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Abstract

Frequency modulation (FM) is a basic constituent of vocalisation. Formant transitions in speech are characterised by short
rising and falling FM-sweeps in the kilohertz frequency range. These sounds elicit a pitch percept that deviates from their
average frequency. This study uses this perceptual effect, termed here the sweep pitch shift, to inform a model characterising
the neural encoding of FM. First, a reexamination of the classical effect, consisting of two perceptual experiments, provides a
quantitative characterisation of the dependence of the sweep pitch shift with the properties of the sweeps. Next, simulations
carried on the new experimental data show that classical temporal and spectral models of pitch processing cannot explain the
pitch shift. Conversely, a modified spectral model considering a predictive interaction between frequency and FM encoding
fully reproduces our and previous experimental data. The model introduces a feedback mechanism that modulates the neurons
that are expected to respond to future portions of the sweeps, accelarating their onset response. Combined, the experimental
and modelling results suggest that predictive feedback modulation plays an important role in the neural encoding of FM even
at early stages of the processing hierarchy.
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1 Introduction

Frequency modulation (FM) is a basic acoustic feature of
music, animal vocalisation, and speech. For example, con-
sonants preceding and following a vowel can be acoustically
characterised by formant transitions: a series of simultaneous
fast FM tones of around 50 ms duration that start or finish
in the frequencies characterising the vowel [1]. Despite the
importance of FM sounds for perception and communication,
a mechanistic account of FM encoding in humans is to-date
unavailable.

In this study, we use a classical effect from psychoacoustics
to inform a computational model of FM-sweep encoding. The
effect, that we call here sweep pitch shift, was first reported by
Brady and colleagues [2]. They measured the pitch elicited by
fast rising and falling FM sweeps with a rich spectral contour,
and discovered a tendency to judge up sweeps as eliciting a
higher pitch than down sweeps with the same average fun-
damental frequency. These findings were later replicated in
further experiments [3, 4]. More recently, d’Alessandro and
colleagues proposed that the pitch of a sweep corresponds to a
weighted average of the sweep fundamental frequency across
time, where later frequencies receive a stronger weight due to
a fixed-size temporal integration window [5, 6]. D’Alessandro
and colleagues used their phenomenological model to assess
the pitch elicited by up sweeps, down sweeps, and vibrato
tones; however, they found that different integration weights
were necessary to explain different partitions of their data.
Thus, despite the crucial role that FM encoding plays in
speech perception, the mechanisms responsible for the sweep
pitch shift are still unknown. Whether classical models of
pitch processing (see [7] for a review) can explain the sweep
pitch shift has so far not been tested.

The aim of this study is to develop a biophysically plausible
model of FM-sweep encoding. We consider the sweep pitch
shift phenomenology to inform the mechanisms responsible
for the interplay between FM neural selectivity and frequency
representation in the processing hierarchy of the model. We
approach this aim in three parts. In the first part, we reexam-
ine and quantify the sweep pitch shift and test if the experi-
mental data can be explained by three existing models: (i) a
classical spectral model of pitch [8], (ii) a family of classical
temporal models of pitch [9, 10, 11], and (iii) D’Alessandro’s
phenomenological model [5, 6]. A key feature of the classical
models of pitch is that they are bottom-up driven; i.e., they
only use sensory information from lower representations of
the sound to process pitch. However, the human auditory
pathway is endowed with massive feedback connections that
have complex repercussions on the way sounds are processed
by, for instance, modulating the properties of the receptive
fields [12, 13]. Thus it is likely that a computational model
of FM-sweep encoding can only fully explain perceptual data
if it includes feedback modulation.

The second part of this work is committed to build a hierar-
chical model of frequency and FM sweep direction processing
to test this hypothesis. Neural encoding of frequency and
FM has been extensively studied in the mammal auditory
system. Frequency is spatially represented along the tono-

topic axis in all the stations of the auditory pathway [14].
Neural selectivity to FM direction and rate has also been re-
peatedly reported in rats and mice in the inferior coliculus
[15, 16, 17], medial geniculate body [18, 19], and auditory
cortex [20, 21, 22, 23]. The bottom-up components of the
model are based on the results of these studies in animals.
The top-down architecture is grounded in the basis of gener-
ative hierarchical models and predictive coding [24, 25] and
informed by the human psychophysics results from the first
part of the study.

In the third and last part of this work, a new set of stimuli
termed sweep trains are used to further validate the model.
These stimuli, consisting of a concatenation of five sweeps,
preserve the same acoustical features of the original sweeps
but elicit different dynamics in the feedback system of the
model than their single-sweep counterpart. The ability of
the model to predict the pitch elicited by this new stimuli
illustrates the generalisation power of the neural mechanisms
proposed in this work.

2 The sweep pitch shift revisited

2.1 Experimental methods: bottom-up models
of pitch

2.1.1 Participants

8 participants (4 female), aged 22 to 31 (average 26.9) years
old, were included in the study. They all had normal hearing
thresholds between 250 Hz and 8 kHz (< 25dB SPL) accord-
ing to pure tone audiometry (Micromate 304, Madsen Elec-
tronics). All reported at least five years of musical training,
but none of them was a professional musician.

The 8 participants were derived from a larger set of 22
candidates. Candidates were screened by a first behavioural
test assessing their capacity to match pure tones against pure
tones, and then by a second test measuring their consistency
when matching sweeps against pure tones (see details bellow).
From the 14 excluded participants, one failed the first test
and 13 failed the second test. 6 of the excluded participants
reported no previous musical experience; the remaining 8 had
at least five years of musical training.

2.1.2 Stimuli

Stimuli were 50 ms long frequency-modulated sweeps. Fre-
quency was kept constant during the first and final 5ms of
the sweeps. The modulation was asymptotic and carried out
in 40 ms. Stimuli were ramped-in and damped-out with 5 ms
Hanning windows overlapping the sections with constant fre-
quency.

There were 30 single sweeps with 10 linearly distributed
frequency gaps Af € [—600,600] Hz and 3 average frequen-
cies f € {900, 1200, 1500} Hz. For each combination {Af, f},
the initial and final frequencies were fo = f — Af/2 and
fi=TF+Af)2



2.1.3 Experimental design

Each trial consisted of a sequential presentation of a target
sweep and a probe pure tone. After the presentation, the par-
ticipant was asked whether the second sound evokes a higher,
equal, or lower pitch percept than the first sound. Partici-
pants were allowed to replay the sounds as many times as
needed in case of doubt. After the response, the software
adjusted the frequency of the probe tone by increments of
+e = +25Hz, bringing the pitch of the sound closer to the
participants percept (e.g., if the participant judged the tar-
get sweep as having a lower pitch than the probe tone, the
frequency of the probe tone was reduced by 25 Hz). This pro-
cedure was repeated until the participant reported that the
two sounds evoked the same pitch percept. Then, the fre-
quency of the matched pure tone was stored as the perceived
pitch of the sweep reported in that trial, and a new trial with
a new target sweep began. The initial frequency of the probe
tone was sampled from a Gaussian distribution centred on
the average frequency f of the target sweep.

Each of the 30 sweeps was matched four times, so that
there were 120 trials in total in the experiment. The relative
order of the probe tone and the target sweep was reversed
in half of the trials to assess if presentation order affects the
sweep pitch shift. Thus, the experiment can be described as
a 10 (10 different frequency gaps) x 3 (3 average frequencies)
x 2 (probe played first or last) factorial design.

2.1.4 Experimental procedure

Before the experiments, all potential participants performed
a brief training to ensure that they had understood the task.
The trial structure of the training was exactly the same as
in the experiment, but both probe and target consisted of
pure tones. During the training, the software provided feed-
back after each trial informing the participant whether the
response was correct or incorrect. The training was divided
in batches of six trials, and it concluded when the participant
correctly matched the pitch of every trial in one batch. Most
participants completed the training in the first batch.

