which we interpret as defining the simple loop-like

excitations in the (3+1)d Dijkgraaf-Witten model. We will then describe the statistics of

these simple loop-like excitations. Our exposition follows closely the one of section 4.2 and

section 4.3.

Akin to the twisted quantum double algebra, in order to find the simple representations

of the twisted quantum triple algebra, we first decompose the algebra into a direct sum of
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sub-algebras. Letting G2
comm. := {(a, b) ∈ G2 | ab = ba}, we define an equivalence relation

on G2
comm. given by (a, b) ∼ (a′, b′) if there exists a k ∈ G such that (a′, b′) = (ak, bk).

The set of such equivalence classes forms a partition of G2
comm. into disjoint subsets. Given

any pair of disjoint equivalence classes D1, D2 and any pair of G-coloured graph-states of

the form

|(
x1

•
y1

)
a−→〉 , |(

x2

•
y2

)
b−→〉 (4.40)

such that (x1, y1) ∈ D1 and (x2, y2) ∈ D2 it follows from the TubeGπ (T2
4) algebra product

defined in (3.44) that

|(
x1

•
y1

)
a−→〉 ? |(

x2

•
y2

)
b−→〉 = 0 . (4.41)

A consequence of this observation is that each equivalence class D ⊂ G2
comm. naturally

defines a sub-algebra TubeGπ (T2
4)D ⊂ TubeGπ (T2

4) given by

TubeGπ (T2
4)D := SpanC{|(

x

•
y

)
a−→〉} ∀a∈G

∀(x,y)∈D
. (4.42)

Noting that the set of equivalence classes forms a partition of G2
comm. it follows that

TubeGπ (T2
4) =

⊕
D

TubeGπ (T2
4)D (4.43)

where the direct sum is over all equivalence classes D ⊂ G2
comm.. Utilising this decompo-

sition of TubeGπ (T2
4) we can find the simple modules in terms of the simple modules of

TubeGπ (T2
4)D for each D ⊂ G2

comm..

At this point, let us remark that in limiting cases the twisted quantum triple reduces to

either the (2+1)d twisted quantum double or the (1+1)d group algebra. Indeed, given the

equivalence class D1G := (1G, 1G), the corresponding sub-algebra is naturally isomorphic

to the (1+1)d tube algebra for G and the trivial 2-cocycle. Similarly, given an equivalence

class containing an element of the form (1G, a) or (a, 1G) the twisted quantum triple is

isomorphic to the untwisted quantum double algebra.

Given an equivalence class D, we now describe the simple modules of TubeGπ (T2
4)D.

To this end, let us introduce some notations: we notate each element in D by (dxi , d
y
i ) for

i ∈ {1, . . . , |D|} and we call (dx1 , d
y
1) ∈ D the representative element of D. We next define

the set QD := {q1, . . . q|D|} such that each qi ∈ G is defined by a non-canonical choice of

element in G satisfying the conditions (dx1 , d
y
1) = (q−1

i dxi qi, q
−1
i dyi qi) and q1 := 1G. Finally,

we define the stabiliser group of D by

ZD := {a ∈ G | (dx1 , dy1) = (a−1dx1a, a
−1dy1a)} , (4.44)

i.e. the subgroup consisting of elements of G that simultaneously commute with both dx1 and

dy1. As in the (2+1)d case, if the group G is taken to be abelian, the previous construction

vastly simplifies so that each pair of elements forms an equivalence class and the stabiliser

group is given by the group itself.
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Utilising the conventions outlined above, it follows from equations (3.39), (3.40) that

τ2
dx1 ,d

y
1
(π) ∈ Z2(ZD,U(1)) defines a normalised 2-cocycle of ZD when π ∈ Z4(G,U(1)) is a

normalised 4-cocycle of G. For each simple τ2
dx1 ,d

y
1
(π)-projective representation (DR, VR) of

ZD, we can then define a simple representation of the twisted quantum triple algebra by a

homomorphism DD,R : TubeGπ (T2
4)D → End(VD,R) where

VD,R := SpanC{|dxi , dyi , vm〉 | ∀ i = 1, . . . , |D| and m = 1, . . . , dim(VR)} (4.45)

and for i, j ∈ {1, . . . , |D|}, m,n ∈ {1, . . . , dim(VR)} we define

DD,Rim,jn

(
|(

x

•
y

)
a−→〉
)

:= δx,dxi δy,d
y
i
δxa,dxj δya,d

y
j

τ2
dx1 ,d

y
1
π(q−1

i , a)

τ2
dx1 ,d

y
1
π(q−1

i aqj , q
−1
j )
DRm,n(| q

−1
i aqj−−−−→〉) (4.46)

such that

DD,R
(
|(

x

•
y

)
a−→〉
)

:=
1

|G| 12

|D|∑
i,j=1

dim(VR)∑
m,n=1

DD,Rim,jn

(
|(

x

•
y

)
a−→〉
)
|dxi , dyi , vm〉〈dxj , d

y
j , vn| . (4.47)

It follows from the definition and the linearity condition (4.17) that these matrices indeed

define an algebra homomorphism, i.e.∑
j,n

DD,Rim,jn

(
|(
x1

•
y1

)
a−→〉
)
DD,Rjn,ko

(
|(
x2

•
y2

)
b−→〉
)

= δx2,xa1
δy2,ya1

τ2
x1,y1

(π)(a, b)DD,Ram,bn

(
|(
x1

•
y1

)
ab−→〉
)
.

(4.48)

Furthermore the matrices satisfy the conjugation relation

DD,Rim,jn

(
|(

x

•
y

)
a−→〉
)

=
1

τ2
x,y(π)(a, a−1)

DD,Rjn,im

(
|(
xa

•

ya

)
a−1

−−→〉
)
, (4.49)

as well as the following orthogonality and completeness conditions

1

|G|
∑

x,y,a∈G
DD,Rim,jn

(
|(

x

•
y

)
a−→〉
)
DD′,R′i′m′,j′n′

(
|(

x

•
y

)
a−→〉
)

=
δD,D′δDR,DR′

|D|dim(VR)
δi,i′δj,j′δm,m′δn,n′ (4.50)

1

|G|
∑
{D,DR}

∑
i,m
j,n

|D|dim(VR)DD,Rim,jn

(
|(

x

•
y

)
a−→〉
)
DD,Rim,jn(|(

x′

•

y′

)
a′−→〉) = δx,x′δy,y′δa,a′ . (4.51)

These conditions can be utilised to verify that the set of simple representations indexed by

all pairs (D,R) indeed forms the set of all simple modules.

4.6 Physical interpretation of the quantum triple algebra simple representa-

tions

We now turn our attention to the interpretation of the simple representations of the twisted

quantum triple algebra. Given a simple representation labeled by a pair (D,R), analogously

to the (2+1)d example, the equivalence class D corresponds to the set of possible G-

colourings of the T2 boundary that are in the same orbit of the tube algebra, whereas
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the vector space VR corresponds to the decomposition of the symmetries of a boundary

colouring under the action of the tube algebra. Thus, we similarly call D a magnetic flux

quantum number and R an electric charge quantum number.

Let us now refine our description of the G-colourings of the torus boundary in order

to give a more physical interpretation to the tube algebra. As discussed in section 2, a G-

colouring of the torus boundary is a local description of a flat G-connection which is itself

a group homomorphism in Hom(π1(T2), G). Noting that π1(T2) = Z × Z, we know that

such a homomorphism defines a commuting pair of elements of G. This can be visualised

by drawing two directed closed lines on the torus, each corresponding to one of its non-

contractible cycles, or in other words to the image of the homomorphism for one of the

generators of π1(T2), and such that they are labeled by two commuting group variables:

x
y

. (4.52)

In this description, there is no obvious distinction between the two non-contractible cycles

of the torus. However, within the physical setting of interest, the torus boundary is always

embedded in the interior of a spatial three-manifold, and in this case we can distinguish

the two non-contractible cycles.

Let us first consider a single loop-like excitation inside a three-disk D3. This situa-

tion can occur by removing a solid torus from a three-disk so as to obtain the manifold

D3\(D2 × S1). We then choose a basepoint on the torus and define a G-colouring via a

group homomorphism in Hom(π1(D3\(D2×S1)), G). Since π1(D3\(D2×S1)) = Z, the man-

ifold D3\(D2×S1) possesses only one non-contractible cycle, unlike the torus that possesses

two, so that the G-colouring is simply the labeling of the cycle by a group variable. Let us

now consider the diagram in equation (4.52) as being embedded inside the three-disk. The

path coloured by y is no longer non-contractible as it can be lifted from the surface and

contracted to the basepoint. It immediately follows that y = 1G. In this limit the twisted

quantum triple algebra reduces to the untwisted quantum double algebra so that loop-like

excitations are in one-to-one corespondence with point-like particles of the (2+1)d model

with trivial input 3-cocycle. Additionally, in the limiting case that both holonomies are

given by the group identity we can interpret the excitation as a point-like particle that

carries a trivial flux quantum number and a charge given by a representation of G.

In order for y to take a non-trivial value, we need to enforce that the corresponding

path is non-contractible. This can be done by removing a solid cylinder D2 × I from

D3\(D2 × S1) such that the solid cylinder threads through the hole of the torus, and such

that D2 × {0} and D2 × {1} are incident with the boundary of D3. This situation can be

depicted as

x
y

. (4.53)
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Since the solid cylinder introduces a new non-contractible cycle, it is labeled by a non-

trivial group element which can be interpreted as a magnetic flux threading through the

loop excitation. The presence of such a non-trivial threading flux constrains the possible

magnetic flux and electric charge quantum numbers of the loop excitation by the require-

ment that the two fluxes must commute. Interestingly the tube algebra demonstrates

that the properties of the loop are not affected by any possible charges threading through

the loop.

4.7 Twisted quantum triple comultiplication and fusion of loop-like excita-

tions

In this section, we describe the generalisation of the comultiplication map of the twisted

quantum double introduced in section 4.3 to the case of the twisted quantum triple, which

in turn generalises the fusion of point-like particles in the (2+1)d model to the case of

loop-like excitations in the (3+1)d model. Unlike its twisted quantum double counterpart,

we will see that the comultiplication map of the twisted quantum triple only has a non-zero

action on pairs of loops which share the same threading flux.

Similarly to the twisted quantum double case, given a pair of loop-like excitations

with internal Hilbert spaces VD1,R1 and VD2,R2 , respectively, we can consider their joint

Hilbert space in the absence of any external constraints as the space given by the tensor

product VD1,R1 ⊗ VD2,R2 . In order to understand how the twisted quantum triple acts on

the corresponding two-loop Hilbert space VD1,R1⊗VD2,R2 , we introduce the comultiplication

map ∆ : TubeGπ (T2
4)→ TubeGπ (T2

4)⊗ TubeGπ (T2
4) defined as

∆
(
|(

x

•
y

)
a−→〉
)

:=
∑

x1,x2∈Zy

δx1x2,x γ
2
a,y(π)(x1, x2)|(

x1

•
y

)
a−→〉 ⊗ |(

x2

•
y

)
a−→〉 , (4.54)

where

γ2
a,y(π)(x1, x2) :=

τy(π)(x1, x2, a) τy(π)(a, xa1, x
a
2)

τy(π)(x1, a, xa2)
. (4.55)

Using the 4-cocycle condition, we can verify the following properties of ∆ akin to the

twisted quantum double example: ∆ is an algebra homomorphism, i.e.

∆
(
|(
x1

•
y1

)
a−→〉 ? |(

x2

•
y2

)
b−→〉
)

= ∆
(
|(
x1

•
y1

)
a−→〉
)
?∆
(
|(
x2

•
y2

)
b−→〉
)

(4.56)

which follows from

γ2
ab,y(π)(x1, x2) τ2

x1x2,y(π)(a, b)

= τ2
x1,y(π)(a, b) τ2

x2,y(π)(a, b) γ2
a,y(π)(x1, x2) γ2

b,ya(π)(xa1, x
a
2) . (4.57)

∆ is quasi-coassociative, i.e.

