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On the B-Semiampleness Conjecture

Enrica Floris and Vladimir Lazić

Abstract. The B-Semiampleness Conjecture of Prokhorov and Shokurov predicts that the moduli
part in a canonical bundle formula is semiample on a birational modification. We prove that the
restriction of the moduli part to any sufficiently high divisorial valuation is semiample, assuming
the conjecture in lower dimensions.
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Titre. Sur la conjecture de B-semi-amplitude

Résumé. La conjecture de B-semi-amplitude de Prokhorov et Shokurov prédit que la partie modu-
laire de la formule du fibré canonique doit être semi-ample sur une modification birationnelle. En
supposant la validité de cette conjecture en dimensions inférieures, nous montrons que la partie
modulaire est semi-ample en restriction à toute valuation divisorielle suffisamment haute.
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1. Introduction

Let (X,∆) be a complex projective pair with log canonical singularities and let f : X → Y be a morphism
such that

KX +∆ ∼
Q
f ∗D (1)

for some Q-Cartier Q-divisor D on Y . We say that f is an lc-trivial fibration; see Section 3 below. A
typical example is when KX +∆ is semiample and f is the associated Iitaka fibration; a plethora of similar
situations occurs in algebraic geometry. It is a fundamental question whether there exists a log canonical
structure (Y ,∆Y ) such that D ∼

Q
KY +∆Y : in other words, whether the singularities of X descend to Y .

This is an important question for at least two reasons: first, an affirmative answer would show that log
canonical singularities form a “stable” category, and second, it enables proofs by induction.

The affirmative answer to the question above is known in several important special cases: when f is a
fibration and (X,∆) has klt singularities [Amb05], when f is generically finite [FG12], and when Y is a curve
[Amb04, Theorem 0.1].

With notation as in (1), it is known that

D ∼
Q
KY +BY +MY ,

where BY (the discriminant) is closely related to the singularities of f , and the divisor MY (the moduli
divisor ) conjecturally carries information on the birational variation of the fibres of f . A study of formulas
of this type – of canonical bundle formulas – began with Kodaira’s canonical bundle formula for elliptic
surface fibrations.

Much is known about the birational behaviour of such formulas: In particular, it is known that, after
passing to a certain birational model Y ′ of Y , the divisor MY ′ is nef and for any higher birational model
Y ′′ → Y ′ the induced MY ′′ on Y

′′ is the pullback of MY ′ [Kaw98, Amb04, Kol07]. We call such a variety
Y ′ an Ambro model of f .

The following is a conjecture of Prokhorov and Shokurov [PS09, Conjecture 7.13], and it is the most
important open problem regarding canonical bundle formulas.

B-Semiampleness Conjecture. Let (X,∆) be a pair and let f : (X,∆)→ Y be an lc-trivial fibration to an
n-dimensional variety Y , where the divisor ∆ is effective over the generic point of Y . If Y is an Ambro model of
f , then the moduli divisor MY is semiample.

A proof of this conjecture would give an affirmative answer to the question stated at the beginning of
this paper. Note that when the singularities of (X,∆) are only klt, it was sufficient to show a weaker version
– that the moduli part is nef and b-good, as demonstrated by Ambro in [Amb05].

The B-Semiampleness Conjecture is known when Y is a curve [Amb04, Theorem 0.1], when a general
fibre of f is a curve by the classical work of Kodaira and by [PS09, Theorem 8.1], or when a general fibre of
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f is a smooth non-rational surface [Fuj03, Fil18]; see also [BC16] showing the semiampleness of a “nearby”
divisor. Often a crucial role in the proof is played by the existence of a moduli space for the fibres. Nothing
has been previously known in general when dimY ≥ 2.

In the remainder of the paper, we say that the B-Semiampleness Conjecture holds in dimension n, if
it holds (in the notation from formulation of the B-Semiampleness Conjecture) for all lc-trivial fibrations
f : (X,∆)→ Y with dimY = n.

The content of the paper. The main result of this paper is that the moduli part of an lc-trivial fibration
is semiample when restricted to any divisorial valuation over its Ambro model:

Theorem A. Assume the B-Semiampleness Conjecture in dimension n− 1.
Let (X,∆) be a pair and let f : (X,∆)→ Y be an lc-trivial fibration to an n-dimensional variety Y , where

the divisor ∆ is effective over the generic point of Y . Assume that Y is an Ambro model for f .
Then for every birational model π : Y ′→ Y and for every prime divisor T on Y ′ with the normalisation T ν

and the induced morphism ν : T ν → Y ′ , the divisor ν∗π∗MY is semiample on T
ν .

If the moduli part MY of the fibration is big and we consider only components of the locus B+(MY )
where it is not ample (the augmented base locus of MY , see Definition 2.2), we can relax the assumptions on
the B-Semiampleness Conjecture:

Theorem B. Assume the B-Semiampleness Conjecture in dimensions at most n− 2.
Let (X,∆) be a pair and let f : (X,∆)→ Y be an lc-trivial fibration to an n-dimensional variety Y , where

the divisor ∆ is effective over the generic point of Y . Assume that Y is an Ambro model for f and thatMY is big.
Then for every birational model π : Y ′ → Y and for any divisorial component T of B+(π∗MY ) with the

normalisation T ν and the induced morphism ν : T ν → Y ′ , the divisor ν∗π∗MY is semiample on T
ν .

Immediate corollaries are:

Corollary C. Let (X,∆) be a pair and let f : (X,∆)→ Y be an lc-trivial fibration to a surface Y , where the
divisor ∆ is effective over the generic point of Y . Assume that Y is an Ambro model for f .

Then for every divisor T on Y with the normalisation T ν and the induced morphism ν : T ν → Y , the divisor
ν∗MY is semiample.

If additionally MY is big, then ν
∗MY ∼Q 0 for every divisorial component T of B+(MY ) with the normali-

sation T ν and the induced morphism ν : T ν → Y .

Corollary D. Let (X,∆) be a pair and let f : (X,∆)→ Y be an lc-trivial fibration to a threefold Y , where the
divisor ∆ is effective over the generic point of Y . Assume that Y is an Ambro model for f and that MY is big.

Then ν∗MY is semiample for every divisorial component T of B+(MY ) with the normalisation T ν and the
induced morphism ν : T ν → Y .

Sketch of the proof. The proof of Theorem A is very technical, and the core of the arguments is
contained in Section 4. In Proposition 4.2 we use the Minimal Model Program to achieve, roughly, the
situation where over T there exists a log canonical centre S of (X,∆) and an lc-trivial fibration h : (S,∆S )→
T whose moduli part is almost MY |T . This part of the proof is somewhat similar to and inspired by the
proof in [FG14]. An important difference is that we do not cut down to curves in order to use the semistable
reduction, but we study in detail those divisors which are not contracted by the MMP.

To this end, we introduce acceptable lc-trivial fibrations; roughly speaking, these fibrations might not
come with a sub-boundary ∆ which is effective on a general fibre of the lc-trivial fibration, but are obtained
from such a fibration by blowing up. This suffices to ensure that, by the results of Nakayama [Nak04], the
MMP that we run actually terminates.

Finally, a careful choice of a base change in Proposition 4.4 and an analysis of the ramification loci of
the finite part of the Stein factorisation of the map f |S allow to finish the proof.
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We mention here that this all uses many foundational results of Kawamata and Ambro.

A reduction result. As a by-product of the techniques employed in the proofs, in Section 5 we reduce
the B-Semiampleness Conjecture to a much weaker Conjecture 5.1.

Theorem E. Assume that the B-Semiampleness Conjecture holds for klt-trivial fibrations f : (X,∆)→ Y , where
(X,∆) is a log canonical pair, ∆ ≥ 0, the moduli divisor MY is big and dimY ≤ n.

Then the B-Semiampleness Conjecture holds in dimension n.

The result says that it suffices to prove the B-Semiampleness Conjecture for klt-trivial fibrations
f : (X,∆) → Y , where ∆ is effective and the moduli divisor of f is big. The method of the proof is
similar to that in Section 4, together with a quick application of a result of Ambro [Amb05, Theorem 3.3].
This improves on the discussion and results in [Fuj15, Section 3].

Consequently, in Theorems A and B it suffices to assume Conjecture 5.1 instead of the B-Semiampleness
Conjecture.

2. Preliminaries

We work over C. We denote by ≡, ∼ and ∼
Q

the numerical, linear and Q-linear equivalence of divisors
respectively. For a decomposition of a Weil Q-divisor D =

∑
diDi into prime components and a real

number α, we denote

Dred =
∑

Di , D≥α :=
∑
di≥α

diDi and D≤α :=
∑
di≤α

diDi ,

and similarly for D>α , D<α and D=α . If f : X → Y is a proper surjective morphism between normal
varieties and D is a Weil R-divisor on X, then Dv and Dh denote the vertical and the horizontal part of D
with respect to f ; the relevant map will be clear from the context. For instance, the notation D≥0v denotes
the non-negative part of the vertical part of D .

2.A. Base loci

We start with the following well-known result; we include the proof for the benefit of the reader.

Lemma 2.1. Let f : X → Y be a surjective morphism between normal projective varieties. Let D be a Cartier
divisor on Y . Then D is semiample if and only if f ∗D is semiample.

Proof. Since necessity is clear, it suffices to prove sufficiency. So assume that f ∗D is semiample, and we
may assume that f ∗D is basepoint free. By considering the Stein factorisation of f , it suffices to consider
separately the cases when either f has connected fibres or f is finite.