After the training, participants were evaluated on their
response consistency to sweeps. To do that they under-
took a block of 12 trials consisting in 4 repetitions of 3
sweeps with diverse properties and small frequency gaps:
{Af = 67Hz, f = 900Hz}, {Af = —200Hz, f = 1200 Hz},
and {Af = —67Hz, f = 1500 Hz}. Trial ordering was ran-
domised, and the relative order between probe tone and the
target sweep was reversed in half of the trials. After the
completion of this block, the participant’s pitch matching
consistency was calculated as the inverse of the average of
the absolute differences between the reported pitch in each
sweep type and presentation order. Only participants with
an average deviation smaller than twice the frequency incre-
ment step 2¢ = 50 Hz were included in the experiment. This
prevented us from adding data consisting in random guesses
that would bias the sweep pitch shift towards the average
frequency of the sweep.

The 8 included participants undertook 4 additional blocks
of 27 trials. Each block contained a single instance of each

f= 900 Hz 1200 Hz 1500 Hz

probe <> sweep — — — — — —
slope (£0.03) 0.36 0.30 0.38 0.42 041 0.40
rp (p<1072%) 0.88 0.68 0.86 0.89 0.90 0.88
rs (p<107%%) 0.91 0.78 092 0.96 094 0.96

Table 1: Summary statistics on the relationship be-
tween the perceived pitch and the frequency gap for
single-sweep stimuli. The slope of the linear fit, Pearson’s
correlation 7, and Spearman’s correlation r for the relation-
ship between fperceivea and A f are presented for each centre
frequency f and direction of the presentation (probe before
sweep, —; and sweep before probe, <—). Spearman’s correla-
tion is systematically larger than Pearson’s, indicating that
the elicited pitch is related to Af in a non-linear monotonic
way.

sweep type. The order of the sweeps within each trial was
randomised and the relative position of the probe tone with
respect to the target stimulus was pseudorandomised so that
half of the trials in each block were presented in each di-
rection. Participants were instructed to take rests between
blocks and were allowed to take as many shorter rests between
trials as needed. To encourage precision, a 5€ award was of-
fered to participants that showed a high self-consistency in
the main experiment (i.e., a smaller variance than 2e¢ = 50 Hz
within each sweep type). Only sweeps with frequency gaps
Af € [-200,200] Hz, which were expected to yield the most
unequivocal pitch sensation according to Hart’s law [26], were
used to compute the overall self-consistency, although the
participants were unaware of this. Participants typically
completed the experiment between 1.5 and 3 hours.

2.1.5 Data analysis

The perceived pitch corresponding to each stimuli was sum-
marised using the pitch shift, Ap = fperceived — f , where
fperceived 18 the frequency of the pure tone matched to the cor-
responding stimulus. Distributions of Ap were drawn pooling
the data corresponding to each stimulus across trials and par-
ticipants. Thus, there were 4 X 8 = 32 data points for each
stimuli, 16 points for each of the sweep-probe relative order.

2.2 Experimental results: bottom-up models of
pitch

The pitch shift Ap depended on the size of the gap Af (Ta-
ble 1 and Figure 1). The exact dependence was consistent
across listeners for sweeps with Af < 333Hz lying in the
vicinity of the linear fit fperceived = f+mAf (with an average
deviance from the fit of 46 Hz). Sweeps with larger frequency
gaps resulted in wider distributions of fperceivea due to higher
inter- and intra- subject variabilities (Figure 2). Presentation
order did not systematically affect the perceived pitch’.

In their classical study, Brady and colleagues [2] showed
that the absolute value of the sweep pitch shift |Ap| is larger
for down than for up sweeps. In a later study, Nabelek and

1See Supplementary Figure S1 for a more formal description.
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Figure 1: Sweep pitch shift. Kernel density estimations on the perceived pitch are plotted separately for each of the 30
sweeps used in the experiment. The y-axis of each plot shows the magnitude of the sweep pitch shift Ap. The x-axis list
the gaps of each of the sweeps. Distributions are plotted separately for trials where the probe was presented before (—)
and trials where presented after (+) the sweep. Light-gray error bars show the separate average and standard error of the
— and < subgroups. Black error bars and dashed lines show the average and the standard error of the data pooled across
presentation order. The dark thick grey solid lines show the group linear fit of the data.
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Figure 2: Variance of the perceived pitch and up/down
asymmetry. Left: Kernel density estimations of the intra-
subject standard deviation of the sweep pitch shift Ap, plot-
ted separately for the different frequency gaps Af. Each
point in the distributions corresponds to the standard devi-
ation of the perceived pitch of a sweep in one subject (i.e.,
in each distribution there are 8 x 3 points, one for each sub-
ject and f). The variance is monotonically correlated to the
absolute gap |Af| (rs = 0.63, p < 10727). Right: Kernel
density estimations of the up/down asymmetry distributions
as defined in Equation (1). Each sample of the distributions
corresponds to the difference of the average absolute devi-
ation from centre frequency between up and down sweeps
of the same |Af| for a given subject and centre frequency
(N = 8 x 3 = 24). Error bars show the average and the
standard error of the groups.

colleagues [3] showed the reversed effect. To test if our data
replicates any of these previous findings we draw, for each ab-
solute frequency gap |Af|, the distribution of the differences
between the pitch shift in up and down sweeps:

asymm(X ;| = [Ap(Af)| — |Ap(=Af)] (1)

Results shows a general trend in the direction of the obser-
vations from Nabelek and colleagues (Figure 2, right). The
effect is significant for |Af] < 200Hz (p < 2 x 107°) but not
for |[Af| =66Hz (p = 0.77), according to two-tailed rank-
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Figure 3: Subject specific estimations of the linear fits
between the pitch shift Ap and Af. The plot shows the
slope m of the linear fit fperceived ~ f_+ m Af for each of the
8 subjects; error bars mark the 95% confidence intervals of
the estimations.

sum tests (N = 96). Up sweeps have been consistently found
to be easier to discriminate from pure tones than down sweep
in a wide range of experimental conditions [27, 28, 29, 30],
probably because auditory nerve responses to up sweeps com-
pensate, at least partially, for the low-frequency processing
delay of the basilar membrane [31] provoking more salient
neural responses than their down counterparts.

Last, we tested if the dependence of the sweep pitch with
A f was robustly replicated across subjects. The slope of the
linear fit between fperceivea and A f, similar in magnitude in
all participants, are plotted in Figure 3.

2.3 Modelling methods: bottom-up models of
pitch

The experimental results were compared with the predictions
of three families of existing models: 1) a spectral model of



pitch processing based on the tonotopic arrangement of the
cochlear output at the beginning of the auditory nerve [32],
2) a temporal model based on the principles of the summary
autocorrelation function that measures pitch according to the
phase-locked response in the auditory nerve [9, 11], and 3) a
phenomenological model of frequency integration specifically
designed to predict the pitch of FM sounds [5, 6].

2.3.1 Spectral models of pitch processing

The predictions of the spectral model of pitch processing are
based on the spectral decomposition computed at the pe-
riphery of the auditory system by the basilar membrane.
First, a realistic model of the peripheral auditory system
[8, 33] computes the expected firing rate p,(t) in a fibre of
the auditory nerve associated with the nth cochlear chan-
nel (n = 1,2,...,N) at an instant ¢. The frequency range
of the cochlear model was discretised in N = 100 channels,
spanning frequencies from fmin = 125 Hz t0 fmax = 10 kHz.

The peripheral output of each of the N = 100 channels
is then integrated by a neural ensemble following mean-field
neural ensemble dynamics [34]. Although these ensembles
were first formulated to describe dynamics in cortical re-
gions dedicated to visual decision making, they have been
successfully used to describe the dynamics of many differ-
ent cortical areas (e.g., [35]). Each ensemble in the array
of integrators receive inputs from a single cochlear channel.
Inputs were modelled with a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid-receptor (AMPA) synaptic dynamics
[36]. AMPA synapses present short time constants that are
able to preserve the fine temporal structure of auditory input,
and thus are the major receptor type conveying bottom-up
communication in the auditory pathway (e.g., [37]). The fir-
ing rate hy(t) of the nth ensemble follows the dynamics of a
leaky integrator:

T o (8) = —ha () + (JTATASANTA ) (2)

Similarly, the synaptic gating variable iy (¢) follows [36]:

TAMPAGANPA(E) = —Shmr ™ (t) + pa(t)

AMPA

3)

Time constants T = 10ms and 7 = 2ms where
taken from the literature [36]. The effective conductivity
JAMPA — (38 nA was manually tuned within the realis-
tic range such that the peripheral system would elicit firing
rates on the range 5Hz > h,(t) > 100Hz in the integra-
tor ensembles. The transfer function ¢(z) = (cx — Io)/(1 —
e_g(cx_lo)) and its parameters, empirically derived for net-
works of integrate-and-fire neurons, were taken from [34].

