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Few-cycle laser driven reaction nanoscopy on
aerosolized silica nanoparticles
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Nanoparticles offer unique properties as photocatalysts with large surface areas. Under
irradiation with light, the associated near-fields can induce, enhance, and control molecular
adsorbate reactions on the nanoscale. So far, however, there is no simple method available to
spatially resolve the near-field induced reaction yield on the surface of nanoparticles. Here we
close this gap by introducing reaction nanoscopy based on three-dimensional momentum-
resolved photoionization. The technique is demonstrated for the spatially selective proton
generation in few-cycle laser-induced dissociative ionization of ethanol and water on SiO,
nanoparticles, resolving a pronounced variation across the particle surface. The results are
modeled and reproduced qualitatively by electrostatic and quasi-classical mean-field Mie
Monte-Carlo (M3C) calculations. Reaction nanoscopy is suited for a wide range of isolated
nanosystems and can provide spatially resolved ultrafast reaction dynamics on nanoparticles,
clusters, and droplets.
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dependent on their size, material, composition, and

environment!—3. They feature a large surface to volume
ratio and catalyze chemical reactions?, including for instance, in
atmospheric ~ photochemistry>®. The concentration and
enhancement of electromagnetic fields on the nanoscale is
important for many applications including detection of trace
substances’, single-molecule spectroscopy and microscopy®°, as
well as nanofocusing and modification of surfaces beyond the
optical diffraction limit!®!1. Isolated nanograins, nanoice, and
other nanoparticles are known to play an important role in
astrochemistry!2, enabling the (irradiation-induced) formation of
complex molecules and molecular ions!3. How these formation
processes are influenced by the morphology of the nanosurfaces
is, however, largely unknown and strongly motivates experi-
mental progress in this area. In all of these applications, the
nanoscale, light-induced near-fields play a critical role.

Electron emission and scattering in strong laser fields has been
shown to provide nanometer-resolved information about light-
induced near-fields, by mapping of the local near-fields onto the
final electron momentum distributions'4-18. Electron emission in
extreme ultraviolet fields even permits sampling the near-field
with sub-cycle (attosecond) temporal resolution!20. Despite this
progress, unraveling the impact of near-fields on photo-induced
reaction yields for molecular adsorbates remains challenging?!. In
this work, we provide a solution by implementing reaction
nanoscopy, which permits accessing the nanoscale reaction yield
landscape via a three-dimensional momentum spectroscopy of
charged molecular fragments, which beyond applications in
strong-field laser physics may open up opportunities in the fields
of atmospheric and astrochemistry.

In our proof-of-principle studies, we investigate proton emis-
sion from dissociative ionization of ethanol and water molecules
adsorbed on SiO, nanoparticles. We find that the anisotropic
proton momentum distribution measured in our experiment
maps out the spatial variability of the reaction yield on the par-
ticle surface, which itself correlates with the near-field amplitude
on the surface of the particle. What is denoted by near-field in the
following is the sum of incoming and Mie scattered laser fields in
the vicinity of the nanoparticles surface. The experimental results
are modeled by semi-classical Monte-Carlo trajectory simula-
tions!4, including Mie near-fields, molecular ionization, and
charged particle interactions. Laser-generated ions from isolated
nanoparticles have been studied before, to probe plasma gen-
eration in high-intensity laser fields and to provide nanoscale
information about the creation of the plasma?2. In the present
work, much lower intensities are employed, yet with pulse
durations of only a few optical cycles, which suppresses plasma
formation?3 and the expansion of the particle during the inter-
action with the laser field. During that interaction, molecules on
the nanoparticle surface may undergo dissociative ionization. The
charged molecular fragments are emitted from the surface and
serve as a sensitive probe of the local light-induced reaction yield.