When f has connected fibres, pick a closed point y ∈ Y and a closed point x ∈ f −1(y). Since f ∗D is
basepoint free, there exists DX ∈ |f ∗D | such that x < SuppDX . As H0(X,f ∗D) ' H0(Y ,D), there exists a
divisor DY ∈ |D | such that DX = f ∗DY . Then it is clear that y < SuppDY , which shows that D is basepoint
free.

Now assume that f is finite. If X◦ and Y ◦ are the smooth loci of X and Y , respectively, consider the
open sets UY := Y ◦ \ f (X \X◦) ⊆ Y and UX := f −1(UY ) ⊆ X. By normality of X and Y , we have

codimX(X \UX) = codimY (Y \UY ) ≥ 2,

and the map f |UX : UX →UY is flat by [Har77, Exercise III.9.3(a)]. Then, by [Ful98, Example 1.7.4], it yields
(f |UX )∗(f |UX )

∗(D |UY ) = (degf )(D |UY ) hence

f∗f
∗D = (degf )D. (2)

Now, for any point y ∈ Y , a general element E ∈ |f ∗D | avoids the finite set f −1(y), hence y < Suppf∗E.
Since f∗E ∈ |(degf )D | by (2), this shows that (degf )D is basepoint free. �
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We recall the definition of stable and augmented base loci of Q-divisors.

Definition 2.2. Let D be a Q-Cartier Q-divisor on a normal projective variety X. If D is integral, the
base locus of D is denoted by Bs |D |. The stable base locus of D is

B(D) =
⋂

D∼
Q
D ′≥0

SuppD ′ ,

and the augmented base locus of D is

B+(D) =
⋂
n∈N>0

B
(
D − 1

nA
)
,

where A is an ample divisor on X; this definition does not depend on the choice of A. Clearly B(D) ⊆
B+(D), and both B(D) and B+(D) are closed subsets of X. The set B+(D) is empty if and only if D is
ample, and is different from X if and only if D is big.

We need the following lemma in the proof of Theorem B.

Lemma 2.3. Let X be a projective manifold and let D be a nef and big Q-divisor on X. Let T ⊆ B+(D) be a
prime divisor. Then OT (D) is not big.

Proof. Arguing by contradiction, we assume that L := OT (D) is big. Fix a point x ∈ T \B+(L) which does
not belong to any other component of B+(D). Since x ∈ B+(D), by [Nak00, Theorem 0.3] there exists a
positive dimensional subvariety V ⊆ B+(D) ⊆ X such that x ∈ V and DdimV ·V = 0. By the choice of x we
necessarily have V ⊆ T , and hence

LdimV ·V = 0.

But then V ⊆ B+(L) again by [Nak00, Theorem 0.3], hence x ∈ B+(L), a contradiction. �

2.B. Pairs and resolutions

A pair (X,∆) consists of a normal variety X and a Weil Q-divisor ∆ such that KX +∆ is Q-Cartier. A pair
(X,∆) is log smooth if X is smooth and the support of ∆ is a simple normal crossings divisor. In this paper,
unless explicitly stated otherwise, we do not require that ∆ is an effective divisor.

A log resolution of a pair (X,∆) is a birational morphism f : Y → X such that Y is smooth, the
exceptional locus Exc(f ) is a divisor and the divisor f −1∗ ∆+Exc(f ) has simple normal crossings support.

In this paper we use the term embedded resolution of a pair (X,∆) in the following strong sense: it is
a log resolution of the pair which is an isomorphism on the locus where X is smooth and ∆ has simple
normal crossings. The existence of embedded resolutions in this sense was proved in [Sza94], see also
[Kol13, Theorem 10.45(2)].

We will need the following lemma in the proof of Proposition 4.4.

Lemma 2.4. Let π : X ′ → X be a finite morphism between normal proper varieties, and let f̃ : Ỹ → X ′ be a
birational morphism. Then there exists a birational morphism f : Y → X such that, if Y ′ is the normalisation of
the main component of the fibre product X ′ ×X Y and f ′ : Y ′ d Ỹ is the induced birational map, then (f ′)−1 is
an isomorphism at the generic point of each f̃ -exceptional prime divisor on Ỹ .

X ′

π
��

Ỹ
f̃oo Y ′

f ′oo

��
X Y

foo

Moreover, we may assume that f is a composition of blowups along proper subvarieties.
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Proof. Each exceptional divisor on Ỹ gives a divisorial valuation E′i over X ′ . By the proof of [DL15,
Proposition 2.14(i)] there are geometric valuations Ei over X such that the following holds:

Let f : Y → X be any birational model such that all valuations Ei are realised as prime divisors on Y ;
we can assume that f is a sequence of blowups along proper subvarieties by [KM98, Lemma 2.45]. If Y ′ is
the normalisation of the main component of the fibre product X ′ ×X Y , then every valuation E′i is a prime
divisor on Y ′ .

Now, since the E′i are prime divisors on both Ỹ and Y ′ , the induced birational map f ′ : Y ′d Ỹ has to
be an isomorphism at the corresponding generic points, which proves the lemma. �

Definition 2.5. Let (X,∆) be a pair and let π : Y → X be a birational morphism, where Y is normal. We
can write

KY ∼Q π∗(KX +∆) +
∑

a(Ei ,X,∆) ·Ei ,

where Ei ⊆ Y are distinct prime divisors and the numbers a(Ei ,X,∆) ∈Q are discrepancies. The closure of
the image of a geometric valuation E on X is the centre of E on X, denoted by cX(E). The pair (X,∆) is klt,
respectively log canonical, if a(E,X,∆) > −1, respectively a(E,X,∆) ≥ −1, for every geometric valuation E
over X.

The pair (X,∆) is dlt if ∆ ≥ 0 and there is a closed subset Z ⊆ X such that X \Z is smooth, ∆|X\Z is a
simple normal crossings divisor, and if cX(E) ⊆ Z for a geometric valuation E over X, then a(E,X,∆) > −1.

A closed subset Z ⊆ X is a log canonical centre of a log canonical pair (X,∆) if Z = cX(E) for some
geometric valuation E over X with a(E,X,∆) = −1.

Let f : (X,∆) → Y be a proper morphism and let Z ⊆ Y be a closed subset. Then (X,∆) is klt,
respectively log canonical, over Z (or over the generic point of Z) if a(E,X,∆) > −1, resp. a(E,X,∆) ≥ −1,
for every geometric valuation E over X with f

(
cX(E)

)
= Z . We say that a closed subvariety S of X is a

minimal log canonical centre of (X,∆) over Z if S is a minimal log canonical centre of (X,∆) (with respect to
inclusion) which dominates Z .

The following is [Fuj07, Proposition 3.9.2], see also the proof of [Kol13, Theorem 4.16].

Proposition 2.6. Let (X,∆) be a dlt pair. Let ∆=1 =
∑
i∈I Di be the decomposition into irreducible components.

Then S is a log canonical centre of (X,∆) with codimX S = k if and only if S is an irreducible component of
Di1 ∩Di2 ∩ · · · ∩Dik for some {i1, i2, . . . , ik} ⊆ I . Moreover, S is normal and it is a log canonical centre of the dlt
pair

(
Di1 , (∆−Di1)|Di1

)
.

Definition 2.7. Let (X1,∆1) and (X2,∆2) be two pairs. A birational map θ : X1d X2 is crepant birational
if a(E,X1,∆1) = a(E,X2,∆2) for every geometric valuation E over X1 and X2. If additionally we have a
commutative diagram

X1

f1   

θ // X2

f2~~
Y

for some variety Y , then we say that θ is crepant birational over Y .

We will need the following lemma in the proof of Proposition 4.2.

Lemma 2.8. Let (X,∆) be a dlt pair such that KX + ∆ ∼
Q
F, where F is an effective Q-divisor having no

common components with ∆=1. Assume that there exists a smooth open subset U ⊆ X which intersects every log
canonical centre of (X,∆), and such that the divisor (∆+F)|U has simple normal crossings support.

Then any (KX +∆)-MMP is an isomorphism at the generic point of each log canonical centre of (X,∆), and
moreover, it induces an inclusion-preserving bijection from the set of log canonical centres of (X,∆) to the set of log
canonical centres at each step of the MMP.
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Proof. For i ≥ 0 let (Xi ,∆i) be the pairs in the steps of this MMP with (X0,∆0) := (X,∆), and let Fi be the
strict transform of F on Xi .

Step 1. Let θi : Xi → Zi be the extremal contraction at the i-th step of the MMP. If Γi is a curve on Xi
contracted by θi , then

Fi · Γi = (KXi +∆i) · Γi < 0,

and hence Exc(θi) ⊆ SuppFi .

Step 2. We now show by induction on i that:

(a)i θi is an isomorphism at the generic point of each log canonical centre of (Xi ,∆i), and

(b)i there exists a smooth open subset Ui ⊆ Xi containing the generic point of each log canonical centre
of (Xi ,∆i) such that (∆i +Fi)|Ui has simple normal crossings support.