The perceived pitch corresponded to the expected cochlear
channel k, E[k], according to a probability distribution p de-
rived from the integral of hy, (t) over the duration of the stim-
ulus Ty:

memb

S S dtha(2)

The frequency corresponding to the expected chan-
nel FE[k] was computed according to a logarithmic fit

E[k] = ann with  pn = (4)

Soredicted (EK]) = em1 PIF+e0 fitted to match the response of
5 probe pure tones with frequencies linearly spaced between
600 Hz and 1900 Hz (i.e., in the range of the frequency sweeps
used in the experimentation).

All dynamic systems described in this work were integrated
using Euler’s method with a time step of dt = 0.1 ms. To
assess possible variabilities due to the stochasticity of the
peripheral model, statistics of the predictions were obtained
by running each model 10 times with different random seeds.

2.3.2 Temporal models of pitch processing

The summary autocorrelation function (SACF) was used as
the representative of the family of temporal models of pitch.
The SACF used in this work follows the original formula-
tion by Meddis and O’Mard [9, 10]. Essentially, this model
poses the existence of an array of M periodicity detectors
responding more saliently to a preferred period dt,,. The in-
stantaneous firing rate A, (t) of the mth periodicity detector
(m=1,2,..., M) follows:

AT ht) = ~An®) + el ~dt) (9

where the auditory nerve activity p,(t) in the cochlear chan-
nel n at an instant ¢ is computed as in the previous section.
The characteristic periods t,, are uniformly distributed be-
tween dt,, = 0.5ms and §t,, = 30 ms, which allows the model
to capture periodicities corresponding to frequencies between
2kHz and 135Hz up to four lower harmonics. The inte-
gration constant 75°°F depends linearly on &, (see details
in [11, 38]).

Stimuli presenting periodicities at a certain frequency f
typically elicit peaks of activation in the detectors tuned to
the preferred period 8t,, = 1/f = Tp and to the periods corre-
sponding to all subsequent lower harmonics 6t,, = 27Ty = T1,
Otm = 3To = Tz, etc. The first four peaks of the harmonic
series were used to obtain a robust estimation of the pitch
predicted by the model, so that:

3 —1
1 T; (t)
fPredicted - <Z Z i+ 1)

=0

(6)

2.3.3 Phenomenological models of frequency inte-
gration

Previous studies attempted to explain the sweep pitch shift
with heuristic numerical procedures of less [2] or more [5]
complexity. In general, these methods assume that pitch is
evaluated as a weighted integral of the frequency of the tone:

[ drw(r) f(7)
fOTd drw(T)

where Ty is the stimulus duration and f(t) is the frequency
of the stimulus at the instant ¢. Unlike the temporal and
spectral models introduced before, this formula considers di-
rectly the stimulus properties rather than the cochlear out-
put elicited by the stimulus and lacks of a biological ratio-
nale. However, it is to our knowledge the only attempt to

(7)

fpredicted =
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Figure 4: Predictions of the spectral and temporal
models. Predictions of the spectral model (left) were pre-
cisely consistent across runs and thus only the nominal value
is plotted. To account for variability of the temporal model
(right), we plotted the average results across ten runs; error
bars represent standard errors. Cf. Figure 1.

more formally explain the sweep pitch shift and it is there-
fore informative to determine if such simple relationship can
account for our experimental results.

D’Alessandro and Castellengo [5] proposed that w(7) could
give a stronger weight to the final part of the sound via a

T—T

fixed integration window 7ing: w(7) = e Tint + 3, and found
a fit with a = 22, f = 0.20 for the vibrato tones used in
their experiment. However, when trying to explain the results
from a more recent experiment [6], D’Alessandro and Rosset
needed to use two different sets of parametrisations for the
evaluation of up and down sweeps. Thus, rather than using
a specific instance of their multiple sets of parameters to try
to predict the pitch of our stimuli, here we attempt to fit the
weighting parameters to our perceptual results independently
for each stimulus length (i.e., single or sweep-train stimuli)
and centre frequency fo. We would conclude that the model
provides for a parsimonious explanation of our data if there
exist a set of parameters yielding a satisfactory account of all
the data.

2.4 Modelling results:
pitch

bottom-up models of

2.4.1 Models of pitch processing

Neither the spectral nor the temporal model of pitch repli-
cated our experimental observations (Figure 4). Predictions
of the spectral model show a dependence of fperceivea With A f
in the opposite direction than the empirical data. This in-
triguing effect is a consequence of adaptation in the auditory
nerve: responses are the strongest around stimulus’ onset,
provoking a perceptual bias towards the frequencies present
at the beginning of the stimuli. Predictions of the tempo-
ral model lay within fperceiveda =~ 800 Hz independently of the
centre frequency, resulting in negative Ap for increasing f
values. This is most likely a consequence of the SACF be-
ing unable to decode rapidly changing frequencies with such
short stimuli. Note that this is the case even for the condi-
tions with the smaller Af.

2.4.2 Phenomenological model

Let us first rewrite the model (Equation (7)) in the following
form:

fOT’i drw(T) (Tid — %)

fperceived == f‘i’ Af

For the model to explain our data, we would need to find
two numbers Tint and 8 such that the rightmost fraction in

Eq (8) with w(1) = e% + [ is constant across conditions.
Our data for single sweeps can be approximated by this func-
tion with parameters o = 1/7iny ==~ 0.10ms™" and 8 ~ 0.

However, the model cannot account for the up/down
asymmetry observed in the absolute pitch shift |Apl|: since
fperceived(_Af) - f = _(fperceived(Af) - f) (Cf Equa—
tion (8)), the absolute pitch shift would be the same in up
and down sweeps. Moreover, since this model only attempts
to describe the phenomenology of the effect, it lacks of biolog-
ical plausibility and does not explain the neural mechanisms
underlying the integration process. In the next section, we
will derive a mechanistic ensemble model of FM encoding
that explains the experimental results mechanistically.

3 FM encoding and its role in the sweep
pitch shift

3.1 Formulation of the model

In this section we introduce a hierarchical model of FM-
encoding, termed here F'M-feedback spectral model, with two
levels (Figure 5). In the first level, the spectral layer holds a
spectral representation of the sound. In the second level, the
sweep layer encodes FM-sweep direction. The main hypoth-
esis introduced in the model is that, once the direction of the
sweep is encoded in the sweep layer, a feedback mechanism
modulates the effective time constant of the populations en-
coding the frequencies that are expected to be activated next
in the spectral layer. This parsimonious mechanism qualita-
tively explains why the latest parts of the sweep are given
a higher weight during perceptual integration and quanti-
tatively reproduces the exact dependence of pitch with Af
observed in our data.

3.1.1 Modelling FM direction selectivity

At least three mechanisms for FM direction selectivity have
been identified in the animal literature: asymmetric sideband
inhibition [15, 39, 40], duration sensitivity [41, 18, 39], and
delayed excitation [40, 22, 42]. In order to contain the dimen-
sionality of the model’s parameter space, we focus here on de-
layed excitation, a straightforward mechanism where neurons
with different best frequencies output to the direction selec-
tive neuron with different delays; e.g., an up-selective neuron
will receive delayed inputs from a neuron tuned to low fre-
quencies and instantaneous inputs from a neuron tuned to
high frequencies, so that an up sweep results in simultanous
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Figure 5: Diagram of the FM-feedback spectral model.
The model consists of three layers: first, the auditory periph-
ery; second: the spectral layer, with a single network inte-
grating the spectral information of the sound (f network);
and third, the sweep layer, with two networks specialised
in detecting up (1 network) and down (] network) sweeps,
respectively. Afferent connections allow the spectral layer
to integrate information from the periphery, and the sweep
layer to decode the direction of the sweep from the spectral
information of the f network. Feedback connections from
the sweep layer modulate the time constants of the popula-
tions in the spectral layer that are expected to follow once
the direction of the sweep has been decoded. The inhibitory
ensembles in the up and down network enforce competition
between up and down ensembles in a winner-take-all fashion.
Note that the diagram is schematic and shows only 5 of the
N = 100 populations and a single example of the connec-
tions between the sweep and the spectral layers. The labels
of the boxes of the peripheral system are also schematic: the
spectral resolution of the peripheral system is much higher.

excitation from both of them. Any related mechanism show-
ing FM direction selectivity should yield similar overall re-
sults [43].

