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Abstract
The paper presents a method for the scale-dependent validation of the spatio-temporal variability in global weather or climate 
models and for their bias quantification in relation to dynamics. The method provides a relationship between the bias and 
simulated spatial and temporal variance by a model in comparison with verifying reanalysis data. For the low resolution 
(T30L8) subset of ERA-20C data, it was found that 80–90% (depending on season) of the global interannual variance is at 
planetary scales (zonal wavenumbers k = 0−3), and only about 1% of the variance is at scales with k > 7 . The reanalysis is 
used to validate a T30L8 GCM in two configurations, one with the prescribed sea-surface temperature (SST) and another 
using a slab ocean model. Although the model with the prescribed SST represents the average properties of surface fields 
well, the interannual variability is underestimated at all scales. Similar to variability, model bias is strongly scale depend-
ent. Biases found in the experiment with the prescribed SST are largely increased in the experiment using a slab ocean, 
especially in k = 0 , in scales with missing variability and in seasons with poorly simulated energy distribution. The perfect 
model scenario (a comparison between the GCM coupled to a slab ocean vs. the same model with prescribed SSTs) shows 
that the representation of the ocean is not critical for synoptic to subsynoptic variability, but essential for capturing the 
planetary scales.
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1  Introduction

Atmospheric general circulation models (GCMs) are fre-
quently validated with the reanalysis data to test their reli-
ability to reproduce the observed mean state and variabil-
ity. Although reanalyses are a mixture of observations and 
model information and as such contain uncertainties, they 
are the most representative picture of the present climate. 
Before using a GCM for climate projections, one first tests 
whether it can reproduce the global properties of circula-
tion (winds) and thermodynamical variables (temperature, 
pressure and moisture fields) in agreement with reanalyses, 
based on the observed forcing parameters (e.g., greenhouse 
gas concentration).

The two most relevant parameters of the surface climate 
are 2-m temperature and precipitation which can be vali-
dated with long observation records. In contrast, circulation 
is difficult to validate (Shepherd 2014) and the results may 
be inconclusive (Knutti and Sedlacek 2013). The compari-
son of zonal mean values of wind, temperature and moisture 
with zonally-averaged reanalysis data quantifies how well 
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the GCMs represent the zonal wavenumber zero (e.g Flato 
et al. 2013). A quantitative validation of simulated wave 
variance is more difficult to perform, especially as it is con-
trolled by the zonal mean circulation.

Simulated zonal mean flows also greatly affect telecon-
nections (e.g. Branstator 2002). Forcing for teleconnections 
is provided by subseasonal variability; its reliable simulation 
is a testing ground for seamless prediction (Palmer et al. 
2008). A basis for seamless prediction are the medium-range 
numerical weather prediction (NWP) models that are first 
adapted for subseasonal and seasonal forecasting systems 
(e.g. Vitart et al. 2008), then extended to climate time scales 
(e.g. EC-Earth, http://www.ec-earth​.org).

NWP models are frequently validated by using their 
energy spectra (e.g. Wedi 2014). In a global atmosphere 
characterized by energy and enstrophy conservation, time-
averaged energy spectra are expected to have wavenumber−3 
dependence for a range of synoptic scales, and a shallower 
slope for planetary scales as well as for subsynoptic scales 
(Hoskins and James 2014, Chapter 11). On synoptic scales, 
the energy spectrum encompasses the quasi-geostrophic 
dynamics in terms of the approximately non-divergent 
Rossby waves. On subsynoptic scales, shallowing of the 
spectrum from − 3 towards − 5∕3 in NWP models appears 
associated with the divergence-dominated, inertio-gravity 
wave oscillations (e.g. Žagar et al. 2017). The departure 
from the expected spectrum is one measure of unrealistic 
spatial variability in the model. A typical feature of NWP 
models is a lack of variability at small scales commonly 
associated with insufficient representation of physical pro-
cesses and numerical filtering (e.g. Blažica et al. 2013).

This paper extends the scale-dependent analysis of global 
variability from the spatial to the temporal domain. We 
define scale-dependent measures of temporal variability and 
model bias and apply them for the validation of a global 
climate model using reanalysis data.

The scale-dependent validation of climate model variabil-
ity is a challenging topic because there is no single definition 
of variability. Under the global constraints of mass, energy 
and momentum, GCMs simulate the spectrum of variabil-
ity from weather to decadal time scales across many spatial 
scales. Temporal variability can be split among various time 
scales, variables and regions whereas details of the spatial 
spectrum associated with certain temporal frequency can be 
described as a combination of “preferred” patterns.

The most prominent patterns of climate variability have 
been identified through spatial teleconnections defined by 
correlations between regional climate variations at widely 
separated, geographically fixed spatial locations and by prin-
cipal component analysis (Cubasch et al. 2013). Equatorial 
variability in GCMs has been validated by comparing the 
space-time filtered fields in reanalyses and models (e.g. Lin 
et al. 2006; Hung et al. 2013) whereas midlatitude variability 

has been evaluated by comparing indices such as the North-
Atlantic oscillation index, the Arctic oscillation index and 
the blocking index (e.g. Scaife et al. 2012). Validation of 
planetary waves is relevant both for the tropics and the mid-
latitudes; for instance, they are key to the dynamical coupling 
between the troposphere and stratosphere. Stratospheric vari-
ability, and its impact on the troposphere, is poorly simulated 
in many climate models (e.g. Charlton-Perez et al. 2013).

As for circulation, teleconnections exist also among the 
patterns of bias in the models. For example, Wang et al. 
(2014) described links between biases in distant regions of 
atmosphere and oceans in 22 climate models. They show 
that efforts for improving simulations of regional patterns of 
variability can be overridden by remote biases in the mod-
els. This provides a strong motivation for a simultaneous 
validation of the amplitude and phase of the bias and spatio-
temporal variability in the models.

We introduce a scale-dependent validation of global mod-
els using the projection of the atmospheric state into a set of 
three-dimensionally orthogonal modes that provide physical 
basis for the interpretation of atmospheric circulation. The 
proposed method is envisaged for the comparison of models 
against reanalyses and for the intercomparison of the global 
multi-model ensembles, such as the Coupled Model Inter-
comparison Project (CMIP) ensembles (Eyring et al. 2016).

As an example, the method is here applied to the recent 
ECMWF reanalysis dataset—ERA-20C (Poli et al. 2016) to 
quantify the observed (i.e. reanalysis) variability spectrum. 
The observed spectrum is then compared to the spectrum of 
a low-resolution GCM and the modal decomposition is also 
used to examine the spectrum of the model bias.

The presented application utilizes monthly mean time 
series from the reanalysis and model simulations but there is 
no restriction to the inclusion of higher/lower frequencies in 
the considered time series. Furthermore, the decomposition 
differentiates between the circulation which projects onto 
quasi-geostrophic, approximately nondivergent dynamics 
represented by the Rossby waves and the predominantly irro-
rational dynamics represented by the inertio-gravity modes.

Among the variety of questions that can be addressed by 
the proposed method, we ask the following questions:

•	 What is the amplitude of the global circulation variability 
and how does it vary with season? What percentage of 
the global variability in reanalysis data is simulated by 
GCMs when forced by the observed sea-surface tempera-
ture (SST)?

•	 How is the global circulation variability distributed as a 
function of zonal scale? For example, what percentage of 
variability is in the zonal mean state and how much vari-
ability is left beyond the planetary scale (i.e. for zonal 
wavenumber larger than 3)?

http://www.ec-earth.org
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•	 How does the amplitude of circulation variability in a 
GCM compare to its bias at different spatial scales?

We attempt to discuss bias and temporal variability in rela-
tion to the spatial variability (energy spectra) in a GCM. We 
focus on scales larger than 1000 km in hydrostatic atmos-
phere. With the zonal scale L defined as L = acos(�)�∕k , 
where k is the zonal wavenumber index, � is latitude and 
a = 6371 km is the average Earth radius, L = 1000 km scale 
corresponds to zonal wavenumbers 0–20 in the tropics, and 
to wavenumbers 0–14 in the midlatitudes.

Global validation of GCM variability and biases and 
their reduction will diminish the need for climate model 
bias removal in order to use the surface outputs for cli-
mate change impact studies (e.g. Ehret et al. 2012). Small 
improvements in simulated global circulation patterns can 
bring about significantly larger improvements in regional 
climate models which are forced by these fields.