Indeed, note that (b)0 holds by assumption. Next, assume that (b)i holds for some index i. Let P be a log
canonical centre of (Xi ,∆i). Then the generic point of P belongs to Ui and P is an irreducible component
of an intersection of components of ∆=1

i by Proposition 2.6, hence P cannot be contained in SuppFi by
(b)i . By Step 1, the map θi is an isomorphism at the generic point of P , which shows (a)i . Therefore, by
possibly shrinking Ui , we may assume that θi |Ui is an isomorphism, and we define Ui+1 as θi(Ui) if θi is
divisorial, or as the image of Ui by the corresponding flip if θi is a flipping contraction. This shows (b)i+1.

Step 3. Finally, the last statement in the lemma follows immediately from Step 2, from the definition of
dlt singularities, and the fact that the MMP does not decrease discrepancies. �

2.C. Weakly exceptional divisors

We use the relative Nakayama-Zariski decomposition of pseudoeffective divisors as in [Nak04, Chapter III].
Note that by [Les16] this is not always well-defined; however, in all the cases we consider in this paper, the
decomposition exists and behaves as in the absolute case. Note that one can define this decomposition on
any Q-factorial variety; below we give additional comments when we use it on non-smooth varieties.

The following definition is crucial for applications in Sections 4 and 5. Note that part (b) differs
somewhat from that in [Nak04], see Remark 2.13.

Definition 2.9. Let f : X → Y be a projective surjective morphism of normal varieties and let D be an
effective Weil R-divisor on X such that f (D) , Y . Then D is:

(a) f -exceptional if codimY Suppf (D) ≥ 2,

(b) of insufficient fibre type over Y if f (D) has pure codimension 1 and for every prime divisor Γ ⊆ f (D)
there exists a divisor E * SuppD such that f (E) = Γ .

(c) weakly f -exceptional if there are effective divisors D1 and D2 such that D = D1 +D2, where D1 is
f -exceptional and D2 is of insufficient fibre type over Y .

Let additionally g : Y → Z be a projective surjective morphism of normal varieties and let Dh and Dv
denote the horizontal and vertical parts of D with respect to g ◦ f . If Dh is f -exceptional and Dv is weakly
(g ◦ f )-exceptional, then we call D an (f ,g)-EWE divisor.

Remark 2.10. The abbreviation EWE stands for “exceptional-weakly-exceptional”.

Proposition 2.12 shows the most important property of EWE divisors.

Lemma 2.11. Let f : X → Y and g : Y → Z be projective surjective morphisms with connected fibres between
normal varieties, assume that X is smooth, and let D be an effective (f ,g)-EWE divisor on X. Then there exists
a component Γ of D such that OΓ (D) is not (g ◦ f )|Γ -pseudoeffective over g

(
f (Γ )

)
.
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Proof. Let Dh and Dv denote the horizontal and vertical parts of D with respect to g ◦ f . Assume first
that Dh = 0. If Dv is (g ◦ f )-exceptional, we are done by [Nak04, Lemma III.5.1]. Otherwise, choose a
prime divisor Γ ⊆ SuppDv such that g

(
f (Γ )

)
is a divisor. Then OΓ (D) is not (g ◦ f )|Γ -pseudoeffective over

g
(
f (Γ )

)
by [Nak04, Lemma III.5.2].

Thus we may assume that Dh , 0. By [Nak04, Lemma III.5.1] there is a component Γ of Dh such
that OΓ (Dh) is not (f |Γ )-pseudoeffective over f (Γ ), hence OΓ (Dh) is not (g ◦ f )|Γ -pseudoeffective over
g
(
f (Γ )

)
= Z . Since Dv does not intersect the generic fibre of g ◦ f , we obtain that OΓ (Dh +Dv) is not

(g ◦ f )|Γ -pseudoeffective over Z, which implies the lemma. �

Proposition 2.12. Let f : X→ Y and g : Y → Z be projective surjective morphisms of normal varieties, assume
that X is smooth, and let D be an effective (f ,g)-EWE divisor on X. Then D =Nσ (D;X/Z).

Proof. The proof goes verbatim as the proof of [Nak04, Proposition III.5.7], replacing [Nak04, Lemma III.5.5]
with Lemma 2.11. �

Remark 2.13. The definition of insufficient fibre type above is slightly different from (and more precise
than) the one in [Nak04, §III.5.a]. In order for [Nak04, Corollary III.5.6 and Proposition III.5.7] to hold,
one needs to work with the definition above; this is in fact implicit from the proofs of these two statements
in op. cit. If one works with the definition as in op. cit., one can easily construct a counterexample: let
f : X → Y be a fibration from a smooth surface to a smooth curve, let F1 and F2 be two distinct fibres
of f and let π : X̃ → X be the blowup of a point in F1. Then π

−1
∗ F1 +π

∗F2 would be of insufficient fibre
type over Y , and [Nak04, Proposition III.5.7 and Lemma III.4.2] would imply that Nσ (π∗F2;Z/Y ) = π∗F2,
a contradiction since π∗F2 is (f ◦π)-nef.

We need in this paper the MMP with scaling as described in [Bir10, Definition 3.2], and the fact that log
canonical flips exist [Bir12, HX13]. We also need the following.

Lemma 2.14. Let (X,∆) be a Q-factorial dlt pair and let π : X→U be a projective morphism such that KX+∆
is π-pseudoeffective. If Nσ (KX +∆;X/U ) is an R-divisor, then any Minimal Model Program of KX +∆ with
scaling of an ample divisor over U contracts precisely the components of Nσ (KX +∆;X/U ).

Proof. For i ≥ 0, let (Xi ,∆i) be the pairs in a (KX +∆)-MMP with scaling of an ample divisor over U , with
(X0,∆0) := (X,∆). Let (pi ,qi) : Wi → X × Xi be a smooth resolution of indeterminacies of the induced
birational map ϕi : Xd Xi . Then there exists an effective qi-exceptional divisor Ei on Wi such that

p∗i (KX +∆) ∼
Q
q∗i (KXi +∆i) +Ei . (3)

Analogously as in the proof of [GL13, Lemma 2.16] we have

Nσ
(
q∗i (KXi +∆i) +Ei ;Wi/U

)
=Nσ

(
q∗i (KXi +∆i);Wi/U

)
+Ei , (4)

and the first two lines of the proof of [Nak04, Lemma III.5.15] give

Nσ (KX +∆;X/U ) = pi∗Nσ
(
p∗i (KX +∆);Wi/U

)
(5)

and
Nσ (KXi +∆i ;Xi/U ) = qi∗Nσ

(
q∗i (KXi +∆i);Wi/U

)
. (6)

Then:

Nσ (KXi +∆i ;Xi/U ) = qi∗Nσ
(
q∗i (KXi +∆i);Wi/U

)
by (6)

= qi∗
(
Nσ

(
q∗i (KXi +∆i);Wi/U

)
+Ei

)
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= ϕi∗pi∗Nσ
(
q∗i (KXi +∆i) +Ei ;Wi/U

)
by (4)

= ϕi∗pi∗Nσ
(
p∗i (KX +∆);Wi/U

)
by (3)

= ϕi∗Nσ (KX +∆;X/U ). by (5)

Since KXi +∆i is in the movable cone over U if and only if Nσ (KXi +∆i ;Xi/U ) = 0, we conclude by [Fuj11,
Theorem 2.3]. �

3. Canonical bundle formula

In this section we define the main object of this paper and state several properties we repeatedly use.

Definition 3.1. Let (X,∆) be a pair and let π : X ′ → X be a log resolution of the pair. A morphism
f : (X,∆) → Y to a normal projective variety Y is a klt-trivial, respectively lc-trivial, fibration if f is a
surjective morphism with connected fibres, (X,∆) has klt, respectively log canonical, singularities over the
generic point of Y , there exists a Q-Cartier Q-divisor D on Y such that

KX +∆ ∼
Q
f ∗D,

and if f ′ = f ◦π, then
rkf ′∗ OX ′

(
dKX ′ −π∗(KX +∆)e

)
= 1,

respectively
rkf ′∗ OX ′

(
dKX ′ −π∗(KX +∆) +

∑
a(E,X,∆)=−1Ee

)
= 1.

Remark 3.2. This last condition in the previous definition is verified, for instance, if ∆ is effective on the
generic fibre, which is the case in this paper.

Definition 3.3. Let f : (X,∆)→ Y be an lc-trivial fibration, and let P ⊆ Y be a prime divisor. The generic
log canonical threshold of f ∗P with respect to (X,∆) is

γP = sup{t ∈R | (X,∆+ tf ∗P ) is log canonical over P }.

The discriminant of f is
Bf =

∑
P

(1−γP )P . (7)

This is a Weil Q-divisor on Y , and it is effective if ∆ is effective. Fix ϕ ∈ C(X) and the smallest positive
integer r such that KX +∆+ 1

r divϕ = f ∗D . Then there exists a unique Weil Q-divisor Mf , the moduli part
of f , such that

KX +∆+
1
r
divϕ = f ∗(KY +Bf +Mf ). (8)

The formula (8) is the canonical bundle formula associated to f (and ϕ).

Remark 3.4. It is customary in the literature to denote the discriminant and the moduli part by BY and
MY . We adopted a different notation, since we sometimes have to compare discriminants or moduli parts
of different lc-trivial fibrations which have the same base Y . However, if the fibration is clear from the
context, we still occasionally write BY and MY .

