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Summary
An adaptive scheme to generate reduced-order models for parametric nonlin-
ear dynamical systems is proposed. It aims to automatize the proper orthogonal
decomposition (POD)-Greedy algorithm combined with empirical interpola-
tion. At each iteration, it is able to adaptively determine the number of the
reduced basis vectors and the number of the interpolation basis vectors for basis
construction. The proposed technique is able to derive a suitable match between
the RB and the interpolation basis vectors, making the generation of a stable,
compact and reliable ROM possible. This is achieved by adaptively adding new
basis vectors or removing unnecessary ones, at each iteration of the greedy
algorithm. An efficient output error indicator plays a key role in the adaptive
scheme. We also propose an improved output error indicator based on previous
work. Upon convergence of the POD-Greedy algorithm, the new error indicator
is shown to be sharper than the existing ones, implicating that a more reliable
ROM can be constructed. The proposed method is tested on several nonlinear
dynamical systems, namely, the viscous Burgers’ equation and two other models
from chemical engineering.
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1 INTRODUCTION

Large-scale mathematical models have become common in detailed modeling of complex physical and chemical pro-
cesses. By large-scale, we refer to a model with a large number of degrees of freedom. Very often, these models need to
be evaluated repeatedly, for different sets of parameters. To avoid the huge computational burden, model-order reduc-
tion (MOR) typically seeks a small-scale system, with substantially fewer (typically, at least by 1-2 orders of magnitude)
degrees of freedom, that faithfully approximates the original system with parameter variations. The original large-scale
system is referred to as the full-order model (FOM) while the small-scale system is called the reduced-order model (ROM)
in the following.

MOR for linear systems has been under investigation for several decades and is well-established.1 However, meth-
ods for nonlinear systems are still under active research. Existing MOR methods for linear systems could be extended
to weakly-nonlinear systems or systems with structured nonlinearities.2,3 For general strong nonlinear systems, the
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snapshot based methods, for example, proper orthogonal decomposition (POD), reduced basis method (RBM) are chosen
most often. The use of POD/RBM is often accompanied by an interpolatory strategy for efficient evaluation of the non-
linear function of the ROM. The idea is instead of evaluating the vector of nonlinearities with the full dimension, only
several elements in the vector are evaluated. The interpolation indices decide which elements should be evaluated. Sev-
eral interpolation methods have been proposed, for example, the empirical interpolation method (EIM)4,5 and the discrete
empirical interpolation method (DEIM).6 In addition, there exist gappy-POD7-11 and missing point estimation.12 POD
with DEIM, that is, POD-DEIM, was proposed for MOR of nonparametric nonlinear systems,5,6 while RBM combined
with EIM (RBM-EIM for short)4,5 is often applied to parametric nonlinear systems.

A standard implementation of POD-DEIM is to separately generate the reduced bases (RBs) for the state vector and
the interpolation bases for the nonlinear vector using POD and DEIM, respectively. This technique nevertheless does not
guarantee that the ROM and the interpolation bases are as small as possible. In the worst case, the ROM might be unstable.
To avoid these issues, the authors in Reference 13 introduced a method of adaptively constructing the RB and the DEIM
bases. The adaptivity is guided by an a posteriori output error indicator for the ROM. Finally, a compact and reliable ROM
is obtained. The algorithm in Reference 13 has several drawbacks. First, it is only applicable to nonparametric systems.
Second, the adaptive scheme is only one-way. This means, the interpolation bases can only be extended but cannot be
shrunk when necessary. Therefore, the number of the initial basis vectors must be small enough, which could cause more
iterations until convergence. Third, the error indicator used in Reference 13 is not ideally sharp and could be further
improved.

For parametric systems, direct implementation of RBM-EIM by separately implementing EIM could give rise to similar
issues as for nonparametric systems caused by POD-DEIM. In addition, the standard EIM needs FOM simulations at all
samples in a training set, which is time consuming. This issue is also pointed out in References 14 and 15. In Reference 16,
RBM-EIM is implemented such that both the RB and the interpolation basis are updated simultaneously. The update was
done by trivially adding a single new member to each of the bases at each iteration step of the POD-Greedy algorithm17

designed for parametric nonlinear systems. Moreover, in Reference 16, initial RB and EIM basis vectors must be computed
by simulating the FOM several times over a coarse training set. In contrast, the adaptive approach proposed in this article
builds the ROM by starting with a single FOM simulation, which is more effective in the sense of adaptivity.

Recently, adaptive schemes have been proposed in References 14 and 15 for RB and EIM bases construction. The
authors in Reference 15 propose the simultaneous EIM-RB (SER) method of simultaneously enriching the RB and EIM
bases for nonlinear but stationary problems. The goal is to enrich the EIM and RB basis alternately, avoiding the com-
putation of expensive FOM solutions for all the parameters in a given training set. In the first step, an FOM solution at
a randomly chosen parameter is obtained. Based on this, the EIM basis and interpolation point are evaluated. Further-
more, the first RB basis is built by orthogonalizing the available snapshot from the FOM solution. In the subsequent steps,
the EIM and RB basis are enriched alternately, relying only on the approximate solutions computed from the ROM sim-
ulation. In essence, the approach requires only an initial FOM simulation at a single parameter. Since only the ROM is
simulated for EIM and RB updates, the snapshots used for EI and RB construction are approximate snapshots. Thus, SER
can be considered as an approximate RBM-EIM method.

A progressive EIM (PREIM) method for nonlinear, dynamical (time-dependent) systems is proposed in Reference 14.
A special case of the method is a natural extension of the SER method in Reference 15. The PREIM method evaluates
the nonlinear function not only at the approximate FOM solution, but also at the high-fidelity FOM solution, whenever
available. More precisely, if a new sample of the parameter is selected for RB enrichment, the high-fidelity solution at this
sample and the corresponding many time instances need to be computed to enrich the RB bases. The nonlinear function
evaluated at the high-fidelity solution of this sample can be readily obtained. For other samples in the training set, the
nonlinear function is evaluated at the approximate FOM solutions computed from the ROM. Therefore, this method can
be referred to as semiapproximate RBM-EIM.

In this work, we propose a new adaptive scheme of RB-(D)EIM basis enrichment for parametric nonlinear systems.
As compared with the adaptive POD-DEIM in Reference 13,

• We have extended the technique to parametric nonlinear systems. The extension is nontrivial, since our adaptive
scheme is constructed based on POD-Greedy,17 tailored for parametric systems. Unlike the POD-DEIM algorithm
in Reference 13 for nonparametric systems, or the standard POD-greedy algorithm for parametric systems where
(D)EIM needs to be pre-implemented by simulating the FOM at all the parameter samples in the training set before
the main algorithm starts, we consider a simultaneous enrichment of RB and (D)EIM in our proposed adaptive
POD-Greedy-(D)EIM algorithm starting with a single FOM simulation at the initial parameter.
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• We have made the adaptivity more flexible. The RB and (D)EIM bases enrichment is now a two-way technique, that
is, it is not only for adaptive basis extension but also for adaptive basis shrinking according to a user-defined error
tolerance of the ROM, and the user-given initial basis dimensions.

• An improved and sharper output error indicator is derived for both nonparametric and parametric systems, which
can be further used in the proposed adaptive schemes. Radial basis function interpolation is applied to compute
the parameter-dependent inf-sup constant cheaply and fast, so that singular value decompositions (SVDs) of a full
dimensional matrix at all the samples of the parameter are avoided. In Reference 18, the authors propose a Kriging
interpolation based method to estimate the inf-sup constant and also remark on the connections between Kriging
and radial basis interpolation. In this work, we apply the more straightforward method of radial basis interpolation
as proposed in Reference 19, where the interpolation points are adaptively constructed. Adaptivity is nevertheless not
considered in Reference 18.

As compared with SER, PREIM in References 14 and 15,

• We do not use the approximate state to evaluate the nonlinear function during the RB and EIM construction so that no
extra errors are introduced. For DEIM/EIM, we only use the high-fidelity solutions that are needed for RB enrichment
and are computed by FOM simulation at the parameter samples selected iteratively by the POD-Greedy algorithm. The
nonlinear function is evaluated only at those high-fidelity FOM solutions that are available for free.

• For both methods, SER and PREIM, a new sample is selected for basis enrichment according to the approximation
quality of EIM rather than the ROM quality. Furthermore, the selection process might be time consuming for dynamical
systems, since it is done at every parameter sample in the training set and at each time instance corresponding to each
sample. Our adaptive scheme is based on an efficient output error indicator for the ROM. At each iteration, a new
sample is selected by considering both the EIM error and the RB error. The parameter selection follows POD-Greedy,
but the adaptive bases enrichment is based on the separate contributions of the RB and EIM errors to the whole ROM
error, thanks to the error indicator.

• At each iteration of either SER or PREIM, only one candidate vector is computed for EIM basis enrichment. Our
proposed adaptive scheme makes adaptive EIM construction possible, meaning the number of the new EI basis vectors
for basis extension could vary at each iteration. Moreover, the dimension of both RB and EI basis space can also be
adaptively shrunk according to the error indicator.