The outline of the paper is the following. In the next sec-
tion we describe how to calculate the scale-dependent global 
variability and bias of the atmospheric state by projecting the 
atmospheric state into a set of three-dimensionally orthogo-
nal modes, using the normal-mode function decomposition. 
Section 3 introduces the setup of numerical simulations, rea-
nalysis data and the specific of the scale decomposition for 
the current comparison. Section 4 presents the spectra of 
variability and energy in the model and reanalysis data and 
the bias spectra. Discussion of biases in physical space is 
given in Sect. 5. Section 6 contains conclusions and outlook.

2 � Formulation of the scale‑dependent 
validation of GCMs using reanalysis data

We start by reviewing the derivation of scale-dependent 
decomposition of three-dimensional atmospheric geopoten-
tial and wind fields in horizontal and vertical scales using 
the normal-mode functions. Then we introduce the three 
key quantities for the model validation: spatial variability 
(energy spectra), temporal variability (variance spectra) and 
bias (model versus reanalysis data).

2.1 � Scale decomposition using the normal‑mode 
functions

The normal-mode function (NMF) are analytical solutions of 
the linearized equations describing oscillations of the zonal 
wind (u�) , meridional wind (v�) and geopotential height (h�) , 
superimposed on a basic state with temperature T0 (e.g. Daley 
1991). For the system with the vertical � coordinate, the lin-
earized adiabatic equations for oscillations (u�, v�, h�) around the 
basic state of rest were derived by Kasahara and Puri (1981) as:

The parameter a denotes the Earth’s radius, Ω is the 
Earth’s rotation rate, R is the gas constant of air and g is 
the Earth’s gravity. Equation (3) is obtained as a combina-
tion of the continuity and thermodynamic equations, using 
the pseudo geopotential height variable, h = P∕g , where 
P = gz + RT0 ln(ps) , with z denoting the hydrostatic height 
of a terrain-following � level, � = (p − pT )∕(ps − pT ) . Here, 
pT is the top level pressure ( pT = 0 ) and ps is the surface 
pressure. The pseudo geopotential height anomaly h′ is 
defined as h� = P�∕g , where P′ is the anomaly of P rela-
tive to the globally averaged P at each � level. The static 
stability parameter Γ0 is defined as Γ0 = �T0∕� − dT0∕d� , 
where � = R∕cp , cp is the specific heat of air at constant pres-
sure and T0 is the globally averaged temperature at a � level. 
The boundary conditions for the system of Eqs. (1)–(3) are 
derived from the assumption that there is no mass transport 
across the surfaces � = 0 and � = 1:

For details of the derivation of the system (1–3) and corre-
sponding boundary conditions see Kasahara and Puri (1981).

By the method of separation of the variables, the vector of 
3D model variables [u�, v�, h�]T as functions of the longitude 
( � ), latitude ( � ), vertical level ( � ) and time t is represented as 
the product of 2D motions (their vector denoted [u, v, h] and 
the vertical structure functions G(�):

The substitution of (5) into (1)–(3) leads to the vertical struc-
ture equation (VSE) and the horizontal structure equations 
(HSEs). The two systems of equations are connected by par-
ticular values of a separation parameter D which is called 
the equivalent height. The vertical structure function G(�) is 
a solution of the VSE written in the dimensionless form as

where stability parameter S(�) = RΓ0∕(gH∗) . We assume 
that S > 0 for stable stratification. The parameter H∗ is a 
scaling constant with the dimension of height, H∗ = 8 km. 
The surface and top boundary conditions become

(1)
�u�

�t
− 2Ωv� sin(�) = −

g

a cos(�)

�h�

��
,

(2)
�v�

�t
+ 2Ωu� sin(�) = −

g

a

�h�

��
,

(3)
�

�t

[
�

��

(
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��

)]
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� = 0.

(4)𝜎̇ = 0 at the surface, 𝜎 = 1, and at the top, 𝜎 = 0.

(5)
[
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]T
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(6)
d

d�

(
�

S

dG(�)

d�

)
+

H∗

D
G(�) = 0,
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respectively. The top boundary condition applied at �T , as 
opposed to precisely zero, is a means of avoiding the issue 
of the VSE eigenvalue problem becoming singular. With 
boundary conditions (7–8), all eigenvalues i.e. equivalent 
height D are positive, and the corresponding eigenfunctions 
are orthogonal in the sense that

where �ij = 1 if i = j and zero otherwise.
The HSEs are identical in form with the global shallow 

water equations having the water depth D (Hough 1898; 
Kasahara 1976; Swarztrauber and Kasahara 1985). The 
horizontal motions [um, vm, hm]T and time t are made non-
dimensional by

As the non-dimensional HSEs are linear with respect to 
time, their solution [ũm, ṽm, h̃m]

T can be expressed in terms 
of harmonics in time as

where the subscript m denotes the m-th vertical mode after 
the vertical projection followed by the normalization (10). 
The horizontal structure functions �k

n
(�,�,m) , known as 

the Hough functions, depend on the zonal wavenumber k 
and meridional index n for every m and the corresponding 
dimensionless frequency is denoted �k

n
(m) . The separation 

of the zonal and meridional dependencies and the periodic 
boundary conditions in the longitudinal direction lead to the 
following solution for �k

n
(m) for discrete values of k in the 

form of the Hough harmonics:

The meridional dependence is described by the Hough func-
tion vector �,

�k
n
(�,m) = [Uk

n
(�,m), iVk

n
(�,m),Zk

n
(�,m)]

T , with U, V 
and Z meridionally dependent profiles of the zonal velocity, 
meridional velocity and geopotential height, respectively, 
all characterized by the zonal wavenumber k and meridional 
index n for each m.

For every combination of the three indices k, n and m, the 
dimensionless frequency �k

n
(m) defines three eigensolutions 

(7)
dG(�)

d�
+

Γ0

T0
G(�) = 0 at the surface, � = 1, and

(8)�
dG(�)

d�
= 0 at some small value of � = �T ,

(9)∫
1

�T

Gi(�)Gj(�)d� = �ij,

(10)

ũm =
um√
gDm

, ṽm =
vm√
gDm

, h̃m =
hm

Dm

, t̃ = 2Ωt.

(11)�m(𝜆,𝜑, t̃) = [ũm, ṽm, h̃m]
T
= �

k
n
(𝜆,𝜑,m)e−i𝜐

k
n
(m)t̃,

(12)�
k
n
(�,�,m) = �

k
n
(�,m)eik�,

of the horizontal oscillations. One of the solutions is a low-
frequency, westward-propagating Rossby wave, also denoted 
balanced mode. The other two solutions are high-frequency 
inertial gravity (IG) waves that propagate eastward or west-
ward. For details of their derivation and the corresponding 
frequency relationships we refer the reader to Swarztrauber 
and Kasahara (1985) and Phillips (1990).

The derivation of solutions in the form (11) applies the 
following global inner product:

where � = sin(�) and the asterisk (∗) denotes the complex 
conjugate. Subscript p refers to a particular mode corre-
sponding to a zonal wavenumber kp , a meridional index np 
and a vertical mode index mp , while subscript r indicates 
another mode. The global orthogonality of the Hough func-
tions for each m can be written as

Further details of the NMF derivation in the � coordinates 
are provided in Žagar et al. (2015) and references therein.

The NMF method has previously been applied in a num-
ber of studies to analyse atmospheric energetics (e.g. Tanaka 
1985; Tanaka and Kung 1988; Tanaka and Kimura 1996; 
Terasaki and Tanaka 2007; Marques and Castanheira 2012), 
baroclinic instability (Kasahara and Tanaka 1989) and spatio-
temporal variability (e.g. Tanaka and Kung 1989; Castanheira 
et al. 2002; Žagar et al. 2017; Blaauw and Žagar 2018) in addi-
tion to its extensive use for the initialization of NWP models 
(Machenhauer 1977; Daley 1991). In particular, Tanaka and 
Kung (1988) first considered stationary and transient compo-
nent of the global total energy using NMFs. Castanheira et al. 
(2002) analyzed variability of the Northern Hemisphere win-
ter circulation by combining the principal component analysis 
with time series of the Hough expansion coefficients of data 
on standard pressure levels. They demonstrated that selected 
normal modes data resemble well-known components of the 
Northern Hemisphere variability such as the observed winter 
North Atlantic Oscillation pattern. A more extensive set of 
their results was presented in Castanheira (2000).