In the FM-feedback spectral model, delayed excitation is
implemented by introducing consistent delays between the
populations in the spectral and the sweep layers. A sweep
population receiving direct input from the spectral popula-
tion encoding fo and responding selectively to up sweeps will
receive increasingly delayed inputs from the spectral popu-
lations centred at f < fo (Figure 5). The relative delay in
the connection between a spectral population m and a target
sweep population n depends linearly on the spectral distance
between the two ensembles: dtnm = |n — m|dto.

The spectral layer is modelled following the same principles
of the spectral model of pitch introduced in Section 2.3.1:

PP (1) = —hL () + (I (1)) (9)
with

() = 22 S w0
k

(10)

Note that we used the index 7 to denote variables in the spec-
tral layer. Pitch decisions are taken according to the spectral
information encoded in the neural ensembles hf according to
Equation (4).

We allowed some dispersion in the propagation from the
peripheral model to the spectral layer by using a Gaussian-
shaped connectivity matrix

_ (7‘@—71)2
2oin

in 1
Whm — = €
in

(11)

where the normalisation factor \/ﬂ ensures that the total
input to a population under a uniform peripheral input re-
mains the same regardless of the dispersion iy.

The ensembles used in this model are endowed with an
adaptive time constant:

2P (2)|a=1

h
where Ar = 1mV is the size of the spike initialisation of the
neural model and 77°™" and 7/2°™ are the neural membrane
time constants for excitatory and inhibitory populations, re-
spectively. Using adaptive integration time constants allows
the system to react faster to changes when the target popu-
lations are already active and the synaptic input is not too
large, a behaviour often reported in tightly connected popu-
lations of neurons [44]. This component plays an active role
in the feedback activation mechanism that we will describe
in the next section. The analytic formulation of 7P°P(h,I)
stems from a theoretical study of networks of exponential-
integrate-and-fire neurons [44].

The sweep layer consists of two networks, each encoding
one of the FM directions and responding selectively to up
(1) and down (}) sweeps. Each of the networks consist of
N columns, each comprising an excitatory and an inhibitory
population (Figure 5). The instantaneous firing rate of each
up (R1E(t), h1H(t)) and down (hif(t),h¥(t)) population fol-
lows the same dynamics described in Equation (9), with up

memb A

TP (h, ) = (12)



(I1e(t), I} (t)) and down (I}°(t),It'(t)) synaptic inputs, re-
spectively. Although the transfer functions ¢(x) are the same
for all the ensembles, the parameters c, Iy, and g are different
for excitatory and inhibitory populations [34] (Table 2).

Excitatory and inhibitory inputs to populations in the
sweep layer are modelled according to AMPA-like and
GABA-like synaptic gating dynamics [36]:

SAMPA SAMPA(t)

Sa,n (t) _:-’:NW + hze (t) + 0'57 « :T7 l’? f
: Sentt(t) | o

Sant () = —T’Gf}gi) +hy' () +og, a=1l

where ¢ is an uncorrelated Gaussian noise sampled indepen-
dently for each synapse and instant ¢, and ¢ = 0.0007 nA is
the amplitude of the noise [34]. The total synaptic input for
each population is then:

ey = TS Wl SRt — tam) —
™
JEABA (Z Wi SEABA () + STABA (t)) + I
i) = g mezinS%%PA (t) + Tt
e = JpveA iw,{fnsj:?,{m (t — Stm) —
JGABA <Z wflem 'ﬁrAnBA(t) “FSESBA(t)) +[£(g
Ly = g zfr:ui’;nSﬁ?ipA(t) + Lo

m

where Ifkg and Ilfkg are constant background inputs puta-
tively sourced in external neural populations [34].

The excitatory-to-inhibitory and inhibitory-to-excitatory
connectivity matrices w® and w’ are Gaussian shaped and
centred in the identity matrix:

(n—m)?
Wom =€ 29a
nm - b

(13)

The remaining connectivity matrices w’/T and w/* are de-
fined to constraint the up (down) feed to inputs from lower
(higher) frequencies and to limit the range of the connection
to a small number of populations A, s of the spectral repre-
sentation:

o = ei,ie

wa _ 1 if OgnfmgAwf
nm 0 otherwise

- 1 if 0<m—-—n<Ayy
nm 0 otherwise

The free parameters were initialised to standard values (the
effective conductivities JﬁMPA, JOABA “and JAMPA accord-
ing to [34]; the baseline delay dto to 2ms/channel; and the
dispersion constants oin, Oei, Oeci, and Ay, to 0.1 N) and
manually tuned to achieve direction selectivity for the FM-
sweep characteristics (duration, rates, A f) of the stimuli used
in the first part of the study. Unless stated otherwise, all
simulations listed in this work correspond to the parameters
listed in Table 2.
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Figure 6: Connectivity matrices. Matrices show the con-
nection between the first 25 ensembles of each source-target
group. From left to right, matrices correspond to: excitatory-
to-inhibitory w®, inhibitory-to-excitatory w®; bottom-up
AMPA connections spectral-to-up w’T, spectral-to-down w?™;
and feedback NMDA connections up-to-spectral w'/, down-
to-spectral w¥ f. Labels are encircled in a white square in the
top right of each plot. The free parameters of each connec-
tivity matrix are defined geometrically in the plots.

3.1.2 Feedback from the sweep to the spectral layer

Once neurons in the sweep layer encode the sweep direction,
feedback connections targeting the spectral layer facilitate
the encoding of expected frequencies. Let i be the population
in the up-sweep network receiving inputs from a population
in the spectral layer encoding a certain frequency fo. Due to
delayed excitation, the population ¢ becomes active when it
detects an up sweep occurring in the neighbourhood of fre-
quencies f < fo. Although in some occasions the up sweep
will culminate in fo, in most of the cases fo will be only an
intermediate step in the ascending succession of the sweep
and thus the activation of ¢ would imply that populations in
the spectral layer with best frequencies immediately higher
than fo are likely to activate next. The top down mechanism
of the model, encoded in the feedback projections stemming
from the sweep layer and targeting the spectral layer, reduces
the temporal constant of these populations using low-current
feedback excitatory signals. Similarly, feedback connections
stemming from a population j in the down-network that re-
ceives timely inputs from a spectral population with best
frequency f will target populations in the spectral network
with best frequencies immediately lower than fo. Feedback
current intensity is kept low in comparison to the bottom-up
driver by enforcing JYNMPA « JAMPA (see Table 2).

The low-current feedback signal modulates the population
to elicit only a subtle higher firing rate than a not modu-
lated population. The subtle activation results into a signifi-
cantly lower effective time constant 7°°P (Figure 7; cf. Equa-
tion (12)), causing the population to react faster to changes
in the bottom-up input. This increased readiness reduces the
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Figure 7: Effect of the predictive feedback mechanism
on the population time constants. Solid lines show the
dependence of TP°P(h,I) with h for several synaptic inputs
(cf. Equation (12)). The thin-dotted lines (encoding process,
modulated) correspond to the trajectory of 7°°P associated to
a population during the predictive feedback modulation. The
thick-dashed and thin-dotted lines correspond to the trajec-
tory after the onset of peripheral input of a non-modulated
and a modulated population, respectively. During the mod-
ulation, the low synaptic input decreases 7°°P rapidly with-
out substantially increasing its firing rate (point A). Once
modulated, the population reacts quickly to the onset of the
peripheral input and arrives to the point B in a much shorter
time than an equivalent non-modulated population (compare
the trajectory from the initial state to B with the trajectory
from A to B).

metabolic cost of encoding expected frequencies and, since
the population will spend more time in the high-firing-rate
regime than increasing its firing rate to match the input, it
indirectly results in a stronger contribution of the frequencies
expressed in the last part of the sweep.