(∆⊗ id) ◦∆
(
|(

x

•
y

)
a−→〉
)

= φ(id⊗∆) ◦∆
(
|(

x

•
y

)
a−→〉
)
φ−1 (4.58)
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where we introduced the twist φ defined as

φ :=
∑
y∈G

x1,x2,x3∈Zy

τ−1
y (π)(x1, x2, x3)|(

x1

•
y

)
1G−−→〉 ⊗ |(

x2

•
y

)
1G−−→〉 ⊗ |(

x3

•
y

)
1G−−→〉 . (4.59)

Given a three-particle vector space (V ⊗ W ) ⊗ Z, the twist φ induces the module

isomorphism

φ : (V ⊗W )⊗ Z ∼−→ V ⊗ (W ⊗ Z) . (4.60)

The quasi-coassociativity is ensured by the cocycle data relation

γ2
a,y(π)(x1, x2) γ2

a,y(π)(x1x2, x3) τ2
ya(π)(xa1, x

a
2, x

a
3)

= γ2
a,y(π)(x2, x3) γ2

a,y(π)(x1, x2x3)τ2
y (π)(x1, x2, x3) . (4.61)

At this point, it is useful to provide an illustration of this comultiplication map. Let

x, x1, x2 correspond to the flux carried by three loop-like excitation, and y the threading

flux, the corresponding multiplication map looks like

x

y y ∆−→

x1 x2

y y
(4.62)

which makes clear that the comultiplication map preserves the threading flux while splitting

the holonomy associated with the loop-like excitation on the l.h.s. between the two loop-like

excitations on the r.h.s..

Given a pair of representations (DD1,R1 , VD1,R1) and (DD2,R2 , VD2,R2) of the twisted

quantum triple, the comultiplication ∆ allows us to define the tensor product representation

DD1,R1 ⊗DD2,R2(∆) : TubeGπ (T2
4)⊗ TubeGπ (T2

4)→ VD1,R1 ⊗ VD2,R2 where

DD1,R1 ⊗DD2,R2
(
∆
(
|(

x

•
y

)
a−→〉
))

=
∑

x1,x2∈Zy

δx1x2,x γa,y(π)(x1, x2)DD1,R1
(
|(
x1

•
y

)
a−→〉
)
⊗DD2,R2

(
|(
x2

•
y

)
a−→〉
)

which is compatible with the algebra product by the requirement that ∆ defines an algebra

homomorphism. The semi-simplicity of TubeGπ (T2
4) implies that such tensor product rep-

resentations are generically not simple and as such admit a decomposition into the direct

sum of irreducible representations, i.e.

VD1,R1 ⊗ VD2,R2 '
⊕

{(D3,R3)}

N
(D3,R3)
(D1,R1),(D2,R2)VD3,R3 . (4.63)

Here N
(D3,R3)
(D1,R1),(D2,R2) ∈ Z+

0 is a non-negative integer, called the fusion multiplicity, that

defines how many times each irreducible representation (DD3,R3 , VC3,R3) occurs in the de-

composition of (DD1,R1 ⊗DD2,R2(∆), VD1,R1 ⊗ VD2,R2). Using the orthogonality relations
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of the representations, we find the following expression for the fusion multiplicities:

N
(D3,R3)
(D1,R1),(D2,R2) :=

1

|G|
∑
y,a∈G
x∈Zy

tr

(
DD1,R1 ⊗DD2,R2

(
∆
(
|(

x

•
y

)
a−→〉
))
DD3,R3

(
|(

x

•
y

)
a−→〉
))

.

(4.64)

We visualise the fusion process of two loop-like excitations with the same threading flux as

follows:

D1,R1 D2,R2

fusion−−−→
⊕

{(D3,R3)}

N
(D3,R3)
(D1,R1),(D2,R2)

D3,R3

. (4.65)

The definition of the fusion multiplicities shows in particular that it only makes sense to

fuse two loops which share the same threading flux in sharp contrast to the (2+1)d example

where no such constraint exists.

4.8 Twisted quantum triple R-matrix and braiding of loop-like excitations

In the twisted quantum double discussion, we introduced the so-called R-matrix and defined

the exchange statistics of point-like particles in the 2-disk. Although the exchange statistics

of point-like particles in (3+1)d are characterised by representations of the symmetric

group, it has been shown that the exchange statistics of loop-like excitations in the 3-disk

can be characterised by representations of the so-called loop-braid group [23, 24] or necklace

group [21, 22]. In the following, we restrict to the linear necklace group.

As before, let us consider the 3-disk with a solid cylinder removed. The exchange statis-

tics of loop-like excitations threaded by the solid cylinder correspond to the so called linear

necklace group which is isomorphic to the braid group. Labelling n loops by 1, 2, . . . , n

along the positive horizontal axis as in the following diagram, the generator σi of the

braid group correspond to exchanging loops enumerated by i and i + 1 by passing loop i

horizontally through loop i+ 1:

i i+1

y y →

i i+1 i

y y →

i+1 i

y y
.

As for the twisted quantum double, we can build on the tensor structure defined by the

comultiplication map ∆ in order to show that the representations of the twisted quantum

triple algebra admit a representation of the braid group which is interpreted as the exchange

statistics of loop excitations in the (3+1)d Dijkgraaf-Witten model. In order to define the

braid statistics, we introduce an invertible element of TubeGπ (T2
4)⊗ TubeGπ (T2

4) which we

also call the R-matrix:

R :=
∑
y,a∈G
x,x′∈Zy

|(
x

•
y

)
1G−−→〉 ⊗ |(

x′

•
y

)
x−→〉 . (4.66)
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The compatibility of this R-matrix with the comultiplication map is ensured via

R∆
(
|(

x

•
y

)
z−→〉
)
R−1 = σ ◦∆

(
|(

x

•
y

)
z−→〉
)

(4.67)

for all |(
x

•
y

)
z−→〉 ∈ TubeGπ (T2

4), where σ is the transposition map

σ : V ⊗W →W ⊗ V , (4.68)

which permutes the order of vector spaces in the tensor product. Unlike in the twisted

quantum double example the R-matrix is not a module isomorphism for the tensor product

of any two modules but instead only a module isomorphism on a subspace of the tensor

product. Let V and W be a pair of modules of TubeGπ (T2
4) we define the projector ∆(1) :

V ⊗W → V ⊗W by the comultiplication of the identity element

∆(1) :=
∑
y∈G
x∈Zy

∆(|(
x

•
y

)
1G−−→〉) (4.69)

and define

V ⊗W := ∆(1) . (V ⊗W ) ⊂ V ⊗W . (4.70)

This subspace corresponds to the subspace of the tensor product of modules which carry

the same threading flux. For any two modules V,W of the twisted quantum triple algebra

the operator R̂ := σ ◦R defines a map

R̂ : V ⊗W ∼−→W ⊗ V , (4.71)

which is a module isomorphism:

R̂ ◦∆
(
|(

x

•
y

)
a−→〉
)
. (V ⊗W ) = ∆

(
|(

x

•
y

)
a−→〉
)
◦ R̂ . (V ⊗W ) . (4.72)

Additionally, given the three-particle vector space (V ⊗ W ) ⊗ Z, it follows that R̂ sat-

isfies the hexagon equations, which in turn implies the quasi-Yang-Baxter equation de-

fined in equation (4.39), so that R̂ defines a braid group representation on the modules of

TubeGπ (T2
4).

5 Category theoretical aspects

In this section, we introduce some notions from category theory in order to reformulate

and make more precise some of the results derived earlier. In particular, we present the

technology of loop groupoids. This is used to make more rigorous the notion of lifted models

introduced previously, which is in turn used to rederive tube algebras in any dimensions.
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5.1 Preliminaries

In order to introduce the relevant notations, we review below some basic definitions of

category theory. More details can be found in [38, 39].

Definition 5.1 (Category). A category C consists of:

• A collection of objects denoted by Ob(C).

• A collection of morphisms between objects denoted by Hom(C) such that each mor-

phism has a source and a target object. Given two objects a and b, the collection of

morphisms from a to b is denoted by HomC(a, b) 3 f : a→ b.

• A composition rule ◦ : HomC(a, b) × HomC(b, c) → HomC(a, c) of morphisms such

that the composition of f : a → b and g : b → c is denoted by f ◦ g : a → c. This

composition rule is associative, i.e. for f : a→ b, g : b→ c and h : c→ d, we have

(f ◦ g) ◦ h = f ◦ (g ◦ h) ,

and for every object x ∈ Ob(C) there exists an identity morphism idx ∈ HomC(x, x)

such that for every f : a→ b ∈ HomC(a, b), we have f ◦ ida = f = idb ◦ f .

We often depict relations between morphisms using commutative diagrams so that

points represent objects and arrows represent morphisms between. For instance, the com-

position of two morphisms f : a→ b and g : b→ c is depicted by

(a
f−−−−→ b) ◦ (b

g−−−−→ c) = a
f◦g−−−−−−→ c .

Definition 5.2 (Monoidal category). A monoidal category is a sextuple (C,⊗,1, α, `, r)
that consists of:

• A category C.

• A binary functor ⊗ : C × C → C referred to as the tensor product.

• A unit object 1C ∈ Ob(C).

• Three natural isomorphisms α, `, r referred to as the associator, the left unitor and

the right unitor, respectively, defined as:

αa,b,c : (a⊗ b)⊗ c ∼−→ a⊗ (b⊗ c)
`a : 1⊗ a ∼−→ a

ra : a⊗ 1
∼−→ a .

– 43 –



J
H
E
P
1
0
(
2
0
1
9
)
2
1
6

subject to the coherence relations encoded in the commutative diagrams:

(a⊗ b)⊗ (c⊗ d)

((a⊗ b)⊗ c)⊗ d a⊗ (b⊗ (c⊗ d))

(a⊗ (b⊗ c))⊗ d a⊗ ((b⊗ c)⊗ d)

αa⊗b,c,d

αa,b,c ⊗ idd

αa,b,c⊗d

αa,b⊗c,d

ida ⊗ αb,c,d

a⊗ b

(a⊗ 1)⊗ b) a⊗ (1⊗ b)

ra ⊗ idb

αa,1,c,b

ida ⊗ `b .

These consistency conditions are usually referred to as the pentagon and the triangle

relations, respectively.

A monoidal category as defined above is sometimes referred to as weak monoidal

category since the morphisms α, ` and r weakens the associativity and the unit conditions.

Example 5.1 (Category of G-graded vector spaces). Let G be a finite (possible non-abelian)

group. A G-graded vector space is a vector space of the form V =
⊕

a∈G Va. We consider

the category C–VecαG whose objects are G-graded complex-valued vector spaces. The tensor

product is defined according to

(V ⊗W )a =
⊕
b,c∈G
b·c=a

Vb ⊗Wc .

This category has |G| simple objects denoted by δa∈G, i.e. objects satisfying End(δa) = C,

provided by the one-dimensional G-graded vector spaces. It follows from the definition that

the tensor product of simple objects boils down to the group multiplication, i.e. δa⊗δb ∼= δab.

It is enough to define the associator on the simple objects. Thus, we are looking for an

isomorphism characterized by a group 3-cochain α : G3 → C× such that

αδa,δb,δc = α(a, b, c) · idδabc : (δa ⊗ δb)⊗ δc ∼−→ δa ⊗ (δb ⊗ δc) .

The pentagon relation above is then satisfied if α is a 3-cocycle in H3(G,C×) '
H3(G,U(1)), i.e.

α(a, b, c)α(a, b · c, d)α(b, c, d) = α(a · b, c, d)α(a, b, c · d) (5.1)

for every a, b, c, d ∈ G. Furthermore, it follows from the triangle relation above that if the

right and left unitors are trivial, then the 3-cocycle α is normalized, i.e. α(a,1, b) = 1,

∀ a, b ∈ G.
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It turns out that the category of G-graded vector spaces is the relevant structure to

describe the (2+1)d Hamiltonian realisation of Dijkgraaf-Witten theory. Indeed, we can

show that for a model whose input data is C–VecαG, the bulk excitations are provided by

the objects of the so-called Drinfel’d center Z(C–VecαG) of the category. But the Drinfel’d

center Z(C–VecαG) is equivalent to the category of modules of the Drinfel’d double Dα(G),

which we showed to be a representative of the (2+1)d tube algebra. By construction

Z(C–VecαG) is a braided monoidal category:

Definition 5.3 (Braided monoidal category). Let C ≡ (C,⊗,1, α, `, r) be a monoidal

category with tensor product ⊗. We define a braiding on C as a natural isomorphism

R : a⊗ b ∼−→ b⊗ a subject to the coherence relations encoded in the commutative diagrams:

(c⊗ a)⊗ b

(a⊗ c)⊗ b c⊗ (a⊗ b)

a⊗ (c⊗ b) (a⊗ b)⊗ c

a⊗ (b⊗ c)

Rc,a ⊗ idb αc,a,b

αa,c,b Rc,a⊗b

ida ⊗Rc,b αa,b,c

,

b⊗ (c⊗ a)

(b⊗ c)⊗ a b⊗ (a⊗ c)

a⊗ (b⊗ c) (b⊗ a)⊗ c

(a⊗ b)⊗ c

α−1
b,c,a ida ⊗Rc,a

Rb⊗c,a α−1
b,a,c

α−1
a,b,c Rb,a ⊗ idc

.