Remark 3.5. If f1 : (X1,∆1) → Y and f2 : (X2,∆2) → Y are two lc-trivial fibrations over the same base
which are crepant birational over Y , then Bf1 = Bf2 and Mf1 ∼Q Mf2 , see [Amb04, Lemma 2.6].
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Remark 3.6. Let f : (X,∆)→ Y be an lc-trivial (respectively klt-trivial) fibration, where Y is smooth. Then
there exists a divisor ∆◦ on X such that the pair (X,∆◦) is log canonical and f : (X,∆◦) → Y is an
lc-trivial (respectively klt-trivial) fibration. Indeed, let π : X ′ → X be a log resolution of (X,∆), and set
∆′ := KX ′ −π∗(KX +∆). Let {Pi}i∈I be the finite set of prime divisors on X ′ such that multPi ∆

′ > 1. Then
each Pi is a vertical divisor, and let Di be any prime divisor on Y which contains f

(
π(Pi)

)
. Then the

divisor
∆◦ := ∆−

∑
i∈I

(multPi ∆
′)f ∗Di

is the desired divisor.

The canonical bundle formula satisfies several desirable properties. To start with, if f : (X,∆)→ Y is a
klt-trivial (respectively lc-trivial) fibration, if ρ : Y ′ → Y is a proper generically finite morphism, and if we
consider a base change diagram

(X ′ ,∆′) τ //

f ′

��

(X,∆)

f
��

Y ′ ρ
// Y ,

where X ′ is the normalisation of the main component of X ×Y Y ′ and ∆′ := KX ′ − τ∗(KX + ∆), then
f ′ : (X ′ ,∆′)→ Y ′ is also a klt-trivial (respectively lc-trivial) fibration. In the rest of the paper, we implicitly
refer to this klt-trivial (respectively lc-trivial) fibration when writing BY ′ and MY ′ for the discriminant and
moduli part.

The following is the important base change property from [Amb04, Theorem 0.2], [Kaw98, Theorem 2]
and [FG14, Theorem 3.6]:

Theorem 3.7. Let f : (X,∆) → Y be an lc-trivial fibration. Then there exists a proper birational morphism
Y ′→ Y such that for every proper birational morphism π : Y ′′→ Y ′ we have:

(i) KY ′ +BY ′ is a Q-Cartier divisor and KY ′′ +BY ′′ = π∗(KY ′ +BY ′ ),

(ii) MY ′ is a nef Q-Cartier divisor and MY ′′ = π∗MY ′ .

In the context of the previous theorem, we say that the moduli part descends to Y ′ , and we call any such
Y ′ an Ambro model for f .

One of the reasons why base change property is important is the following inversion of adjunction.

Theorem 3.8. Let f : (X,∆)→ Y be an lc-trivial fibration, and assume that Y is an Ambro model for f . Then
(Y ,BY ) has klt, respectively log canonical, singularities in a neighbourhood of a point y ∈ Y if and only if (X,∆)
has klt, respectively log canonical, singularities in a neighbourhood of f −1(y).

Proof. This is [Amb04, Theorem 3.1]. This result is stated for klt-trivial fibrations, but the proof extends
verbatim to the lc-trivial case by using Theorem 3.7. �

Theorem 3.8 says something highly non-trivial: that in certain situations, on an Ambro model the local
log canonical thresholds in Definition 3.3 are actually global log canonical thresholds.

The following is [Amb05, Theorem 3.3].

Theorem 3.9. Let f : (X,∆)→ Y be a klt-trivial fibration between normal projective varieties such that ∆ is
effective over the generic point of Y . Then there exists a diagram

(X,∆)

f
��

(X ′ ,∆′)

f ′

��
Y Wτ
oo

τ ′
// Y ′
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such that:

(i) f ′ : (X ′ ,∆′)→ Y ′ is a klt-trivial fibration,

(ii) τ is generically finite and surjective, and τ ′ is surjective,

(iii) the moduli part Mf ′ is big, and after a birational base change we may assume that f and f
′ are Ambro

models and τ∗Mf = τ ′∗Mf ′ .

The following notions and the lemma will be used in the proof of Theorem 5.2 and in our main technical
results, Propositions 4.2 and 4.4.

Definition 3.10. Let f : (X,∆)→ Y be an lc-trivial fibration, where (X,∆) is log smooth and Y is smooth.
Fix a prime divisor T on Y . An (f ,T )-bad divisor is any reduced divisor Σf ,T on Y which contains:

(a) the locus of critical values of f ,

(b) the closed set f (Supp∆v) ⊆ Y , and

(c) the set SuppBf ∪ T .

Remark 3.11. Clearly the set Σf ,T is not uniquely determined. It will be clear from the context which
precise set we consider in the proofs below.

Definition 3.12. Let f : (X,∆)→ Y be an lc-trivial (respectively klt-trivial) fibration. Then f is acceptable
if there exists another lc-trivial (respectively klt-trivial) fibration f̄ : (X,∆)→ Y such that ∆ is effective on
the generic fibre of f̄ , and a birational morphism µ : X→ X such that f = f̄ ◦µ and KX +∆ ∼Q µ∗(KX +∆).
Note that then the horizontal part of ∆<0 with respect to f is µ-exceptional. Note also that any birational
base change of an acceptable lc-trivial (respectively klt-trivial) fibration is again an acceptable lc-trivial
(respectively klt-trivial) fibration.

(X,∆)

f
$$

µ // (X,∆)

f̄
��
Y

Lemma 3.13. Let f : (X,∆)→ Y be an acceptable lc-trivial (respectively klt-trivial) fibration, where (X,∆) is
log smooth and Y is a smooth Ambro model for f . Fix a prime divisor T on Y . Then there exists a birational
morphism α : Y ′→ Y from a smooth variety Y ′ and a commutative diagram

X

f
��

Xναν
oo

fν
��

X ′

f ′~~

β
oo

Y Y ′ ,αoo

such that X ′ is a smooth variety, Xν is the normalisation of the main component of X ×Y Y ′ , β is birational and,
if ∆′ is defined by KX ′ +∆′ = π∗(KX +∆) and T ′ = α−1∗ T , then:

(a) f ′ : (X ′ ,∆′)→ Y ′ is an acceptable lc-trivial (respectively klt-trivial) fibration,

(b) there exists an (f ′ ,T ′)-bad divisor Σf ′ ,T ′ ⊆ Y ′ which has simple normal crossings, and

(c) the divisor ∆′ + f ′∗Σf ′ ,T ′ has simple normal crossings support.

Moreover, we may define α as an embedded resolution of any (f ,T )-bad divisor Σf ,T in Y , and we may
assume that β is an isomorphism away from Supp(f ∗να

∗Σf ,T ).
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Proof. Let Σf ,T be an (f ,T )-bad divisor on Y . Let α : Y ′ → Y be an embedded resolution of the pair
(Y ,Σf ,T ) as in §2.B; in particular, α is an isomorphism away from Σf ,T . Define a divisor ∆ν on Xν by

KXν +∆ν = α
∗
ν(KX +∆).

Define β : X ′ → Xν as an embedded resolution of the pair
(
Xν ,∆ν + f ∗να

∗Σf ,T
)
, so in particular, it is an

isomorphism away from Supp(f ∗να
∗Σf ,T ).

If f̄ : (X,∆)→ Y is a fibration as in Definition 3.12, then f ′ factors through the normalisation X
′
of the

main component of the fibre product X×Y Y ′ . Let f̄ ′ : X
′→ Y and α′ : X

′→ X be the induced morphisms.
If we set ∆

′
:= KX ′ − α

′∗(KX +∆), then ∆
′
is effective on the generic fibre of f̄ ′ . Thus, f ′ is acceptable,

which shows (a).
We claim that Σf ′ ,T ′ := α−1(Σf ,T ) is the desired (f ′ ,T ′)-bad divisor; the claim clearly implies (b) and

(c) by construction.
To show the claim, clearly the set α−1(Σf ,T ) contains the non-smooth locus of f ′ and the divisor T ′ .

Since Y is an Ambro model, we have KY ′ +Bf ′ = α∗(KY +Bf ), hence

SuppBf ′ ⊆ α−1(SuppBf )∪Excα ⊆ α−1(Σf ,T ).

Now, denote α′ := αν ◦β : X ′→ X. Let D ′ be a component of the vertical part of ∆′ with respect to f ′ .
It remains to show that

f ′(D ′) ⊆ Σf ′ ,T ′ . (9)

To this end, if D ′ is not α′-exceptional, then D := α′(D ′) is a component of ∆v . Thus, f (D) = α(f ′(D ′))
belongs to Σf ,T by definition, which implies (9). If D ′ is α′-exceptional, then, since α′ is an isomorphism
away from f −1(Σf ,T ), we have α′(D ′) ⊆ f −1(Σf ,T ). Therefore, f (α′(D ′)) = α(f ′(D ′)) is a subset of Σf ,T ,
which gives (9) and finishes the proof. �

4. Semiampleness on divisorial valuations

In this section we prove the main technical results of this paper, Propositions 4.2 and 4.4. At the end of the
section, we then deduce Theorems A and B, as well as Corollaries C and D.

Lemma 4.1. Let f : (X,∆)→ Y be an lc-trivial fibration, where (X,∆) is a log smooth log canonical pair and
Y is a smooth Ambro model for f . Fix a prime divisor T on Y . Assume that there exists an (f ,T )-bad divisor
Σf ,T ⊆ Y which has simple normal crossings, and such that the divisor ∆+ f ∗Σf ,T has simple normal crossings
support. Denote

∆X = ∆+
∑

Γ⊆Σf ,T

γΓ f
∗Γ ,

where γΓ are the generic log canonical thresholds with respect to f as in Definition 3.3. Then (X,∆X) is a log
smooth log canonical pair and there exists a smooth minimal log canonical centre of (X,∆X) over T .