• Beyond those aspects, we have made the RB enrichment adaptive, which is not considered in either SER, PREIM, or
standard POD-Greedy. This means the number of POD modes to be added to the RB space is adaptively varied at each
POD-Greedy iteration.

Note that in the process of constructing the ROM, many adaptive techniques are proposed with adaptivity emphases or
aspects of adaptivity differing from our proposed work. For example, in Reference 20, an adaptive POD-Greedy algorithm
is proposed, but with a different sense of adaptivity. There, the algorithm focuses on adaptively enriching the training
set. In contrast to offline adaptive construction of the RB as considered in our work, methods in References 21-25 focus
on online adaptively updating the RB or the (D)EIM interpolation basis. Reference 26 treats simultaneous training of RB
and quadrature points for quadrature computation of the integral occurring in, for example, finite element descretization.
The approximate quadrature computation is a different way of reducing the nonlinear complexity of EIM or DEIM than
considered in our work, though the simultaneous training technique is analogous to the SER method in Reference 15.
As a result, what is to be simultaneously trained is also different. Reference 27 replaces the DEIM basis with a different
basis, the motivation is to avoid a second SVD associated with the DEIM basis, so as to speed up the offline computation.
It is different in the aspect of the simultaneous training considered in our work. We admit that the short review here is
by no means exhaustive, and all the adaptive techniques proposed based on interpolatory MOR are not reviewed, though
numerous papers exist in the literature, see, for example, References 28-30.

1.1 Summary of contributions

• In Section 3, we propose an improved primal-dual based output error indicator. The error indicator can be seen as being
composed of two parts. The first part is the product of the norms of two residuals: the dual residual and the primal
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residual. The second part is associated with the approximate state of the dual system. We show that the norm of the dual
residual (residual of the dual system) can be further reduced by introducing more efficient solvers for the dual system.
The second part of the error indicator can also be reduced by introducing a modified output. Upon convergence of the
POD-Greedy algorithm, the new error indicator is shown to be much sharper than the existing ones. The indicator is
derived based on a semi-implicit time discretization scheme, with explicit time discretization in the nonlinear part.
Extensions to general implicit discretization schemes are possible and should be considered as future work.

• In Section 4, an adaptive process for RB-(D)EIM basis generation is proposed, which we call adaptive
POD-Greedy-(D)EIM. Since we improved the existing adaptive POD-DEIM using the improved error indicator and the
proposed two-way approach, we also show the improved adaptive POD-DEIM in this section.

• To efficiently compute the inf-sup constant for error estimation, we apply the radial basis interpolation approach19 to
approximate the inf-sup constant for parametric systems. It shows good accuracy and speed-up.

• The proposed ideas are tested on several examples in Section 5 including two examples from chemical engineering—a
fluidized bed crystallizer (FBC) model and a batch chromatographic model.

The remaining part of the article is organized as follows. In Section 2, the standard algorithms, on which the proposed
adaptive algorithm is built, are reviewed: POD, POD-Greedy, EIM, and DEIM. Since the adaptive algorithm is based on an
efficient error indicator, we introduce an improved output error indicator in Section 3. The adaptive POD-Greedy-(D)EIM
is proposed in Section 4. Simulation results are presented in Section 5, and conclusions are given in Section 6.

2 PRELIMINARIES

In this section, we review existing algorithms for MOR of nonlinear parametric systems, which are the building blocks of
the proposed adaptive algorithm. Consider a parametric, nonlinear dynamical system of the following form,

E(𝜇)ẋ(t, 𝜇) = A(𝜇)x(t, 𝜇) + f (x(t, 𝜇), 𝜇) + B(𝜇)u(t),
y(t, 𝜇) = C(𝜇)x(t, 𝜇), (1)

where

• 𝜇 ∈ Rd is a vector of parameters in a parameter domain 𝒫 ⊂ Rd,
• x(t, 𝜇), f (x(t, 𝜇), 𝜇) ∈ RN are the state and the state dependent nonlinear vectors, respectively,
• u(t) ∈ RNI is the input signal,
• y(t, 𝜇) ∈ RNO is the output/quantity of interest,
• E(𝜇),A(𝜇) ∈ RN×N are the system matrices,
• B(𝜇) ∈ RN×NI ,C(𝜇) ∈ RNO×N are the input and output matrices, respectively.

Such systems typically arise from the spatial discretization of parametric partial differential equations (PDEs) through
finite difference, finite element, or finite volume methods. Since N is typically large, we wish to find a system of reduced
order r ≪N, which accurately approximates the original system solution.

2.1 Parametric MOR via projection

Assume the solution to Equation (1) lies in a low dimensional subspace, then it is possible to construct a matrix V ∈ RN×r

with low rank (r ≪N), whose columns constitute an orthogonal basis that spans this subspace, such that the solution can
be approximated by the basis vectors. Then a ROM can be given via Petrov-Galerkin projection,

Er(𝜇)ẋr(t, 𝜇) = Ar(𝜇)xr(t, 𝜇) + fr(Vxr(t, 𝜇), 𝜇) + Br(𝜇)u(t),
yr(t, 𝜇) = Cr(𝜇)xr(t, 𝜇), (2)
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where

• W ∈ RN×r is a matrix, whose columns span a test subspace,
• xr(t, 𝜇) ∈ Rr, is the reduced state vector,
• fr(Vxr(t, 𝜇), 𝜇) ∶= W Tf (Vxr(t, 𝜇), 𝜇) ∈ Rr, is the reduced nonlinear vector,
• Ar(𝜇) ∶= W TA(𝜇)V ∈ Rr×r, Er(𝜇) ∶= W TE(𝜇)V ∈ Rr×r are the reduced system matrices,
• Br(𝜇) ∶= W TB(𝜇) ∈ Rr×NI ,Cr(𝜇) ∶= C(𝜇)V ∈ RNO×r are the reduced input and output matrices, respectively.

For parametric nonlinear dynamical systems, snapshot based methods are widely used to construct the basis vectors
in V and Galerkin projection is often chosen to construct the ROM, that is, W =V . POD is either used as an independent
method or as an intermediate step in POD-Greedy17 for ROM construction. Throughout the article, ||⋅|| refers to the vector
2-norm or the matrix spectral norm.

2.2 POD and POD-Greedy

POD is a procedure of constructing an optimal orthonormal basis that is used to approximate a given dataset. Consider a
matrix X ∈ RN×K , consisting of the given data. Let rank(X) = rX . For any 𝓁 ≤ rX , POD gives rise to an orthonormal basis
{ui}𝓁i=1 satisfying the following optimality criterion,

{ui}𝓁i=1 = arg min
{ũi}𝓁i=1

K∑
j=1

‖‖‖‖‖‖xj −
l∑

k=1
⟨xj, ũk⟩ũk

‖‖‖‖‖‖
2

,

s.t, ⟨ũi, ũj⟩ = 𝛿ij, 1 ≤ i, j ≤ 𝓁. (3)

The basis vectors {ui}𝓁i=1 are called the POD basis, and they are obtained through the SVD of X . When POD is used
to compute the projection matrix V for MOR of a dynamical system, the system is first simulated to obtain solutions
x(t1), x(t2), … , x(tK) at (selected) time instances t1, t2, … , tK , which are called snapshots, then the POD basis of the snap-
shot matrix X := [x(t1),x(t2),… ,x(tK)] defines the projection matrix V . Algorithm 1 demonstrates the construction of V
through POD.

Algorithm 1. Proper orthogonal decomposition (POD)

Require: Snapshots X = [x(t1), x(t2),… , x(tK)], tolerance 𝜖POD (a heuristically chosen small value).
Ensure: POD basis matrix V .

1: Perform X
SVD
−−−→ UΣW T , Σ ∶=

[
D 0
0 0

]
, D ∶= diag(𝜎1, 𝜎2,… , 𝜎rX ).

2: Find r, s.t.,
∑rX

i=r+1 𝜎i
/∑rX

i=1 𝜎i>𝜖POD, rX is the number of nonzero singular values from Σ, V = U(∶ , 1 ∶ r).

Algorithm 2. Standard POD-Greedy17

Require: Parameter training set Ξ ⊂ 𝒫 , tolerance tol.
Ensure: Basis matrix V .

1: Initialize. V = [ ], 𝜇∗ ∈ Ξ.
2: while doΔ(𝜇∗) > tol
3: Simulate FOM at 𝜇∗ and obtain snapshots, X = [x(t1, 𝜇

∗), x(t2, 𝜇
∗),… , x(tK , 𝜇

∗)].
4: Update the projection matrix X̄ ∶=

(
X − Proj (X)

) SVD
−−−→ UΣW T ,  is the subspace spanned by V .

5: V ← orth{V ,U(∶ , 1)}.
6: 𝜇∗ ∶= arg max

𝜇∈Ξ
Δ(𝜇).