The consistency conditions above are usually referred to as the hexagon relations. We then

define a braided monoidal category as a pair (C, R).

Note that given Z(C–VecαG) the hexagon relations above are the analogues of (4.38).

It turns out that for an abelian group A, the category of A-graded vector spaces can be

turned into a braided monoidal category C–Vecα,RA by introducing a family of isomorphisms

characterized by a group 2-cochain R : A2 → C× such that

Rδa,δb = R(a, b) · idδab : δa ⊗ δb ∼−→ δb ⊗ δa .

The hexagon equations above are then satisfied if

α(c, a, b)R(c, a+ b)α(a, b, c) = R(c, a)α(a, c, b)R(c, b) (5.2)

R(b+ c, a)α(b, a, c) = R(c, a)α(b, c, a)R(b, a) α(a, b, c) . (5.3)

Note however that the (2+1)d Dijkgraaf-Witten model only requires its monoidal version

as input. Furthermore it is not possible to define such braided category when the group is

non-abelian.
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5.2 Monoidal 2-category of G-graded 2-vector spaces

As mentioned above, the input category of the (2+1)d Hamiltonian realisation of Dijkgraaf-

Witten model is the category of G-graded vector spaces such that its Drinfel’d center

describes the bulk excitations of the model. Analogously, the relevant input category in

(3+1)d is believed to be the 2-category of G-graded 2-vector spaces [40, 41].

So far, we have only considered 1-categories, i.e. categories that contain objects and (1-

)morphisms between objects. It is possible to generalize these constructions by providing

additional structures. For instance, we can define 2-categories which, on top of objects and

1-morphisms between objects, contain 2-morphisms between 1-morphisms. In the following,

we are only interested in a specific 2-category, namely the 2-category of G-graded 2-vector

spaces [40, 42, 43]. But first, let us define 2-vector spaces:

Definition 5.4 (2-vector spaces). We call a 2-matrix M a matrix whose entries denoted

byMmn are finite-dimensional complex valued (1-)vector spaces. We then define a 2-vector

space as a formal symbol V[p] with p = 0, 1, 2, . . ., such that the collection Hom(V[p],V[q])

of 1-morphisms from V[p] to V[q] corresponds to the set of all p × q 2-matrices M. The

collection Hom(M,N ) of 2-morphisms from M to N such that M,N : V[p] → V [q] then

corresponds to the set of all matrices T of linear operators Tmn :Mmn → Nmn.

We define the category C–2VecG as the 2-category whose objects are G-graded complex

2-vector spaces as defined above. Similarly to the category of G-graded vector spaces,

simple objects δa are labeled by group elements in G and the tensor product between simple

objects is provided by the group multiplication. We choose the underlying 1-category of

C–2VecG to be strict, i.e. the associator α0, the right unitor and the left unitors are chosen

to be trivial. Although the associator is trivial, it is possible to weaken the corresponding

pentagon equation by introducing a so-called pentagonator 2-morphism defined as:

α0
δa⊗δb,δc,δd ◦ α

0
δa,δb,δc⊗δd

πδa,δb,δc,δd======⇒ (α0
δa,δb,δc

⊗ idδd) ◦ α0
δa,δb⊗δc,δd ◦ (idδa ⊗ α0

δb,δc,δd
) .

This pentagonator 2-morphism is determined by a group 4-cochain π : G4 → C×. The

pentagonator must satisfy some coherence relations [42, 44] that enforces the 4-cochain π

to be a 4-cocycle in H4(G,C×) ' H4(G,U(1)). We denote the corresponding 2-category

by C–2VecπG. Similarly, we could define a 2-morphism that weakens the triangle relation.

However, we choose it to be trivial, which on turns implies that π is a normalized 4-cocycle.

In the following, we often identify simple objects and the group variables labeling them so

that the pentagonator 2-morphism will be written πa,b,c,d, a, b, c, d ∈ G, instead.

So the input data of C–2VecπG is the same as the one of the (3+1)d Hamiltonian model

introduced earlier, namely a finite group G and a normalised representative of a cohomology

class in H4(G,U(1)), as expected. Furthermore, it is possible to relate the definition of π to

the 2
 3 and 1
 4 Pachner moves, the same way the 4-cocycle appears as the amplitude

of the corresponding Pachner operators (2.35) and (2.34). In the following, we explain

how to recover the quantum triple algebra starting from this data using the technology of

loop groupoids.
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While finishing this manuscript, Kong et al. published a beautiful work where they

define a generalization of the center construction for the case of monoidal bicategories [45].

Starting from C–2VecπG, they find a 2-category whose objects and 1-morphisms can be

mapped to the irreducible modules of the twisted quantum triple. Although the two ap-

proaches seem to yield the same result, we believe our approach makes more transparent

the physics of the defect excitations.

5.3 Delooping and classifying space

In this part, we review the concepts of delooping groupoid and classifying space of groupoid.

More details can be found in [33, 35, 46–48].

Definition 5.5 (Groupoid). A (finite) groupoid G is a category such that there is a finite

number of objects, and a finite number morphisms which are all invertible.

Given a finite groupoid G, we can construct a so-called simplicial set BG referred to as

the classifying space of the groupoid:

Definition 5.6 (Classifying space of a groupoid). Let G be a finite groupoid. We define

the classifying space BG of G as the simplicial set obtained by gluing together abstract n-

simplices identified with strings of n composable morphisms x0
g1−→ x1

g2−→ · · · gn−→ xn in G.

A given n-simplex can be represented as a standard n-simplex whose vertices are labeled

by x0, x1, . . . , xn and whose oriented edges are labeled by morphisms and composition of

morphisms.7 As a simplicial set, BG comes equipped with face homomorphisms such that

the i-th face of a given n-simplex is obtained by removing the object xi from the string of

morphisms and compose the corresponding adjacent morphisms if i 6= 0, n. For instance the

three (1-)faces of the 2-simplex x0
g1−→ x1

g2−→ x2 reads x0
g1−→ x1, x1

g2−→ x2 and x0
g1◦g2−−−→ x2.

In the following, we are particularly interested in the classifying space of the one-object

groupoid associated with any finite group:

Definition 5.7 (Delooping of a group). Let G be a (finite) group. The delooping of G is

the one-object groupoid G that consists of a single object denoted by • and Hom(•, •) = G

such that the composition of morphisms is given by the group multiplication. Informally,

we think of G as

G = {
g

• ≡ •
g−→ • | g ∈ G } . (5.4)

The classifying space of the one-object groupoid G coincides as a simplicial set with the

classifying space BG of the finite group G as usually defined in algebraic topology [35, 48]:

Definition 5.8 (Classifying space of a finite group). Let G be a finite group. We de-

note by EG the simplicial set whose n-simplices are identified with ordered (n+1)-tuples

(g0, g1, . . . , gn) in Gn+1. We define the i-th face homomorphism ∂i = ∂
(n)
i : Gn+1 → Gn on

7By identifying abstract simplices with labeled standard simplices, we are building the topological space

referred to as the geometrical realisation of BG. But we loosely identify simplicial sets and their geometrical

realisations in this paper.
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the set of n-simplices as ∂i(g0, . . . , gn) := (g0, . . . , gi−1, gi+1, . . . , gn) such that the boundary

of an n-simplex is given by the homomorphism ∂(n) = ∂0−∂1 + · · ·+(−1)n∂n. The group G

has a left action . on EG by left multiplication, i.e. g.(g0, . . . , gn) = (gg0, . . . , ggn), and the

classifying space BG of the finite group G is obtained as the quotient space BG = EG/G.

Since (g0, . . . , gn) ∼ (gg0, . . . , ggn), BG can be equivalently obtained in terms of n-tuples

[g1| . . . |gn] via the map [g1| . . . |gn] → (1, g1, g1g2, . . . , g1 · · · gn) so that to each n-simplex

(g0, . . . , gn), we now assign the n-tuple (g0, . . . , gn)→ [g−1
0 g1|g−1

1 g2| . . . |g−1
n−1gn]. As in def-

inition 5.6, 1-simplices of the simplicial set are now labeled by product of group variables,

and the boundary map ∂ reads

∂(n)[g1| . . . |gn] = [g2| . . . |gn] +

n−1∑
i=1

(−1)i[g1| . . . |gi−1|gigi+1|gi+2| . . . |gn]

+ (−1)n[g1| . . . |gn−1]

which agrees with the earlier definition via the identification [g1| . . . |gn] ≡ • g1−→ · · · gn−→ •.

Since the boundary homomorphism satisfies ∂ ◦ ∂ = 0, the simplicial set BG forms a

chain complex whose chain groups are provided by the n-simplices. Thus, we identify n-

tuples [g1| . . . |gn] with n-chains which are chosen to be valued in U(1). This defines the set

of n-chains Cn(BG,U(1)). Similarly, we define n-cochains as functions which assign to any

n-simplex of BG an element of U(1). By dualising, the boundary operator ∂, we can finally

define the cohomology Hn(BG,U(1)). The algebraic cohomology Hn(G,U(1)) of the group

G is then defined as the simplicial cohomology Hn(BG,U(1)) of its classifying space. More

generally, we define the cohomology of a groupoid G as the simplicial cohomology of its

classifying space BG.

Finally, given a groupoid G, a specific point in the classifying space BG is identified by

a string of morphisms x0
g1−→ · · · gn−→ xn and a set of coordinates 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn. In

the following, we denote such a point by x0
g1,t1−−−→ x1

g2,t2−−−→ · · · gn,tn−−−→ xn.

This delooping procedure can be generalized to any (pointed) category: given a cat-

egory C, we can define its delooping C where C has a single object • and Hom(•, •) = C.
The composition of the 1-morphisms is then provided by the monoidal structure of C, i.e.

the composite of •
a−→ •

b−→ • is •
a⊗b−−→ •. Applying the delooping procedure to the monoidal

category C–VecαG of G-graded vector spaces, we obtain a 2-category which consists of a

single object •, finitely many simple 1-morphisms labeled by group variables in G and a

1-associator 2-morphism α whose definition in terms of commutative diagrams reads

• •

• •

b

a
(a·b)·c

a·(b·c)

ca·b

α

=

• •

• •

b

a

a·(b·c)

c
b·c (5.5)

where we identify simple objects and the corresponding group variables for convenience.
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Using a slightly abusive notation, this can be equivalently depicted as

• •

• •

b

a

a·b·c

ca·b
αa,b,c
===⇒

• •

• •

b

a

a·b·c

c
b·c (5.6)

As simplicial complexes in the corresponding classifying space, the diagrams above defines

a 2 � 2 move as expected. Similarly, the delooping of the 2-category C–2VecπG of G-

graded 2-vector spaces, we obtain a 3-category that consists of a single object •, simple

1-morphisms labeled by group variables in G and a trivial 1-associator 2-morphisms α0

whose pentagon equation is weakened by the presence of a pentagonator 3-morphism π

determined by a group 4-cocycle. Using the notation above, we have

•

•
•

•

•

b·c·d

a

c·d

c

a·b·c

d

a·b·c·d

α0
a·b,c,d

α0
a,b,c·d

a·b
b

πa,b,c,d
≡≡≡≡V

•

•
•

•

•

a

c·d
c

a·b·c

d

b
·c

a·b·c·d

α0
a,b,c

α0
a,b·c,d

α0
b,c,d

a·b

b
b·c·d

, (5.7)

which does suggests that the category underlying the (3+1)d lattice model for which the

amplitude associated with the 2� 3 move is given by a 4-cocycle, is indeed the 2-category

C–2VecπG.