Proof. We first note that
KX +∆X ∼Q f ∗(KY +Σf ,T +Mf ),

and the pair (Y ,Σf ,T ) is log canonical since Σf ,T is a simple normal crossings divisor. Therefore, by
Theorem 3.8, the pair (X,∆X) is log canonical, and it is not klt over each prime divisor Γ ⊆ Σf ,T . Moreover,
the support of ∆X has simple normal crossings by assumption.

Thus, there exists a component D of f ∗T which dominates T and which has coefficient 1 in ∆X . In
other words, there exists a log canonical centre of (X,∆X) which dominates T . In particular, there exists a
minimal log canonical centre of (X,∆X) over T . Since all log canonical centres of (X,∆X) are connected
components of intersections of components of ∆=1

X , they are all smooth. �
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Proposition 4.2. Let f : (X,∆) → Y be an acceptable lc-trivial fibration, where (X,∆) is a log smooth log
canonical pair and Y is a smooth Ambro model for f . Fix a prime divisor T on Y . Assume that there exists an
(f ,T )-bad divisor Σf ,T ⊆ Y which has simple normal crossings, and such that the divisor ∆+ f ∗Σf ,T has simple
normal crossings support. Denote

∆X = ∆+
∑

Γ⊆Σf ,T

γΓ f
∗Γ ,

where γΓ are the generic log canonical thresholds with respect to f as in Definition 3.3. Denote

ΞT := (Σf ,T − T )|T .

Let S be a minimal log canonical centre of (X,∆X) over T , which exists by Lemma 4.1. Let

f |S : S
h−→ T ′

τ−→ T

be the Stein factorisation, and let R denote the ramification divisor of τ on T ′ . Then:

(i) if KS +∆S = (KX +∆X)|S , then h : (S,∆S )→ T ′ is a klt-trivial fibration with Bh ≥ 0,

(ii) τ∗(Mf |T ) ∼Q Mh +R′ +E, where Mf is chosen so that T *Mf and

R′ =
∑

Γ*τ−1(ΞT )

(multΓ R) · Γ and E =
∑

Γ*τ−1(ΞT )

(multΓ Bh) · Γ .

Proof. Step 1. As in the proof of Lemma 4.1, we first note that

KX +∆X ∼Q f ∗
(
KY +Σf ,T +Mf

)
, (10)

and that (X,∆X) is a log smooth log canonical pair. By restricting the equation (10) to S we obtain

KS +∆S ∼Q (f |S )∗(KT +ΞT +Mf |T ),

hence h : (S,∆S )→ T ′ is an lc-trivial fibration, and moreover, it is a klt-trivial fibration. Indeed, if there
existed a log canonical centre Θ of (S,∆S ) which dominated T ′ , then Θ would be a log canonical centre of
(X,∆X) by Proposition 2.6, which contradicts the minimality of S . This shows the first part of (i).

Step 2. Let G be the set of all components P of f ∗Σf ,T with multP ∆X = 0 and denote

G := Supp∆<0X,h ∪ Supp∆
<1
X,v ∪

⋃
P ∈G

P ;

we consider G as a reduced divisor on X. Let µ : X → X and f̄ : X → Y be the maps given by Definition
3.12. We denote by ∆X,h and ∆X,v the horizontal and vertical parts of ∆X with respect to f .

We claim that the divisor G is a (µ, f̄ )-EWE divisor.
Indeed, by our hypothesis, the divisor Supp∆<0X,h = Supp∆<0h is µ-exceptional. Now, pick a prime

divisor P ⊆ Supp∆<1X,v . If f (P ) has codimension 2 in Y , then P is f -exceptional. If Q := f (P ) has
codimension 1, then Q ⊆ Σf ,T . By the definition of ∆X , there exists a prime divisor E ⊆ f −1(Q) dominating
Q such that multE∆X = 1. In particular, E * Supp∆<1X,v and f (E) = Q. This shows that Supp∆<1X,v is
weakly exceptional over Y and finishes the proof of the claim.

Step 3. Pick ε ∈ Q with 0 < ε� 1 such that the pair (X,∆≥0X + εG) is dlt and denote F = −∆≤0X + εG.
Note that

KX +∆≥0X + εG ∼
Q,Y F ≥ 0.
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By Step 2 and by Proposition 2.12 we have

Nσ (F;X/Y ) = F. (11)

We run the (KX +∆≥0X + εG)-MMP with scaling of an ample divisor over Y . By (11) and by Lemma 2.14
this MMP terminates and contracts all the components of F. Let ρ : X d W be the resulting birational
contraction and let ψ : W → Y be the resulting morphism. Denote ∆W := ρ∗∆

≥0
X ≥ 0.

(X,∆≥0X + εG)
ρ //

f
%%

(W,∆W )

ψ
{{

Y

Therefore, (W,∆W ) is Q-factorial dlt pair and note that ∆W = ρ∗∆X . Moreover, by the definition of G,

the divisor ∆W,v is reduced, (12)

and
(ψ∗Σf ,T )red ≤ ∆W,v . (13)

By (10) we have
KW +∆W ∼Q ψ∗(KY +Σf ,T +Mf ), (14)

hence ψ : (W,∆W )→ Y is an lc-trivial fibration and the map ρ : (X,∆X)d (W,∆W ) is crepant birational.
By Remark 3.5, we have

Bψ = Σf ,T and Mψ =Mf . (15)

Step 4. By Lemma 2.8 the map ρ is an isomorphism at the generic point of each log canonical centre
of (X,∆X). In particular, there is a log canonical centre SW of (W,∆W ) which is the strict transform of S ,
and it is a minimal log canonical centre of (W,∆W ) over T . Let

ψ|SW : SW
hW−→ TW

τW−→ T

be the Stein factorisation.
We claim that TW = T ′ and τW = τ (up to isomorphism). To this end, let (p,q) : Z → S × SW be

the resolution of indeterminacies of the birational map ρ|S : S d SW . Since S and SW are normal by
Proposition 2.6, both p and q have connected fibres by Zariski’s main theorem. As every curve contracted
by p is contracted by hW ◦q, by the Rigidity lemma [Deb01, Lemma 1.15] there exists a morphism ξ : S→ TW
with connected fibres such that hW ◦q = ξ ◦p, and thus f |S = τW ◦ξ . The claim follows by the uniqueness
of the Stein factorisation.

Step 5. By restricting the equation (14) to SW we obtain

KSW +∆SW ∼Q (ψ|SW )
∗(KT +ΞT +Mf |T ), (16)

hence hW : (SW ,∆SW )→ T ′ is a klt-trivial fibration by a similar argument as in Step 1. Therefore, the map
ρ|S : (S,∆S )d (SW ,∆SW ) is crepant birational over T

′ , hence by Remark 3.5 we have

BhW = Bh and MhW ∼Q Mh. (17)

The divisor BhW is effective since ∆SW is. This finishes the proof of (i).

Step 6. By (13) there exists a component D of ψ∗T which dominates T and which has coefficient 1 in
∆W . Denote ∆D := (∆W −D)|D , so that ψ|D : (D,∆D )→ T is an lc-trivial fibration. Let P be a component
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of (ψ|D )∗ΞT . Since (ψ|D )∗ΞT = (ψ∗Σf ,T −ψ∗T )|D , and each component of ψ∗Σf ,T is a component of ∆=1
W

by (12) and (13), this implies that P is a component of (∆=1
W −D)|D = ∆=1

D . In other words,(
(ψ|D )∗ΞT

)
red
≤ ∆=1

D . (18)

Now, by Proposition 2.6 there are components S1, . . . ,Sk of ∆
=1
D such that SW is a component of S1∩· · ·∩Sk ,

and note that the Si dominate T . This and (18) imply(
(ψ|D )∗ΞT

)
red
≤ ∆=1

D − S1 − · · · − Sk ,

hence (
(ψ|SW )

∗ΞT
)
red
≤ (∆=1

D − S1 − · · · − Sk)|SW ≤ ∆=1
SW
.

Thus, for every prime divisor P ⊆ Suppτ∗ΞT , the generic log-canonical threshold γP of (SW ,∆SW )
with respect to h∗W P is zero. If we define

E :=
∑

Γ*τ−1(ΞT )

(multΓ BhW ) · Γ =
∑

Γ*τ−1(ΞT )

(multΓ Bh) · Γ ,

where the second equality follows from (17), then

BhW = (τ∗ΞT )red +E. (19)

Step 7. Now we have all the ingredients to show (ii). From (16) we have

KT ′ +BhW +MhW ∼Q τ
∗(KT +ΞT +Mf |T ). (20)

Write the Hurwitz formula for τ as KT ′ = τ∗KT +R, and define

R′ := R− τ∗ΞT + (τ∗ΞT )red.

Then (19) gives

τ∗(KT +ΞT ) = KT ′ −R+ τ∗ΞT +BhW −E − (τ
∗ΞT )red = KT ′ −R′ +BhW −E,

which together with (17) and (20) yields

τ∗(Mf |T ) ∼Q Mh +R
′ +E.

This finishes the proof. �

Remark 4.3. In the proof of Proposition 4.2, the MMP technique we use is similar to (and inspired by) the
one in the proof of [FG14, Claim on p. 1730]. The main difference between our approach and the one of
[FG14] is that we avoid semistable reduction in codimension 1 by choosing carefully the EWE divisor in Step
2 and by proving (12) and (13).