7: end while



CHELLAPPA et al. 5325

For parametric systems, one needs a suitable method to capture the variation in the solution manifold due to the
parameter variations. For this purpose, we adopt the POD-Greedy approach.17 It relies on POD in time domain and a
greedy selection in the parameter domain; it is a standard implementation of the RBM for parametric dynamical sys-
tems. The details are given in Algorithm 2. A crucial ingredient of the algorithm is the availability of a cheap and sharp
error estimator Δ. At each iteration, the error estimator must be evaluated ntrain times, where ntrain is the cardinality of
the parameter training set Ξ.31 Therefore, it is important that the error estimator is computed in a rapid and reliable
manner.

2.3 EIM and DEIM

From Equation (2), we observe that the complexity of evaluating the nonlinear term f r, still depends on the FOM, since
we need to first evaluate it at Vxr ∈ RN for a given parameter 𝜇. Some interpolation techniques are proposed to reduce
this complexity.

2.3.1 Empirical interpolation

The EIM was introduced in the context of the RBM, in order to reduce the complexity in evaluating nonaffine parameter
dependence or nonlinear dependance in the ROM.4,5 Both the interpolation indices and the interpolation basis vectors
are chosen in a greedy manner.

2.3.2 Discrete empirical interpolation

The discrete variant of EIM, that is, DEIM was introduced in Reference 6. The main differences of DEIM from
EIM include two aspects. One is the interpolation basis construction: DEIM uses the pre-computed POD basis
of the nonlinear snapshot matrix via SVD, as the interpolation basis, whereas EIM constructs the interpolation
basis iteratively through a greedy algorithm and from the nonlinear snapshots. The other aspect is the inter-
polation indices selection: DEIM selects the interpolation indices by looking at the distance between the cur-
rent interpolation basis vector and its approximation obtained via interpolation using the previous interpolation
basis vectors. However, EIM chooses the interpolation indices based on the distance between the current non-
linear snapshot vector and its approximation obtained via interpolation using the previous interpolation basis
vectors.

Both EIM and DEIM consider the following approximation for the nonlinear term,

f (x(t, 𝜇), 𝜇) ≈ Uf c(t, 𝜇), (4)

where Uf is the matrix of interpolation vectors and c(t, 𝜇) is the vector of the time-parameter dependent coefficients. The
interpolation is achieved by choosing a few interpolation indices where the approximation matches the original function,
that is,

PTf (x(t, 𝜇), 𝜇) = PTUf c(t, 𝜇), (5)

where P = [e℘1 , e℘2 , … , e℘𝓁
] is a column permutation of the identity matrix, such that the ith column e℘i , is all zeros

except for the ℘i-th row where the value is 1. It stores all the interpolation indices ℘1,… ,℘𝓁 . We provide both algorithms
as Algorithms 3 and 4 for the sake of completeness.
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Algorithm 3. Empirical interpolation method (EIM)4

Require: Snapshots of the nonlinear vector at a set of parameter samples, F =[
f (x(t1, 𝜇1) , 𝜇1),… , f (x(tK , 𝜇1) , 𝜇1),… , f (x(t1, 𝜇ns) , 𝜇ns),… , f (x(tK , 𝜇ns) , 𝜇ns )

]
∶= [f1,… , fKns ] ∈ RN×K⋅ns , where ns is

the total number of parameter samples, maximal iteration steps max_iter, tolerance 𝜖EI.
Ensure: EIM basis Uf = [𝜁1, 𝜁2,… , 𝜁𝓁], index matrix P = [e℘1 , e℘2 ,… , e℘𝓁

].
1: Initialize Uf = [ ], P = [ ], m = 1.
2: Select the snapshot that maximizes the norm. 𝜂1 = arg max

fi
1≤i≤K⋅ns

‖fi‖,the interpolation index is given as the position

of the row element of 𝜂1 with maximal magnitude.
[
∼,℘1

]
= max(|𝜂1|), where 𝜂1 = [𝜂11, 𝜂12,… , 𝜂1N]T . Here, max()

refers to the MATLABⓇ function.
3: The first interpolation basis vector, 𝜁1 = 𝜂1∕𝜂1,℘1 .
4: Update the interpolation matrix Uf ←

[
Uf , 𝜁1

]
, P ← [P, e℘1].

5: while m ≤ max_iter do
6: m = m + 1.
7: Form the mth EIM interpolation for each snapshot vector in F: m

[
fi
]
= Uf

(
PTUf

)−1 PTfi, i = 1,… ,K ⋅ ns.
8: Find f ∗ = arg max

fi
1≤i≤K⋅ns

‖fi − m[fi]‖. Determine residual 𝜂m = f ∗ − m[f ∗].

9: if ‖𝜂m‖< 𝜖EI then
10: m = m − 1.
11: stop.
12: end if
13:

[
∼,℘m

]
= max(|𝜂m|). Set 𝜁m = 𝜂m∕𝜂m,℘m

14: Uf ←
[
Uf , 𝜁m

]
, P ←

[
P, e℘m

]
.

15: end while

Algorithm 4. Discrete empirical interpolation method (DEIM)6

Require: Snapshots of the nonlinear vector at a set of parameter samples, F =[
f (x(t1, 𝜇1) , 𝜇1),… , f (x(tK , 𝜇1) , 𝜇1),… , f (x(t1, 𝜇ns) , 𝜇ns),… , f (x(tK , 𝜇ns) , 𝜇ns )

]
, where ns is as defined in Algorithm 3,

𝜖POD.
Ensure: DEIM basis Uf , index matrix P = [e℘1 , e℘2 ,… , e℘𝓁

].
1: Initialize Uf = [ ], P = [ ].

2: Perform F
SVD
−−−→ UΣW T , where U ∶= [uf

1,uf
2,… ,uf

rF
], Σ ∶=

[
Df 0
0 0

]
, Df ∶= diag(𝜎f

1, 𝜎
f
2,… , 𝜎

f
rF
).

3: Find 𝓁, s.t.,
∑rF

i=𝓁+1 𝜎
f
i

/∑rF
i=1 𝜎

f
i < 𝜖POD, rF is the number of nonzero singular values in Σ.

4: Select the first interpolation index as the position of the row element with maximal magnitude in the first column of
U: ℘1 = arg max

j∈{1,2,…,N}
|uf

1j|, where uf
1 = [uf

11,uf
12,… ,uf

1N]
T .

5: Uf ← uf
1, P ← [e℘1].

6: for i = 2 to 𝓁 do
7: Solve (PTUf )c = PTuf

i , for c.
8: Form the residual, ri = uf

i − Uf c.
9: ℘i = arg max

j∈{1,2,…,N}
|rij|. Here, ri = [ri1, ri2,… , riN]T .

10: Uf ← [Uf ,uf
i ], P ← [P, e℘i].

11: end for
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2.3.3 ROM after interpolation

Using either EIM or DEIM, the ROM in Equation (2) can now be evaluated as,

Er(𝜇)ẋr(t, 𝜇) = Ar(𝜇)xr(t, 𝜇) + V TUf (PTUf )−1PTf (Vxr(t, 𝜇), 𝜇) + Br(𝜇)u(t),
yr(t, 𝜇) = Cr(𝜇)xr(t, 𝜇). (6)

Remark 1. The term V TUf (PTUf )−1 in Equation (6) can be precomputed. In evaluating PTf (Vxr(t, 𝜇), 𝜇), only a few terms
(say, 𝓁EI ≪N terms) of the nonlinear vector f (Vxr(t, 𝜇), 𝜇) needs to be evaluated, thereby removing the bottleneck in
computing the nonlinear term of the ROM.

Remark 2. Algorithm 2 can be combined with either EIM or DEIM for MOR of nonlinear systems. The interpolation bases
are precomputed before starting the greedy loop. Algorithm 5 illustrates the standard POD-Greedy-(D)EIM algorithm.
Clearly, in Step 1, the nonlinearity needs to be evaluated at all samples of 𝜇 ∈ Ξ. This involves computing the full-order
solutions for all parameters in the training set.

Algorithm 5. Standard POD-Greedy-(D)EIM31

Require: Parameter training set Ξ ⊂ 𝒫 , tolerance tol, maximal number of iterations max_iter, snapshot matrix of
the nonlinear vector, F =

[
f (x(t1, 𝜇1) , 𝜇1),… , f (x(tK , 𝜇1) , 𝜇1),… , f (x(t1, 𝜇ntrain ) , 𝜇ntrain),… , f (x(tK , 𝜇ntrain) , 𝜇ntrain)

]
, recall

that ntrain is the cardinality of the training set Ξ.
Ensure: Basis matrix V .

1: (D)EIM interpolation basis calculated using Algorithms 3 or 4.
2: Call Algorithm 2, where instead of the ROM in (2), the ROM in (6) is simulated at each iteration.