NMDA receptors are typically responsible for convey-
ing feedback excitatory information in the cerebral cortex
[45, 46]; specifically, NMDA-deactivation results in a reduced
feedback control in the auditory pathway [47]. Thus, feed-
back connections were modelled according to NMDA-like
synaptic gating dynamics with a finite rising time constant
[36]:

Sam A (1)
~ /NMDA

+ (1= SN 0) vhi ), a=td

with 7 = 0.641. NMDA currents are added to the total
synaptic input of the neurons in the spectral layer as an ad-
ditional term in (10):

Sam N(8) = +0¢

) — ) = @) + 7P 303wl s )
a=T,l m

The connectivity matrices w®),, w®, were chosen such that
the target of the NMDA-driven activation was limited to a

number of A, s and leave a gap of w,s populations between
the centre frequency of the source and target ensembles (see
Figure 6, right):

wa o 1 if wwssmfnSAws+wws
nme 0 otherwise
uf 1 if wwsgn—mSAws+wws
w = .
nm 0 otherwise

The gap wos > 0 is enforced to avoid resonances between
sweep-selective and spectral populations with the same cen-
tre frequency during the encoding of pure tones. The free
parameters were initialised to standard values (the NMDA
conductivity JNMPA to the value recommended by [34], and
the connectivity parameters wys and Ay to 0.1 N) and man-
ually tuned so that the pitch predictions of the model (as
computed in Equation (4)) matched the empirical data.

3.2 Model predictions
3.2.1 FM direction selectivity

Example responses of the excitatory populations of the model
to up and down sweeps are shown in Figure 8.

To quantify direction selectivity, we used the standard
(e.g., [23]) direction selectivity index (DSI), defined as the
proportion of the activity elicited in a network by an up
sweep minus the activity elicited in the same network by a
down sweep with the same duration and frequency span:

St (105 (0] — 25 ()] )

DSI® =
S J e (1hse ()] + 52 ()] s )

a="{

(14)
where [h;,(t)] 5 is the firing rate h;°(¢) elicited in the net-
work by a sweep with a frequency gap Af. An ideal network
responding selectively to up sweeps will have a DSI = +1
and an ideal network responding selectively to down sweeps
will have a DSI = —1. Similar DSI magnitudes are measured
in the down and the up network (Figure 9); systematically
increasing DSI magnitudes were elicited by increasing f and
|Af]. Network selectivity to FM direction was robust across
reparametrisations of the model, although deactivation of the
feddback connections resulted in a 8.7(+1.5)% average de-
crease in DSI" and in a 9.7(£1.4) average increase in DSIY,
indicating that the feedback connections sharpen direction
selectivity 2.

3.2.2 Reproduction of the sweep pitch shift

Here we assess the ability of the FM-feedback spectral model
to explain the sweep pitch shift (Figure 10). To compare
the model responses and the experimental data we fitted
a logarithmic function that estimates the expected channel
corresponding to a pure tone of a given frequency following
the same procedure as in Section 2.3.1; the model explains
R? = 0.88 of the variance of the experimenal data.

2See Supplementary Figure S3 for a study on the dependence of the
DSI across the parameter space.
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To avoid the error introduced by the approximate trans-
formation from the frequency to the channel space of the
experimental results, we next computed Pearson correla-
tions between the model predictions in the channel space
and the sweep pitch shift measured in the experiments (Fig-
ure 10B). The model predictions were strongly correlated
with the data (r, = 0.98,p < 1072?); moreover, there was
a significant correlation between the variance of the model
responses and the standard error of the experimental data
(rp, = 0.60,p 0.0005; Figure 10C), indicating that the
larger variability in the pitch shift observed for the larger
Af can be understood as a consequence of a wider spread
activation across the spectral populations. Last, the model
also reproduced the up/down asymmetry (Figure 10D).

To study the dependence of the fitness with the parame-
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ter choice we recomputed the explained variance R? across
the parameter space of the model (Figure 11). The model
explained the experimental data in a wide section of the pa-
rameter space, with an average R? across a 5-point diameter
sphere around the final parameters of E[R?] = 0.784+0.03. Tt
is also interesting to consider the effect of fixing the effective
population time constant to 7 = 7™ It is clear that, even
considering lower 7™°™P than the physiologically valid nom-
inal value 7°™" = 20 ms, without an adaptive 7 the feed-
back mechanism of the model remains unactive (i.e., much
stronger NMDA currents (JYMPA ~ JAMPAY are necessary
to drive the spectral distribution towards the experimental
results.

3.2.3 Reproduction of previous results in the liter-
ature

Last, we tested whether the FM-feedback spectral model was
able to predict the pitch shift of additional data from the
earlier study by Brady and colleagues [2]. We chose their
stimuli because this was the only study that investigated the
dependence of the pitch shift with properties different than
Af. Specifically, in the experiment II from the original pa-
per, Brady and colleagues considered FM-sweeps with a fixed
20ms transition between 1000 Hz and 1500 Hz that was lo-
cated at different positions within a 90 ms stimulus (see Fig-
ure 12, left). In the experiment III, they used FM-sweeps in
the same Af but with transitions of varying durations (Fig-
ure 12, right).
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Figure 10: Predictions of the FM-feedback spectral model for FM-sweeps. (A): Shading matrices show the
distribution of the activation across channels (y-axis) for different sweep Af (z-axis). Squares printed over the distributions
mark the expected channel E[k] as defined in Equation (4). Solid error bars are estimations of the experimental results in
the channel space. The expected value agrees with the experimental data. Moreover, stimuli with larger Af seem to elicit
wider activation distributions than stimuli with smaller A f, mirroring the generally larger variance observed in the data
corresponding to the larger Af. (B/C): Scatter plots show the correlation between the perceived pitch and the expected
channel of the model response (B) and the correlation between the experimental standard error and the variance of the model
response (C). Grey dashed lines are the least-squares lines of the pooled data. (D): Error bars show the model predictions of
the up/down asymmetry coefficient asymm?] (see Equation (1)). Errorbars are estimations of the standard error calculated
based on the dispersion of the centroids for different f and the variance of the spectral distribution p of each condition.
Experimental data in the background is the same as in Figure 2, right.
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Figure 11: Experimental fit in relation to the model
parametrisation. Shading matrices show the explained
variance of the experimental data R* (white means R* = 1,
black means R? = 0) for different points in the parameter
space. Unless stated otherwise, parameters not varied in the
matrices correspond to the values in Table 2. The two left-
most plots show the dependence of R? with JYMPA and the
dynamics of the excitatory population time constants. Differ-
ent values of 7M™ were used to illustrate that the dynamic
effect (rather than the resulting shorter time constant) is cru-
cial to explain the experimental results; however, 72" was
constrained to 7™°™P = 20 ms based on to physiological ob-
servations [48]. The rightmost plot shows the dependence of
R? on the width (wws) and the scope (Aus) of the feedback
connections. Black crosses in the parameter space signal the

Figure 12: Schematic view of the stimuli from [2]. All
stimuli had the same duration (90ms) and frequency span
(1000-1500 Hz). In the first family, plotted on the left, the
transient was fixed to a 20 ms duration and its onset was
systematically varied so that the transition falls at different
segments of the stimulus. In the second family, plotted on
the right, the stimulus offset was fixed at 90 ms and the tran-
sient’s onset was varied between 10 and 50 ms, resulting in
transients of different durations. In these last stimuli, we ex-
tended the duration to 95 ms to prevent the ramping at the
end of the stimulus from overlapping with the FM transient.

final parametrisation.
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parameter value (unit) source