5.4 Loop groupoid

This part is the heart of our construction. We review the definition of loop groupoid and

explain how it is related to the notion of transgression maps of groupoid cocycles. To do

so, we follow closely the work of Willerton [33]. A similar approach can be found in [34].

We then explain how this construction can be used to recover the quantum double and

quantum triple algebra, as well as defining lifted topological models.

So the next step of our construction requires to define the so-called loop groupoid ΛG
of a finite groupoid G. It can be succinctly defined as the functor category Fun(Z,G) where

Z is the delooping of Z. Since π1(S1) = Z, or in other words BZ ' S1, it is possible to

think of the objects in ΛG as being ‘loops’ in G, hence the name. In practice, we use the

following equivalent definition:

Definition 5.9 (Loop groupoid). Let G be a finite groupoid. We define the loop groupoid

ΛG as the finite groupoid whose objects are given by endomorphisms g ∈ EndG(x), for

each x ∈ Ob(G), and whose morphisms read g
h−→ h−1 ◦ g ◦ h where g ∈ EndG(x) and

h ∈ HomG(x, y). The composition of the 1-morphisms is inherited from the one in G.
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In the following, we are interested in the loop groupoid ΛG of the one-object groupoid

G. In this case, the objects of ΛG can be identified with group elements in G so that the

loop groupoid effectively describes the action of the group onto itself by conjugation. This

action becomes of course trivial in the case of an abelian group.

Let G be a finite (possibly non-abelian) group. Let us consider the classifying space

BΛG of its loop groupoid such that vertices are identified with endomorphisms x ∈ EndG(•)

and edges with morphisms x
g−→ g−1xg. In the following, we make use of the shorthand

notation xg ≡ g−1xg. The n-simplices are identified with the following strings of morphisms

(
x

• )
g1−→ (

xg1

• )
g2−→ · · · gn−→ (

xg1···gn

• ) ≡ (
x

• )
g1−→ · · · gn−→ , (5.8)

where we used an explicit notation for the objects in order to make the construction more

transparent. A point of the classifying space is then identified with

(
x

• )
g1,t1−−−→ · · · gn,tn−−−→ . (5.9)

Let us also consider a different space, namely the free loop space on LBG. Given a topolog-

ical space X, its free loop space LX is the topological space of all the loops in X, namely

LX = Maps(S1, X).8 We can define a map LIF : BΛG → LBG ≡ LBG which maps a

specific point of the topological space BΛG to a loop in LBG parameterized by t such that:

LIF(t) : (
x

• )
g1,t1−−−→ · · · gn,tn−−−→ 7−→ •

g1,t1−−−→ · · · gi,ti−−→ xg1···gi ,t−−−−−→ gi+1,ti+1−−−−−→ · · · gn,tn−−−→ ,

for ti ≤ t ≤ ti+1 .

Let us explain in detail what this map does in the case of a 2-simplex in BΛG: firstly,

it associates to this 2-simplex a prism whose top and bottom faces are identified. In

this case, a 3d triangulation for this prism is obtained using a convention adapted from

conv. 3.1. Secondly, a specific point of the original 2-simplex is associated to a loop in LBG
parameterized by t. The map then returns a specific point of this loop. The 3-simplex

to which the point belongs depends on the value of t. In the following, we refer to this

map as the lifting map in analogy with the lifting procedure alluded in section 3.5.9 Most

importantly, Willerton showed in [33] that the lifting map LIF is a homotopy equivalence.

The lifting map LIF : BΛG→ LBG naturally induces another map BΛG× S1 → BG.

Via the identification between n-simplices and simplicial n-chains, the latter map induces

yet another map at the level of chains Cn(BΛG,U(1))→ Cn+1(BG,U(1)) defined as

(
x

• )
g1−→ · · · gn−→ 7−→

n∑
i=0

(−1)n−i−1•
g1−→ · · · gi−→ xg1···gi−−−−→ gi+1−−→ · · · gn−→ (5.10)

which can be rewritten as follows in terms of the notation introduced in def. 5.8

[g1|g2| . . . |gn]x 7−→
n∑
i=0

(−1)n−i−1[g1| . . . |gi|(g1 · · · gi)−1x(g1 · · · gi)|gi+1| . . . |gn] .

(5.11)

8The free loop space is to differentiate with the based loop space which is the space of all loops fixed at

a certain base point.
9In Willerton’s work [33], the same map is referred to as the ‘Parmesan map’.
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The (n+1)-chains appearing on the r.h.s. are identified with the (n+1)-simplices obtained

after triangulation of the topological space LBG according to conv. 3.1, which is obtained

by lifting BΛG. Finally, using the fact that the algebraic cohomology of a groupoid is

defined as the simplicial cohomology of its classifying space, and dualising the map above,

we obtain a map at the level of algebraic cocycles:10

τ : Zn+1(G,U(1)) −−→ Zn(ΛG,U(1))

ω 7−−→ τx(ω)(g1, . . . , gn)

≡ τ(ω)
(
[g1| . . . |gn]x

)
:=

n∏
i=0

ω(g1, . . . , gi, x
g1···gi , gi+1, . . . , gn)(−1)n−i .

(5.12)

Henceforth, we refer to this map as the S1-transgression map. Let us illustrate this defini-

tion with an example. The S1-transgression map acts on a 4-cocycle π ∈ Z4(G,U(1)) as

τx(π)(a, b, c) =
π(a, a−1xa, b, c)π(a, b, c, (abc)−1xabc)

π(x, a, b, c)π(a, b, (ab)−1xab, c)
(5.13)

which is precisely the formula (3.35) obtained in the previous section. So the S1-

transgression of a group cocycle does not result in another group cocycle but a groupoid

cocycle, namely a cocycle of the loop groupoid of its delooping. This explains why it does

not satisfy the usual cocycle condition, but instead a ‘twisted’ version. It is now easy to

derive these conditions using the boundary map of the simplicial set BΛG. For convenience

we reproduce below the one satisfied by τ(π):

d(3)τx(π)(a, b, c, d) =
τa−1xa(π)(b, c, d) τx(π)(a, bc, d) τx(π)(a, b, c)

τx(π)(ab, c, d) τx(π)(a, b, cd)
= 1 . (5.14)

Interestingly, this whole procedure can be iterated. Indeed, it is possible to define a

lifting map LIF2 : BΛ2G → L2BG which ultimately leads to the T2-transgression map

τ2 : Zn+2(G,U(1))→ Zn(Λ2G,U(1)) defined according to

τ2
x,y(ω)(g1, . . . , gn) =

n∏
i=0

τy(ω)(g1, . . . , gi, x
g1···gi , gi+1, . . . , gn)(−1)n+1−i

.

Applying this definition to π ∈ Z4(G,U(1)) results in

τ2
x,y(π)(a, b) :=

τy(π)(x, a, b) τy(π)(a, b, (ab)−1xab)

τy(π)(a, a−1xa, b)
(5.15)

which is precisely the 2-cochain appearing in the multiplication of the twisted quantum

triple algebra.

With a little stretch of formalism, the lifting map LIF induces a transgression map on

the level of morphisms determined by group cocycles. Indeed, let us consider the delooping

10In the case where we work with an abelian group A, the cohomology of ΛA is equal to the group

cohomology so that we actually define a map τ : Zn+1(A,U(1))→ Zn(A,U(1)).

– 51 –



J
H
E
P
1
0
(
2
0
1
9
)
2
1
6

C–2Vec
π
G of the 2-category of G-graded 2-vector spaces so that π is now a pentagonator

3-morphisms which weakens the pentagon coherence relation of the trivial 1-associator 2-

morphism. There are finitely many simple morphisms in this category and they are labeled

by group variables in G. Since in many ways it is enough to consider simple morphisms

only, many properties can be directly inferred from the study of G carried out above. The

homotopy equivalence between BΛG and LBG implies

(
x

• )
a−→ '

• •

• •

x a−1xa

a

a

x·a

, (5.16)

where we are still using the shorthand notation defined in (5.8). Moreover, recall that the

composition of the morphisms on the l.h.s. in ΛG reads

(
x

• )
a−→ ◦ (

xa

• )
b−→ = (

x

• )
ab−→ . (5.17)

Let us now suppose that the associativity with respect to this composition rule is weak-

ened by an 1-associator 2-morphism denoted by τ(π). Analogously to (5.6), this can be

represented in terms of commutative diagrams in ΛG:

(
xa

• ) (
xab

• )

(
x

• ) (
xabc

• )

b

a

a·b·c

c

a·b

τx(π)a,b,c
=====⇒

(
xa

• ) (
xab

• )

(
x

• ) (
xabc

• )

b

a

a·b·c

cb·c . (5.18)

This representation can be conveniently used to check (5.14) explicitly. But by virtue of the

lifting map LIF, the diagrams depicted above, thought as simplices in BΛG, are equivalent

to the simplicial complexes depicted below in LBG

• •

• •

• •

• •

b

a·b·c
a c

b

a·b·c

a
c

xa

x xab

xabc

a·b

a·b

τx(π)a,b,c
≡≡≡≡≡≡V

• •

• •

• •

• •

b

a·b·c
a c

b

a·b·c

a
c

xa

x xab

xabc

b·c

b·c

(5.19)

where we kept the triangulation of the prisms implicit. Keeping in mind that the prisms

should be triangulated, these diagrams correspond exactly to the lifted 2 � 2 Pachner

move (2� 2)× S1 studied in section 3.5. And we showed in section 3.5 that such a move

could be decomposed into four (non-trivial) 2 � 3 moves. But to every such 2 � 3 move
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can be associated a pentagonator 3-morphism in C–2Vec
π
G as illustrated in (5.7), so that

we can write

τx(π)a,b,c = π−1
x,a,b,c ◦ πa,a−1xa,b,c ◦ π−1

a,b,(ab)−1xab,c
◦ πa,b,c,(abc)−1xabc (5.20)

which is the obvious analogue of (5.13). So in the same way the S1-transgression map

defines a loop groupoid 3-cocycle from a group 4-cocycle, we argue that it maps the pen-

tagonator 3-morphism π in C–2Vec
π
G to a 1-associator 2-morphism τ(π) in its loop groupoid.

Therefore, similarly to the relation between the input 3-cocycle of the (2+1)d Dijkgraaf-

Witten model and the associator of C–VecαG, the S1-transgression of the input 4-cocycle of

the (3+1)d model corresponds to the 1-associator of the loop groupoid of C–2Vec
π
G.

5.5 Groupoid algebra and quantum triple

In this part, we use the loop groupoid technology in order to redefine the twisted quantum

double and the twisted quantum triple algebras derived in section 3 as the tube algebras

associated with the excitations of the (2+1)d and (3+1)d models, respectively. Given a

groupoid, it is always possible to define an algebra as follows:

Definition 5.10 (Groupoid algebra). Let G be a groupoid and k a field. We define the

groupoid algebra k[G] as the algebra over k determined by the vector space spanned by

the morphisms in G and whose multiplication rule is provided by the composition rule of

morphisms in G whenever it is defined, else is zero.

A primary example of this construction is the quantum double as the twisted groupoid

algebra of the loop groupoid of the delooping of a group [33]:

Example 5.2 (Drinfel’d double algebra). Let us apply the definition of the groupoid algebra

to the loop groupoid ΛG. As basis for the vector space C[ΛG] is provided by

|(
x

• )
a−→〉 for x, a ∈ G (5.21)

which are in one-to-one correspondence with the morphisms in ΛG. Furthermore, the

multiplication rule between two basis elements reads

|(
x

• )
a−→〉 ? |(

y

• )
b−→〉 = δa−1xa,y|(

x

• )
a·b−−→〉 (5.22)

where the delta function ensures that the composition in ΛG is defined. This repro-

duces the quantum double multiplication rule. Let α ∈ Z3(G,U(1)), we know that

τ(α) ∈ Z2(ΛG,U(1)) by definition.11 This loop groupoid 2-cocycle can be used in order

to twist this multiplication rule as follows:

|(
x

• )
a−→〉 ? |(

y

• )
b−→〉 = δa−1xa,y τx(α)(a, b) |(

x

• )
a·b−−→〉 . (5.23)

Hence, as an algebra, the twisted quantum double is isomorphic to the twisted groupoid

algebra Cτ(α)[ΛG].