3 IMPROVED A POSTERIORI OUTPUT ERROR ESTIMATION

Error estimation plays a crucial role in both standard POD-Greedy and the proposed adaptive algorithms. Error estimators
for RBM were mostly proposed based on the weak form of the PDE arising from the finite element discretization.17,32,33

In Reference 34, an efficient output error estimator was proposed in the discretized vector space, which makes the error
estimator straightforwardly applicable to the already discretized systems. There, the authors propose an a posteriori out-
put error estimator for the ROM in Equation (6). It avoids the accumulation of the residual over time, a phenomenon
often seen in other error estimation approaches,17,33,35 and therefore is often much sharper than the other error estima-
tors. Moreover, the error estimator is applicable to nonlinear dynamical systems. However, we observed that it is still
possible to further improve the sharpness and computational efficiency of the error estimator from different aspects.
In the following, we briefly review the output error estimation in Reference 34 and propose an improved output error
indicator, as well as a more efficient way of computing the error indicator. For the sake of concise notation, we do
not explicitly show the parameter dependance of the system matrices (E,A,B,C) and vectors x(t, 𝜇), f (x(t, 𝜇), 𝜇), y(t, 𝜇).
The same shall also be followed by the corresponding dual system matrices and vectors that will be introduced
below.

3.1 Output error estimator from Reference 34

In this subsection, we briefly review the output error estimator in Reference 34. As in Reference 34, we consider systems
with single output, that is, C ∈ R1×N and y is a scalar in Equation (1). We will address the error estimation for multiple
outputs in Equation (4). Consider a semi-implicit scheme for the time integration of Equation (1),

Ẽkxk+1 = Ãkxk + Δtkf (xk) + ΔtkBkuk,

yk+1 = Cxk+1.
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It is called the primal system. For a sharp estimation of the output error, the following dual system is needed,

(Ẽk)Txk+1
du = −CT .

In general, the system matrices may be time-dependent if the time step Δtk changes over time, and therefore, they are
associated with the superscript k. If we consider constant time steps for simplicity, that is, Δtk = Δt, then the superscript
k can be removed, and the primal and dual systems can be simplified to

Ẽxk+1 = Ã + Δtf (xk) + ΔtBuk,

yk+1 = Cxk+1, (7)

and

ẼTxdu = −CT . (8)

respectively. Note that the dual system becomes a steady system in the simplified case. For clarity, we use the simplified
case to describe the error estimator, though it is well defined for the general case, too.

Applying the same time integration scheme to the ROM (2) results in,

Er(𝜇)xk+1
r = Ar(𝜇)xk

r + Δtfr(Vxk
r ) + ΔtBruk,

yk+1
r = Crxk+1

r . (9)

It is clear that the time-discrete ROM in Equation (9) is exactly the ROM of the primal system. In Reference 34, a ROM
of the dual system is obtained by Galerkin projection using the same projection matrix V as for Equation (2), that is,

(V TẼV)Txdu
r = −V TCT . (10)

The approximate solutions, x̂k+1 ∶= Vxk+1
r to the primal system and x̂du ∶= Vxdu

r to the dual system, introduce their
residuals, respectively,

rk+1
pr = Ãx̂k + Δtf (x̂k) + ΔtBuk − Ẽx̂k+1,

rdu = −CT − ẼTx̂du. (11)

Using Equations (7)-(9), the error in the output can be shown to be bounded as

|yk+1 − yk+1
r | ≤ 𝜙k+1||rk+1

pr ||. (12)

Here, 𝜙k+1 ∶= 𝜌k+1 (||Ẽ−1||||rdu|| + ||x̂du||). The term

𝜌k+1 ∶=
||r̃k+1

pr ||||rk+1
pr || , (13)

where

r̃k+1
pr = Ãxk + Δtf (xk) + ΔtBuk − Ẽx̂k+1,

= Ẽ(xk+1 − x̂k+1), (14)

is an auxiliary residual obtained by replacing x̂k+1 in the “right-hand-side” part (Ãx̂k + Δtf (x̂k) + ΔtBuk) of rk+1
pr (see

Equation (11)) with the true solution xk+ 1. It leads to a relation to the state error xk+1 − x̂k+1.

Remark 3. Note that the error bound only depends on the residuals at the current time step tk+ 1 and avoids the error accu-
mulation over time. The detailed explanation and proof of the error estimator can be found in Reference 34. It is proved
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in Reference 34 that, under mild assumptions, 𝜌k+1 is lower and upper bounded. Upon convergence of the POD-Greedy
algorithm, 𝜌k+1 should tend to be 1. This conclusion will be demonstrated numerically in the section on simulation results.

From Equations (12) and (14), we note that, at each time instance, the true solution xk+ 1 is required for computing
r̃k+1

pr in the expression of 𝜌k+1. This can be avoided by approximating 𝜌k+1 with a time-averaged value 𝜌 obtained as,

𝜌 = 1
K

K∑
i=1

𝜌i, (15)

where 𝜌i corresponds to r̃i
pr, which requires the true solution xi at time instance ti. If we take ti as the time instances at

which the snapshots are computed for bases enrichment, then xi are exactly the snapshots, which are available for free.
Furthermore, 𝜌 is not available for all 𝜇. Therefore, when used inside a greedy algorithm, at each iteration, we simply

approximate the value of 𝜌 with,

𝜌 ≈ 𝜌(𝜇∗),

where 𝜇∗ is the parameter chosen at the current iteration of the POD-Greedy algorithm, so that the snapshots at 𝜇∗ are
available to compute 𝜌(𝜇∗).

With the approximations in Remark 3, the error bound becomes an error indicator, that is,

|yk+1 − yk+1
r | ≲ Φ||rk+1

pr || =∶ Δ, (16)

where Φ ∶= 𝜌 (||Ẽ−1||||rdu|| + ||x̂du||).
It can be seen that the error indicator Δ in Equation (16) consists of two parts:

Δ1 ∶= 𝜌(||Ẽ−1||||rdu||||rk+1
pr ||),

and

Δ2 ∶= 𝜌||x̂du||||rk+1
pr ||.

The decay rate of Δ1 is determined by the two residuals and the decay speed of Δ2 depends on the product of the primal
residual norm and the norm of the approximate dual state ||x̂du||. We aim to improve the efficiency of the error indicator
by considering each of them. On the one hand, we seek a corrected output so that the second part Δ2 is modified to a
form with faster decay rate. On the other hand, we try to use more suitable methods to obtain smaller ||rdu|| than that in
Reference 34. In this way, both Δ1 and Δ2 could decay faster, which results in sharper error estimation.

3.2 Modified 𝚫2 with corrected output

We consider a correction term to the estimated output quantity given as,

yk+1
r = yk+1

r − (x̂du)Trk+1
pr . (17)

Similar techniques of output correction can be found in References 36 and 37, which are inherited from error analysis
for finite element discretization.38,39 The resulting error estimation based on the correction term in our work differs from
those in References 36 and 37. As far as we can see, the error bound derived in Reference 37 estimates the numerical
discretization error for steady systems, and the error bound in Reference 36 is only applicable to RBM for linear PDEs.

Theorem 1. Given the discrete FOM in Equation (7) and the discrete ROM in Equation (9), assuming Ẽ is nonsingular at
all values of 𝜇, we have the following error bound for the modified output term in Equation (17),

|yk+1 − yk+1
r | ≤ ||Ẽ−1||||rdu||||r̃k+1

pr || + ||x̂du||||rk+1
pr − r̃k+1

pr ||. (18)
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Proof. The error in the modified output can be represented as,

yk+1 − yk+1
r = C(xk+1 − x̂k+1) + (x̂du)Trk+1

pr . (19)

Multiplying (xk+1 − x̂k+1)T on both sides of Equation (8) we get,

(xk+1 − x̂k+1)TẼTxdu = −(xk+1 − x̂k+1)TCT . (20)

Transposing the above equation, we obtain,

(xdu)Tr̃k+1
pr = −C(xk+1 − x̂k+1), (21)

where we have made use of Equation (14). Next, we simply substitute Equation (21) into Equation (19), followed by
addition and subtraction of the term (x̂du)Tr̃k+1

pr to obtain,

yk+1 − yk+1
r = −(xdu)Tr̃k+1

pr + (x̂du)Trk+1
pr

= −(xdu)Tr̃k+1
pr + (x̂du)Trk+1

pr + (x̂du)Tr̃k+1
pr − (x̂du)Tr̃k+1

pr

= −(xdu − x̂du)Tr̃k+1
pr + (x̂du)T(rk+1

pr − r̃k+1
pr ). (22)

Consider now the dual system residual as given in Equation (11). It can be shown that

rdu = ẼT(xdu − x̂du),

(xdu − x̂du) = Ẽ−Trdu. (23)

Inserting Equation (23) into Equation (22) yields

yk+1 − yk+1
r = −(rdu)T(Ẽ)−1r̃k+1

pr + (x̂du)T(rk+1
pr − r̃k+1

pr ). (24)