N anomaterials exhibit a characteristic optical response,

Results

Experimental results. Laser-generated charges are detected in a
reaction nanoscope (Fig. 1), an adaptation of reaction micro-
scopy?* to nanotargets. Details of the setup are described in the
Methods section. Briefly, linearly polarized laser pulses with a
central wavelength of 720 nm, an energy of 300 yJ, and a full
width at half maximum of the temporal intensity envelope of 4 fs
are generated at a repetition rate of 10 kHz in an amplified Ti:
sapphire laser system (Femtopower Compact Pro HR, Spectra
Physics) with subsequent spectral broadening in a hollow core
fiber. A fraction of the beam is focused (f=12.5cm) to an
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Fig. 1 Reaction nanoscope. The nanoparticles are delivered by an aerosol
generator and pass an aerodynamic lens and a set of skimmers for
differential pumping. The few-cycle laser pulses cross the focused
nanoparticle beam in the center of the reaction nanoscope. The SiO,
nanoparticles and molecular surface adsorbates are ionized during the
interaction. Fragments arising from molecular photodissociation are
accelerated towards the ion detector (bottom: microchannel plates (MCP)
and delay-line detector (DLD)) by a homogeneous electric field. Electrons
are accelerated towards the opposite side of the spectrometer and are
detected with a channeltron (top). Electrons and ions are recorded in
coincidence

lons

intensity of ~5x 1013 W cm™2 in the interaction region of the
reaction nanoscope (cf. Fig. 1), which permits recording both ions
and electrons, resulting from the interaction of light pulses with a
jet of free particles, in coincidence.

The ionization of background gas produces by itself a low
electron rate at the channeltron, see red curve in Fig. 2a for a
measurement of a target consisting of solvent without nanopar-
ticles. The background gas in this case consists of argon with
traces of residual solvent ethanol/water molecules. In contrast, the
nanoparticle ionization gives rise to a much higher and well-
discriminated electron signal, as seen from the blue curve in
Fig. 2a. A high electron count measured in coincidence with the
ion momenta is therefore a distinct marker to identify
nanoparticle ionization events, which occur in only 0.3% of all
laser shots. The main contribution to the ion time-of-flight (TOF)
spectrum obtained for nanoparticle hits (Fig. 2b) results from
solvent molecules adsorbed on the nanoparticle surface, in this
case mostly C,HsOH (46 u), which mainly fragments into HT,
CH;*, CH,OHT, and C,H;0™, and some traces of H,O (18 u),
which fragments into HT and OH*. The peak intensity in the
focus (8 x 1013 W cm—2) is determined from the Ar2t/Art yield
ratio with an estimated accuracy of 20%2°.

Careful inspection of the average TOF spectrum recorded for
nanoparticle hits reveals a sensitive dependence of the H* peak to
the presence of nanoparticles, apparent by the appearance of two
satellite peaks in the momentum along the polarization direction
(Ppol> see blue curve in inset of Fig. 2b). We note that peaks for
higher masses in the TOF spectrum do not permit to resolve this
feature due to the low momentum difference. The TOF spectra
indicate that the protons are mainly generated from the
dissociation of water or ethanol molecules (or to some extent
also silanols) on the nanoparticle surface.