11Here we can think of α as determining the associator of C–VecαG.
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Let us now adapt this construction so as to define the quantum triple algebra as

the twisted groupoid algebra Cτ
2(π)[Λ2G] of Λ2G obtained by iterating twice the loop

groupoid construction over the one-object groupoid G. Objects in Λ2G are provided by

endomorphisms x ∈ EndΛG(y), which by definition of the morphisms in ΛG must be labeled

by group variables in the centralizer Zy, and for every x ∈ EndΛG(y) we have morphisms

x
g−→ g−1 ◦ x ◦ g such that g ∈ HomΛG(y, yg). By analogy with the loop groupoid, we

represent morphisms in Λ2G as

(
x

•
y

)
g−→ (

xg

•

yg

) ≡ (
x

•
y

)
g−→ (5.24)

such that xyx−1y−1 = 1. We then define the twisted groupoid algebra as before. A basis

for the vector space C[Λ2G] is provided by

|(
x

•
y

)
a−→〉 for y, a ∈ G, x ∈ Zy , (5.25)

which are in one-to-one correspondence with the quantum triple algebra basis element.

Let π ∈ Z4(G,U(1)), we know that τ2(π) ∈ Z2(Λ2G,U(1)) by definition.12 As before, this

2-cocycle can be used to define the following twisted multiplication rule

|(
x1

•
y1

)
a−→〉 ? |(

x2

•
y2

)
b−→〉 = δa−1x1a,x2

δa−1y1a,y2
τ2
x1,y1

(π)(a, b) |(
x1

•
y1

)
a·b−−→〉 (5.26)

which is exactly (3.44). Hence, as an algebra, the quantum triple is isomorphic to the

twisted groupoid algebra Cτ
2(π)[Λ2G] of the loop groupoid Λ2G of the loop groupoid ΛG

of the one-object groupoid G of the group G.

So we showed how Willerton’s derivation of the twisted quantum double algebra could

be easily generalized so as to recover the twisted quantum triple algebra from the groupoid

algebra construction of loop groupoids. However, the way the twisting is added to the

multiplication rule is somewhat ad hoc. In the following, we use the technology of loop

groupoids to define more rigorously the lifting procedure presented in section 3.5. This

lifting procedure will in turn be used to rederive the (2+1)d and (3+1)d tube algebras in

terms of the (1+1)d one, making the introduction of the twist naturally descending from

the definition of the topological model.

5.6 Loop groupoid colouring and lifted models

Recall that given a finite group G and a closed oriented (d+1)-manifold M, the partition

function of the Dijkgraaf-Witten model is performed over homotopy classes of maps [γ] :

M → BG, while the topological action is provided by the canonical pairing 〈γ?ω, [M]〉
between the pull-back of the cocycle ω ∈ Zd+1(BG,R/Z) ontoM and the fundamental class

[M] ∈ Hd+1(M,Z) ofM. Let us now suppose that we have a closed (d+1)-manifold of the

form N ×S1. We explained earlier that given a finite group G, the lifting map LIF : BΛG→
12Here we can think of π as determining the pentagonator of C–2VecπG so that τ(π) determines the

1-associator in the loop groupoid of its delooping.
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LBG ≡ LBG is a homotopy equivalence. It implies the equivalence BΛG × S1 ' BG

which in turn induces the S1-transgression map sending a group (n+1)-cocycle to a loop

groupoid n-cocycle. It follows that given a (d+1)-manifold of the form N×S1, we can define

an equivalent model in one lower-dimensional. This model is obtained by summing over

homotopy classes [γ̃] : N → BΛG while the topological action is provided by the pairing

〈γ̃?τ(ω), [N ]〉 between the pull-back of the loop groupoid cocycle τ(ω) ∈ Zd(BΛG,R/Z)

and the fundamental class [N ].

The remark above suggests that given a triangulated cobordism C4×S1, the partition

function ZGω [C4×S1] should be equal to the lower dimensional partition function ZΛG
τ(ω)[C4]

obtained by summing over loop groupoid colourings. This is indeed the right language to

formalise the lifting mechanism presented in section 3.5. In order to check this, let us first

introduce the notion of groupoid colouring:

Definition 5.11 (Finite groupoid colouring). Let G be a finite groupoid and M a d-

manifold endowed with a triangulation M4. We define a G-colouring on M4 in a way

reminiscent of the definition of the classifying space BG as follows: to every 0-simplex

(v0) ⊂ M4, we associate an object xv0 ∈ Ob(G). To every 1-simplex (v0v1) ⊂ M4, we

assign a morphism xv0

gv0v1−−−→ xv1 ∈ HomG(xv0 , xv1) whose source and target objects agree

with the objects assigned to the 0-simplices (v0) and (v1), respectively. Furthermore, for

every 2-simplex (v0v1v2) ⊂M4, we enforce that a given morphism is obtained as the com-

position of the other two, i.e. gv0v2 = gv0v1 ◦gv1v2. We notate the set of groupoid colourings

of M4 as Col(M4,G).13

Let us apply this definition to the loop groupoid ΛG. Recall that the set of objects

in ΛG is G and that the set of morphisms reads {x g−→ xg}∀x,g∈G. A ΛG-colouring g of

C4 assigns group variables to every 0- and 1-simplices of C4 such that given a 1-simplex

(v0v1) ⊂ C4, we have g[v0] = xv0 ∈ G, g[v0v1] = gv0v1 , and g[v1] = xv1 := x
gv0v1
v0 . Fur-

thermore, for every 2-simplex (v0v1v2) ∈ C4, the constraint on the boundary morphisms

xv0

gv0v1−−−→ xv1 , xv1

gv1v2−−−→ xv2 and xv0

gv0v2−−−→ xv2 enforces that gv0v1 · gv1v2 = gv0v2 . This

agrees exactly with the prescription provided in section 3.5 for a colouring of C4 given a

G-colouring of C4 × S1. Therefore, we have the following identification

Col(C4 × S1, G) = Col(C4,ΛG) (5.27)

between G-colourings on C4 × S1 and loop groupoid ΛG-colourings on C4.

Let us now consider the colouring g ∈ Col(C4,ΛG) compatible with a given G-colouring

of C4× S1. The amplitude associated with a G-coloured lifted d-simplex (v0 . . . vd)× S1 is

equal to the amplitude of the ΛG-coloured d-simplex (v0 . . . vd):

τ(ω)(g[v0 . . . vd]) := τg[v0](ω)(g[v0v1], g[v1v2], . . . , g[vd−1vd]) (5.28)

such that τ(ω) is now interpreted as a loop groupoid d-cocycle.

13It follows immediately from the definition that we have the identification Col(C4, G) = Col(C4, G).
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Using the above conventions we can write the (d+1)-dimensional Dijkgraaf-Witten

partition for C4 × S1, where C4 is an oriented, triangulated cobordism with boundary

∂C4 = C4,0 t C4,1 as follows:

ZΛG
τ(ω)[C4] =

1

|G||C0
4|−

1
2
|∂C0
4|

∑
g∈Col(C4,ΛG)

∏
4(d)⊂C4

τ(ω)(g[4(d)])ε(4
(d))

⊗
4(1)⊂C4,1

|g[4(1)]〉
⊗

4(1)⊂C4,0

〈g[4(1)]| ,

which is equal to ZGω [C4×S1] as provided by (2.10). It follows from the construction that

we can identify physical states in VΛG
τ(ω)[C4,0/1] with physical states in the original Hilbert

spaces VGω [CS1

4,0/1].

We explained earlier that the lifting map LIF can be iterated so as to define the S1 ×
· · · × S1-transgression map. Similarly, the lifting procedure we have just defined can be

iterated. Letting ZGω be the (d+1)-dimensional Dijkgraaf-Witten partition function, it is

straightforward to construct the n-fold lifted Dijkgraaf-Witten model of an m-dimensional

oriented triangulated cobordism such that m + n = d + 1. Let C4m be an m-dimensional

triangulated manifold. Previously we showed that a G-colouring of C4m × S1 could be

defined as a ΛG-colouring of C4m . We now argue that a G-colouring of C4m ×ni=1 S1 can

be defined in terms of a ΛnG-colouring of C4m , where ΛnG is the n-th loop groupoid of

G defined by ΛnG := Λ(Λn−1G). More specifically, for n > 0 we can define the groupoid

ΛnG as the groupoid with object set {(xn, . . . , x1) ∈ Gn |xixj = xjxi, ∀ i, j ∈ {1, . . . , n}}
and morphism set {(xn, . . . , x1)

g−→ (xgn, . . . , x
g
1)}∀g∈G,(hn,...,h1)∈Ob(ΛnG).

Furthermore, it follows naturally that the cocycle data the partition function assigns

to the n-fold lifting of an m-simplex (v0 . . . vm) with positive orientation is provided by the

evaluation of the ×ni=1S
1-transgression τn(ω) ∈ Zm(ΛnG,U(1)) of ω on the ΛnG-coloured

m-simplex (v0, . . . , vm). Putting everything together, we can write the (d+1)-dimensional

Dijkgraaf-Witten partition function for C4m ×ni=1 S1, where C4m is an m-dimensional,

oriented triangulated cobordism with boundary ∂C4 = C4,0 t C4,1 as follows:

ZΛnG
τn(ω)[C4] =

1

|G||C0
4|−

1
2
|∂C0
4|

∑
g∈Col(C4,ΛnG)

∏
4(d)⊂C4

τn(ω)(g[4(d)])ε(4
(d))

⊗
4(1)⊂C4,1

|g[4(1)]〉
⊗

4(1)⊂C4,0

〈g[4(1)]|

which is equal to ZGω [C4 ×ni=1 S1] as provided by (2.10). Using the bijection be-

tween Col(C4m ,ΛnG) and Col(C4m ×ni S1, G), we can further identify physical states in

VΛnG
τn(ω)[C4,0/1] with physical states in the original Hilbert spaces VGω [C×

n
i=1S

1

4,0/1 ]. Therefore,

we can rewrite the lattice Hamiltonian realisation of Dijkgraaf-Witten theory on a n-times

compactified d-dimensional surface in terms of a (d−n)-dimensional model with the group

G replaced by the loop groupoid ΛnG and the (d+1)-cocycle ω ∈ Zd+1(G,U(1)) with a

m-cocycle τn(ω) ∈ Zm(ΛnG,U(1)).
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5.7 Twisted quantum double as the lifted (1+1)d tube algebra

Let us now rederive the (2+1)d tube algebra within this new context of lifted models.

Let Σ2d be a 2d surface of the form Σ1d × S1 equipped with a triangulation Σ1d,4 × S1.

The input for the model is given by a pair (G,α), where G is a finite group and α is a

representative normalised 3-cocycle in a cohomology class [α] ∈ H3(G,U(1)). Since one

of the spatial directions is compactified, we can apply our lifting procedure and define an

equivalent model on Σ1d,4 whose input data is (ΛG, τ(α)). This lifted model assigns to

every edge (v0v1) ≡ 4(1) ⊂ Σ1d,4 a loop groupoid element g[v0v1].

Recall that in (2+1)d there is a unique choice for the boundary manifold, namely the

circle S1. Although there is no canonical way to triangulate the circle, we know from the

previous discussions that any two choices will define Morita equivalent algebras. Here we

choose to triangulate the circle by applying conv. 3.1 to the point o, i.e. with a single edge

and identified vertices. By doing so, we will use the lifting procedure to define the tube

algebra in terms of the (1+1)d tube algebra example. Graphically, we depict this 2d tube

as S1 × I as follows:

T[S1] := T[o]× S1 =
0 1
• • × S1 . (5.29)

The Hilbert space VGα [T[S1]] = VΛG
τ(α)[T[o]] is spanned by ΛG-coloured graph-states of

the form:

VΛG
τ(α)[T[o]] = SpanC

{ ∣∣g[
0 1
• • ]

〉 }
∀g∈Col(T[o],ΛG)

≡ SpanC

{ ∣∣ a

0 1
•x xa

•
〉 }
∀a,x∈G ,

which is equipped with the canonical inner product

〈 a

0 1
•
x1 xa

1•
∣∣ b

0 1
•
x2 xb

2•
〉

= δa,b δx1,x2 . (5.30)

Repeating the computation of section 3.2, the algebra product on VΛG
τ(α)[T[o]] reads

∣∣ a

0 1
•
x1 xa

1•
〉
?
∣∣ b

1 2
•
x2 xb

2•
〉

= PT[o]∪oT[o] ◦G .
( ∣∣ a

0 1
•
x1 xa

1•
〉
⊗
∣∣ b

1 2
•
x2 xb

2•
〉 )

= δx2,xa1
PT[o]∪oT[o] .