From the triangle and Cauchy-Schwarz inequalities, we obtain,

|yk+1 − yk+1
r | = || − (rdu)TẼ−1r̃k+1

pr + (x̂du)T(rk+1
pr − r̃k+1

pr )||,
≤ ||Ẽ−1||||rdu||||r̃k+1

pr || + ||x̂du||||rk+1
pr − r̃k+1

pr ||. (25)
▪

In order to remove the quantity ||r̃k+1
pr || from the error bound to avoid computing the true solution, we propose the

following error indicator. Instead of applying the upper bound rb2 ∶= ||rk+1
pr || + ||r̃k+1

pr || to nr ∶= ||rk+1
pr − r̃k+1

pr || in Equation
(25), we propose to use rb1 ∶= |||rk+1

pr || − ||r̃k+1
pr ||| to approximate nr, that is,

||rk+1
pr − r̃k+1

pr || ≈ |||rk+1
pr || − ||r̃k+1

pr |||.
This is motivated by the fact that, first, applying the upper bound rb2 will result in an upper bound (1 + 𝜌)||x̂du||||rk+1

pr ||
for ||x̂du||||rk+1

pr − r̃k+1
pr || in Equation (25), which is even larger than Δ2 in Equation (16). Here we have used the relation in

Equations (13) and (15). Second, we find that

|rb1 − nr| ≤ {
2𝜌k+1||rk+1

pr ||, 𝜌k+1 > 1
2||rk+1

pr ||, 𝜌k+1 ≤ 1,
(26)

whereas,

|rb2 − nr| ≤ [2 + 2𝜌k+1]||rk+1
pr ||.
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This shows that |rb1 −nr| poses a smaller upper bound than |rb2 −nr|, implicating that nr could be better approximated
by rb1 than by rb2. Therefore, we have the following error estimation

|yk+1 − yk+1
r | ≲ ||Ẽ−1||||rdu||||r̃k+1

pr || + ||x̂du|||||rk+1
pr || − ||r̃k+1

pr |||
= 𝜌k+1||Ẽ−1||||rdu||||rk+1

pr || + |1 − 𝜌k+1|||x̂du||||rk+1
pr ||

= (𝜌k+1||Ẽ−1||||rdu|| + |1 − 𝜌k+1|||x̂du||)||rk+1
pr ||

≈ (𝜌||Ẽ−1||||rdu|| + |1 − 𝜌|||x̂du||)||rk+1
pr ||, (27)

where the relation in Equation (13) is used to remove ||r̃k+1
pr || from the error estimation. Similarly as for the original error

indicator, 𝜌k+1 is approximated with the mean value 𝜌 in Equation (15). We then defineΨ ∶= (𝜌||Ẽ−1||||rdu|| + |1 − 𝜌|||x̂du||)
to get the following error indicator:

|yk+1 − yk+1
r | ≲ Ψ||rk+1

pr ||. (28)

Note that Δ2 for the error indicator (16) now becomes |1 − 𝜌|||x̂du||||rk+1
pr || in Equation (28). Although ||x̂du||||rk+1

pr ||
remains unchanged, the coefficient changes from 𝜌 to |1 − 𝜌|. As has been analyzed in Remark 3, when the POD-Greedy
algorithm converges, 𝜌 tends to be 1, so that |1 − 𝜌| goes to 0, leading to a bound with faster decay rate.

Remark 4. For systems with multiple outputs, we define the dual system as

ẼTxdu = −CT
i ,

where Ci represents the ith row of the output matrix C ∈ RNO×N . For error estimation, we consider |yi − (yr)i| for each
element i of y. Then we have,

||yk+1 − yk+1
r ||∞ = max

i∈{1,2,… ,NO}
|yk+1

i − (yk+1
r )i|.

3.3 Improving the decay rate of 𝚫1

Recall that the error indicator consists of two parts Δ1 and Δ2, where Δ1 = 𝜌k+1||Ẽ−1||||rdu||||rk+1
pr ||. In Reference 34, ||rdu||

in Δ1 is obtained by reducing the dual system using the projection matrix V for MOR of the primal system, leading to
a slowly decaying ||rdu||. To achieve faster decay, we propose to use more suitable methods to compute the approximate
solution x̂du to the dual system, according to different problems. The motivation is based on the observation that x̂du is
not necessarily computed by reducing the dual system using MOR. Any appropriate method which can give a good x̂du
should be applicable.

3.3.1 Parametric dual system

When the dual system has parameter dependence, instead of using the primal system projection matrix V to reduce the
dual system, we construct the dual RB separately as considered in References 36 and 40. With the dual RB, the dual system
solution can be much better approximated than using the primal RB. Consequently, the computed x̂du will give a residual
with smaller norm. Certainly, this will lead to higher computational cost.

3.3.2 Nonparametric dual system

In case the dual system is nonparametric (this can happen when the matrix Ẽ is constant), instead of reducing the dual
system, we can use Krylov-space methods, for example, GMRES, MINRES,41,42 to iteratively solve the linear dual system
and x̂du is just the approximate solution computed by those methods. While this is done only once, the computational
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cost is similar to computing one snapshot and we do not expect much extra computations. This approach leads to much
smaller ||rdu|| than using the primal RB to reduce the dual system.

3.4 Efficiently computing the inf-sup constant

In Equations (16), (28), the term ||Ẽ−1|| needs to be calculated. In case of matrix spectral norm ||⋅||2,

||Ẽ−1||2 = 𝜎max (Ẽ
−1) = 1

𝜎min (Ẽ)
.

𝜎min (Ẽ) is actually the so-called inf-sup constant commonly used in the RBM. Since the matrix Ẽ is parameter-dependent,
it can become expensive to evaluate the smallest singular value for each parameter in the training set Ξ, as a large-scale
eigenvalue problem needs to be solved for every parameter. Some methods have been proposed to make this computa-
tionally efficient. A first attempt was through the successive constraints method (SCM) and its improvement, proposed
in References 43 and 44. However, SCM often suffers from a very slow convergence.45 In this work, we make use of the
radial basis interpolation method proposed in Reference 19. This approach avoids the slow convergence rates as seen from
SCM, while reducing the computational costs drastically.

3.4.1 Radial basis interpolation for the inf-sup constant

When considering parameter spaces of high dimensions, the radial basis functions are a good candidate for interpolation
basis. To achieve the goal of interpolating the smallest singular values of the matrix Ẽ, ∀𝜇 ∈ Ξ, we start with an initial
coarse training set of points 𝛶 ⊂ Ξ. The large-scale eigenvalue problem is solved for the parameters in this coarse training
set and a coarse radial basis interpolant is formed, following the procedure outlined in Reference 19. The coarse parameter
set 𝛶 is then enriched in a greedy manner. At each step, a new parameter from Ξ is chosen and added to 𝛶 in order
to improve the radial basis interpolant. The new parameter is chosen as the one that maximizes a pre-defined criterion
function, ℭ defined over Ξ. The criterion function is such that it promotes adding new points in locations with highly
varying response and ensures positivity of the interpolant. It was originally proposed in Reference 46 and further adapted
in Reference 19 for the purpose of interpolating the smallest singular values. At the end of each iteration, the relative error
(in the ∞ norm) between the current and the previous interpolations for all parameters in Ξ is computed. This defines
the termination condition. Such an adaptive procedure offsets the need for performing SVD computations on large-scale
matrices at all the parameters in Ξ.

4 ADAPTIVITY

In this section, we propose an adaptive scheme for automatically generating the RB and the interpolation basis. The
scheme is based on another separation of the error indicator as detailed below.

4.1 Error estimation by considering interpolation

In practice, while calculating the residual of the primal system, we approximate the nonlinear term using (D)EIM to avoid
the full dimensional computation. Considering this aspect, the residual of the primal system from Equation (11) is now
expressed as

rk+1
pr = Ãx̂k + Δtf (x̂k) + Δt[f (x̂k)] − Δt[f (x̂k)] + ΔtBuk − Ẽx̂k+1

= (Ãx̂k + Δt[f (x̂k)] + ΔtBuk − Ẽx̂k+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=rk+1
pr,

+ ((Δtf (x̂k) − Δt[f (x̂k)]))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=ek


.
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Here, [f (⋅)] is the interpolation of the function f (⋅). By considering the separation of rk+1
pr in the above equation, the

error indicator in Equation (16) or (28) can be split into two contributions—one from approximating the state by RB
vectors (RB error) and the other from approximating the nonlinear term by interpolation ((D)EIM error), that is,

|yk+1 − yk+1
r | ≲ Φ||rk+1

pr,||
⏟⏞⏟⏞⏟

∶=Δ
k+1
RB

+ Φ||Δk
||

⏟⏟⏟

∶=Δ
k


, (29)

or

|yk+1 − yk+1
r | ≲ Ψ||rk+1

pr,||
⏟⏞⏟⏞⏟

∶=Δ
k+1
RB

+ Ψ||Δk
||

⏟⏟⏟

∶=Δ
k


, (30)

where Δk
 is an error indicator for the interpolation error ek

 , obtained based on a higher order (D)EIM approx-
imation proposed in References 4,5,16, and 47. In particular, we have, Δk

 ∶= Π𝓁
′
(I − Π𝓁)f (x̂k). Here, Π𝓁′ ∶= (I −

Π𝓁)U𝓁′ ((P𝓁′ )T(I − Π𝓁)U𝓁′ )−1(P𝓁′ )T and Π𝓁 ∶= U𝓁((P𝓁)TU𝓁)−1(P𝓁)T . The pair (U𝓁 ,P𝓁) corresponds to the (D)EIM basis
and interpolation indices for an order-𝓁 approximation of f (x̂k), whereas the pair (U𝓁′

,P𝓁′ ) corresponds to those for an
order-𝓁′ approximation, where 𝓁′ >𝓁. For a detailed treatment, we refer to Reference 47.