We have carried out experiments for SiO, nanoparticles with a
diameter of d = 110 nm and d = 300 nm. Selecting the events that
are coincident with a high electron signal facilitates the efficient
suppression of the proton signal from the background gas. For
both particle sizes, the final proton momentum distribution
cannot be explained by strong-field dissociative ionization of
ethanol or water alone?°. Indeed, protons from the background
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Fig. 2 Experimental data. a Histogram of the number of detected electrons from the interaction of few-cycle pulses with background gas only (red) and
with 110 nm SiO,, particles (blue). b Average ion time-of-flight spectrum of shots containing nanoparticle hits on a mass/charge (m/q) axis. The indicated
ionic fragments arise from ionization of argon and dissociative ionization of ethanol and water. The inset shows the enlarged peak of H on a momentum
scale along the polarization direction (p,o), for events with SiO, particles (blue) and with just background gas (red). The gray dashed lines indicate a
momentum of + 40 a.u. The Ar2* peak is just indicated but is not visible on a linear scale
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Fig. 3 Comparison of measured and simulated proton distributions. In a-d, the 3D (¢, 6, r) momentum distributions of protons are integrated along the radial
coordinate and the retrieved two-dimensional (¢, ) density map is spanned over a unit sphere. The coordinates € and ¢ are defined in Fig. 5 and a detailed
description of the projection is given in the Supplementary Note 1. The number of protons per solid angle is encoded in the color scale. a Measured and
b simulated distribution for the 110 nm particles. ¢ Measured and d simulated distribution for the 300 nm particles. @ Comparison of the measured momentum
distribution along the propagation direction (solid blue line) with the simulated distribution (dashed line) for the 110 nm particles. f Same comparison along the
polarization direction. g, h Same as e, f but for the 300 nm particles. The dotted lines correspond to the retrieved dissociation yield distributions

gas, which are generated in the absence of nanoparticles, have a
narrower momentum distribution with a single peak at zero
momentum (cf. red curve in inset of Fig. 2b). We infer from this
comparison that energetic protons in the nanoparticle experi-
ments originate from molecular dissociative ionization on the
nanoparticle surface. The strong dependence of the observed
proton momentum distribution on the nanoparticle size corro-
borates this hypothesis. As seen in Fig. 3, the angular proton
distribution has a dipolar shape for 110 nm particles (Fig. 3a),
whereas it exhibits a strong asymmetry for 300 nm particles
(Fig. 3c). This distribution correlates with the expected intensity
distribution of the laser-induced near-fields for the investigated
nanoparticles. For particle sizes that are small compared with the
wavelength, the spatial distribution of the near-field intensity has
a dipolar shape, whereas for particle sizes approaching the
wavelength, the maximum of the distribution bends forward in
the light propagation direction!4.

The measured momentum distributions are shown as radial
projections (Fig. 3a, c) and as projections onto the propagation
axis (solid line in Fig. 3e, g) and polarization axis (solid line in
Fig. 3f, h).

Theoretical results. To explore the mechanisms responsible for
the experimental proton momentum distributions, we performed
three-dimensional semi-classical M3C (mean-field Mie Monte-
Carlo) simulations of the charged particle (electrons and ions)
dynamics (see Methods for details). In our model, electrons are
liberated via tunnel ionization, under the action of the total
electric field consisting of the laser field and the induced field of
the sphere resulting from bound and free charges. The field is
described using a self-consistent two-level scheme, where the
linear contribution is treated via the Mie solution and the cor-
rection that includes all nonlinear contributions is described in
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quasistatic mean-field approximation. At each time step, a
Monte-Carlo method is used to launch electron trajectories
weighted according to an Ammosov-Delone-Krainov-type tun-
neling rate?’. Elastic and inelastic collisions of electrons with the
nanoparticle are included in the propagation!4.

In addition to ionization and propagation of electrons, we
simulate the yield for the dissociative ionization (see Methods)
and calculate the trajectories of protons emerging from the
strong-field dissociation of solvent molecules adsorbed on the
nanoparticle surface. The calculation results for 110 and 300
nm particles (Fig. 3b, d and dashed lines in Fig. 3e-h)
reproduce the characteristic trend of the experimental observa-
tions, i.e., the presence of pronounced directional emission
hot spots and their movement in propagation direction
towards the back side of the particle with increasing diameter.
This trend is expressed most clearly in the peak shift of the
projected proton momentum distributions. In the following
sections, we show how the anisotropic dissociation yield
induced on the nanoparticle surface by the near-field is
mapped onto the final proton momentum distribution. Based
on the good qualitative agreement, we use the simulations to
disentangle the different effects leading to the observed
momentum distributions.