( ∣∣ a b

0 1 2
• • •
x1 xa

1 xab
1 〉 )

. (5.31)

Applying definition (2.28), the action of the operator P is expressed in terms of the partition

function ZΛG
τ(α) as follows:

PT[o]∪oT[o] .
( ∣∣ a b

0 1 2
• • •
x1 xa

1 xab
1 〉 )

= ZΛG
τ(α)

[
a b

0

x1

1′

1 2

xab
1

]∣∣ a b

0 1 2
• • •
x1 xa

1 xab
1 〉

(5.32)

=
1

|G|
∑
k

τx(α)(a, k)

τxa(α)(k, k−1b)

∣∣ ak k−1b

0 1′ 2
• • •
x1 xak

1 xab
1 〉

.
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It now remains to apply the triangulation changing isomorphism between ground states

subspaces so as to recover the initial triangulation. Following section 2.2 and 2.4, this

isomorphism is expressed as the 2d partition function for the pinched interval cobordism

given by the 2-simplex (012). Explicitly, the triangulation changing operator reads

ZΛG
τ(α)

[ 0 2

1′

]
=

1

|G| 12
∑

y,c,d∈G
τy(α)(c, d)

∣∣ cd

0 2
•
y ycd

•
〉〈 c d

0 1′ 2
• • •
y yc ycd ∣∣

(5.33)

so that ∣∣ ak k−1b

0 1′ 2
• • •
x1 xak

1 xab
1 〉
' 1

|G| 12
τx(α)(ak, k−1b)

∣∣ ab

0 2
•
x1 xab

1•
〉
. (5.34)

Putting everything together, the algebra product of TubeΛG
τ(α)(o) is given by

∣∣ a

0 1
•
x1 xa

1•
〉
?
∣∣ b

1 2
•
x2 xb

2•
〉

= δx2,xa1

1

|G| 12
τx1(α)(a, b)

∣∣ ab

0 2
•
x1 xab

1•
〉
,

where we made use of the 2-cocycle condition d(2)τx1(α)(a, k, k−1b) = 1. As expected, this

reproduces exactly (3.29).

5.8 Twisted quantum triple as the twice lifted (1+1)d tube algebra

Let us now rederive the (3+1)d tube algebra for torus-boundaries. Let Σ3d be a 3d surface

of the form Σ1d×S1×S1 equipped with a triangulation Σ1d,4×T2. The input for the model

is given by a pair (G, π), where G is a finite group and π is a representative normalised

4-cocycle in a cohomology class [π] ∈ H4(G,U(1)). Since two of the spatial directions

are compactified, we can apply our lifting procedure twice so as to define an equivalent

model on Σ1d,4 whose input data is (Λ2G, τ2(π)). This twice lifted model assigns to every

edge (v0v1) ≡ 4(1) ⊂ Σ1d,4 a loop groupoid element g[v0v1] which in turn assigns one

group variable to the bulk of the edge and two group variables to its boundary 0-simplices

according to conv. 5.11.

Recall that in (3+1)d, there are several possible choices of boundary manifold but

we focus on the case of the torus T2. Although there is no canonical way to triangulate

the torus, we know from the previous discussions that any two choices will define Morita

equivalent algebras. Here we choose to triangulate the torus by applying twice conv. 3.1 to

the point o. By doing so, we will use twice the lifting procedure to define the tube algebra

in terms of the (1+1)d tube algebra example. Graphically, we depict this 3d tube as T2× I
as follows:

T[T2] := T[o]× S1 × S1 =
0 1
• • × S1 × S1 . (5.35)
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The Hilbert space VGπ [T[T2]] = VΛ2G
τ2(π)[T[o]] is spanned by Λ2G-coloured graph-states of

the form:

VΛ2G
τ2(π)[T[o]] = SpanC

{ ∣∣g[
0 1
• • ]

〉 }
∀g∈Col(T[o],Λ2G)

≡ SpanC

{ ∣∣ a

0 1
•

x,y xa,ya

•
〉 }
∀a,y∈G
∀x∈Zy

,

which is equipped with the canonical inner product

〈 a

0 1
•

x1,y1 xa
1 ,y

a
1•
∣∣ b

0 1
•

x2,y2 xb
2,y

b
2•
〉

= δa,b δx1,x2 δy1,y2 . (5.36)

Repeating the computation of section 3.2, the algebra product on VΛ2G
τ2(π)[T[o]] reads

∣∣ a

0 1
•

x1,y1 xa
1 ,y

a
1•
〉
?
∣∣ b

1 2
•

x2,y2 xb
2,y

b
2•
〉

= PT[o]∪oT[o] ◦G .
( ∣∣ a

0 1
•

x1,y1 xa
1 ,y

a
1•
〉
⊗
∣∣ b

1 2
•

x2,y2 xb
2,y

b
2•
〉 )

= δx2,xa1
δy2,ya1

PT[o]∪oT[o] .
( ∣∣ a b

0 1 2
• • •

x1,y1 xa
1 ,y

a
1 xab

1 ,yab
1 〉 )

.

Applying definition (2.28), the action of the operator P is expressed in terms of the partition

function ZΛ2G
τ2(π) as follows:

PT[o]∪oT[o] .
( ∣∣ a b

0 1 2
• • •

x1,y1 xa
1 ,y

a
1 xab

1 ,yab
1 〉 )

= ZΛ2G
τ2(π)

[
a b

0

x1,y1

1′

1 2

xab
1 ,yab

1

]∣∣ a b

0 1 2
• • •

x1,y1 xa
1 ,y

a
1 xab

1 ,yab
1 〉

(5.37)

=
1

|G|
∑
k

τ2
x1,y1

(π)(a, k)

τ2
xa1 ,y

a
1
(π)(k, k−1b)

∣∣ ak k−1b

0 1′ 2
• • •

x1,y1 xak
1 ,yak

1 xab
1 ,yab

1 〉
.

It now remains to apply the triangulation changing isomorphism between ground states

subspaces so as to recover the initial triangulation. Following section 2.2 and 2.4, this

isomorphism is expressed as the 2d partition function for the pinched interval cobordism

given by the 2-simplex (012). Explicitly, the triangulation changing operator reads

ZΛ2G
τ2(π)

[ 0 2

1′

]
(5.38)

=
1

|G| 12
∑

z,z̃,c,d∈G
τ2
z,z̃(π)(c, d)

∣∣ cd

0 2
•
z,z̃ zcd,z̃cd

•
〉〈 c d

0 1′ 2
• • •
z,z̃ zc,z̃c zcd,z̃cd ∣∣
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so that

∣∣ ak k−1b

0 1′ 2
• • •

x1,y1 xak
1 ,yak

1 xab
1 ,yab

1 〉
' 1

|G| 12
τ2
x1,y1

(π)(ak, k−1b)
∣∣ ab

0 2
•

x1,y1 xab
1 ,yab

1•
〉
. (5.39)

Putting everything together, the algebra product of TubeΛ2G
τ2(π)(o) is given by

∣∣ a

0 1
•

x1,y1 xa
1 ,y

a
1•
〉
?
∣∣ b

1 2
•

x2,y2 xb
2,y

b
2•
〉

= δx2,xa1
δy2,ya1

1

|G| 12
τ2
x1,y1

(π)(a, b)
∣∣ ab

0 2
•

x1,y1 xab
1 ,yab

1•
〉
,

where we made use of the 2-cocycle condition d(2)τ2
x1,y1

(π)(a, k, k−1b) = 1. As expected,

this reproduces exactly (3.44).

6 Discussion

Gauge models of topological phases have been under intense scrutiny in recent years. These

models are especially relevant in (3+1)d where they describe a large class of systems dis-

playing non-trivial topological order [49]. In this paper, we studied in detail the Hamilto-

nian realisation of Dijkgraaf-Witten theory for general spacetime dimensions. The goal of

this paper was two-fold: introduce tools that can be used in order to classify excitations

and study their statistics, and provide a rigorous treatment of the dimensional reduction

arguments typically used in the condensed matter literature.

Firstly, we presented a systematic way of constructing lattice Hamiltonian realisations

of Dijgraaf-Witten theory in terms of pinched interval cobordisms. We then exposed a

general program to study the excitations yielded by these Hamiltonians in terms of tube

algebras. The tube algebras in (1+1)d, (2+1)d and (3+1)d for the case of loop-like ex-

citations were derived explicitly. We then presented in detail their representation theory

together with their quasi-Hopf-like algebraic structure. In particular, in (3+1)d we de-

fined the compatible comultiplication rule and R-matrices that encode the fusion and the

braiding of loop-like excitations, respectively.

Secondly, we described in detail the situation when one of the spatial directions is

compactified using the technology of loop-groupoids. More specifically, we explained that

given a (d+1)-dimensional model whose input data is a finite group G and a normalised

group (d+1)-cocycle ω ∈ Zd+1(G,U(1)), upon compactification the ground state subspace

of the model can be expressed as a lifted d-dimensional model whose input cocycle is now

a d-dimensional loop-groupoid cocycle and that such states can be defined in terms of

loop-groupoid coloured graph-states. As an application we then showed that the lifted

models can be utilised to express higher-dimensional tube algebras in terms of lifted lower

dimensional models.

The tools introduced in this paper admit several direct generalisations. For instance,

they can straightforwardly be adapted in order to study tube algebras in (3+1)d with

different boundary conditions, hence classifying excitations beyond the loop-like ones.

Each possible oriented boundary condition is determined by a genus-g surface. The case
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g = 0 corresponds to the sphere S2 and gives rise to a classification of point-like par-

ticles in terms of irreducible representations of the input group G that are independent

of the choice of input 4-cocycle. The case g = 1 was the one studied in detail in the

present manuscript. For an arbitrary g, the corresponding algebra can be defined utilising

the constructions presented in section 3. Indeed, given an oriented boundary surface Σg

with genus g ≥ 1, the corresponding tube algebra can be specified, up to Morita equiv-

alence, by a groupoid ΓΣg with objects the set of all {h1, k1, . . . , hg, kg} ∈ G2g such that∏g
i=1[hi, ki] = 1G which correspond to group homomorphisms γ : π1(Σg) → G, and mor-

phisms (h1, k1, . . . , hg, kg)
g−→ (hg1, k

g
1 , . . . , h

g
g, k

g
g) for all g ∈ G [20]. Such morphisms define

the ground state basis states for a triangulation of Σg× I where Σg is realised by a triangu-

lation of the 2g-gon with one independent vertex and edges appropriately identified. The

source and target objects of a morphism then correspond to G-colorings of Σg × {0} and

Σg × {1}, respectively, while the morphisms specify the total G-coloring of Σg × I. The

tube algebra is then given by the twisted groupoid algebra:∣∣(h1, k1, . . . , hg, kg)
g−→ (hg1, k

g
1 , . . . , h

g
g, k

g
g)
〉

?
∣∣(h′1, k′1, . . . , h′g, k′g)

g′−→ (h′g
′

1 , k′g
′

1 , . . . , h′g
′

g , k
′g′
g )
〉

=

(
g∏
i=1

δh′i,h
g
i
δk′i,k

g
i

)
β(h1,k1,...,hg,kg)(g, g

′)√
|G|

×
∣∣(h1, k1, . . . , hg, kg)

gg′−−→ (hgg
′

1 , kgg
′

1 , . . . , hgg
′

g , kgg
′

g )
〉

where β(h1,k1,...,hg,kg)(g, g
′) is defined by an appropriate combination of the input 4-cocycle

π ∈ H4(G,U(1)) and can be expressed explicitly from the pinched cobordism defining the

gluing of the states. It is a normalised groupoid 2-cocycle in H2(ΓΣg ,U(1)) that satisfies

β(ha1 ,k
a
1 ,...,h

a
g ,k

a
g )(b, c)β(h1,k1,...,hg,kg)(a, bc)

β(h1,k1,...,hg,kg)(a, b)β(h1,k1,...,hg,kg)(ab, c)
= 1 .