Proposition 4.4. Let f : (X,∆) → Y be an acceptable lc-trivial fibration, where (X,∆) is a log smooth log
canonical pair and Y is a smooth Ambro model for f . Fix a prime divisor T on Y . Assume that there exists an
(f ,T )-bad divisor Σf ,T ⊆ Y which has simple normal crossings, and such that the divisor ∆+ f ∗Σf ,T has simple
normal crossings support.

Then there exists a commutative diagram

X

f
��

X0

f0
��

δ0,Xoo

Y Y0,
δ0oo
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where δ0 and δ0,X are projective birational morphisms, such that, if T0 and ∆0 are defined by T0 := (δ0)−1∗ T ⊆ Y0
and KX0

+∆0 = δ∗0,X(KX +∆), then the following holds.
There exists an (f0,T0)-bad divisor Σf0,T0 ⊆ Y0 which has simple normal crossings, and such that the divisor

∆0 + f ∗0Σf0,T0 has simple normal crossings support. Denote

∆X0
= ∆0 +

∑
Γ⊆Σf0 ,T0

γΓ f
∗
0 Γ ,

where γΓ are the generic log canonical thresholds with respect to f0 as in Definition 3.3. Let S0 be a minimal

log canonical centre of (X0,∆X0
) over T0, which exists by Lemma 4.1. Let f0|S0 : S0

h0−→ T ′0
τ0−→ T0 be the Stein

factorisation, and let h0 : (S0,∆S0)→ T ′0 be the klt-trivial fibration as in Proposition 4.2(i). Then:

(i) T ′0 is an Ambro model for h0,

(ii) τ∗0(Mf0 |T0) ∼Q Mh0 , where Mf0 is chosen so that T0 *Mf0 .

Proof. We use the notation from Proposition 4.2.

Step 1. Let R′ and E be the divisors as in Proposition 4.2(ii), and consider the closed subset

Π := τ
(
Supp(R′ +E)

)
⊆ T ⊆ Y .

Let Yb→ Y be the blowup of Y alongΠ, and let Y0→ Yb be an embedded resolution of the strict transform
of T in Yb, see §2.B. Let

δ0 : Y0→ Y

be the composition. Then, in particular,

δ0
(
Exc(δ0)

)
=Π. (21)

Let Xν be the normalisation of the main component of the fibre product X×Y Y0 with the induced morphism
δν : Xν → X, and define a divisor ∆ν on Xν by KXν +∆ν = δ∗ν(KX +∆). Let β : X0→ Xν be an embedded

resolution of
(
Xν ,∆ν + (f ◦ δν)−1(Σf ,T )

)
; in particular, β is an isomorphism away from (f ◦ δν)−1(Π).

Set δ0,X := δν ◦ β : X0→ X, so that we obtain the commutative diagram

X

f
��

Xνδν
oo

��

X0

f0~~

β
oo

δ0,X
uu

Y Y0.
δ0oo

Define a divisor ∆0 on X0 by KX0
+ ∆0 = β∗(KXν + ∆ν). Then (X0,∆0) is a log smooth pair, and let

f0 : (X0,∆0)→ Y0 be the induced lc-trivial fibration.
Let T0 := (δ0)−1∗ T ⊆ Y0. Then the proof of Lemma 3.13 shows that the divisor

Σf0,T0 := δ
−1
0 (Σf ,T )

is an (f0,T0)-bad divisor in Y0 which has simple normal crossings and such that the support of the divisor
∆X0

:= ∆0 + f ∗0Σf0,T0 has simple normal crossings.
Since Y is an Ambro model for f , we have Mf0 = δ

∗
0Mf , hence

Mf0 |T0 = (δ0|T0)
∗(Mf |T ). (22)
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Step 2. Since δ−10,X is an isomorphism at the generic point of S , there exists a unique log canonical centre
S0 of (X0,∆X0

) which is minimal over T0, and such that the map δ0,X |S0 : S0→ S is birational. Let

f0|S0 : S0
h0−→ T ′0

τ0−→ T0

be the Stein factorisation. Then h0 : (S0,∆S0)→ T ′0 is a klt-trivial fibration as in Proposition 4.2(i), where
KS0 +∆S0 = (KX0

+∆X0
)|S0 .

The Rigidity lemma [Deb01, Lemma 1.15] applied to the diagram

S

h
��

S0
δ0,X |S0oo

h0
��

T ′

τ
��

T ′0

τ0
��

T T0
δ0|T0oo

shows that there is a morphism δ′0 : T
′
0→ T ′ making the diagram commutative; note that the morphism is

then necessarily birational. Thus, we obtain the commutative diagram

T ′

τ
��

T ′0
δ′0oo

τ0
��

T T0
δ0|T0oo

(23)

and
Mh0 is the moduli divisor obtained by the base change of h by δ′0. (24)

Step 3. We claim that
τ∗0(Mf0 |T0) ∼Q Mh0 , (25)

which then shows (ii).
To this end, denote ΞT0 := (Σf0,T0 −T0)|T0 , and let R0 be the ramification divisor of τ0. Let Γ be a prime

divisor in SuppR0 ∪ SuppBh0 . Then by Proposition 4.2(ii) it suffices to show that

Γ ⊆ τ−10 (ΞT0). (26)

There are two cases. Assume first that τ0(Γ ) – viewed as a closed subset of Y0 – is a subset of Exc(δ0).
Then, since Exc(δ0) is a divisor, there exists a prime divisor Γ ⊆ Exc(δ0) such that τ0(Γ ) ⊆ Γ ∩ T0. Since
Exc(δ0) ⊆ SuppΣf0,T0 by construction, we have

τ0(Γ ) ⊆ Supp(Σf0,T0 − T0)∩ T0 = ΞT0 ,

which implies (26).
Assume now that τ0(Γ ) * Exc(δ0). Then by (21) we have δ0(τ0(Γ )) *Π, and hence by (23),

δ′0(Γ ) * Supp(R′ +E). (27)

Since δ0 is an isomorphism at the generic point of τ0(Γ ), in the neighbourhood of this generic point we
have

δ′0(SuppR0) = SuppR and δ′0(SuppBh0) = SuppBh.
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Therefore,
δ′0(Γ ) ⊆ SuppR∪ SuppBh. (28)

But now (27) and (28) imply that δ′0(Γ ) ⊆ τ−1(ΞT ), hence there exists a prime divisor Γ ⊆ Supp(Σf ,T − T )
such that τ(δ′0(Γ )) ⊆ Γ ∩ T . Since τ(δ′0(Γ )) = δ0(τ0(Γ )) by (23), and δ0 is an isomorphism at the generic
point of τ0(Γ ), this implies

τ0(Γ ) ⊆ (δ0)
−1
∗ Γ ∩ T0 ⊆ Supp(Σf0,T0 − T0)∩ T0 = ΞT0 ,

which implies (26) and finishes the proof of (25).

Step 4. Let ν : T̃0 → T ′0 be an Ambro model for h0. Then by Lemma 2.4 there exists a birational
morphism µ : T1 → T0 obtained by a sequence of blowups such that, if we denote by λ : T̂0 d T̃0 the
induced birational map from the normalisation of the main component of T ′0 ×T0 T1 to T̃0, then λ

−1 is an
isomorphism at the generic point of each ν-exceptional prime divisor on T̃0. We denote by δ1 : Y1 → Y0
the corresponding birational map of ambient spaces induced by µ, so that µ = δ1|T1 .

T ′0

τ0
��

T̃0
νoo T̂0

��

λoo

T0 T1
δ1|T1oo

(29)

By possibly blowing up further, we may assume that δ1 is an embedded resolution of the pair (Y0,Σf0,T0),
and in particular, that δ1 is an isomorphism away from Σf0,T0 .

Let (X1,∆1) be a log smooth pair which is a crepant pullback of (X0,∆0) obtained by making a base
change of f0 by δ1 and taking an embedded resolution of the preimage of Σf0,T0 in X0 ×Y0 Y1 (similarly as
in Step 1), and let f1 : (X1,∆1)→ Y1 be the induced klt-trivial fibration.

X0

f0
��

X0 ×Y0 Y1oo

��

X1

f1zz

oo

δ1,X
ss

Y0 Y1
δ1oo

(30)

Observe that T1 = (δ1)−1∗ T0. Then the proof of Lemma 3.13 shows that the divisor

Σf1,T1 := δ
−1
1 (Σf0,T0)

is an (f1,T1)-bad divisor in Y1 which has simple normal crossings and such that the support of the divisor
∆X1

:= ∆1 + f ∗1Σf1,T1 has simple normal crossings.
Since Y0 is also an Ambro model, we have Mf1 = δ

∗
1Mf0 , hence

Mf1 |T1 = (δ1|T1)
∗(Mf0 |T0). (31)

Step 5. Since δ−11,X is an isomorphism at the generic point of S0, there exists a unique log canonical
centre S1 of (X1,∆X1

) which is minimal over T1, and such that the map δ1,X |S1 : S1→ S0 is birational. Let

f1|S1 : S1
h1−→ T ′1

τ1−→ T1

be the Stein factorisation. Then h1 : (S1,∆S1)→ T ′1 is a klt-trivial fibration as in Proposition 4.2(i), where
KS1 +∆S1 = (KX1

+∆X1
)|S1 .
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As in Step 2, there is a birational morphism δ′1 : T
′
1→ T ′0 such that the diagram

T ′0

τ0
��

T ′1
δ′1oo

τ1
��

T0 T1
δ1|T1oo

(32)

commutes, and

Mh1 is the moduli divisor obtained by the base change of h0 by δ′1. (33)

Step 6. We claim that
τ∗1(Mf1 |T1) ∼Q Mh1 . (34)

To this end, denote ΞT1 := (Σf1,T1 − T1)|T1 , and let R1 be the ramification divisor of τ1. Let Γ be a prime
divisor in SuppR1 ∪ SuppBh1 . Then by Proposition 4.2(ii) it suffices to show that

Γ ⊆ τ−11 (ΞT1). (35)

There are two cases. If τ1(Γ ) ⊆ Exc(δ1), then we conclude analogously as in Step 3.
Now we assume that τ1(Γ ) * Exc(δ1). Then since δ1 is an isomorphism at the generic point of τ1(Γ ),

in the neighbourhood of this generic point we have

δ′1(SuppR1) = SuppR0 and δ′1(SuppBh1) = SuppBh0 .