N 100 channels ad-hoc

dt 0.1ms ad-hoc
periph dt 0.01 ms ad-hoc

periph fmin 125 Hz [33]
periph fmax 10000 Hz [33]
rmemb 20 ms [48]
-memb 10 ms [48]

A 1mV [44]
gexcitatory 310 (VnC)~1 [34]
Jgrerarery 125 Hz [34]

excitatory 0.16s [54]
cinhibitory 615 (VnC)~1 [34]
[iphivitory 177 Hz [34]
g'mhibitery 0.087s [34]

It?g 0.23nA [34]
Ihy 0.10nA [34]

o 0.0007 nA [34]

5 0.641 [36]

T AMPA 2ms [36]

TOABA 5ms [36]

7 NMDA 100 ms [36]

JpMea 0.38nC tuned (1)

JAMPA 0.55nC tuned (2)

JMPA 0.67nC tuned (2)

JOABA 0.30nC tuned (2)

JNMDA 0.04nC tuned (3)

Oin 0.1 N channels tuned (2)
Oie 0.5 N channels tuned (2)
Oei 0.03 N channels tuned (2)
At 3ms/channel  tuned (2)
AWY 0.05 N channels tuned (2)
Aus 0.05 N channels tuned (3)
Wes 0.03 N channels tuned (3)

Table 2: Model parameters. Most parameters were taken
from the original studies that derived the mean field approx-
imations used in the model and are cited accordingly. Other
free parameters, like the number of bins of the tonotopic axis
N, were fixed to reasonable but arbitrary values at the begin-
ning of the model construction and were not adjusted during
the analyses (ad-hoc). Free parameters that were manually
tuned are labelled as tuned (z), where x is: 1, for parame-
ters tuned so that the spectral layer integrates the peripheral
representation correctly (see Section 2.3.1); 2, for parameters
tuned to achieve FM-direction selectivity; and 3, for parame-
ters tuned so that the feedback signalling resulted in a fair fit
between the model’s pitch predictions and the experimental
observations.
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We compared the predictions of the FM-feedback spectral
model with the experimental results reported in the original
paper (Figure 13). Although the dependence of pitch with
the sweep properties is much smoother in the model predic-
tions than in the experimental data, the trend and extreme
values are well reproduced by the model. Predictions showed
a strong Pearson’s correlation with the reported pitch shift
across both experiments (1, = 0.87, p < 107%; Figure 14)
and a weaker correlation between the variance of the acti-
vation distribution p and the experimental standard error
(rp = 0.46, p = 0.03).

The FM-feedback spectral model provides for a mechanis-
tic interpretation of these results. In Brady’s experiment II,
the transient duration is kept constant but its onset is varied
across the simulus duration. When the transient is located
near the beginning of the stimulus, the greatest part of the
sounds excites neurons encoding frequencies near the ending
side of the transient pushing the distribution of the responses
p towards the ending frequencies of the sweep fi. This shift
is larger than it would be expected for a sound without a
transient because of the feedback modulation of the later fre-
quencies exerted by the sweep network. When the transition
is located at the very end of the stimulus, the longer portion
of the stimulus exciting fo compensates for the shift in the
frequency distribution, bringing the perceived pitch closer to
the starting frequencies of the stimulus.

In Brady’s experiment III, the transient’s onset is kept con-
stant and it is the duration that is varied. The decreased
sweep pitch shift observed for shorter transition durations is
a consequence of the stimuli presenting a larger segment with
the initial frequency, thus shifting p towards fo. Larger tran-
sients covering more extended parts of the stimuli present the
same pitch shift observed in our experiments.

4 Sweep trains and further stimuli

The results described so far are in favour of the hypothe-
sis that a feedback system between direction-encoding and
frequency-encoding populations are responsible for the sweep
pitch shift. To validate this findings, this section introduces
a new set of stimuli specifically designed to constest this hy-
pothesis. The new stimuli, called here sweep trains, were
a continuous concatenation of several sweeps with the same
properties as the stimuli used in Section 2 and present the
same acoustical properties as the single sweeps. Thus, it
would be reasonable to hypothesise that, if the stimuli are
still perceived as a single acoustical object, they would elicit
the same pitch percept as their single-sweep subcomponents.
The FM-feedback spectral model, however, predicts that the
feedback system will only reduce the time constant of the
spectral populations during the processing of the first sweep
in the train, because they will already have an elevated firing
rate (and thus a low effective time constant) during the pro-
cessing of the subsequent sweeps in the train. Consequently,
the model predicts that the sweep trains will elicit a much
more subtle pitch shift than their single sweep counterparts.
This prediction is tested in a perceptual experiment analo-
gous to that of Section 2.
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Figure 14: Correlations between the FM-feedback

spectral model predictions and Brady’s experimental
results. Scatter plots show the correlation between the per-
ceived pitch and the expected channel of the model response
(left) and the correlation between the experimental standard
error and the variance of the model response (right). Grey
dashed lines are the least-squares lines of the pooled data.

4.1 Experimental methods

4.1.1 Participants

The same 8 participants who completed the first experiment
were invited to repeat the measurements with the new stim-
uli.

4.1.2 Stimuli

Stimuli were concatenations of 5 sweeps adding up to a to-
tal of 250 ms (sweep trains; see Figure 15). The sweeps were
taken from a subset of 18 elements from the first experiment
with 6 different frequency gaps Af € [—333,333] Hz. To en-
sure continuity of the stimulus waveform, the sweeps were
concatenated in the frequency domain. 5ms Hanning win-
dows were applied only at the very beginning and very end
of the sweep trains.

4.1.3 Experimental design

The matching procedure was the same as in the first experi-
ment: the participants matched the pitch of the sweep trains
to probe pure tones whose frequency they could adjust with
the aid of a computer software. To ensure that there were
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no effects of stimulus duration, the probe tones had the same
duration as the sweep trains (i.e., 250 ms). As in the first
experiment, each of the 18 sweep trains was matched four
times, so that there were 72 trials in the second experiment.
The relative order of the probe tone and the target sweep
train was also reversed in half of the trials. Thus, the sec-
ond experiment can be described as a 6 (different frequency
gaps) x 3 (average frequencies) X 2 (probe played first or
last) factorial design.

4.1.4 Experimental procedure

Since the participants were already familiar with the task,
the experiment contained no training. Four repetitions of
the 18 sweep-trains were distributed across 5 blocks following
the same principles as described in Section 2.1. Participants
typically completed the second experiment between 1 and 2
hours.

4.2 Experimental results

As expected, the magnitude of the pitch shift depended on
the size of the gap (Figure 16, Table 3). However, as qual-
itatively predicted by the FM-feedback spectral model, the
effect sizes of the correlation were lower than in the single-
sweep experiment (Table 3). Data also showed much higher
inter- and intra-subject variability than in the single-sweep
experiment®. After completing the experiment, participants
reported that the sweep train stimuli were harder to match
than the single-sweep counterparts. Although trains with
small Af were generally perceived as continuous tones, sub-
jects reported that a few trains (putatively those with the
largest Af) elicited a ringing-phone-like percept”.

Sweep-train stimuli show only a subtle up/down asymme-
try that did not reach statistical significance.

3See also Supplementary Figure S2.
4Stimuli from the first and from the second stimuli are available in
the Supplementary Materials.
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Figure 16: Sweep pitch shift for sweep trains. Kernel density estimations on the perceived pitch are plotted separately
for each of the 30 sweeps used in the experiment. The y-axis of each plot shows the magnitude of the sweep pitch shift Ap.
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f= 900 Hz 1200 Hz 1500 Hz

probe <> sweep — — — — — —
slope (+£0.04) 0.19 0.08 0.17 0.18 0.22 0.21
rp (p<1077) 054 ns. 0.60 061 066 0.59
rs (p<107%) 0.55 026 058 0.60 0.66 0.56

Table 3: Summary statistics on the relationship be-
tween the perceived pitch and Af for sweep trains.
The slope of the linear fit, Pearson’s correlation r, and Spear-
man’s correlation 75 for the relationship between fperceived
and Af are presented for each centre frequency f and direc-
tion of the presentation (probe before sweep train, —; and
sweep train before probe, ).

spectral model

—8— f =900 Hz
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—A— f=1500 Hz

temporal model
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IS Sy
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Figure 17: Predictions of the spectral and temporal
models for sweep trains. Predictions of the spectral model
(left) were precisely consistent across runs and thus only the
nominal value is plotted. To account for variability of the
temporal model (right), we plotted the average results across
ten runs; error bars represent standard errors. Cf. Figure 16.