The simple modules can then be found, analogously to the case of the twisted quantum

double and twisted quantum triple, by first reducing the algebra to subalgebras given by

objects related by conjugation and then resolving each such algebra by the irreducible

representations of the stabiliser group of a representative object [33].

Furthermore, it is possible to enrich the present constructions to accommodate lattice

models that have a higher gauge theory interpretation [44, 50–58]. This generalization was

formally stated in [20] in the strict 2-group setting using the language of groupoids for

general spacetime dimensions and choices of boundary manifold. The explicit derivation

of the tube algebras and their simple modules within this context will be presented in a

forthcoming paper.

The tube algebra program can also be adapted to study excitations of gapped bound-

aries in topological phases of matter [59–62]. In this scenario, the ‘tube’ is generalised to

have two forms of boundary, a physical gapped boundary corresponding to the boundary

of the spatial manifold, and a boundary introduced by removing a local neighbourhood

of an excitation incident on the boundary of the spatial manifold. Analogously to the
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bulk excitations, the boundary tube algebra can be directly applied to understanding the

fusion and braiding structures of point-particle excitations constrained to the boundary

of a three-dimensional spatial manifold. Additionally, the boundary tube algebra theory

can be applied to give an algebraic approach to classifying domain walls of arbitrary codi-

mension between different topological phases and provides a canonical method to define

exactly solvable Hamiltonian models in such contexts. Interestingly, due to the topology

of the problem, a generalisation of the notion of lifted models also plays an important role

when considering point-like boundary excitations of the (3+1)d Dijkgraaf-Witten model

in comparison to the boundary excitations of the (2+1)d model. This approach will be

applied to the Dijkgraaf-Witten and higher gauge theory models of topological phases of

matter in a forthcoming work.
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A Membrane-net picture

Given a three-dimensional surface Σ3d endowed with a triangulation Σ3d,4, we defined in

section 2.3 the lattice Hamiltonian realisation of Dijkgraaf-Witten theory. In (3+1)d, the

input data of this model is a finite group G and a cohomology class [π] ∈ H4(G,U(1)). This

Hamiltonian yields point-like charge and string-like flux excitations, which are classified by

irreducible representations of the twisted quantum triple algebra. Since the underlying

graph is a triangulation, it is easy to define the Hamiltonian projector directly in terms

of the corresponding partition function. Furthermore, the local unitary transformations,

with respect to which the ground states of the Hamiltonian are fixed point wave functions,

can be expressed directly in terms of Pachner operators.

In this appendix we would like to propose a different formulation of the same model

in terms of so-called membrane-nets. The goal of this reformulation is two-fold. Firstly, it

provides a definition of the model that is analogous to string-net models. Secondly, we will

argue that it can be used to shed light on the fusion and the braiding statistics of loop-like

excitations [22, 24, 25, 29, 31, 63–65]. We assume in this appendix that the group is abelian.

We make this restriction because we are mainly interested in the specificity of dealing with

loop-like objects instead of point-like ones. Furthermore, we want to exploit the fact that

there is a graphical correspondence between the definition of the lattice Hamiltonian and

the statistics of abelian loop-like excitations. More precisely, we will explain how the

membrane-nets graphical calculus can be used in order to provide spacetime diagrams for

the fusion and braiding processes of these excitations.
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Since the point of this appendix is merely to provide some intuition regarding the statis-

tics of loop-like excitations, the following exposition is looser than in the main text. How-

ever, the model we are going to present and the one defined previously are strictly equivalent,

it is thus possible to refer to the previous sections which provides a more rigorous treatment

of the more technical points.

A.1 String-net models

Levin and Wen introduced in [66] string-nets as a systematic way to construct exactly

solvable models displaying topological order in two dimensions. A string-net is, as the

name suggests, a network of oriented strings. These strings are labeled by super-selection

sectors that must satisfy compatibility conditions at every node of the network referred to

as branching rules. In the case where all the nodes are chosen to be three-valent, we can

think of the underlying graph as being the one-skeleton of the polyhedral decomposition

dual to a 2d triangulation. Linear superpositions of string-nets configurations form the

Hilbert space of the system. In general, a string-net model corresponds to the lattice

Hamiltonian realisation of a Turaev-Viro topological quantum field theory [67–69], whose

input data is a spherical/fusion category. Such lattice Hamiltonian yields bulk point-like

excitations that come in two types, namely magnetic fluxes and electric charges.

As for the gauge model introduced in section 2.3, local unitary transformations can be

defined at the level of the network so as to implement a wave function renormalisation group

flow. Fixed point wave functions with respect to this renormalisation flow are then found

to be ground states of parent Hamiltonians, the local transformations specifying uniquely

the fixed point wave functions. We distinguish several local unitary transformations, one

of them is the so-called F-move, which is nothing else than the Poincaré dual of the 2� 2

Pachner move:
a b c

α(a,b,c)−−−−→

b ca

. (A.1)

Let us now suppose that the input data of the string-net model is the category C–VecαA
of A-graded vector spaces so that the set of super-selection sectors is taken to be a finite

abelian group A and the branching rules are provided by the group multiplication.14 In this

case, the amplitude of the F -move depicted above is provided by the group 3-cocycle α.

The fact that the amplitude associated with such a move must be a 3-cocycle follows from

the pentagon coherence relation that α must satisfy for the process to be self-consistent.

Bulk excitations of this string-net model can be studied using the tube algebra ap-

proach as explained in section 3, where the relevant tube is the cylinder S1 × I. Within

this context, bulk excitations are found to be the objects of the so-called Drinfel’d center

category Z(C–VecαA), which is a braided fusion category. But under Tannaka duality, these

objects correspond to the modules of the twisted quantum double quasi-Hopf algebra.

14We explained earlier that the category of A-graded vector spaces is indeed the relevant structure to

describe the lattice Hamiltonian realisation of (2+1)d Dijkgraaf-Witten theory, which is equivalent to the

string-net model under consideration.
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Let us now consider the system of abelian anyons described by C–VecαA.15 In this

context, we can think of a string in the diagrams above as being a worldline for a (point-like)

abelian anyon labeled by the corresponding super-selection sector. In which case, the three-

valent nodes are interpreted as the fusion of two particles. Taking the time direction to be

downwards, the string-nets above represent the worldlines of three particles labeled by a, b

and c that are fusing with each other, so that the l.h.s. and the r.h.s. only differ in the fusion

pattern. Within this spacetime interpretation, the F -move depicted above corresponds to

a change of ordering in which the particles are fused, and this process is accompanied with

a U(1) phase expressed in terms of the group 3-cocycle. The pentagon coherence relation

can be reformulated as follows: given four particles fusing according to a specific pattern,

two different sequences of F -moves can be performed so as to obtain the same alternative

fusing pattern. Self-consistency imposes that the collective phases associated with these

two sequences must be equal, which in turn implies the 3-cocycle condition.

So equation (A.1) can be interpreted either as the defining F -move local transfor-

mation of the string-net model, or as the associativity of the fusion process of abelian

anyons. Henceforth, upon describing the fusion of anyonic excitations, we will refer to

equation (A.1) as being the string diagram representation of the associator isomorphism

that is determined by the 3-cocycle α. One goal of this appendix is to reproduce this some-

what trivial statement in three dimensions in terms of membrane-nets. More precisely,

we will present to which extent local unitary transformations in terms of membrane-nets

can be interpreted as surface diagrams associated with the fusion of loop-like objects upon

compactification of one of the spatial directions. The same graphical calculus will then be

used in order to provide spacetime diagrams for the corresponding braiding process.

A.2 Membrane-nets and lattice Hamiltonian

In light of the correspondence between one of the defining local transformations of string-

net models and the string diagram representation of the associator isomorphism, we would

like to derive a higher-dimensional version of the string-net formalism for the model (2.23).

We refer to this generalization as membrane-nets, and their construction follows closely the

two-dimensional one.

A membrane-net is a three-dimensional network of oriented two-dimensional mem-

branes. These membranes are labeled by super-selection sectors that must satisfy com-

patibility conditions at every edge of the network so that only certain combination of

super-selection sectors are allowed. More precisely, let Σ be a closed 3d surface endowed

with a triangulation Σ4. We consider the polyhedral decomposition ΣΥ dual to the trian-

gulation Σ4 such that i-simplices 4(i) are dual (3−i)-cells Υ(3−i). Since we are interested

in the membrane-net model equivalent to the model we introduced in section 2.3, we label

each such 2-cell with a group variable g ∈ A, where A is a finite abelian group, so that

each labeling defines a different graph-state. Branching rules are enforced at every link (or

1-cell), namely the oriented product of the group variables labeling the membranes meeting

15Given an appropriate choice of α, these abelian anyons labeled by A can be thought of as the pure flux

excitations of the corresponding string-net model.
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at a 1-cell must vanish. In order to express these branching rules, we need to introduce a

convention regarding the orientation of the membranes:

Convention A.1 (Orientation of the membranes). Given a membrane net, to every 1-cell

where three membranes meet, we can assign a dual 2-simplex, whose boundary 1-simplices

are oriented either inwards or outwards from the corresponding dual membrane with respect

to the paper plane. In the case where the dual 1-simplex is oriented outwards, we decorate

the corresponding group labeling with a bar, i.e. ∗̄. For instance, consider the membrane-net

aa+b

b̄ ≡
aa+b

b ,

it follows from the convention that the oriented product of the group variables is indeed the

identity. Note that since the group A is abelian, we write the product rule additively. The

orientation chosen is such that it reproduces the conventions of the model we defined previ-

ously on the dual triangulation. For notational convenience, we will often write a minimal

labeling only so that the remaining labels can be deduced from the branching rules, e.g.

b

ā

c

≡

b

b+ca+b+c
ā

a+b
c

.

Note that the branching structure is such that, given two membranes meeting at a 1-cell,

the labeling of the remaining one is always the sum of the other two.

Recall that the local unitary transformations are the defining feature of topological or-

der. We expressed in section 2.3 these local transformations in terms of Pachner operators.

Since the current model is strictly equivalent to the one described there, these Pachner

operators are still relevant. However they must now be defined with respect to the dual

polyhedral decomposition. In particular, the Pachner 2 � 3 operator yields for instance

the isomorphism

∣∣∣∣∣
ā

bc̄

d

〉
' π(a, b, c, d)−1

∣∣∣∣∣
ā

bc̄

d

〉
, (A.2)

where as before π is chosen to be normalized 4-cocycle, and such that the remaining labels

can be deduced from the branching rules imposed at every 1-cell. In the following, we
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notate this move as (2� 3)?. Similarly, the Pachner 1� 4 yields for instance

∣∣∣∣∣
ā

bc̄
d 〉

' π(a, b, c, d)+1

∣∣∣∣∣
ā

bc̄

〉
. (A.3)

In the following, we notate this move as (1� 4)?. It is interesting to consider a special case

of eq. (A.2) that is obtained by setting the group variables b and c to the identity, namely

∣∣∣∣∣
ā

d̄

〉
'
∣∣∣∣∣

ā

d

a+d

〉
, (A.4)

where we made use of the fact that the 4-cocycle π is normalized, i.e. π(a, 0, 0, d) = 1. It

follows from this last expression that a closed membrane (homeomorphic to a two-sphere)

can be fused to a neighboring membrane as follows:

∣∣∣∣∣
a

d̄

〉
'
∣∣∣∣∣ a

d̄
a+d

〉
. (A.5)

Recall that the membrane-net model under consideration is strictly equivalent to the model

introduced in section 2.3 at the difference that the degrees of freedom now live on the 2-cells

of the dual polyhedral decomposition. Nevertheless, within this formalism, it is not very

natural to define the lattice Hamiltonian in terms of the corresponding partition function.

Instead, it is defined directly in terms of the local transformations presented above, in a

fashion akin to two-dimensional string-net models.

So let us define the parent Hamiltonian whose ground states are the fixed point wave

functions satisfying equations (A.2), (A.3). To every 1-cell Υ(1) of the polyhedral decom-

position, we assign an operator BΥ(1) which enforces the branching rules, i.e. penalizes

non-flat A-connections. For instance, one has

BΥ(1) .