All cited studies apply the NMF decomposition using the 
linearization around the state of rest. When the mean zonal 
flow is taken into account, the frequencies of wave solutions 
of the linearized global shallow water equations change and 
the frequency spectrum can become continuous, and solu-
tions to such system barotropically unstable (Kasahara 1980). 
However, the structure of associated Hough functions does not 
change significantly in the case with the linearization around 
the non-zero mean zonal flow (see Corrigendum to Kasahara 

(13)⟨�p,�r⟩ =
1

2𝜋 ∫
2𝜋

0 ∫
1

−1

�
ũ∗
p
ũr + ṽ∗

p
ṽr + h̃∗

p
h̃r

�
d𝜇d𝜆,

(14)
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1980) implying that the NMFs for the reference state of rest 
can be reliably used for the spectral decomposition of the low-
resolution data.

2.2 � Modal decomposition of discrete 3D data

The NMF projection of global data available on J terrain-fol-
lowing levels is performed using the MODES software (Žagar 
et al. 2015). The procedure consists of two steps. In the first 
step, the input data vector �(�,�, �j) at time step t on j-th � 
level is decomposed using a series of M orthogonal vertical 
structure functions Gm(j) as

where �m is a 3 × 3 diagonal matrix with elements 
√
gDm , √

gDm , and Dm for the purpose of normalization (10). The 
result of (15) is the vector �m(𝜆,𝜑) = [ũm, ṽm, h̃m]

T that 
describes non-dimensional oscillations of the horizontal 
wind and height fields in a shallow-water system with depth 
Dm . The vertical mode index m varies from the external 
(barotropic) mode, m = 1 , to the total number of vertical 
modes M, with M ≤ J.

In the second step, the dimensionless horizontal motions 
for each m are represented by a series of the Hough harmonics 
�k

n
 using the complex Hough expansion coefficients �k

n
(m) as

In (16), the parameter K denotes the maximal number of 
zonal waves whereas the maximal number of meridional 
modes, denoted R, combines all of the Rossby modes, the 
eastward-propagating IG modes and the westward-propagat-
ing IG modes. The three indices k, n, and m constitute the 
3-component modal index � = (k, n,m) of the Hough expan-
sion coefficients, ��.

In practice, the 3D data expansion is performed by first 
computing �m as

where we use (15) and the orthogonality (9) of discretized 
vertical structure functions. This is followed by the computa-
tion of the Hough expansion coefficients �� as

(15)�(�,�, �j) =

M∑

m=1

Gm(j)�m �m(�,�),

(16)�m(�,�) =

R∑

n=1

K∑

k=−K

�k
n
(m)�k

n
(�,�;m).

(17)�m(�,�) = �
−1
m

J∑

j=1

Gm(j)�(�,�, �j),

(18)�� = �k
n
(m) =

1

2� ∫
2�

0 ∫
1

−1

(
�

k
n

)∗
⋅ �m d� d�.

The zonal expansion is performed by using the fast Fourier 
transform while the Gaussian quadrature approximates the 
integration in the meridional direction. Numerical aspects of 
the horizontal expansion are described in Swarztrauber and 
Kasahara (1985). Equations (15) and (17) are the vertical 
transform pair whereas Eqs. (16) and (18) are the horizontal 
transform pair.

The result of the expansion (17–18) is the time series of the 
non-dimensional coefficients ��(t) . The dimensional form of 
the derived statistical quantities is obtained by the multiplica-
tion implied by �m for each m.

2.3 � Variability and bias indices

With reanalyses and the climate model outputs available in 
terms of k, n and m indices, all moments can be evaluated in 
the space of normal modes for the Rossby and inertio-gravity 
waves. The evaluation of spatial variability in terms of energy 
spectra of kinetic energy and available potential energy is com-
monly applied to NWP models but also to reanalysis data (e.g. 
Žagar et al. 2017). Here we introduce definitions of temporal 
variability and bias using the same notation.

2.3.1 � Spatial variability

The multiplication of the �� coefficients by (gDm)
1∕2 gives the 

total energy in mode � = (k, n,m) , denoted I� in units m2/s2 
or J/kg:

Energy for the mth vertical mode is obtained by summing 
over all horizontal modes as

which is equivalent to a sum of the specific kinetic and avail-
able potential energy, Km + Pm (Žagar et al. 2015):

Most of time, we are interested in the meridionally and verti-
cally integrated energy which is computed as

The spectrum Ik at a single time instant describes how 
energy is distributed as a function of the zonal wavenum-
ber. Long-term average of energy is Ik = 1∕N

∑N

t=1
Ik(t) , 

with the length of the time series denoted N. The average 

(19)I� = Ik
n
(m) =

1

2
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n
(m)

[
�k
n
(m)

]∗
.

(20)Im =
1

2
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]∗
,

(21)Km + Pm =
1

2
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u2
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)
+

1
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g

Dm

h2
m
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(22)Ik =
1

2
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gDm
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n=1
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[
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]∗
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energy spectra for the model simulation and reanalysis data 
are denoted Ic

k
 and Ia

k
 , respectively. Notice that Ik is different 

from the energy spectra of the mean circulation obtained by 
computing the energy spectrum from the average Hough 
expansion coefficients, �� ,

In fact, it is easy to show that for each � the difference 
between the energy of the time mean component ��  , 
I(��) = 1∕2 gDm��

[
��

]∗ , and the time mean energy Ik cor-
responds to the transient circulation energy in mode � , T�

i.e. I� = I(��) + T�.

2.3.2 � Spectrum of bias

For a single mode � , we denote the complex expansion coef-
ficients for the climate model and verifying analysis �c

�
 and �a

�
 , 

respectively. Their time-averaged difference is computed as

If differences between the model and analysis were random 
with zero mean, their time average should be close to zero. A 
systematic difference, however, is referred to as a bias. Equa-
tion (25) thus formally defines model bias in every zonal 
wavenumber, meridional and vertical mode. For any � or 
a range of indices, Δ��  can be filtered from modal space 
back to physical space by applying (15–16). As the NMF 
decomposition is complete, filtering of all modes should ide-
ally correspond to the averaged difference in physical space 
for the wind components, geopotential and surface pressure 
fields. In the following, we prove validity of this statement.

By multiplying the amplitudes of bias coefficients Δ��  by 
a factor gDm we obtain the spectrum of bias variance. In order 
to see this, we define specific modal bias variance B� for a 
single mode � as

The variance of bias at the point (�i,�j,m) is defined as

with bias for individual variables um , vm and hm at point 
(�i,�j,m) defined as (for the zonal wind)
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N
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2
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)∗

,
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1

N
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�c
�
(t) − �a

�
(t)
]
= �c

�
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�
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(26)B� = gDmΔ��

[
Δ��

]∗
.

(27)Q(�i,�j,m) = Δum
2
+ Δvm

2
+

g

Dm

Δhm
2
,

and similarly for vm and hm.
We can show that the summation of Eq. (26) over all (k, n) 

is equivalent to the horizontal integral of the squares of the 
biases in wind and geopotential height fields after the vertical 
projection, as defined by Eq. (27), that is calculated as a double 
summation using the Gaussian weights w(�i,�j):

To show (29), we use (16) and (17) to write the horizontal 
expansion for a difference between the model and reanalysis 
after the vertical projection, Δ�m = �c

m
− �a

m
 , in terms of 

Δ�k
n
(m) = Δ�� = �c

�
− �a

�
 , and average it over time series 

of N differences to obtain

Then we take the inner product (13) of expression (30) with 
itself and multiply from the left by gDm and apply (10) to 
obtain

Applying the orthogonality of the Hough harmonics (14) the 
right-hand side of (31) becomes

the horizontally integrated specific modal bias variance (26), 
i.e. the left-hand side of (29). Using the Gaussian weights 
to calculate the right-hand side of (29), we obtain the right-
hand side of Eq. (27).