4.3 Predictions from bottom-up models of pitch

Neither the temporal nor the spectral models were able to
successfully explain the sweep-train data (Figure 17). The
results were, however, generally more stable than in the sim-
ulations with the single sweeps: the trends of the negative
dependence of the pitch shift with the frequency gap are con-
sistent across different f, and the temporal model predictions
are much closer to the average frequency of the sweeps. This
gain in stability is probably a consequence of the longer dura-
tion of the trains, which allows for a more reliable integration
of the spectral information of the stimuli.

When using the optimal parameters derived for the single
sweep stimuli, D’Alessadro’s phenomenological model pre-
dicted the opposite effect of that observed: a negative de-
pendence between fperceivea and Af (m € [—1.12,—0.31]).
Attempting to fit the parameters to the sweep trains data
resulted in & ~ 0.06 ms™!, which resulted in equally unsat-
isfying results in the single-sweep condition. Since we failed
to find a set of parameters that simultaneously explained the
data of both, single sweeps and sweep trains, we concluded
that this model is unable to account for the experimental
results in a parsimonious way.
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4.4 Predictions of the FM-feedback spectral
model

Next, we assessed the ability of the FM-feedback spectral
model to quantitatively explain the effect size of the pitch
shift observed in the sweep trains. The fit with the exper-
imental data was comparable to that of the single sweep
stimuli: the model explained R? = 0.83 of the variance of
the data (Figure 18A) and the response distribution’s ex-
pected value was strongly correlated to the observed pitch
shift (r, = 0.99,p < 107'%; Figure 18B).

In the single-sweep data, the FM-feedback spectral model
related the variability of the sweep pitch shift to a wider
spread activation across the spectral populations during the
processing of sweeps encompassing lager frequency gaps.
Since this gap is related to the absolute frequency gap |Af|
but not to FM direction, the model would qualitatively pre-
dict similarly higher variabilities in the sweep pitch shift for
trains with the larger |Af|. The experimental results show
that this is indeed the case®. Moreover, analogously to the
single-sweep stimuli, the variance of the experimental data
was strongly correlated to the width of the model responses
(rp = 0.60, p = 0.0005; Figure 18C).

Last, we tested whether the different up/down asymme-
try (asymm“) observed in the single sweeps and sweep train
data could be quantitatively explained by the FM-feedback
spectral model. In the single-sweep data, the model pre-
dicts a stronger pitch shift magnitude |Ap| for up sweeps be-
cause, due to the compensation for the delay introduced by
the basilar membrane in response to low frequencies, these
elicit a more synchronous and stronger peak activation in
the auditory nerve [49], resulting in larger feedback currents.
Qualitatively, a much weaker asymmetry was expected in the
sweep-train data, since the effects of the feedback system are
virtually absent during the processing of the ending four fifths
of the stimuli.

Modelling results on the up/down asymmetry showed
an outstanding resemblance with the empirical data (Fig-
ure 18D), fully explaining the observed differences between
the two families of stimuli. Note that this is not an obvious
result of the model fitting for the single sweep data, as the ex-
pected difference between the absolute deviance fperceived — f
for up and down sweeps E[asymm'™¥] ~ 24 Hz is significantly
smaller than the average error of the model predictions with
respect to the data (Elerror] ~ 54 Hz).

5 Conclusion

In this work we used a perceptual effect involving FM and
pitch, the sweep pitch shift, to study how these two processes
interact with each other. Our results, in contrast with the
classical view of FM encoding as a bottom-up process [43],
suggested the presence of a predictive feedback modulation
stemming from neurons encoding FM direction and target-
ing neurons encoding the spectral properties of the stimuli.
Besides explaining several variants of the sweep pitch shift,
the suggested predictive mechanism increases the efficiency

5See Supplementary Figure S2, left.
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Figure 18: Predictions of the FM-feedback spectral model for sweep trains. (A): Shading matrices show the
distribution of the activation across channels (y-axis) for different sweep Af (z-axis). Squares printed over the distributions
mark the expected channel E[k] as defined in Equation (4). Solid error bars are estimations of the experimental results in
the channel space. The expected value agrees with the experimental data. Moreover, stimuli with larger Af seem to elicit
wider activation distributions than stimuli with smaller A f, mirroring the generally larger variance observed in the data
corresponding to the larger Af. (B/C): Scatter plots show the correlation between the perceived pitch and the expected
channel of the model response (B) and the correlation between the experimental standard error and the variance of the model
response (C). Grey dashed lines are the least-squares lines of the pooled data; scatter plots for the single sweep conditions
are included for comparison. (D): Error bars show the model predictions of the up/down asymmetry coefficient asymmt,
(see Equation (1)). Errorbars are estimations of the standard error calculated based on the dispersion of the centroids for
different f and the variance of the spectral distribution p of each condition.

of FM encoding by decreasing its metabolic cost [50], short- ham and Winkler [56]: i) “what precisely is meant by pre-
ening its processing time [51, 52], and enhancing direction diction?”, ii) “which generative models [within the hierarchy]
selectivity. make the predictions?”, and iii) “what within the predictive
framework is proposed to correlate with perceptual experi-
ence?”. In the FM-feedback spectral model, the predictions
can be summarised as the probability distribution of patterns
of activation expected to come next in the lower level given
The presence of predictive feedback modulation in the sub- what has been encoded so far in the higher level. These con-
cortical sensory pathway been shown before in humans [13] ditional probability distributions are hardcoded in the top-
and non-human mammals [53]. Previous studies often inter- down connections stemming from the neurons holding the
preted it in the context of the predictive coding framework high-level representation and targeting the neurons holding
[24, 54, 25], a theory of sensory processing that postulates the lower level representations. Such connectivity patterns
that sensory information is encoded as prediction error; i.e., would represent the statistics between the representations in
that neural activity at a given level of the processing hierar- the two levels if they were naturally formed through synaptic
chy encodes the residuals of the sensory input with respect plasticity after sufficient exposure to the stimuli. Last, the
to a generative model encoded higher in the hierarchy. perceptual experience in the FM-feedback spectral model is
The FM-feedback spectral model can also be understood in encoded in the activation along the two hierarchical stages,
the light of this formalism: it presents three hierarchical lay- which encode different aspects of the stimuli.
ers of abstraction (the inputs from the peripheral system, the
frequency network, and the sweep network) and each layer
performs predictions on the sensory input incoming at the
immediately lower representation of the hierarchy. In the
case of the frequency network, the temporal integration can Another key difference between the FM-feedback spectral
be interpreted as the prediction that the input’s distribu- model’s architecture and the classical predictive coding mi-
tion across cochlear channels will change with a much longer crocircuit is that, rather than encoding the residuals of the
time constants as that of the fluctuations introduced by neu- spectral representation with respect to the FM-sweep repre-
ronal noise. However, unlike the classical predictive coding sentation, neurons in the spectral layer simply encode the
microcircuit where predictions and prediction error are kept spectral content of the stimulus. However, since the decod-
in separate neural ensembles [55], the frequency and sweep ing of the predictable parts of the stimuli is faster and its
network simultaneously hold a representation that is both, metabolic cost lower, predictability potentially ensues a sig-
descriptive for their own representation and predictive for nificant decrease on the amount of signal produced during
the immediately lower representation of the hierarchy. the encoding. Such mechanism would explain why even ex-
Combining predictions and representations in the same pected stimuli, for which the residual should theoretically be
neural code solves some of the open questions of classical zero, do still evoke measurable responses (as in, for instance,
predictive coding architectures recently summarised by Den- stimulus-specific adaptation [57, 53]).