Therefore,
δ′1(Γ ) ⊆ SuppR0 ∪ SuppBh0 . (36)

But now (36) and (26) imply that δ′1(Γ ) ⊆ τ
−1
0 (ΞT0), hence there exists a prime divisor Γ ⊆ Supp(Σf0,T0 −T0)

such that τ0(δ′1(Γ )) ⊆ Γ ∩ T0. Since τ0(δ′1(Γ )) = δ1(τ1(Γ )) by (32), and δ1 is an isomorphism at the generic
point of τ1(Γ ), this implies

τ1(Γ ) ⊆ (δ1)
−1
∗ Γ ∩ T1 ⊆ Supp(Σf1,T1 − T1)∩ T1 = ΞT1 ,

which shows (35) and finishes the proof of (34).

Step 7. Recall that T̂0 is the main component of T ′0 ×T0 T1. Then from (32) there exists a birational
morphism ξ : T ′1→ T̂0, and denote

θ = λ ◦ ξ : T ′1d T̃0.

Then θ−1 is an isomorphism at the generic point of each ν-exceptional prime divisor on T̃0. Let us consider
(p,q) : V → T̃0 × T ′1 a resolution of indeterminacies of θ. Then by (29) and (32) we have the diagram

T ′0

τ0
��

T̃0
νoo T ′1

θoo

τ1
��

δ′1

ii Vq
oo

p

vv

T0 T1.δ1|T1
oo

(37)

Denote by MT̃0
be the moduli divisor of the klt-trivial fibration obtained by the base change of h0 by

ν, and denote by MV be the moduli divisor of the klt-trivial fibration obtained by the base change of h1
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by q. By (33) and from the diagram (37) we have that MV is the moduli divisor obtained from MT̃0
by the

base change by p, hence
MV = p∗MT̃0

(38)

since T̃0 is an Ambro model for h0.
In particular, MT̃0

and MV are nef Q-divisors. Then, since ν∗MT̃0
=Mh0 and q∗MV =Mh1 , and since

Mh0 and Mh1 are Q-Cartier divisors by (25) and (34), by the Negativity lemma [KM98, Lemma 3.39] there
exist a ν-exceptional divisor Eν ≥ 0 on T̃0 and a q-exceptional divisor Eq ≥ 0 on V such that

MT̃0
= ν∗Mh0 −Eν and MV = q∗Mh1 −Eq. (39)

Therefore:

MV = q∗Mh1 −Eq by (39)

∼
Q
q∗τ∗1(Mf1 |T1)−Eq by (34)

= q∗τ∗1(δ1|T1)
∗(Mf0 |T0)−Eq by (31)

= p∗ν∗τ∗0(Mf0 |T0)−Eq by (37)

∼
Q
p∗ν∗Mh0 −Eq by (25)

= p∗MT̃0
+ p∗Eν −Eq by (39)

=MV + p∗Eν −Eq. by (38)

Therefore p∗Eν ∼Q Eq. Since θ−1 is an isomorphism at the generic point of each component of Eν , and Eq
is q-exceptional, this implies Eν = Eq = 0. In particular, from (39) we have

MT̃0
= ν∗Mh0 , (40)

hence Mh0 is nef and T
′
0 is an Ambro model for h, which gives (i). �

Now we can prove the main results of this paper.

Proof of Theorem A. We may assume that Y = Y ′ , so that we have to show that ν∗MY is semiample for every
prime divisor T on Y with the normalisation T ν and the induced morphism ν : T ν → Y . By Remark 3.6
we may assume that (X,∆) is log canonical.

We use the following remark repeatedly in the proof: If α : Z → Y is any birational model and if
TZ := α−1∗ T with the normalisation T νZ and the induced morphism νZ : T

ν
Z → Z, then it suffices to show

that ν∗ZMZ is semiample. Indeed, since Y is an Ambro model, we have MZ = α∗MY , hence

ν∗ZMZ = (αTZ )
∗ν∗MY ,

where αTZ : T
ν
Z → T ν is the induced morphism. Thus, ν∗MY is semiample if and only if ν∗ZMZ is semiample

by Lemma 2.1.
By replacing Y by its desingularisation and T by its strict transform, we may assume that Y is smooth,

and by replacing (X,∆) by its log resolution, we may assume that f is an acceptable lc-trivial fibration
such that (X,∆) is a log smooth log canonical pair. Again by replacing Y , T and (X,∆) by higher models,
by Lemma 3.13 we may additionally assume that there exists an (f ,T )-bad divisor Σf ,T which has simple
normal crossings and such that the divisor ∆+ f ∗Σf ,T has simple normal crossings support.

Then Proposition 4.4 shows that, after replacing Y , T and (X,∆) by higher models, there exists a simple
normal crossings divisor ∆X on X such that the pair (X,∆X) is log canonical, and there exists a minimal

log canonical centre S of (X,∆X) such that, if f |S : S
h−→ T ′

τ−→ T is the Stein factorisation, then:
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(a) h : (S,∆S )→ T ′ is a klt-trivial fibration, where

KS +∆S = (KX +∆X)|S ,

(b) T ′ is an Ambro model for h,

(c) τ∗(MY |T ) =Mh.

It follows by (b) thatMh is semiample since we assume the B-Semiampleness Conjecture in dimension n−1,
and hence MY |T is semiample by (c) and by Lemma 2.1. This concludes the proof. �

Proof of Theorem B. We may assume that Y = Y ′ , so that we have to show that ν∗MY is semiample for every
prime divisor T ⊆ B+(MY ) with the normalisation T ν and the induced morphism ν : T ν → Y . By Remark
3.6 we may assume that (X,∆) is log canonical.

As in the proof of Theorem A, we use the following remark repeatedly in the proof: If T ⊆ B+(MY ) is
a prime divisor, if α : Z→ Y is any birational model and if TZ := α−1∗ T with the normalisation T νZ and the
induced morphism νZ : T

ν
Z → Z, then it suffices to show that ν∗ZMZ is semiample. Note that by [BBP13,

Proposition 2.3] we have
B+(α

∗MY ) = α
−1

(
B+(MY )

)
∪Exc(α),

so that TZ ⊆ B+(α∗MY ) = B+(MZ ).
Again as in the proof of Theorem A, by replacing Y , T and (X,∆) by higher models, we may assume

that f is an acceptable lc-trivial fibration such that (X,∆) is log smooth, and that there exists an (f ,T )-bad
divisor Σf ,T which has simple normal crossings and such that the divisor ∆ + f ∗Σf ,T has simple normal
crossings support.

Then Proposition 4.4 shows that, after replacing Y , T and (X,∆) by higher models, there exists a simple
normal crossings divisor ∆X on X such that the pair (X,∆X) is log canonical, and there exists a minimal

log canonical centre S of (X,∆X) such that, if f |S : S
h−→ T ′

τ−→ T is the Stein factorisation, then:

(a) h : (S,∆S )→ T ′ is a klt-trivial fibration, where

KS +∆S = (KX +∆X)|S ,

(b) T ′ is an Ambro model for h,

(c) τ∗(MY |T ) =Mh.

As in Proposition 4.2, there exist a klt-trivial fibration hW : (SW ,∆SW )→ T ′ and a crepant birational map
θ : (S,∆S )d (SW ,∆SW ) over T

′ such that ∆SW is effective and

MhW =Mh. (41)

Since T is a component of B+(MY ), the divisor MY |T is not big by Lemma 2.3, hence

κ(T ′ ,MhW ) = κ(T
′ ,Mh) = κ(T ,MY |T ) ≤ n− 2. (42)

By Theorem 3.9, there exists a diagram

(SW ,∆SW )

hW
��

(
S̃W ,∆S̃W

)
h̃W
��

T ′ WτW
oo

τ̃W
// T̃ ′
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where τW : W → T ′ is generically finite, τ̃W : W → T̃ ′ is surjective, T̃ ′ is an Ambro model for the klt-trivial
fibration h′W :

(
S̃W ,∆S̃W

)
→ T̃ ′ , the moduli divisor Mh̃W

is big and

τ∗WMhW = τ̃∗WMh̃W
. (43)

In particular, by (42) and (43) we have

dim T̃ ′ = κ
(
T̃ ′ ,Mh̃W

)
= κ(T ′ ,MhW ) ≤ n− 2.