For convenience of explanation, we use the same namesΔ
k+1
RB ,Δ

k
 for the two parts of either the original error indicator

or the modified one, though we will mainly focus on the modified error indicator in the later analysis.

4.1.1 Mean error estimate

Note that the above error indicator measures the output error at each time step, which corresponds to many values. For
the proposed adaptive scheme, we need a single value to measure the actual error. Therefore, we define the mean error
as below,

1
K

K∑
i=1

||yi − yi
r|| ≤ 1

K

K∑
i=1

( Δ
i
RB + Δ

i
 ) = ΔRB + Δ =∶ Δ. (31)

Here, i= 1,2,… ,K indicates the time instances ti where the snapshots are taken, ΔRB = 1
K

∑K
i=1 Δ

i
RB and Δ =

1
K

∑K
i=1 Δ

i
 . With the mean output error indicator, we are ready to propose the adaptive scheme as below.

4.2 Adaptively increasing/reducing the number of RB and EI basis vectors

Consider a user defined tolerance tol for the ROM. At every iteration, we check the relative changes of error indicators
ΔRB and Δ in Equation (31) w.r.t the error tolerance tol, respectively, that is,

ΔRB

tol
and Δ

tol
. (32)

It is easy to see that a value in Equation (32) being bigger than 1 implicates the current basis is not accurate enough, and
needs to be extended; otherwise, a value being smaller than 1 means that the current bases are accurate enough, and no
new basis vectors need to be computed. If possible, some old basis vectors could be removed to make the RB/interpolation
basis space as compact as possible. Note that the actual values in Equation (32) could vary from, for example, 10−10 to
1010. In order to decide how many basis vectors need to be added/removed, we use the function log, which maps the
actual values in Equation (32) to some moderate values, typically falling into a subinterval of [− 10,10]. We then use the
rounded log-mapped values as the indicators for basis enriching or shrinking. Let 𝓁RB,𝓁EI be the number of basis vectors
in the RB, (D)EIM projection matrices at the current iteration, respectively.
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For the ROM considered in Equation (2), we update the RB, (D)EIM projection matrices at each iteration of the greedy
algorithm based on the following rule,

Δ𝓁RB ∶= ±1 +

⌊
log

(
ΔRB

tol

)⌋
,

Δ𝓁EI ∶= ±1 +

⌊
log

(
Δ

tol

)⌋
. (33)

Here, ΔRB, Δ are defined as in Equation (31). Based on the above update, the number of basis vectors for RB, (D)EIM
basis enriching/shrinking is given as

𝓁RB = 𝓁RB + Δ𝓁RB,

𝓁EI = 𝓁EI + Δ𝓁EI. (34)

Remark 5. Recall that a one-way definition of Δ𝓁RB,Δ𝓁EI was proposed in Reference 13, where basis shrinking was
not considered. Finally, the adaptive algorithm must start from a small number of basis vectors to be able to continue.
Whereas, both basis extension and shrinking are covered by Equation (33). The value ±1 tries to ensure at least one basis
vector is added (+1)/removed (-1), in case the rounded value p =

⌊
log

(
ΔRB
tol

)⌋
or d =

⌊
log

(
Δ

tol

)⌋
is zero, but the values

log
(

ΔRB
tol

)
or log

(
Δ

tol

)
are nonzero (either slightly smaller than zero or slightly larger than zero).

4.2.1 Dealing with stagnation in adaptivity

The goal for adaptivity is to add/delete basis vectors to/from the current RB, EI bases so that the ROM meets the given
tolerance while being kept as compact as possible. It is observed that in some cases, the convergence of the adaptive
algorithm becomes slow when the estimated error is close to the tolerance. In such situations, the number of additional
basis vectors to be added/deleted is usually one, resulting in a slow convergence. A second issue is that the error indicator
could keep oscillating (below and above the error tolerance) upon basis enriching/shrinking. To avoid the above phenom-
ena, we propose to define a zone-of-acceptance (zoa) for the output error. In particular, we set a new value 𝜖∗ < tol. 𝜖∗
and tol then define a zone-of-acceptance: [𝜖∗,tol]. Whenever the estimated error falls into [𝜖∗,tol], the algorithm will
terminate. We typically take 𝜖∗ = 0.1 tol.

4.2.2 (D)EIM plateaus

Previous works dealing with the simultaneous enrichment of RB and (D)EIM bases have noted the issue of (D)EIM
plateaus. In fact, two different notions of plateauing have been observed and presented in References 5,16,48-50, and 51.
In References 5,50, and 51, the authors note that when the number of basis elements of the EIM approximation is fixed
at some small value, an increase in the number of RB vectors does not result in an improvement in the overall error. This
is a plateauing due to large errors in the EIM approximation. However, in Reference 16, it is observed that EIM plateaus
occur when the error contribution is dominated by the RB approximation error and a further enrichment of the EIM is
useless. This is a plateauing due to large errors in the RB approximation. These observations suggest that simultaneous
enrichment of the RB and the (D)EIM basis is critical to avoid plateaus in general. A solution proposed in Reference 16 is
to monitor an error estimator over the training set, that is, max

𝜇∈Ξ
Δ(𝜇), between two successive iterations. If a newly added

RB basis vector leads to an increase in the error, then it is dropped and only the EIM basis is updated. In Reference 51, the
author considers different tolerances for the RB, EIM approximations. However, the proposed algorithm involves some
user-defined constants which makes it less straightforward to implement. From our experience in the numerical tests,
setting different tolerances for the RB and EIM approximation, withtolEI <tolRB proves to give the best approximation.
A similar observation is also noted in Reference 50; however, no simultaneous enrichment is considered there. Still, it is
not entirely clear how small the (D)EIM approximation tolerance has to be when compared to the RB tolerance. In our
numerical experiments, we use tolEI = 0.01×tolRB.
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In the following, we first extend the one-way adaptive algorithm in Reference 13 for nonparametric systems to a
two-way algorithm, then we propose the adaptive POD-Greedy-(D)EIM algorithm for parametric systems.

4.2.3 Adaptive algorithm for nonparametric systems

In this section, we extend the one-way adaptive scheme in Reference 13 to a two-way process. This means we have the
flexibility of starting our algorithm given any possible number of initial basis vectors. The method is able to suggest the
proper number of basis vectors to be added to or removed from the current basis, and yields a compact and stable ROM,
for the given tolerance. We detail this in Algorithm 6. The constants p0,d0 in Algorithm 6 act as ±1 in Equation (34). See
Remark 5.

Algorithm 6. Adaptive POD-(D)EIM (two-way)

Require: POD, (D)EIM projection basis and interpolation points from Algorithms 1, 4, respectively:
V ∈ RN×𝓁RB , Uf ∈ RN×𝓁EI , Index matrix P = [e℘1 , e℘2 ,… , e℘𝓁

], initial choice of basis 𝓁0
RB,𝓁

0
EI, Tolerance tol, zoa.

Ensure: ROM with updated size (𝓁∗
RB,𝓁

∗
EI) .

1: Form V∗ ∶= V(∶ , 1 ∶ 𝓁0
RB), U∗

f ∶= Uf (∶ , 1 ∶ 𝓁0
EI), P∗ ∶= P(∶ , 1 ∶ 𝓁0

EI).
2: Determine the dual system solution x̂du, using GMRES.
3: Simulate the ROM constructed using V∗,U∗

f ,P∗ and compute the error Δ̄ ∶= Δ̄RB + Δ̄ .
4: while Δ̄ ∉ zoa do
5: Determine p =

⌊
log

(
Δ̄RB
tol

)⌋
, d =

⌊
log

(
Δ̄

tol

)⌋
.

6: Trivial updates p0, d0 = ±1, in case p or d = 0, to ensure at least one basis vector is added/removed.
7: PODinc = p0 + p , (D)EIMinc = d0 + d.
8: 𝓁∗

RB = 𝓁∗
RB + PODinc.

9: 𝓁∗
EI = 𝓁∗

EI + (D)EIMinc.
10: Ensure 𝓁∗

EI > 𝓁∗
RB, for stability reasons.