Discussion

Earlier work on the interaction of few-cycle pulses with nano-
particles has concentrated on the mechanism of electron accel-
eration after photoemission from a solid!4. Siiimann et al.!* have
revealed that electrons are generated on the nanoparticle surface
in the regions of maximum field enhancement and subsequently
accelerated in the local near-fields. It has been shown experi-
mentally and theoretically that released electrons gain most of
their final energy from a combination of the dielectrically
enhanced laser field and a local trapping potential induced by
ionization!41>28,

In contrast, in the present study on molecular adsorbates, we
find that the much heavier protons do not gain significant energy
by the enhanced field around the nanoparticle (see Fig. 4, inset).
The M3C simulations indicate that the final proton momenta are
mainly determined by the electrostatic field of the charged
nanoparticle (cf. Fig. 4).

The electrostatic field arises from released electrons and the
bound ions in the nanoparticle?®. The effective field is repulsive
for the protons. Coulomb attraction between the fast escaping
electrons and the jons created on the nanoparticle is negligible
and has no significant effect on the final proton momenta. In
contrast, the proton dynamics are dominated by electrostatic
interactions with the positively charged nanoparticle surface.
These charges form an inhomogeneous surface potential that
traps electrons in a layer close to the surface and screens the
inside of the nanoparticle?®. Owing to the highly nonlinear nature
of the light-matter interaction, both the ionization of the nano-
particle and the dissociation of the molecules on its surface are
temporally confined to the laser pulse duration and occur pre-
ferentially in the regions with the largest total field strengths.
Their distribution resembles the shape of the HY momentum
distribution: a dipolar shape for 110 nm particles and the asym-
metric structure for 300 nm particles (cf. Fig. 3). In contrast to the
much faster emission of electrons, protons efficiently probe
the nanosphere surface on a picosecond time scale, which facil-
itates a mapping between the dissociation yield landscape on the
surface and the final momentum distribution. We note here that
this is a major difference compared with earlier work!# and forms
the basis for the mapping of reaction yields in the reaction
nanoscope.
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Fig. 4 Analysis of proton and electron trajectories. The M3C simulations are
performed for 110 nm SiO; particles. The radial momentum p, = |p| of the
cutoff electrons (red line) represents an average over the 10% highest
electron momenta. The radial proton momentum (blue line) is calculated
for a proton released from the surface at the pole (0 = z/2) of the particle.
The blue shaded region represents the spread in the velocity gained by
protons released at different positions on the nanoparticle. The axis at the
top indicates the distance of the proton from the nanoparticle surface at the
respective times shown at the bottom. The left inset is a magnification of
the region where the dynamics is laser-field driven. The right inset is an
illustration of a simple model describing the 1D trajectory of a proton in the
static field of two point charges, representing the (asymmetric) surface
potential. The three dotted lines in the main graph show the trajectories for
the model parameters indicated in the inset

The essence of the proton dynamics can be captured with a
one-dimensional (1D) model along a radial axis (see green dashed
line in the sketch in Fig. 4), where the electrostatic repulsion from
two positive point charges is considered. A description by two
point charges reflects the initial asymmetric surface potential
around the sphere. A first charge Q; is situated in the center of
the sphere and another charge Q, is placed at r,, below the
nanosphere surface. A proton is launched from the surface on the
axis defined by Q; and Q,. Three free parameters (charges Q;, Q»,
and radius r,) in total are enough to reproduce the correct radial
dynamics of a proton in the field of the anisotropically charged
particle (see Methods for details). A large charge Q; in the center
is necessary to model the correct final momentum, whereas the
second charge Q, at radius r,, introduced to represent the
asymmetry in the charge distribution, ensures good agreement in
the dynamic behavior, cf. Fig. 4.

The different time scales of the process allow the separation of
the dynamics into two phases: a first phase, occurring on fem-
tosecond scales, during which the surface charge distribution and
the probe charges are generated in the laser-induced near-field,
and a second phase, occurring on the picosecond scale, in which
the probe charges are accelerated away from the now charged
nanoparticle surface.