2.3.3 � Temporal variability

Variability is the square root of variance which for a single 
mode � is denoted V� = Vk

n
(m) . Unbiased variance is computed 

for the GCM and reanalysis data as

Unit of V� is m2/s2 . Notice that the difference to Eq. (24) is 
the factor 1/2 and the normalization by (N − 1) instead of N; 
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in other words, if we use the biased variance, the following 
relation applies:

Using Eq. (34) to evaluate Ic
�
− Ia

�
 and expressing I(�c

�
) as 

I(�c
�
) = I(Δ�� + �a

�
) , we arrive at the following expression 

coupling the bias with variance and energy distribution in 
the model and verifying analyses:

with the covariance term P(Δ�� ,�
a
�
) defined as

where the subscripts r and i denote the real and imaginary 
parts, respectively. The term P(Δ�� ,�

a
�
) describes the covar-

iance between the mean state of the verifying reanalysis and 
bias in the same mode. Using (34) for the model and reanaly-
sis, Eq. (35) can be rewritten as

Equation (35) states that deficiency in simulated mean 
energy in mode � can be expressed as a sum of three terms: 
deficiency in simulated variance, the bias variance and the 
covariance between the mean state of verifying reanalysis 
and the bias in the same mode � . Equation (37) states that 
the misrepresentation of the climatological spatial variance 
(energy of the mean state) in the model with respect to the 
reanalysis is described by the 2-term bias expression that 
accounts for differences between the model and reanalysis 
in the variance and in the mean total energy.

Globally integrated squared variability defined by Eq. (33) 
is equivalent to the integral in physical space (after the vertical 
projection) of the variance Sm which at the point (�i,�j,m) is 
defined as

The three elements of the summation (38), Var(um) , 
Var(vm) and Var(hm) , denote variances of the wind com-
ponents and modified geopotential height after the ver-
tical projection; for example, interannual variance in 
zonal wind, Var(um) , at the location (�i,�j,m) is given by 
Var(um) = 1∕(N − 1)

∑N

t=1
(um(t) − um)

2 , where um is the 
mean zonal wind at the location. The equivalence between

(34)I� − I(��) =
1

2
V� .
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).

(38)Sm(�i,�j) = Var(um) + Var(vm) +
g

Dm

Var(hm).

can be easily shown following the proof of the equivalence 
between the modal and physical space bias, with the time 
averaging of differences replaced by the time averaging of 
squared departures from the time mean values.

3 � Simulations and reanalysis data

3.1 � GCM simulations

Numerical simulations are performed by SPEEDY model 
which is described in Molteni (2003) and Kucharski et al. 
(2006). It is a hydrostatic spectral GCM, built on the GFDL 
dynamical core (Held and Suarez 1994), with vorticity and 
divergence as the main prognostic variables, together with 
temperature, specific humidity and surface pressure. Con-
vection, condensation, clouds, radiation, momentum and 
energy surface fluxes, and vertical diffusion are assessed by 
simplified parametrization schemes described in Molteni 
(2003).

We used SPEEDY version 41, with 8 vertical sigma lev-
els and spectral truncation T30, which approximately cor-
responds to the resolution of 3.75◦× 3.75◦ . Vertical levels 
in SPEEDY are at � = 0.025, 0.095, 0.2, 0.34, 0.51, 0.685, 
0.835, and 0.95 (denoted L8). The horizontal hyperdiffusion 
on � surfaces is applied to vorticity, divergence, temperature 
and specific humidity at all wavenumbers in the form of 
the fourth-power Laplacian including a corrective term for 
temperature and specific humidity which simulates diffusion 
on pressure to avoid a spurious diffusion over topography. 
There is an additional linear damping at the model top levels 
applied to the zonal wind and a vertical diffusion applied to 
temperature (Kucharski, pers. comm.).

The prescribed monthly SST from reanalysis is assumed 
valid on 15th day of the month and daily SST value is lin-
early interpolated in between. Alternatively, the SST can be 
computed using a slab ocean thermodynamic mixed-layer 
model with a time-constant depth varying as the third power 
of cosine from 40 m in the tropics to 60 m in the extratrop-
ics. Due to the formulation of the model, the application of 
the slab ocean still requires the user to provide prescribed 
monthly mean SSTs and climatological net heat fluxes into 
the ocean. Computations of daily corrections to SST simu-
late a mixed layer of constant depth and heat capacity, taking 
into account the deviations of net heat fluxes into the ocean 
from the climatological ones (Herceg-Bulić and Kucharski 
2012; Sun et al. 2017). The detailed SPEEDY version 41 
documentation can be found at the website http://users​.ictp.
it/~kucha​rsk/speed​y-net.html.

(39)

∑
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http://users.ictp.it/%7ekucharsk/speedy-net.html


294	 N. Žagar et al.

1 3

SPEEDY performance has been evaluated in studies of 
teleconnections and ENSO (e.g. Polo et al. 2014; Sun et al. 
2017), ocean–atmosphere interactions (e.g. Herceg-Bulić 
and Kucharski 2013), monsoon variability and precipitation 
(Feudale and Kucharski 2013) and extreme climate events 
(Scaife et al. 2009).

Two long model simulations were carried out. The first 
simulation was forced with monthly fields of SST from 
ERA-20C from January 1949 to December 2010. The sec-
ond simulation used SPEEDY coupled to the slab ocean 
model (SlO) as described above. The two T30L8 datasets 
are denoted SPEEDY and SPEEDY-SlO, respectively. Both 
experiments started from atmosphere at rest on 1 January 
1949 and cover the period until 31 December 2010. The 
outputs are saved as monthly mean values for all prognostic 
parameters and monthly accumulation for precipitation. The 
first 10 years are not used so that presented results are based 
on the 50-year period between January 1961 and December 
2010.

3.2 � ERA‑20C reanalysis data and comparison 
with SPEEDY

The ERA-20C reanalysis dataset is described in Poli et al. 
(2016). The assimilated observations are surface pressure 
and surface winds over oceans, whereas the sea-surface tem-
perature and sea-ice cover are from HadISST2 (Rayner et al. 
2006). The ERA-20C analysis is forced by historical record 
of changes in climate forcing factors: greenhouse gases, vol-
canic aerosols and solar variations.

Monthly mean fields of ERA-20C over the period 
1961–2010 were prepared at T30 horizontal resolution and 
91 model levels from the ECMWF data archive. The trans-
formed geopotential height defined in Sect. 2 is computed on 
model levels. Then the wind and geopotential height fields 
are vertically interpolated to the eight sigma levels used in 
SPEEDY.

The precipitation climatology in ERA-20C can be com-
pared with the two simulations in Fig. 1. Overall the pre-
cipitation pattern in SPEEDY is simulated reasonably well 

in comparison with ERA-20C given that the average pre-
cipitation is a target of the model tuning when forced by 
the observed SST (Kucharski, pers. comm.). However, the 
precipitation amount and the regional and seasonal details 
are less satisfactory. Precipitation maxima in the tropics 
are overestimated, especially in the coupled-model run 
over the ITCZ in both Pacific and Atlantic. SPEEDY-SlO 
underestimates precipitation in the western south Pacific 
convergence zone and in the southern hemisphere (SH) 
subtropics. For the sake of model bias discussion later 
on, we mention also interannual variability. In ERA-20C, 
interannual variability of precipitation is maximal in the 
western and central Pacific in relation to ENSO. Variabil-
ity simulated by SPEEDY in the same region is somewhat 
overestimated whereas SPEEDY-SlO does not contain the 
observed variability maximum due to missing ENSO vari-
ability (not shown).

The time-averaged, zonally-averaged tropospheric zonal 
winds in four seasons are shown in Fig. 2 for SPEEDY 
and ERA-20C along with their time averaged difference 
(bias). Averaged winds simulated by SPEEDY agree with 
the reanalysis reasonably well up to 200 hPa. The model 
has too strong subtropical jets above 400 hPa as well as too 
strong tropical upper troposphere easterlies compared to 
ERA-20C. Stratospheric wind maxima, seen in ERA-20C, 
are not simulated by the model due to a poorly resolved 
stratosphere and damping.

These deficiencies become more pronounced in 
SPEEDY-SlO (not shown). The comparison of interannual 
variability reveals that the model on average significantly 
underestimates wind variability present in ERA-20C data. 
An exception is the SH midlatitude upper-troposphere 
zonal wind variability which is overestimated as noted 
also in the previous studies (Molteni 2003). This might be 
associated with a greater variability in the surface-pressure 
field over Antarctica in SPEEDY than in ERA-20C (not 
shown); surface pressure is a part of the total variability in 
modal space through the modified geopotential height. We 
also note that the model lacks the zonal wind variability in 
the tropical stratosphere, which is the maximal variability 

20C(a) ERA- (b)  SPEEDY (c) SPEEDY-SlO

Fig. 1   Precipitation climatology based on 1961–2010 period for a ERA-20C, b SPEEDY and c SPEEDY-SlO in mm/day
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in the ERA-20C dataset. This contributes a large part of 
the bias in the zonal mean state above 300 hPa (Fig. 2i–l).