Since we assume the B-Semiampleness Conjecture in dimensions at most n − 2, the divisor Mh′W
is semi-

ample. By (43) and by Lemma 2.1, the divisor MhW is semiample, hence Mh is semiample by (41). By (c)
and by Lemma 2.1, this proves finally that the divisor MY |T is semiample. �

Proof of Corollary C. Immediate from Theorem A and from [Amb04, Theorem 0.1]. �

Proof of Corollary D. Immediate from Theorem B and from [Amb04, Theorem 0.1]. �

5. Reduction to a weaker conjecture

In this section we prove that the B-Semiampleness Conjecture is equivalent to the following much weaker
version.

Conjecture 5.1. Let (X,∆) be a log canonical pair and let f : (X,∆) → Y be a klt-trivial fibration over an
n-dimensional variety Y . If Y is an Ambro model of f and if the moduli divisor MY is big, then MY is
semiample.

The following result implies Theorem E.

Theorem 5.2. Assume Conjecture 5.1 in dimensions at most n. Then the B-Semiampleness Conjecture holds in
dimension n.

Proof. Step 1. Let f : (X,∆)→ Y be an lc-trivial fibration, where dimY = n, Y is an Ambro model for f ,
and ∆ is effective over the generic point of Y . We may assume that (X,∆) is not klt over the generic point
of Y . By Remark 3.6 we may assume that (X,∆) is log canonical.

Let µ : X ′ → X be a log resolution of (X,∆) and define ∆′ by the formula KX ′ +∆′ = µ∗(KX +∆). Set
f ′ := f ◦µ : X ′→ Y , and let S ′ be a minimal log canonical centre of (X ′ ,∆′) over Y .

Let f ′ |S ′ : S ′
h′−→ Y1

τ1−→ Y be the Stein factorisation. Let X1 be an embedded resolution of the main
component of X ′ ×Y Y1 with the induced morphisms σ1 : X1→ X ′ and f1 : X1→ Y1, and define ∆1 by the
formula KX1

+∆1 = σ ∗1(KX ′ +∆′). Then f1 : (X1,∆1)→ Y1 is an acceptable lc-trivial fibration.

X

f ��

X ′
µoo

f ′

��

X1

f1
��

σ1oo

Y Y1
τ1oo

By construction, there is an irreducible component S1 of σ−11 (S ′) such that σ1|S1 : S1 → S ′ is an
isomorphism at the generic point of S1. Then S1 is a minimal log canonical centre of (X1,∆1) over Y1, and
denote h1 := f1|S1 : S1→ Y1. Then general fibres of h′ and h1 are isomorphic, and in particular, a general
fibre of h1 is connected. Since S1 is normal by Proposition 2.6, by considering the Stein factorisation of h1
we deduce that h1 has connected fibres by Zariski’s main theorem.
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If we define ∆S1 by the formula KS1 + ∆S1 = (KX1
+ ∆1)|S1 , then h1 : (S1,∆S1) → Y1 is a klt-trivial

fibration by an argument similar to that in Step 1 of the proof of Proposition 4.2. Let Σf1,0 be an (f1,0)-bad
divisor such that SuppBh1 ⊆ Σf1,0.

Step 2. By Lemma 3.13 and its proof, there exist a commutative diagram

X1

f1
��

X2

f2
��

σ2oo

Y1 Y2
τ2oo

where the morphism τ2 : Y2 → Y1 is an embedded resolution of (Y2,Σf1,0), and f2 : (X2,∆2)→ Y2 is an
acceptable lc-trivial fibration such that Σf2,0 := τ

−1
2 (Σf1,0) is an (f2,0)-bad divisor which has simple normal

crossings and such that ∆2 + f ∗2Σf2,0 has simple normal crossings support. By Lemma 3.13 we may assume
that σ−12 is an isomorphism at the generic point of S1, and let S2 be the strict transform of S1 in X2.
Denote h2 := f2|S2 : S2 → Y2, and define a divisor ∆S2 by the formula KS2 +∆S2 = (KX2

+∆2)|S2 . Then
h2 : (S2,∆S2)→ Y2 is a klt-trivial fibration similarly as in Step 1.

Step 3. Set
∆X2

:= ∆2 +
∑

Γ⊆Σf2 ,0

γΓ f
∗Γ ,

where γΓ are the generic log canonical thresholds with respect to f2 as in Definition 3.3. Let G be the set
of all components P of f ∗2Σf2,0 with multP ∆X2

= 0 and denote

G := Supp∆<0X2,h
∪ Supp∆<1X2,v

∪
⋃
P ∈G

P .

Pick ε ∈ Q with 0 < ε � 1 such that the pair (X2,∆
≥0
X2

+ εG) is dlt and run the (KX2
+∆≥0X2

+ εG)-MMP
ρ : X2 d W with scaling of an ample divisor over Y2. As in Steps 2 and 3 of Proposition 4.2, this
MMP terminates with a dlt pair (W,∆W ) with ∆W ≥ 0. Moreover, there exists an lc-trivial fibration
ψ : (W,∆W )→ Y2 such that the divisor ∆W,v is reduced and(

ψ∗Σf2,0
)
red
≤ ∆W,v . (44)

Furthermore, we have
Mψ =Mf2 and Bψ = Σf2,0. (45)

By Lemma 2.8, ρ is an isomorphism at the generic point of S2, and let SW be the strict transform
of S2. Then SW is a minimal log canonical centre of (W,∆W ) over Y2 and define ∆SW by the formula
KSW + ∆SW = (KW + ∆W )|SW , see Proposition 2.6. Then hW := ψ|SW : (SW ,∆SW ) → Y2 is a klt-trivial
fibration by a similar argument as in Step 4 of the proof of Proposition 4.2. Moreover, as in Step 5 of the
proof of Proposition 4.2, the map ρ|S2 : (S2,∆S2)d (SW ,∆SW ) is crepant birational over Y2, and we have

BhW = Bh2 and MhW =Mh2 . (46)

Therefore, by comparing the canonical bundle formulas of ψ and hW and using (45) and (46) we obtain

Σf2,0 +Mf2 = Bh2 +Mh2 . (47)

Step 4. By Proposition 2.6 there are components D1, . . . ,Dk of ∆=1
W such that SW is a component of

D1 ∩ · · · ∩Dk , and note that the Di dominate Y2. This and (44) imply(
ψ∗Σf2,0

)
red
≤ ∆=1

W −D1 − · · · −Dk ,
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hence (
h∗WΣf2,0

)
red
≤ (∆=1

W −D1 − · · · −Dk)|SW ≤ ∆=1
SW
.

Thus, for every prime divisor P ⊆ SuppΣf2,0, the generic log-canonical threshold γP of (SW ,∆SW ) with
respect to h∗W P is zero. The divisor BhW is effective since ∆SW is, and therefore, there exists an effective
Q-divisor E on Y2 having no common components with Σf2,0 such that BhW = Σf2,0 + E, which together
with (46) yields

Bh2 = Σf2,0 +E. (48)

Step 5. We claim that E = 0. To this end, let P be an irreducible component of E. If P ⊆ Exc(τ2), then
P ⊆ Σf2,0 by the construction of τ2 in Step 2, a contradiction.

Now, assume that P * Exc(τ2). Then τ2 is an isomorphism at the generic point of τ2(P ), hence
in the neighbourhood of this generic point we have τ2(SuppBh2) = SuppBh1 . Therefore, since P is a
component of Bh2 , we obtain τ2(P ) ⊆ SuppBh1 , hence τ2(P ) ⊆ Σf1,0 by the choice of Σf1,0 in Step 1. But
then P ⊆ τ−12 (Σf1,0) = Σf2,0, a contradiction.

Step 6. We now have Bh2 = Σf2,0 by (48), and thus

Mh2 =Mf2 (49)

by (47). Since Σf2,0 has simple normal crossings support, the variety Y2 is an Ambro model for h2 by the
proof of [Amb04, Theorem 2.7]. Since the map ρ|S2 : (S2,∆S2)d (SW ,∆SW ) is crepant birational over Y2,
by Remark 3.5 the variety Y2 is an also an Ambro model for hW .

By Theorem 3.9, there exists a diagram

(SW ,∆SW )

hW
��

(S ′W ,∆S ′W )

h′W
��

Y2 WτW
oo

τ ′W

// Y ′2

where τW : W → Y2 is generically finite, τ
′
W : W → Y ′2 is surjective, Y

′
2 is an Ambro model for the klt-trivial

fibration h′W : (S ′W ,∆S ′W )→ Y ′2, the moduli divisor Mh′W
is big and

τ∗WMhW = τ ′∗WMh′W
. (50)

Therefore, Mh′W
is semiample by the assumptions of the theorem: indeed, if MhW is big, we may assume

that τW and τ ′W are isomorphisms and that (SW ,∆SW ) = (S ′W ,∆S ′W ). Otherwise, we have dimY ′2 < dimY2.
By induction on the dimension, Conjecture 5.1 in dimensions at most dimY ′2 implies the B-Semiampleness
Conjecture in dimension dimY ′2, and this then yields that Mh′W

is semiample.
Now we have that MhW is semiample by (50) and by Lemma 2.1. Thus, Mh2 is semiample by (46), and

so Mf2 is semiample by (49). By [Amb05, Proposition 3.1] we have Mf2 = (τ1 ◦ τ2)∗Mf , and finally, Mf is
semiample again by Lemma 2.1. This finishes the proof. �
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