The above analysis suggests that the spatially resolved reaction
yield on the surface can be retrieved from the measured proton
momentum distributions. In order to solve this inverse problem,
we use our simulations to provide a more quantitative description
of the mapping between the initial proton position and the final
proton momentum.
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field and one 10 fs after the interaction with the laser pulse. Each point on the sphere is defined by the elevation angle 8 and the azimuthal angle ¢, in the
intervals [—%;%] and [0; 27|, respectively. The angle 6 is measured with respect to the propagation/NP-jet-plane and ¢ is measured with respect to the
propagation axis. The angle ¢ is only shown from O to z from now on due to the mirror symmetry with respect to the polarization-propagation plane.
b Differential probability distribution dP/dQ for the deprotonation reaction as a function of 8 and ¢. ¢ Experimentally accessible momentum distribution of

the final proton momenta as a function of 8 and ¢. All distributions or rates are normalized to a maximum value of 1 and use the shown color scale
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Fig. 6 Retrieval of the dissociation yield distribution. a Proton momentum distribution measured in the experiment with the 300 nm particle, projected onto
the polarization and propagation plane. b Same projection of the retrieved momentum distribution (see text). ¢ The retrieved surface charge density

visualized on the surface of a nanoparticle

The dynamics of the charge distribution on the surface of the
nanoparticle calculated using the M3C code is shown in Fig. 5a.
The spherical particle is ionized by the laser pulse on a time scale
of a few femtoseconds. After this initial laser interaction, the
surface charge distribution reaches a quasi-equilibrium, which is
governed by the local near-fields around the nanoparticle. Simi-
larly, the initial spatial distribution of protons, which is shown in
Fig. 5b as a function of the elevation and azimuthal angles 6 and
¢, depends on the electric field strength. The resulting final
proton momentum distribution is depicted in Fig. 5c. For the
parameters of our experiment, the two distributions are almost
indistinguishable, ~stressing the close relation between
position-space and momentum-space. We show in the Supple-
mentary Note 2 (Supplementary Figs. 2 and 3), that for the
parameters of the present experiment, a later relaxation of the
surface charges into an isotropic distribution does not affect the
mapping between yield distribution and final momentum dis-
tribution. The question of the existence and time scales of tran-
sient charge relaxation processes will have to be elucidated in
future studies.

In order to retrieve the spatially resolved dissociation yield, we
have implemented an iterative optimization procedure that
minimizes the deviation between the measured and the calculated
momentum distribution. In the algorithm, which is described in
the Methods section, the reaction yield and the surface charge
distribution are represented by a linear combination of spherical

harmonics and the expansion coefficients are varied together with
the nonlinear order of the dissociative ionization process. The
retrieved set of optimized parameters is in qualitative agreement
with the charge distribution and dissociation rate calculated using
full M3C simulations (see dotted lines in Figs. 3g, h and 6). The
use of this iterative optimization procedure is not limited to the
parameters of the present experiment. As shown in the Supple-
mentary Information, it provides a general framework for
inverting the yield-to-momentum mapping and works for more
complex cases, where the relation between the initial yield dis-
tribution and the final momentum distribution is much more
intricate.

Our results show that protons from the dissociation of mole-
cular adsorbates on nanoparticle surfaces can serve as a probe for
both the surface charge distribution induced by the near-field of
nanospheres and the resulting spatially dependent dissociative
ionization yield. Qualitative agreement with the experimental
data is obtained from semi-classical simulations that incorporate
the near-field, the rate of the dissociative ionization, and
many-particle charge interactions. We find that the mapping of
reaction yield to the final proton momentum takes place after
the interaction and is governed by the electrostatic field of
the charged nanoparticle alone. This enables the reconstruction
of the nanoscale reaction yield landscape from the measured
data. The reaction nanoscope can open the door for the
spatially resolved study of nanoparticle photochemistry including
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its spatio-temporal variation in time-resolved pump-probe
implementations.