3.3 � Setup of the modal decomposition

The expansion (15) is applied to SPEEDY and ERA-20C 
monthly outputs from January 1961 to December 2010, a 
total of 600 samples. The computation of vertical struc-
ture functions necessitates global temperature and stabil-
ity vertical profiles which are calculated from ERA-20C. 
The difference between the globally averaged profiles for 
ERA-20C and SPEEDY is sufficiently small to produce no 
significant difference in the results of the vertical structure 
equation. The Hough functions are computed for every ver-
tical mode, from m = 1 to M = 8 . The applied horizontal 
truncations are K = 30 and R = 90 for the number of zonal 
wavenumbers and meridional modes, respectively. Ninety 
meridional modes include equal number (30) of the Rossby, 
eastward and westward inertio-gravity modes. For example, 

the structures of four horizontal modes for the barotropic 
vertical mode m = 1 with the equivalent depth close to 10 
km, and zonal wavenumber k = 1 are shown in Fig. 3. They 
include two frequently analyzed waves of the global atmos-
phere, the Kelvin wave ( n = 0 eastward-propagating inertio-
gravity mode) and the n = 1 Rossby wave.

The input data to the NMF projection are on regular 
Gaussian grid N24 which corresponds to 96 × 48 points 
in physical space. The hydrostatic geopotential height on 
model levels is computed from temperature data starting 
from the orography as a lower boundary and the background 
value obtained using the globally constant temperature at 
every level is subtracted. Similarly the pressure term in the 
computation of the modified geopotential height variable is 
reduced by the factor computed using the globally constant 
surface pressure value 1000 hPa (Staniforth et al. 1985). 
Both ERA-20C and SPEEDY datasets were subjected to the 
same spectral filtering following Navarra et al. (1994) to 

(e) SPEEDY mean, MAM (f) SPEEDY mean, JJA (g) SPEEDY mean, SON (h) SPEEDY mean, DJF

(i) SPEEDY bias, MAM (j) SPEEDY bias, JJA (k) SPEEDY bias, SON (l) SPEEDY bias, DJF

(a) ERA-20C mean, MAM (b) ERA-20C mean, JJA (c) ERA-20C mean, SON (d) ERA-20C mean, DJF

Fig. 2   Zonal mean zonal winds in a–d ERA-20C reanalysis data and e–h SPEEDY, and i–l SPEEDY biases against ERA-20C in the four sea-
sons, all in m/s. From left to right: MAM, JJA, SON and DJF



296	 N. Žagar et al.

1 3

reduce Gibbs oscillations. The same filtering was applied to 
their orography fields before computing geopotential.

Seasonal means for each coefficient mode � are obtained 
from (23) as averages over three monthly values for MAM, 
JJA, SON and DJF, and annual means as averages over the 
12 calendar months. Seasonal and annual climatologies are 
defined by the fifty-year (number of samples is N = 50 ) 
averages of seasonal and annual means, respectively, 
except for the northern hemisphere (NH) winter (DJF) 
climatology which is computed from 49 years, N = 49.

4 � Scale‑dependent model validation

First we present simulated energy spectra and variability 
in comparison to ERA-20C, then we evaluate biases in 
relation to variability and finally, we present some prop-
erties of the annual energy cycle in the model. It is worth 

mentioning that the same analysis was performed using the 
ERA-Interim data for period 1981–2010 and the results 
were very similar.

4.1 � Energy spectra

For every monthly data, we evaluate Eq. (22) for the zonal 
distribution of total kinetic and available potential energy as

where �k0 = 1 for k = 0 and 0 otherwise, since zonal wave-
numbers k are stored for 0 ≤ k ≤ Nk.

Figure 4 shows the average energy distribution in ERA-
20C and in the two SPEEDY simulations in the annual means 
and in DJF and JJA seasons. Each panel includes information 
on the percentage of energy in waves with respect to the total 
energy, i.e. 100%

∑
k≠0 Ik∕

∑
k Ik . It shows that there is about 

(40)Ek =
(
2 − �k0

)
Ik =

(
2 − �k0
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k
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,

(a) (b) (c) (d)

Fig. 3   Horizontal structure functions for the zonal wavenumber k = 1 
and vertical mode m = 1 . Shown are Rossby waves with meridional 
modes a n = 1 , b n = 2 , c n = 3 and d the eastward-propagating 

inertio-gravity mode n = 0 (Kelvin wave). Red and blue shades cor-
respond to positive and negative values of the geopotential height in 
meters. Winds are in m/s

1 2 3 5 8 12 20

zonal wavenumber

10-3

10-2

10-1

100

101

102

T
ot

al
 w

av
e 

en
er

gy
 (

m
2 /s

2 )

(a) Annual

Energy % in k>0:

SPEEDY: 5.7%

ERA-20C: 7.3%

ERA-20C
SPEEDY

1 2 3 5 8 12 20

zonal wavenumber

10-2

10-1

100

101

102

T
ot

al
 w

av
e 

en
er

gy
 (

m
2 /s

2 )

(b) JJA

Energy % in k>0:

SPEEDY: 4.8%

ERA-20C: 6.1%

ERA-20C
SPEEDY

1 2 3 5 8 12 20

zonal wavenumber

10-2

10-1

100

101

102

T
ot

al
 w

av
e 

en
er

gy
 (

m
2 /s

2 )

(c) DJF

Energy % in k>0:

SPEEDY: 8.3%

ERA-20C: 9.4%

ERA-20C
SPEEDY

15 16 17 18 19 20
0.02

0.05

0.1

0.2

15 16 17 18 19 20
0.02

0.05

0.1

0.2

15 16 17 18 19 20
0.02

0.05

0.1

0.2

Fig. 4   Average energy distribution as a function of the zonal wave-
number in ERA-20C, SPEEDY and SPEEDY-SlO datasets. a Annual 
climatological spectra, b JJA and c DJF seasonal climatology energy 

spectra as defined by Eq. (10). Numbers in each panel show the per-
centage of energy in waves for each dataset. Small interior figures are 
zooms for k = 15–20
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50% more energy in waves in the NH winter than in summer 
in ERA-20C, and that differences between the seasons are 
largest at large scales. On average, our low-resolution model 
lacks wave motions and the gap between the reanalysis and 
model is smaller in DJF than in JJA, probably in relation to 
stronger wave dynamics in NH. As the scale reduces, the rel-
ative difference between SPEEDY and ERA-20C increases. 
In the wavenumbers range k = 15–20, the model has half or 
less energy than ERA-20C (zoom in each panel Fig. 4); for 
example, in DJF, SPEEDY has 50% of ERA-20C energy in 
k = 15 , 42% in k = 17 and only 36% in k = 20 . Differences 
between SPEEDY and SPEEDY-SlO are largest at planetary 
scales, especially in DJF in k = 3 (about 30%).

So far climate models have not been systematically vali-
dated with reanalyses using energy spectra. In order to relate 
presented differences in energy spectra with the model short-
comings, it is useful to discuss them in relation to other 
properties of the model i.e. temporal variability.

4.2 � Interannual variability

The zonal spectrum of variability is computed as the square 
root of the zonal variance spectrum after the vertical and 
meridional integration of variance computed as deviations of 
the seasonal and annual means from their respective clima-
tologies using Eq. (33). The resulting variability spectrum is

where �k0 = 1 for k = 0 and 0 otherwise ( Vk is presented only 
for positive k). Note here that variability values apply per 
zonal grid point as the applied forward Fourier transforma-
tion pair in Eq. (16) includes normalization by the number 
of grid points along the latitude circle.

(41)Vk =
√
Vk =

�����
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�
Vk
n
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,

Interannual variability obtained by Eq. (41) is shown 
in Fig. 5 for the zonal wavenumber k = 0 − 10 as the total 
variability and variability divided in the symmetric and 
asymmetric components with respect to the equator. The 
two components are the square roots of the symmetric and 
asymmetric variance which are defined by the value of the 
meridional mode n. The symmetric Rossby and inertio-
gravity modes have odd and even, respectively, values of n 
and their geopotential height and zonal winds are symmetric 
with respect to the equator, as illustrated in Fig. 3. Opposite 
applies to the asymmetric modes.