5.1 Relation to predictive coding and hierarchi-
cal processing strategies
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5.2 Bottom-up pitch models and pitch codes

Two codes of pitch-related information are available in the
auditory nerve at early stages of the auditory pathway: 1)
the place-code or spatial information, produced by the spec-
tral decomposition of the stimuli performed by the basilar
membrane; and 2) the time-code or temporal information,
comprised in the spike timings of the neurons across the au-
ditory nerve that are phase locked to the stimulus waveform
(see [58] for a review).

Our simulations showed that the time-code does not suf-
fice to explain the pitch of the FM-sweeps used in the exper-
iments. This is most likely a consequence of the fast change
rate in the periodicities of fast FM stimuli. Typically, pitch
decisions based on the auditory nerve temporal code are made
after integrating over four cycles of the period of the stimuli
[59, 60], coinciding with the duration threshold for accurate
pitch discrimination [61]. However, our stimuli presented an
average change of ~ 25Hz across four repetitions of their
average frequency, making this integration virtually impos-
sible. Thus, the FM-feedback spectral model assumes that
the pitch of FM sweeps and pure tones is encoded in a place-
code, siding with the idea that spatial information can still
play a crucial role in pitch processing.

The bottom-up integration of the place-code, cornerstone
of the classical place theories of pitch [32], predicted a sweep
pitch shift in the opposite direction of the experimental data;
i.e., a shift towards the frequencies expressed at the beginning
of the sweep. This is a direct consequence of the global adap-
tation effects experienced in the auditory nerve after the first
few milliseconds of the stimuli [33]. Even without such adap-
tation, the plain integration proposed by the place models
would predict a null sweep pitch shift. Feedback modula-
tion facilitating the encoding of the predictable parts of the
sweeps is thus crucial to account for the experimental data.

5.3 Comparison with previous measurements of
the sweep pitch shift

Our experimental findings qualitatively replicated the sweep
pitch shift effect found in previous studies; namely, we found
that the pitch elicited by FM-sweeps was biased towards the
frequencies spanned in the ending part of the sweeps [2], and
that the perceptual bias is monotonically related to the fre-
quency gap Af [3, 4]. On average, we estimated a putative
linear relation between the pitch shift Ap and Af of around
m =~ 0.38, slightly higher than Brady’s [2] (m ~ 0.34 with
transitions of 50 ms) and Nabelek’s [3] (m ~ 0.32 with transi-
tions of 40 ms) reports, and significantly higher than Rossi’s
[4] (m = 1/6 ~ 0.17 with transitions of 200 ms) estimation.
Since Rossi’s transitions were 5 times longer than ours, the
estimations are difficult to compare. However, the disagree-
ment seems to indicate that the pitch shift is stronger with
shorter durations. This observation would be fully compati-
ble with the mechanism of predictive facilitation described in
the FM-feedback spectral model: Whilst only the very end-
ing segment of the stimulus is facilitated in the short sweeps,
since the time to decode FM direction is independent of sweep
duration, in a long sweep the facilitation currents would af-
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fect a much larger portion of the sound, potentially including
frequencies occurring before f.

The more subtle disagreement with Brady’s and Nabelek
data has three possible explanations: 1) the differences are
a result of the three studies having relatively low sample
sizes in comparison with the high inter-subject variability
of the effect (see Figure 3); 2) Brady’s and Nabelek’s stud-
ies do not report any participant selection criteria: perhaps
the inclusion of listeners that were unable to perform the
match resulted in experimental results biased towards a null
effect (i.e., towards m = 0); and 3) Nabelek and Brady used
analogue synthesisers to produce their stimuli, resulting in
sweeps with a richer spectral contour than our digital FM-
sinusoids, which might have resulted in a weaker effect (Fig 6
in [2] indicates that the spectral properties of the sweep do
indeed affect the pitch shift: sweeps of the same duration,
spectral scope and Af produced different sweep pitch shift
magnitudes).

5.4 FM encoding and physiological location of
the sweep and spectral layers

FM direction selectivity was modelled according to the princi-
ples of delayed excitation [42, 22, 18]. Although both delayed
excitation and sideband inhibition contribute to direction se-
lectivity in the mammal auditory pathway [39, 40, 15], the
two mechanisms are often redundant and yield equivalent re-
sults when embedded in a neuronal model [43]. We chose to
use delayed excitation alone in order to restrain the number
of free parameters of the model.

Although we did not attempt to model FM rate selectiv-
ity, the FM-feedback spectral model’s DSIs monotonically
increased with Af, a property that could be exploited in fur-
ther developments of the model to encode modulation rate.
FM rate encoding has been reported in mice [15, 21], rats
[19] and more extensively in bats (e.g., [62, 40]).

The earliest neural centre within the auditory pathway
showing FM direction selectivity in mammals is the in-
ferior colliculus [18, 15, 16, 17], although subsequent nu-
clei (medial geniculate body [18, 19] and auditory cortex
[20, 21, 22, 16, 23]) show generally stronger DSIs. Thus, the
sweep layer postulated in the FM-feedback spectral model
could be implemented even at early stages of the auditory
hierarchy. Similarly, since all the nodes in the ascending
auditory pathway contain tonotopically arranged nuclei, the
spectral layer could be putatively located as early as in the
cochlear nucleus. Thus, the putative physiological location
of the mechanisms described here remains an open question.

In this work we have harnessed a well-established percep-
tual phenomenon to inform a model of FM direction encod-
ing. We have shown that neither phenomenological nor mech-
anistic bottom-up models of auditory processing are able
to explain the experimental data. We concluded that FM
direction-selective neurons at a higher stage of the auditory
processing hierarchy must alter the way that spectral infor-
mation is encoded. The main contribution of this work is a
specific theory of how this feedback modulation might be ex-



erted. Given the paramount role played by fast FM-sweeps
in speech, the predictive mechanisms described here could
be part of a larger hierarchical network responsible for the
encoding of speech sounds in the human auditory pathway.
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Figure S19: Effect of the presentation order on Ap. Kernel density estimations of the difference between the perceived
pitch evaluated when the sweep was presented before the probe tone f;g ceivea and the perceived pitch evaluated when
the probe tone was presented before the sweep fpé ceivea; 1O systematic effect of the presentation order was found for any
of the conditions. Each sample of the distributions corresponds to the difference of the average perceived pitch between

presentation orders of the same Af for a given subject and centre frequency (N = 8 x 3 = 24). Error bars show the average
and the standard error of the groups.
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Figure S20: Variance of the perceived pitch in sweep trains. Left: Kernel density estimations of the intra-subject
standard deviation of the sweep train pitch shift magnitude Ap, plotted separately for the different frequency gaps Af.
Each point in the distributions corresponds to the standard deviation of the perceived pitch of a sweep in one subject (i.e.,
in each distribution there are 8 x 3 points, one for each subject and f). The variance is monotonically correlated to the
absolute gap |Af| (rs = 0.75, p < 10727). Right: Slope m of the linear fit foerceivea ~ f +m Af for the sweep train stimuli,

independently for each of the eight subjects; error bars mark the 95% confidence intervals of the estimations.
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Figure S21: Direction selectivity dependence with the model parametrisation. Shading matrices show the average
DSI in the up (top; white means DSIT = 1) and down (bottom; black means DSI* = —1) network for different locations of
the parameter space. Averages were performed across different f and |Af|. Unless stated otherwise, parameters not varied
in the matrices correspond to the values described in Table II in the main text. The first two columns show the dependence
of the DSI on the baseline delay 0t and the width of the A,; with (left) and without (right; here we set JNMPA = ()
top-down connections. The third column shows the dependence of the DSI on the width of the excitatory-to-inhibitory
(0ei) and of the inhibitory-to-excitatory (oi.) connectivity matrices. The rightmost column shows the dependence of the
DSI with the inhibitory-to-excitatory conductivity JAMPA and the excitatory-to-inhibitory JEABA effective conductivities.
Black/white crosses in the parameter space signal the final parametrization. Expectedly, DSI increases monotonically with
the amount and extend of mutual inhibition between the up and down networks but, since an overly wide excitatory-to-
inhibitory connection would prevent the network from decoding simultaneous up and down sweeps occurring at different
frequency ranges, we kept oe; < 0.05 N.
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