Methods

Experimental setup. The nanoparticle source has been described in detail in
refs. 3031, Briefly, the nanoparticles, dispersed in ethanol or water, are aerosolized
using a fast argon gas stream. Nanoparticle clusters are eliminated from the gas
stream by an impactor unit. A reverse-flow dryer is used to control the amount of
solvent molecules on the nanoparticle surface. An aerodynamic lens focuses the
nanoparticle beam to a spot size of ~0.5 mm in diameter in the center of the
reaction nanoscope, where ultra-high vacuum (10~ mbar) conditions are main-
tained. Electrons and ions created in the interaction region are accelerated within a
homogeneous electrostatic field (150 V/cm) towards their respective detectors (see
Fig. 1). The electron side is equipped with a channeltron, enabling counting the
number of released electrons. A calibration of the channeltron was performed by
increasing the background pressure in the interaction chamber and monitoring the
increase in electron signal. Ions are detected with a time- and position-sensitive
detector consisting of a multichannel plate and a delay-line detector. From the TOF
and position, the three-dimensional initial momenta of the fragment ions are
retrieved. The data for electrons and ions are collected in coincidence for each laser
shot up to the full repetition rate of 10 kHz. To preserve coincidence conditions,
the total count rate in the experiment is maintained at ~0.3 jonization events per
shot, resulting in about 30 laser-nanoparticle interactions per second due to the
dilute nanoparticle beam.

Nanoparticle preparation. Silica nanoparticles with diameters of 110 and 300 nm,
and a narrow size distribution were prepared by wet chemistry approaches. First,
small seed nanoparticles were prepared by the Stober method>2. In a typical seed
preparation procedure, 21 g of TEOS, 28 mL of ammonia solution (25 wt% in
water), and 1 mL of water were added to 530 mL of ethanol and stirred for 12 h. A
further shell was grown on the silica nanoparticles by the seeded growth method33
until the desired particle size was reached. All samples have been stored in ultra-
pure ethanol after cleaning. Characterization by transmission electron microscopy
and dynamic light scattering yielded a polydispersity of about 4.9% for the 110 nm
and 2.9% for the 300 nm particles, respectively. The surface of silica nanoparticles
prepared by the Stober method are typically covered by silanols, i.e., Si-OH
groups>4.

Simulation details. The electron trajectories are calculated using the M3C-code
described in refs. 1415, which has shown to quantitatively agree with measured
electron momentum distributions for few-cycle ionization of nanoparticles!4.
Protons are released at the peak of the laser pulse with zero initial momentum. We
assume an I" intensity dependence for the dissociation rate to account for the
spatial dependence of the ionization probability at the nanosphere surface. Here we
choose 7 such that the molecules can be ionized. The ionization potentials are 12.6
eV for water® and 10.5 eV for ethanol®®. The additional energy required for
dehydrogenation of the molecules at local near-field intensities reaching 1.2 x 1014
W cm~2 (with a near-field intensity enhancement for 300 nm spheres of up to 2.8)
is assumed to be contributed from laser-driven (re)scattering of electrons. The
classical maximal recollision energy would yield 18.0 eV (=3.2 U,). This is suffi-
cient for H* formation in the cation of the species. Previous studies report H
formation from water cations with 6.2 eV3”. For ethanol, the HT formation from
the cation may be inferred from data on other hydrocarbons, such as hydro-
xymethyl groups with 7.3 eV above the cation ground state38. This yields n =~ 10.9
and 7 =~ 10.3 for water and ethanol, respectively. With the nanoparticle near-fields,
these channels can be reached. Without near-field enhancement, the maximal
recollision energy is only about 9 eV and H* formation is strongly suppressed,
which is consistent with our data.