Figure 5 shows a strong dependence of the interannual 
variability on the zonal scale in the model and reanaly-
sis; that is, the larger the scale, the greater the variability. 
However, the model significantly underestimates variabil-
ity presented in ERA-20C; the underestimation in k = 0 is 
about one-third but it decreases as k increases. The under-
estimation of large-scale variability is predominantly in the 
symmetric component, especially in k = 0 where SPEEDY 
accounts for only about 64% of the symmetric variability in 
ERA-20C. For each k > 0 , SPEEDY-SlO contains less vari-
ability than the SST-forced run (except in the asymmetric 
part of k = 0 ) although the difference becomes small for 
k > 10 . The difference between the two simulations at large 
scales is smaller for the asymmetrical than for symmetric 
component. In ERA-20C, the symmetric component of the 
zonal mean circulation is the largest contributor to the global 
variance (about 37% for our T30L8 dataset). The contribu-
tions of the symmetric and asymmetric variance become 
nearly equal at wavenumber k = 4.

Figure 6 shows integrated interannual variance and 
its normalized spectra. The amplitude of integrated vari-
ance of the 8-level ERA-20C dataset on T30 resolution 
is around 53 m2/s2 (Fig. 6a), i.e. about 7.3 m/s. Quanti-
tatively SPEEDY produces about 60% and SPEEDY-SlO 
around 50% variability in ERA-20C (Fig. 6c). The zonal 
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(c) Asymmetric interannual variability
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Fig. 5   Interannual variability of annual means as a function of the zonal wavenumber. a Variability V
k
 computed by Eq. (41), and its b symmet-

ric and c asymmetric components. Units are m/s
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mean state in SPEEDY contains about 38% of the simu-
lated interannual variance which can be compared with 
48% in reanalysis (Table 1). Just 4-5% of the interannual 
variability is in zonal wavenumbers k > 5 . If the variance 
is normalized by the total variance in each dataset, simi-
larity between reanalysis and the model greatly increases 
(Fig. 6b).

Numbers collected in Table 1 document that the major-
ity of interannual variance in T30L8 dataset is in the plan-
etary scales with k = 0–3. In ERA-20C, variance com-
puted from annual means is 90% in k = 0–3 whereas the 
seasonal percentages vary from 84% in MAM to 88% in 
SON. The model forced with the observed SST underes-
timates variance in all seasons, but especially in JJA and 
SON. The largest cumulative variance in ERA-20C is in 
boreal winter, and minimal in boreal summer (Fig. 7); the 
corresponding values of variability are 12.6 m/s and 11 
m/s in DJF and JJA seasons, respectively. In the model, 
the smallest variance is also in JJA when SPEEDY and 
SPEEDY-SlO have very similar variances (Fig. 7c) and the 

total variance amplitude makes 60% of that in ERA-20C 
(Fig. 7d). The total simulated variance by SPEEDY-SlO 
varies a lot among the seasons with respect to ERA-20C, 
from ∼ 47% in SON to about ∼ 90% in MAM.

Similar to Fig. 5, we can discuss interannual seasonal 
variance in symmetric and asymmetric components. For 
k > 4 , the march of seasons is seen in greater asymmetric 
than symmetric variance in ERA-20C in wavenumbers k = 
5–7, 5–6, 7 and 6–7 in MAM, JJA, SON and DJF seasons, 
respectively (figures not shown). This is likely a result of a 
stronger interannual variance in the baroclinic activity of the 
midlatitude storm tracks in various seasons. There is a lack 
of symmetric variance at large scales in the model that is 
especially strong at planetary scales in SPEEDY-SlO.

The missing variance appears to be in odd Rossby meridi-
onal modes, particularly in n = 3 Rossby mode (shown in 
Fig. 3c). Instead, the model has largest variance in the asym-
metric Hough mode n = 2 , especially large in the coupled 
run (not shown). Variability in small zonal and meridional 
scales is poorly represented in the model; the discussed lack 
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Fig. 6   Cumulative interannual variance in three datasets: ERA-20C 
reanalysis (black curve), SPEEDY forced by SST from ERA-20C (red 
curve) and SPEEDY-SlO which is using a slab-ocean model (blue 
curve). a Global cumulative variance. For each zonal wavenumber k, 

V
k
 is summed up for all smaller k. b As in a, but variance in each k is 

scaled by the total variance in the same dataset. c As in b, but each 
dataset is scaled by the total variance in ERA-20C

Table 1   Global interannual variance integrated vertically over 8 terrain-following levels ( � = 0.025, 0.095, 0.2, 0.34, 0.51, 0.685, 0.835, 0.95 ), 
meridionally and for the selected zonal wavenumbers on T30 horizontal grid

Integrated variance is normalized by the total variance in 0 ≤ k ≤ 30 and shown in percentages rounded to the nearest integer. Values are shown 
for ERA-20C (denoted E) and for SPEEDY (denoted S)

k Ann E Ann S MAM E MAM S JJA E JJA S SON E SON S DJF E DJF S

0 48 38 40 36 40 28 45 27 39 33
0-1 70 62 61 61 64 52 68 52 63 60
0-3 90 87 84 85 87 83 88 82 85 86
0-5 97 96 94 96 95 94 96 95 95 96
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of spatial variability in subsynoptic scales thus extends to 
temporal domain. Full presentation of the two-dimensional 
variability distribution are beyond the scope of this paper 
which uses only a limited amount of the capabilities of the 
modal decomposition and does not present meridional and 
vertical scales and Rossby and inertio-gravity modes.

4.3 � Scale‑dependent biases

Now we attempt to discuss variability shortcomings in the 
model in relation to biases. Similarly to variability, bias is 
computed by season ( N = 150 , number of months in 50 sea-
sons) and for the annual means (i.e. averaging for the whole 
dataset, N = 600 , number of months in 50 years) using Eq. 
(25). The spectrum of bias is compared with the variance 
spectrum by comparing Vk with Bk computed as

with individual mode bias variance Bk
n
(m) obtained from 

(26) and �k0 defined as in (41).
Biases in SPEEDY and SPEEDY-SlO are computed by 

comparing them with ERA-20C. Their comparison describes 
how the slab ocean model changes the scale distribution of 
atmospheric biases with respect to the SST-forced model. 
The third bias is one computed as the systematic difference 
between SPEEDY and SPEEDY-SlO and it represents the 
perfect-model scenario; assuming a perfect atmosphere 
model, it assesses the impact of having accurate SSTs. The 
bias in SPEEDY-SlO against SPEEDY is expected to be 
smaller than against ERA-20C and this can be checked in 
Figs. 8a–d and 9.

First, Fig. 8 compares the zonal wavenumber spectra of 
the bias variance Bk computed by Eq. (42) with the variance 
Vk , computed by Eq. (41). The main property of the bias 
variance distribution is its strong scale dependence, similar 
to the variance, but with a stronger reduction with the zonal 
scale. The zonal mean state ( k = 0 ) is not shown in Fig. 8; 

(42)Bk =
(
2 − �k0

) R∑

n=1

M∑

m=1

Bk
n
(m),

the bias in k = 0 ( B0 ) largely exceeds the sum of biases in 
k > 0 ( Bk>0 ), especially in SPEEDY-SlO. For example, B0 is 
2–4.2 times, and 1.8–3.4 times greater than Bk>0 in SPEEDY 
and SPEEDY-SlO, respectively. The exact numbers depend 
on season. In SPEEDY-SlO against SPEEDY, B0 is at 70% 
and 200% level of that in SPEEDY against ERA-20C in 
MAM and SON, respectively.

Bias variance exceeds circulation variance in all sea-
sons at nearly all scales. There are however large difference 
between the seasons. If we use variability in ERA-20C as the 
reference, then the MAM bias in SPEEDY is smaller than 
variability at k = 5–6, baroclinically most active scales. In 
JJA and SON, biases exceed ERA-20C variability except 
at k = 6 in SPEEDY-SlO against SPEEDY in JJA. Fur-
thermore, although large-scale SON bias in SPEEDY-SlO 
against SPEEDY is smaller than in SPEEDY-SlO against 
ERA-20C, it is still greater than the bias in SPEEDY against 
ERA-20C at the same large scales suggesting that large 
biases introduced by a poor ocean could not be compensated 
by the perfect atmospheric model. In DJF, biases remain 
greater than ERA-20C variability except for k > 9 in the case 
of SPEEDY-SlO against SPEEDY.