∣∣∣∣∣ a

b̄

c
〉

= δa+b,c

∣∣∣∣∣ a

b̄

c
〉
. (A.6)

To every 3-cell Υ(3), we assign an operator AΥ(3) which modifies the gauge field configuration

of the 2-cells Υ(2) ⊂ Υ(3) adjacent to Υ(3) by ‘fusing’ a closed membrane of defect into the
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boundary of Υ(3). We decompose such A-operator as AΥ(3) = 1/|A|∑k∈A Ak
Υ(3) , where the

action of the operator Ak
Υ(3) is defined graphically in terms of the local transformations

presented above by inserting a closed membrane of defect labeled by k as follows:16

Ak
Υ(3) .

∣∣∣∣∣

ā

bc̄

d 〉
=

∣∣∣∣∣
k̄

ā

bc̄

d 〉
. (A.7)

Using four times the move (A.5), we fuse the membrane of defect into the boundary, and

finally we use four times the (1� 4)? move (A.3) in order to recover the original polyhedral

decomposition:

∣∣∣∣∣
k̄

k

k̄

k

ā

bc̄

d

d

d

〉
' π(a+ b, c, d, k)π(a, b, c+ d, k)

π(b, c, d, k)π(a, b+ c, d, k)

∣∣∣∣∣
ā

bc̄

d+k 〉
.

Remember that the amplitude of the move (A.3) depends on the orientation of the corre-

sponding dual 4-simplex according to conv. 2.2. Since we choose the initial state to be the

same one as in section 2.3, but on the dual membrane-net, we recover the same amplitude

as in section 2.3 as expected.

The operators defined above are strictly equivalent to the ones defined previously,

but on the dual polyhedral decomposition, thus they satisfy exactly the same properties.

In particular, all the operators commute with each other so that the lattice Hamiltonian

projector reads

H = −
∑

Υ(1)⊂ΣΥ

BΥ(1) −
∑

Υ(3)⊂ΣΥ

AΥ(3) , (A.8)

where the sums run over the 1-cells and the 3-cells of the polyhedral decomposition ΣΥ,

respectively. It is possible to check explicitly that ground states of this Hamiltonian do

satisfy equations (A.2) and (A.3).

A.3 Lifted models and surface diagrams

We explained in section 3.5 that when one of the spatial directions is compactified, it is

possible to express the Hamiltonian model in terms of another model in one-lower dimen-

sional. This process was made rigorous in section 5.6 using the language of loop groupoids.

16The reader familiar with string-net models should recognize that this definition is a natural generaliza-

tion of the two-dimensional case. Indeed, for string-net models, the analogue of the A-operator is defined by

fusing a closed loop of defect into the boundary of a plaquette so as to change the gauge field configuration.

See [66] for further details.
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We do not intend to repeat this analysis here but merely to represent the so-called lifted

Pachner operators in terms of membrane nets.

Let us consider a 3d surface Σ3d of the form Σ2d × S1, with Σ2d a Riemann surface.

Let us endow Σ2d with a two-dimensional polyhedral decomposition Σ2d,Υ dual to a tri-

angulation Σ2d,4, so that every 0-cell is adjacent to three 1-cells. We then lift Υ2d to a

three-dimensional polyhedral decomposition Σ3d,Υ such that Σ3d,Υ is dual to the three-

dimensional triangulation Σ3d,4 we would obtain according to conv. 3.1. We know from

the analysis carried out in section 5.6 that is it possible to define a ΛA-coloured model

on Σ2d,Υ that is equivalent to the A-coloured three-dimensional one. Upon this process,

the input group 4-cocycle is replaced by its S1-transgression τ(π), which satisfies the usual

group 3-cocycle condition since the group A is abelian.

It follows that the S1-transgression appears as the amplitude of the so-called lifted

Pachner operators. This could be confirmed explicitly by repeating the computations

performed in section 3.5, but this time within the membrane-net formalism. For instance,

this would amount to lifting the F -move (A.1) analogously to the way we lifted the 2 

2 move, and show that it can be decomposed into four (2 
 3)? moves. Doing this

computation, we would recover the same amplitude as before. Nevertheless, it is enough

to consider the membrane-nets dual to the initial and final A-coloured three-dimensional

triangulations appearing in the definition of the lifted 2 � 2 move. Although there is

unique way to define the membrane-net dual to a given coloured triangulation, there are

several ways to display this lifted F -move graphically. The choice we make is motivated

by the fact that we want to be able to interpret the final result in terms of spacetime

diagrams for the associativity relation of the fusion of loop-like objects. So the membrane-

net representation of the lifted F -move reads

ab
c

x

x x x

τx(π)(a,b,c)−−−−−−−→

ab
c

x

x x x

(A.9)

where each dot represents a 0-cell dual to one of the 4-simplices appearing in (3.49). By

definition, the membrane-nets above are merely obtained by considering the Poincaré dual

of the triangulations appearing in (3.49). But, its interpretation as a lifted F -move is

also very clear. Indeed, we can think of the membranes labeled by a, b, c ∈ A as being
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obtained by ‘sweeping’ the string-nets appearing in (A.1) along a circle S1 living in a plane

orthogonal to the paper one. This membrane-net representation can then be used to check

that the S1-transgression τ(π) must be a group 3-cocycle by considering a lifted version of

the pentagon coherence relation.

We emphasized in section A.1 how the F -move operator, whose amplitude is given by a

group 3-cocycle, could be interpreted as the string diagram representation of the associator

for the fusion of abelian anyons labeled by A. Since the amplitude of the lifted F -move

operator (A.9) is also given in terms of a group 3-cocycle, and since point-like objects are

mapped to loop-like objects under such lifting, it is natural to expect a similar version of

this interpretation to persist.

Indeed, it is tempting to interpret the membrane-net representation of the lifted F -

move in terms of so-called surface diagrams for the associativity of the fusion of loop-like

abelian excitations. Within this spacetime interpretation, the time direction is taken to be

downwards so that the diagrams on both side represent the worldsheets of three loop-like

excitations labeled by a, b, c ∈ A, linked by a background string labeled by x ∈ A, fusing

with each other, the fusion being provided by the group product rule. The two sides only

differ in the order in which the loop-like excitations are fused. Therefore, we interpret (A.9)

as the surface diagram representation of the associator isomorphism determined by the

group 3-cocycle τ(π), with respect to the fusion product of the loop-like excitations. The

coherence relation the associator isomorphism must satisfy can then be represented in terms

of surface diagrams.

A.4 Loop braiding

Given a 3d topological model displaying abelian loop-like excitations, the statistical phase

acquired by a loop upon braiding with another loop when they are threaded by the same

string, may be computed by solving the hexagon relations with respect to S1-transgression

of the input 4-cocycle [29]. In this part, we wish to provide some intuition for this statement

using the arguments presented previously.

Let us consider (A.9) and interpret it as a defining relation in terms of surface di-

agrams for the associativity of the fusion of the abelian loop-like excitations. It follows

from the discussion above that by embedding the loops in a compactified 3d manifold,

it is possible to identify this associativity relation with the lifted F -move for the lifted

membrane-net model whose input data is (ΛA, τ(π)) so that the associator is determined

by the S1-transgression τ(π) of the 4-cocycle π. We now would like to define graphically

the corresponding braiding isomorphism.

Let us first briefly review the two-dimensional case. We mentioned earlier how string

diagrams provide a graphical calculus for the fusion statistics of point-like excitations.

These excitations can also be braided, in which case the statistical phase that determines

this braiding isomorphism is provided by a group 2-cochain R valued in U(1).17 There is

also a string-diagram representation of the braiding move that corresponds to resolving the

17As explained in detail in section 5, this braiding isomorphism can be used to turn the monoidal category

of A-graded vector spaces into a braided one.
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crossing of two lines:
b a

R(a,b)−−−−→
b a

, (A.10)

where as before, the time direction is taken to be downwards so that the string-diagram

on the l.h.s. corresponds to the worldlines of two point-like excitations labeled by a, b ∈ A
that exchange position before fusing. As explained in section 5.1, the braiding isomorphism

must satisfy the so-called hexagon relations (5.2) and (5.3). These algebraic equations can

be represented graphically in terms of string diagrams. For instance, the first one reads

a b c a b c

ca b b ca

ca b a b c

α(c
,a,
b)

R(c,a)

R(c,a+b)

α(a,c,b)

α(a,b,c)

R(
c,b

)
. (A.11)

In light of these two-dimensional results, we are looking for an isomorphism determined

by a 3-cochain R∗(∗, ∗) which corresponds to a lifted version of the braiding move (A.10),

the same way (A.9) is a lifted version of the associativity (A.1). We propose the following

definition in terms of surface diagrams:

ab

ba
x

x

x
x

Rx(a,b)−−−−→

ab

ab
x

x x

(A.12)

where as before each black dot represents a 0-cell which can be thought as dual to a 4-

simplex. This definition satisfies several criteria: firstly, it does correspond to a lifted

version of (A.10). Indeed, if we omit the background membrane labeled by the group vari-

able x ∈ A, we are left with the surface diagrams obtained by sweeping the string diagrams

appearing in (A.10) along a circle S1. Secondly, we can check explicitly that the isomor-

phisms determined by the cochains τ(π) and R∗(∗, ∗) defined according to (A.9) and (A.12)
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do satisfy the lifted version of the hexagon relations, which are obtained by lifting each

string diagram appearing in the original hexagon relation the same way (A.12) is obtained

from (A.10). The algebraic equation corresponding to the lifted version of (A.11) reads

τx(π)(c, a, b)Rx(c, a+ b) τx(π)(a, b, c) = Rx(c, a) τx(π)(a, c, b)Rx(c, b) . (A.13)

We leave it to the reader to draw the corresponding sequence of surface diagrams. Inter-

estingly, given a 3-cochain α, it is always possible to construct a ‘trivial’ solution to the

algebraic equation above via

τ0
x(π)(a, b, c) =

τx(α)(b, c) τx(α)(a, b+ c)

τx(α)(a+ b, c) τx(α)(a, b)
, R0

x(a, b) =
τx(α)(a, b)

τx(α)(b, a)
(A.14)

such that

τx(α)(a, b) =
α(x, a, b)α(a, b, x)

α(a, x, b)
. (A.15)

It then turns out that the 0-cells depicted by a black dot in (A.12) can be thought as dual

to the six 3-simplices paired with α appearing in the definition of R0
x(a, b). Similarly, we

can identify the 0-cells marked with a black dot in (A.9) with the 3-simplices appearing in

the definition of τ0
x(π)(a, b, c).

We can further analyse the surface diagrams obtained above from a spacetime point

of view, i.e. by interpreting the different membranes as worldsheets of loop-like objects.

Doing so, we realise that the surface diagrams provide a representation of the loop braid-

ing. Indeed, taking the time direction to be downwards, the surface diagram on the l.h.s.

of (A.12) corresponds to the worldsheets of abelian loop-like excitations threaded by a

string exchanging position before fusing with each other. This can be made more explicit

by drawing the movie of the surface diagram:

ab

ba
x

x

x
x

←→

x

x

x

x

x

x

x

x

x

x

x

x

b a

a b

b a

a
b

a b

(A.16)

which can be used to confirm a posteriori the definition (A.12).

Since we defined graphically an associator and a braiding isomorphisms with respect to

the fusion of abelian loop-like excitations, we should be able to construct a corresponding

braided monoidal category whose axioms are recalled in section 5.1. Objects are labeled

by pairs of group elements such that one represents the threading flux and the other one
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the flux of the loop itself. Borrowing the notation of the twisted quantum triple elements,

we notate these objects

(
x

•
a

) for x, a ∈ A . (A.17)

However, x does not necessarily label a loop-like object but merely a linked flux tube.

Given such a linked flux labeled by x ∈ A, we define the tensor product as

(
x

•
a

)⊗ (
x

•

b

) = (
x

•

a+b

) , (A.18)

which we should think of as the fusion of two abelian loop-like excitations linked to the

same third flux. Graphically, this can be represented as

x
x

a ⊗ x
x

b =
x

x
x

b a = x
x

a+b .

We then choose an associator isomorphism that is determined by τ(π) and then define a

compatible braiding isomorphism. Together with the graphical representation above, the

spacetime diagrams corresponding to these morphisms are the ones displayed earlier.
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