11: Update projection matrices, V∗ ∶= V(∶ , 1 ∶ 𝓁∗
RB), U∗

f ∶= Uf (∶ , 1 ∶ 𝓁∗
EI), P∗ ∶= P(∶ , 1 ∶ 𝓁∗

EI).
12: Simulate the updated ROM constructed using V∗,U∗

f ,P∗ and compute the updated error Δ̄ = Δ̄RB + Δ̄ .
13: end while

Remark 6. In our numerical experiments, we noticed that in some cases, when 𝓁∗
EI < 𝓁∗

RB, the ROM is no longer stable.
Therefore, in Step 10 of Algorithm 6, we set the number of EI basis vectors (𝓁∗

EI) to be larger than that of the RB basis
vectors (𝓁∗

RB).

Remark 7. Note that the inputs of Algorithm 6 are the POD and DEIM basis computed by standard algorithms, where
both bases are conservatively computed to guarantee accuracy of the ROM. The adaptive algorithm chooses proper basis
vectors from the POD and DEIM basis, respectively, in order to construct a more compact and stable ROM. One starts
from an initial choice for the POD and DEIM basis combination. Both basis vectors are then iteratively updated, based
on the output error indicator.

4.2.4 Adaptive algorithm for parametric systems

For standard implementation of the POD-Greedy algorithm combined with interpolation of the nonlinear part, the
(D)EIM basis and interpolation indices are usually pre-computed outside of the greedy loop. This separate basis gener-
ation often leads to a less compact ROM. In addition, (D)EIM needs FOM simulations at all samples in a training set,
which is time consuming especially for problems needing many time steps for one simulation, for example, the batch
chromatographic model presented in Section 5. In Reference 16, POD-Greedy and EIM are implemented such that at each
iteration of the greedy algorithm, a single basis vector is added to the current RBs and the interpolation bases, respec-
tively. The most recent work that addresses this issue can be found in References 14 and 15. As has been discussed in the
introduction, there are major differences between those existing algorithms and our proposed algorithm.
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Algorithm 7 is the proposed adaptive POD-Greedy-(D)EIM algorithm. Algorithms 8 to 10 are the supporting func-
tions needed. The basic idea of Algorithm 7 is that starting from the first selected parameter 𝜇∗, the RB basis and the
(D)EIM basis are updated simultaneously but not trivially. The number of the RB and (D)EIM basis vectors 𝓁RB and 𝓁EI
are determined by Equation (34), and updated in the subroutine Adapt_basis_update. The RB matrix V is updated
in Step 5 (or Step 9) of Algorithm 7, where instead of using 𝓁RB = 1 as in the standard case, 𝓁RB is adaptively computed
by Adapt_basis_update. The interpolation basis matrix UEI is updated by the subroutine Update_EI, which essen-
tially implements the interpolation algorithm DEIM or EIM. The dual system is also reduced by the RBM implemented
in the subroutine Update_Vdu. It is clear that FOM simulations are only needed for those selected parameters 𝜇∗, not
for all parameters in the training set Ξ. Algorithm 10 determines the number of RB and (D)EIM basis vectors (𝓁RB,𝓁EI),
that will be added/removed at each iteration.

Algorithm 7. Adaptive POD-Greedy-(D)EIM

Require: Parameter training set Ξ ⊂ 𝒫 , Tolerance tol, 𝜖POD (or 𝜖EI).
Ensure: RB Basis V ∈ RN×𝓁RB , (D)EIM basis and interpolation points UEI,PEI ∈ RN×𝓁EI .

1: In case of nonparametric dual system, precompute the approximate solution to the dual system (x̂du), using GMRES.
2: Initialize, V = [ ], Vdu = [ ], UEI = [ ], PEI = [ ], 𝓁RB = 1, 𝓁EI = 1. Initial 𝜇∗: a random parameter from Ξ.
3: while Δ̄(𝜇∗) ∉ zoa do
4: if 𝓁RB < 0 then
5: Remove the last 𝓁RB columns from V .
6: else
7: Compute FOM at 𝜇∗ and obtain snapshots, X = [x(t1, 𝜇

∗), x(t2, 𝜇
∗),… , x(tK , 𝜇

∗)].
8: Update the projection matrix. X̄ ∶= X - Proj (X)

SVD
−−−→ UΣW T ,  is the subspace spanned by the columns of V .

9: V ← orth{V , U(∶ , 1 ∶ 𝓁RB)}.
10: end if
11: Update_EI.
12: Update_Vdu, in case of parametric dual system.
13: 𝜇∗ ∶= arg max

𝜇∈Ξ
Δ̄(𝜇).

14: Adapt_basis_update.
15: end while

Algorithm 8. Update_EI

Require: Snapshots of the nonlinear vector at all parameters so far selected by the greedy algorithm,
F =

[
f (x(t1, 𝜇), 𝜇), f (x(t2, 𝜇), 𝜇), … , f (x(tK , 𝜇), 𝜇)

]
for all selected 𝜇, 𝓁EI, 𝜖POD (or 𝜖EI).

Ensure: (D)EIM basis and interpolation points UEI, PEI.
1: max_iter = 𝓁EI for Algorithm 3 or set 𝓁 = 𝓁EI in Step 6 of Algorithm 4 and ignore Step 3.
2: Call [UEI, PEI] = EIM(F, max_iter, 𝜖EI) or[UEI, PEI] = DEIM(F, 𝜖POD).

Algorithm 9. Update_Vdu

Require: Vdu, 𝜇∗
du, tol.

Ensure: Updated dual projection matrix Vdu.
1: if Δ̄du(𝜇∗

du) > tol then
2: Solve full order dual system for chosen parameter 𝜇∗

du and obtain xdu(𝜇∗
du).

3: Update Vdu, Vdu ∶= orth{Vdu , xdu(𝜇∗
du)}.

4: 𝜇∗
du ∶= arg max

𝜇∈Ξ
Δ̄du(𝜇).

5: end if



CHELLAPPA et al. 5337

Algorithm 10. Adapt_basis_update

Require: lRB, lEI, Δ̄RB(𝜇∗), Δ̄(𝜇∗), tol.
Ensure: Updated 𝓁RB, 𝓁EI.

1: p =
⌊

log
(

Δ̄RB(𝜇∗)
tol

)⌋
, d =

⌊
log

(
Δ̄ (𝜇∗)
tol

)⌋
.

2: In case p = 0 or d = 0, enforce trivial update, p0 = ±1 or d0 = ±1.
3: 𝓁RB = p0 + p.
4: 𝓁EI = 𝓁EI + d0 + d.
5: Ensure 𝓁EI > (rank(V) + 𝓁RB), for stability reasons.

Remark 8. orth{V , U(: ,1:𝓁RB)} in Step 9 of Algorithm 7 is an orthogonalization step for the updated RB matrix V .
Using a modified Gram-Schmidt (MGS) procedure is recommended, where the last p columns in V represent the most
recently added basis vectors in the previous iteration. In case of lRB < 0, it allows direct removal of p columns from V ,
without influencing the previous basis vectors. The most recent computed basis vectors should be removed, if the error
indicator indicates basis shrinking. This is easy to understand, since the error indicator monitors the error of the current
ROM when new basis vectors are added to the basis space. If it is already smaller than the tolerance, it means those newly
added basis vectors are not necessary and can be removed.

Remark 9. In practice, we can make use of separate tolerances for the RB, (D)EIM error in Algorithm 10, that is, Step
1 can be modified as, p =

⌊
log

(
ΔRB(𝜇∗)
tolRB

)⌋
, d =

⌊
log

(
Δ (𝜇∗)
tolEI

)⌋
. The tolerance for (D)EIM approximation is usually set a

little lower than that for the RB approximation. This follows from the observation that the nonlinear vector needs to be
sufficiently well-approximated to enable a good state approximation.

5 NUMERICAL RESULTS

In this section, we test the proposed adaptive algorithm on three examples. All the examples we consider can be repre-
sented in the general form of Equation (1). We use the same nonparametric model as in Reference 13 to test the extended
two-way adaptive Algorithm 6. Algorithm 7 is tested for the other two parametric models.