A much larger bias in the zonal mean state in SPEEDY-
SlO than in SPEEDY is a consequence of unrealistically 
poor SST produced by the slab-ocean model. As seen in 
Fig. 1, a poor ocean model increased mean precipitation 
in addition to making the circulation more zonal (Fig. 4) 
and inducing larger differences in seasonal variability with 
respect to reanalysis (Fig. 7). Biases in large-scale waves 
have also mainly increased, but beyond k = 15 there is no 
significant difference between SPEEDY and SPEEDY-SlO 
(Fig. 8a–d). The same applies to the variance (Fig. 8e–h).

A thorough analysis of biases in different modes would 
employ Eq. (35) which is outside the scope of the present 
paper that develops a novel method and demonstrates its 
power using a relatively simple model with large biases. 
We limit the present analysis to the comparison of the first 
two terms on the right-hand side of (35), missing variance 
in the model and bias variance. Figure 9 visualizes the bias 
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Fig. 7   As in Fig. 6a but for seasonal means. Cumulative variance in a MAM, b JJA, c SON and d DJF seasons



300	 N. Žagar et al.

1 3

1 2 3 5 8 12 25
zonal wavenumber

10-4

10-2

100

102

B
ia

s 
va

ria
nc

e 
(m

2
/s

2
)

(a) MAM, Bias variance

S vs. ERA-20C
S-SlO vs. ERA-20C
S vs. S-SlO

1 2 3 5 8 12 25
zonal wavenumber

10-4

10-2

100

102

B
ia

s 
va

ria
nc

e 
(m

2
/s

2
)

(b) JJA, Bias variance

S vs. ERA-20C
S-SlO vs. ERA-20C
S vs. S-SlO

1 2 3 5 8 12 25
zonal wavenumber

10-4

10-2

100

102

B
ia

s 
va

ria
nc

e 
(m

2
/s

2
)

(c) SON, Bias variance

S vs. ERA-20C
S-SlO vs. ERA-20C
S vs. S-SlO

1 2 3 5 8 12 25
zonal wavenumber

10-4

10-2

100

102

B
ia

s 
va

ria
nc

e 
(m

2
/s

2
)

(d) DJF, Bias variance

S vs. ERA-20C
S-SlO vs. ERA-20C
S vs. S-SlO

1 2 3 5 8 12 25
zonal wavenumber

10-4

10-3

10-2

10-1

100

101

V
ar

ia
nc

e 
(m

2
/s

2
)

(h) DJF, Variance

ERA-20C
SPEEDY
SPEEDY-SlO

1 2 3 5 8 12 25
zonal wavenumber

10-4

10-3

10-2

10-1

100

101

V
ar

ia
nc

e 
(m

2
/s

2
)

(g) SON, Variance

ERA-20C
SPEEDY
SPEEDY-SlO

1 2 3 5 8 12 25
zonal wavenumber

10-4

10-3

10-2

10-1

100

101

V
ar

ia
nc

e 
(m

2
/s

2
)

(f) JJA, Variance

ERA-20C
SPEEDY
SPEEDY-SlO

1 2 3 5 8 12 25
zonal wavenumber

10-4

10-3

10-2

10-1

100

101

V
ar

ia
nc

e 
(m

2
/s

2
)

(e) MAM, Variance

ERA-20C
SPEEDY
SPEEDY-SlO

Fig. 8   Seasonal a–d bias variance B
k
 computed by Eq. (42), and e–h 

interannual variance, V
k
 , computed by Eq. (41). Bias in a SPEEDY 

and b SPEEDY-SlO is evaluated with ERA-20C and in c SPEEDY-
SlO is evaluated against SPEEDY. The zonal mean state, k = 0 , is not 

shown. In a–d, the biases of SPEEDY and SPEEDY-SlO relative to 
ERA-20C are shown in black and red, and the bias of SPEEDY-SlO 
relative to SPEEDY is shown in blue
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Fig. 9   Scatterplot of the logarithm of the bias variance, logB
k
 versus 

the normalized missing model variance, computed as (Va

k
− V

c

k
)∕Va

k
 , 

in annual and seasonal means. a SPEEDY and b SPEEDY-SlO 
evaluated against ERA-20C and c SPEEDY-SlO evaluated against 

SPEEDY. Different dots correspond to different zonal wavenumbers k 
from k = 0 (top dots with the largest bias variance) to k = 30 (bottom 
dots with the smallest bias variance). See text for details
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variance in all k using the logarithmic scale against the rela-
tive missing variance which is computed as a difference 
between the ERA-20C and simulated variance normal-
ized by ERA-20C (or a difference between SPEEDY and 
SPEEDY-SlO normalized by SPEEDY). Therefore, values 
smaller than 0 in Fig. 9 imply the variance overestimation 
whereas values between 0 and 1 denoted increasingly miss-
ing variance.

Biases in k = 0 are represented by the dots at the top of 
the three panels in Fig. 9. Dots towards the bottom of each 
panel correspond to successively larger k suggesting an 
increasing lack of relative variability in the model as the 
spatial scale reduces (Fig. 9a, b). Biases introduced by the 
slab-ocean model increase spread in missing portions of var-
iance at the synoptic scales among the seasons that is seen 
in the area with log(B) ≈ −2 (Fig. 9b vs.  9a). On the other 
hand, Fig. 9c suggests that the missing portion of variance 
is greatly reduced in the perfect model scenario although 
large biases remain at planetary scales due to a very poor 
SST. The large reduction in missing variance at subsynoptic 
scales is the most noticeable feature in Fig. 9c in support 
to high-resolution climate modelling providing variability 
information regardless of the amplitude of large-scale biases.

A two-dimensional analysis of bias in terms of the zonal 
wavenumbers and meridional modes reveals that the k = 1 
bias in SPEEDY is maximal for n = 1 meridional mode (not 

shown). The same n is repeated in SPEEDY-SlO along with 
another maximum in n = 3 suggesting an increased wave 
biases in the midlatitudes. A detailed analysis of the meridi-
onal structure and the inertio-gravity component associated 
with tropical circulation features is left for the subsequent 
study.

4.4 � Annual cycle of energy distribution

As suggested by Eq. (35), missing variance and biases 
are related to deficiencies in mean energy and covariance 
between the bias and mean state of reanalysis. A detailed 
evaluation of this relationship is left for a follow-on study 
using a more realistic climate model. Here, we just illustrates 
differences in energy distribution among seasons in light of 
seasonal variations of variability and bias.

The annual cycle of energy distribution is shown in 
Fig. 10 for two quantities. The first three panels (Fig. 10a–c) 
show deviations of the climatological monthly energy from 
the climatological annual mean normalized by the annual 
mean in the same wavenumber. The climatological annual 
energy cycle is displayed in other three panels for several 
wavenumbers (Fig. 10d–f). Figure 10 reveals that shorter 
scales in the model are too active with respect to their annual 
mean. For example, wavenumbers k = 5 and k = 10 vary 
up to around 50% of their annual mean value (Fig. 10b, c) 
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that is not seen in ERA-20C. The same behaviour is found 
also for other k < 20 , especially in JJA in SPEEDY-SlO. 
The wavenumber k = 1 , which should have a positive devia-
tion 10–20% in SON according to ERA-20C, is around 40% 
under-active in the model with respect to the annual aver-
age. At the same time, the underestimation of k = 1 energy 
deviation in SON may be less apparent in the model outputs 
because its amplitude is less than half that of the reanalysis 
(Fig. 10d). We may recall here that the model is character-
ized by large biases in k = 1 in the same season (Figs. 8, 9). 
As the scale reduces, the annual cycle nearly disappears in 
ERA-20C as illustrated by k = 15 in Fig. 10a, f. In the model 
however, the annual cycle of variability at these scales is still 
significant (Fig. 10b, c) even though its amplitude is small 
(Fig. 10f).

5 � Biases in physical space

The presented modal decomposition of bias and variability 
calls for further investigation using state-of-the-art climate 
models. However, the modal decomposition alone can not 
tell us what exactly to change in the model. It can guide the 
physical space analysis and sensitivity studies that should 
lead to improved models. In the present case, large biases 
have been expected as SPEEDY was designed and tuned 
with the aim of simulating mid-latitude NH tropospheric 
variability. In particular, SPEEDY stratosphere should be 
regarded as an upper boundary condition as the top layer 
has a strong damping term (“sponge layer”), to avoid strong 
reflection of waves. However, damping of planetary waves 
at the top of a model has the undesired side effect on strato-
sphere motions.