An adaptive time-step scheme is used to facilitate the propagation of protons up
to 3 ns, where we find the momenta to be converged. Averaging over the intensity
distribution in the focal volume is taken into account assuming a Gaussian beam
profile. Low intensities leading to a low number of electrons are neglected to
resemble the experimental analysis. The number of detected electrons in the
simulations account for the geometric constraints given by the size of the
channeltron and the detection efficiency of the channeltron. The laser intensities
that lead to a small electron signal are comparably low and only affect the very
central part of the momentum distribution.

Analytical 1D model. If only one of the charges Q, or Q, is taken into account and
the other charge is set to zero, the model represents the charge distribution on
small nanoparticles and the equations of motion for this simplified situation can be
derived analytically. It assumes a positive charge Q at position r =0 for all times.
The positive probe charge g of mass m is at position r(t = 0) = R with

v(t = 0) = 0. The equations of motion are solved in one dimension and result in:

z’g’:ﬁ[ Rr(r - R) +R3/210g<\/j \[)] M

2meg \R 1)’
The two characteristic quantities are

pylt = 00) = ,/;sz ~ @ and (3)
=1 271meo (f+10g< + \f)) \/gwnht definedby E(t.) = 0.5E(t — o0)

4)
The only free parameters here are the position R and the number Q of elementary
charges. The final momentum is determined by the ratio p; ~ %. The number of
charges (Q = 920) obtained from the analytical model for the measured final
momentum of ~55 a.u. is comparable to that obtained with the numerical M3C
simulations. However, an accurate fit of the temporal dynamics predicted by the
M3C simulations with the simple model requires the inclusion of two charges (see
central dotted line in Fig. 4 for this scenario). Here, the trajectory is calculated
numerically by integrating the differential equations. The position of the first
charge is fixed to r; = 0, whereas the second position r, and the charge amounts Q,
and Q, are used as fit parameters. The fit of the two-charge model to the full M3C
simulations reveals a slightly reduced charge in the center (Q; = 650) and a very
small charge (Q,=5) located just 1 nm below the surface.

Iterative optimization algorithm. For a completely spherically symmetric charge
distribution, all protons are pushed away radially from the nanoparticle. In that
case, the final momentum direction coincides with the direction of the initial
position vector of the proton and the final angular proton distribution is identical
to the initial angular distribution of the dissociative ionization yield. In reality, the
polarization direction, as well as propagation effects, break the spherical symmetry
of the initial charge distribution on the nanoparticle and the mapping departs from
the identity. A higher charge density in certain regions leads to a larger accelerating
Coulomb force and thus a larger final momentum. At the same time, the aniso-
tropic charge distribution accelerates the protons also tangentially to the surface,
which effectively alters their direction in the (6, ¢)-plane. As visible in Fig. 5b, ¢
and discussed in the Supplementary Note 2, these distortions have a negligible
effect in the present experiment, but do play a significant role for more complex
surface charge distributions. For arbitrary charge distributions, however, the
retrieval of the initial proton densities from the measured distribution is not
straightforward.

The mathematical description of this retrieval problem is as follows: the surface
charge distribution is approximated by spherical harmonics Y;" (6, ¢) with order
I = [0; L]. Due to the fact that the distribution is real valued and the plane of
symmetry (polarization-propagation plane), we need L(L + 1) coefficients. For
simplicity, we assume that the HT density p,;. on the surface scales as |E(6, ¢)|",
where E is the electric field created by the surface charges and 7 is used as an
additional fitting parameter. The electrostatic field and the H* density are then
calculated from the nanoparticle surface charges and a trajectory analysis yields the
final proton momenta. The Nelder-Mead simplex fitting algorithm is used to
optimize all L(L + 1) + 1 variables to minimize the deviation between the
measured and reconstructed momentum distributions shown in Fig. 6a, b,
respectively. This iterative optimization algorithm enables the reconstruction of the
dissociation yield and charge distribution on the nanoparticle surface from the
measured proton distribution in Fig. 3 (see Fig. 6).

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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