This was evidenced in Fig. 2i–l showing biases in the 
zonal mean wind (k = 0) in SPEEDY with a large negative 
bias under the tropical tropopause and a large positive bias 
in the subtropical stratosphere. The largest bias in the upper 
troposphere wind is found in DJF season between 50◦ S and 

60◦ S throughout most of the troposphere (Fig. 2l). The hori-
zontal structure of biases in Fig. 11 is shown at the model 
level 2 which is close to 100 hPa and under the influence of 
a strong damping at the model top level above. There is a 
negative zonal wind bias in the tropics and a positive bias in 
the midlatitudes. Therefore, SH westerlies are too strong in 
SPEEDY as mentioned in Sect. 3.2.

Although biases in Fig. 11 can be computed directly in 
physical space, they can also be calculated for physical space 
by using Δ�k

n
(m) in Eq. (16) followed by Eq. (15). Similarly, 

bias in physical space for any k > 0 or a combination of 
(k, n, m) indices is obtained by setting Δ�k

n
(m) = 0 for all 

other k, n and m indices and solving Eqs. (15, 16). Such 
modal filtering relies on the idea that normal-mode func-
tions, although not the normal modes of the model, rep-
resent physically meaningful spatial patterns, especially in 
comparison to statistical analysis such as EOFs. A number 
of previous studies successfully employed this assumption 
to investigate different aspects of dynamics (e.g. Kasahara 
and Tanaka 1989; Tanaka and Kung 1989; Castanheira et al. 
2002; Blaauw and Žagar 2018). Figures 12 and 13 filter only 
zonal scales, i.e. the meridional and vertical structure is due 
to the completeness of (15, 16) retained.

Figure 12 shows wind biases in k = 1 and k = 2 in DJF. 
It suggests that k = 1 bias in the tropics are coupled to the 
extra-tropical biases in NH winter (Fig. 12a). Bias in the 
meridional wind over the maritime continent has the same 
sign in k = 1 and k = 2 and produces the negative maxi-
mum of the total v bias that is most likely responsible for 
the model too strong convection and precipitation (Fig. 1) 
over the region. This process through teleconnections may 
cause negative zonal wind biases over Northern Pacific and 
positive biases over Mediterranean in Fig. 12a.

Figure 12 also suggests that the absolute magnitude of the 
large-scale bias is largest in the subtropics. The same region is 
characterized by largest underestimation of interannual vari-
ability in physical space as discussed in Sect. 3.2. The vertical 
structure along a single latitude circle in the subtropics Fig. 13 

(a) DJF, u wind, lev 2 (b) DJF, v wind, lev 2

Fig. 11   Wind biases in SPEEDY in DJF in physical space. a Zonal and b meridional wind biases at level 2 ( ∼ 100 hPa). Units are m/s
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shows the baroclinic vertical structure of the zonal wind bias 
and the coupling between the surface temperature bias in the 
Atlantic and western Pacific with the upper troposphere biases 
in temperature in the opposite hemisphere. It confirms the 
horizontal and vertical couplings between biases in remote 
regions, as discussed by Wang et al. (2014).

6 � Conclusions and outlook

Spatio-temporal variability and biases in climate model 
thermodynamical fields and circulation are coupled, call-
ing for an approach that considers them simultaneously. 

(a) (b)

(c) (d)

Fig. 12   DJF biases at model level 2 in a, b zonal wind and b, c meridional wind for zonal wavenumbers a, c k = 1 and b, d k = 2 . Units are m/s

(a) (b)

Fig. 13   Longitudinal structure of the bias in k = 1 along latitude circle 16.7◦ N in DJF in a zonal wind (in m/s) and b temperature (in K)
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That was achieved in this paper by using the normal-mode 
function decomposition of the GCM outputs and reanalysis 
data to assess variability and bias as a function of the zonal 
wavenumber and the meridional and vertical modes. An 
analytical relationship has been derived that describes, for 
each mode, deficiencies in simulated mean circulation and 
temporal variance as a function of the bias amplitude and 
the covariance between the reanalysis mean state and bias.

The method was demonstrated using SPEEDY, a primi-
tive-equation GCM with 8 terrain-following vertical levels 
(near pressures 950, 835, 685, 510, 340, 200, 95 and 25 hPa) 
and horizontal resolution T30. The model was compared 
with the ERA-20C reanalyses at the same horizontal and 
vertical grid. Unlike standard reanalyses that use all availa-
ble observations, ERA-20C is based on surface observations 
in 20th century. The spatio-temporal variances in ERA-20C 
and SPEEDY were computed for the period 1961–2010.

It was found that about 48% of the interannual variance 
in ERA-20C, weighted across all meridians and pressure 
levels, is associated with the zonal mean state (zonal wave-
number k = 0 ). The smaller the scale, the less variance so 
that 80–90% (depending on season) of the variance is at k 
= 0–3 whereas in scales smaller than zonal wavenumber 
k = 7 there is only about 1% of the total interannual vari-
ance. The season with the largest interannual variance is 
boreal winter, while JJA has on average about 30% less 
variance than DJF season. Similarly, JJA is character-
ized by about one-third lower percentage of wave ( k > 0 ) 
energy in total ( k ≥ 0 ) energy.

These properties of the ERA-20C data were used to val-
idate SPEEDY. In one setup, the model was used with the 
prescribed SST from ERA-20C (SPEEDY run) whereas 
another simulation applied a slab ocean model which 
updates SST in each forecast step (SPEEDY-SlO run). A 
relatively good representation of the average precipita-
tion, winds and temperature in SPEEDY became worse 
in SPEEDY-SlO. Scale validation revealed that the model 
underestimates interannual variance at all scales but espe-
cially at large scales, and that the variance underestimation 
in SPEEDY-SlO oscillates among the seasons compared to 
the SST-forced run. The comparison of energy spectra also 
shows a poor representation of the annual energy cycle 
at planetary scales. The missing temporal variance in the 
model relative to ERA-20C becomes larger for smaller 
scales. This is due an overall lack of small scale variability 
in SPEEDY, expected in part since ERA-20C was pro-
duced at a higher resolution and truncated to T30.

Similar to variability, bias is strongly scale dependent; 
the larger the scale, the greater the bias. Biases present 
in SPEEDY increase in SPEEDY-SlO, especially in the 
zonal mean state throughout the model atmosphere. The 
comparison of bias in a perfect-model scenario, defined 
as a systematic difference between the SPEEDY-SlO 

and SPEEDY experiments, suggests that improving the 
atmospheric model can greatly increase the variance in 
the model on synoptic and subsynoptic scales. However, 
large biases associated with a poor SST remain at plan-
etary scales.

We have not discussed relative amplitudes of various 
terms of the Eq. (35) describing relationship between energy 
and variance in the model and reanalysis, bias variance and 
covariance between the reanalysis mean state and bias. This 
is left for follow-on studies with a more realistic model. Much 
of the bias in the present study is in k = 0 because the applied 
model does not have an active stratosphere. It is nevertheless 
demonstrated how biases adjust to changes in simulated vari-
ance across scales. For example, the season with the smallest 
variability (SON) in the coupled model is characterised by 
biases that have amplitudes greater than ERA-20C variabil-
ity, regardless of the perfect-model scenario.

The modal method enables scale-selected filtering of the 
bias to physical space. Presented depiction of biases in zonal 
wavenumbers k = 1 and k = 2 demonstrates that the large-
scale biases have a meridionally and vertically tilted struc-
ture suggesting a coupling between biases in remote regions. 
In the present experiments, temperature biases near the sur-
face in the Atlantic and western Pacific appear coupled with 
the upper-troposphere biases of the same sign far eastward.

Follow-on studies will provide a discussion of the two-
dimensional distribution of variability and bias associated 
with the quasi-geostrophic (or Rossby modes) and unbal-
anced dynamics (or inertio-gravity modes) using a more 
advanced GCM. The modal decomposition is especially 
useful in the tropics where other global approaches (e.g. 
spherical harmonics) do not filter the equatorial wave prop-
erties. For the validation and climate model intercompari-
son, a limited number of modes, considerably smaller than 
the actual number of degrees of freedom of a climate model, 
may suffice for the multi-model analysis as a majority of 
variability and bias is at large scales. The first application of 
the method to daily data for the computation of subseasonal 
variability spectra and trends in the ERA-Interim reanalysis 
has already been performed (Žagar et al. 2018).
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