5.1 A nonparametric example

The model FBC is from the field of chemical engineering. Enantiomers are molecules that have the same physical, chemi-
cal properties but occur as mirror images of one another. Due to their similar properties, separation of the two components
is not easily achieved using simple techniques, but requires sophisticated methods such as adsorption, crystallization,
and so on. For a more in-depth treatment, the reader is referred to Reference 52. Figure 1 shows an FBC, which is a long
cylindrical column, with the walls tapering inwards as one approaches the bottom. The chemical mixture that has the
two enantiomers dissolved in it (called racemate) is injected from the bottom. Some seed crystals need to be introduced
into the crystallizer before it begins operation. Seed crystals are essentially the pure crystals of the enantiomer we want
to isolate. The seeds are necessary for triggering the precipitation of the crystals in the racemate. During its operation,
the smaller crystals move to the top of the crystallizer along with the fluid flow. Bigger crystals sink to the bottom from
where they are collected and sent to a crushing device (such as an ultrasonic attentuator) to be crushed to an appropriate
size and reintroduced as seed crystals. The crystallization process is governed by a set of conservation formulas, called
the population balance equations which are PDEs. The PDE governing the FBC is given as:

Ac(x)
𝜕n
𝜕t

= − 𝜕

𝜕x
(Ac(x)vp(x,L, t)n(x,L, t)) + D 𝜕

𝜕x

(
Ac(x)

𝜕n
𝜕x

)
− Ac(x)G

𝜕n
𝜕L

+ V̇ us

(
nus(L)

∫ ∞
0 nl3dl

∫ ∞
0 nusl3dl

− n(x,L, t)

)
𝛿(x − xus), (35)
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F I G U R E 1 Model of the Fluidized bed crystallizer13

Interpolation N [0,T] (s) tolerance 𝝐POD

DEIM 18400 [0, 500] 10−4 10−10

T A B L E 1 Simulation data for the FBC

where

• x denotes the spatial coordinate, L denotes the particle size coordinate,
• Ac(⋅) is the area of cross-section, n is the number size density, that is, the number of particles per volume of size L at

coordinate x at time t,
• vp is the plug flow velocity,
• D is the dispersion constant, G is the crystal growth factor,
• V̇ us is the volume flow to/from the attenuator,
• nus(L) is a constant describing the distribution of the crystals coming from the attenuator.

Equation (35) can be discretized and rewritten into a form as in Equation (7). Table 1 gives the model parameters
that we consider for the full order simulation. After discretization in space using the finite volume method, the original
system is of size N = 18400. For the time variable, we consider a semi-implicit Euler discretization. We use Algorithm 6,
where DEIM is used to compute the interpolation basis. The tolerance for the ROM is set as tol= 10−4. The model of
the crystallizer involves a very long time to reach a cyclic state, usually 5000 seconds. However, for snapshot generation,
we need only the transient portion and the first cycle of the steady state since the latter cycles behave very similarly.
As a result, we only need to simulate the FOM till 500 seconds for snapshot generation. Algorithm 6 has been used to
implement the two-way adaptivity scheme. We make use of GMRES to solve the associated dual system. It is implemented
via the MATLAB® function gmres. Moreover, we use the incomplete LU (ILU) factorization with a drop tolerance of 10−3

as a preconditioner. The GMRES tolerance is set to be 10−6.
To test Algorithm 6, we consider two cases. We denote the first case as INCREASE. It involves starting from a small

initial choice of RB and DEIM basis dimension, and iteratively adding new basis vectors to both. In the second case,
denoted as DECREASE, we initialize Algorithm 6 with a larger number of initial basis vectors and adaptively remove basis
vectors, till the ROM reaches the defined tolerance band zoa. Figure 2A shows the adaptive generation of POD and DEIM
basis starting from small initial numbers of (𝓁RB,𝓁EI)= (3,8). The error indicator is below the tolerance after 9 iterations,
showing that Algorithm 6 terminates. The adaptive process results in a final ROM of (𝓁RB,𝓁EI)= (16,20) basis vectors. For
the ROM without adaptivity, we set the SVD tolerance 𝜖POD = 10−10 in Algorithms 1 and 4 in order to obtain a ROM below
the error tolerance tol= 10−4. This results in a ROM with (𝓁RB,𝓁EI)= (60,61). Moreover, simply using the Standard POD
algorithm and setting 𝜖POD = 10−4 in Algorithm 1 does not guarantee that the output error of the ROM is also below the
tolerance tol= 10−4.
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F I G U R E 2 FBC adaptive
increment. A, Convergence of
estimated error. B, Effectivity:
original versus modified indicator
[Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 3 Error landscape for the INCREASE procedure for the FBC
example

In Figure 3, we show the error landscape obtained by plotting the logarithm of the mean error (Δ) corresponding to
different combinations of (𝓁RB,𝓁EI). On the landscape, we mark the trajectory of Δ adaptively selected by Algorithm 6.
We can see that, for several combinations of (𝓁RB,𝓁EI) not present in the adaptive trajectory, the resulting ROMs were
unstable. For ease of visualization, the mean error of those (𝓁RB,𝓁EI) combinations resulting in unstable ROMs were set
to be 1 in the log-scale. The figure clearly illustrates how the algorithm converges to the minimum in the landscape, while
avoiding the combinations resulting in instabilities. Furthermore, one can identify the plateaus in the error, whenever
the RB approximation is too poor. An additional observation deserving attention is that the instabilities mainly occur at
(𝓁RB,𝓁EI) combinations with 𝓁EI <𝓁RB.

For a pair of big initial values: (𝓁RB,𝓁EI)= (31,39), the iterations of Algorithm 6 are shown in Figure 4A. In the begin-
ning, the error indicator is below 10−5, indicating that the ROM is very accurate and there is possibility to further reduce
the size of the ROM. After 7 iterations, the RB vectors from POD as well as the DEIM basis vectors are adaptively adjusted
to (𝓁RB,𝓁EI)= (17,28). These results have been summarised in Table 2. In Figures 2A and 4A, the true error is the mean
error defined by the left hand side of Equation (31) and the corresponding error indicator is defined by the right hand
side of the same inequality. In Figures 2B and 4B, we compare the effectivities of the original and the modified error indi-
cators. On the one hand, both error indicators show good effectivities and are relatively sharp. On the other hand, the
modified error indicator clearly outperforms the original indicator, especially in the final step of the algorithm. Figure 5
shows the error landscape for the DECREASE case. Once again, one can see how Algorithm 6 avoids unstable RB, DEIM

http://wileyonlinelibrary.com
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F I G U R E 4 FBC adaptive
decrement. A, Convergence of
estimated error. B, Effectivity:
original versus modified indicator
[Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 5 Error landscape for the DECREASE procedure for the
FBC example

basis vector combinations and converges to a compact ROM. Finally, Figures 6A,B compare the modified error indicator
for the final ROM over all time steps tk, with the true error, in the increasing and decreasing cases, respectively. Figure 6A
not only shows the sharpness of the modified error indicator, especially for the cyclic state in the time interval [200,500]s,
but also verifies the reliability of the error indicator.

5.2 Parametric example

We consider two examples of parametric systems. The first is the viscous Burgers’ equation and the second is a chemical
process called batch chromatography. The former is an example with a parametric dual system while the latter has a
nonparametric dual system.

Burgers’ equation

We test the proposed Adaptive POD-(D)EIM-Greedy algorithm on the one-dimensional viscous Burgers’ equation defined
in the domain 𝜎 ∈ Ω ∶= [0, 1]. The parameter that varies is the viscosity. The equation and initial boundary conditions

http://wileyonlinelibrary.com
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F I G U R E 6 Final ROM
error over all time for the FBC. A,
Increasing. B, Decreasing [Colour
figure can be viewed at
wileyonlinelibrary.com]
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T A B L E 2 Simulation results for the FBC example Initial Final

Process 𝓵RB 𝓵EI 𝓵RB 𝓵EI Iterations

INCREASE 3 8 16 20 9

DECREASE 31 39 17 28 7

T A B L E 3 Simulation parameters for the Burgers’ equation

Interpolation N [0,T] (s) Parameter training set (𝚵) tolerance 𝝐EI

EIM 500 [0,2] 100 log-uniformly distributed samples 10−3 10−10

in [0.0005,1]

are given as

𝜕w
𝜕t

+ w𝜕w
𝜕𝜎

= 𝜇
𝜕2w
𝜕𝜎2 + s(𝜎, t),

w(𝜎, 0) = 0,
𝜕w(1, t)

𝜕𝜎
= 0, (36)

where w ∶= w(𝜎, t) ∈ RN is the state variable. s(𝜎, t) is the source/input term, 𝜇 is the viscosity. The output is taken at
the last spatial point in the domain: y=w(1,t). We consider s(𝜎, t) ≡ 1. The initial condition is defined as w(𝜎, 0) ∶= 0.
The simulation parameters are listed in Table 3. A training set, Ξ is formed by 100 log-uniformly distributed samples
in the parameter domain 𝒫 ∶= [0.0005 , 1]. The model has N = 500 equations after discretization in space. We employ
the central difference scheme for both the diffusion and convection terms. A semi-implicit Euler method is used to dis-
cretize the time variable. We make use of EIM to treat the nonlinear term. We set 𝜖EI to be 10−10 in Algorithm 7. A time
step of Δt = 4 ⋅ 10−4 was used, with the snapshots collected every 10th time step. In Figure 7, we compare the Standard
POD-Greedy-(D)EIM with the proposed Adaptive POD-Greedy-(D)EIM algorithm. It can be seen that using the latter
leads to a much quicker convergence of the greedy loop: 10 iterations as compared with 16 iterations that the standard
greedy algorithm needs. We show the convergence of the modified error indicator and the true error for both algo-
rithms. In Figures 7 and 11, the maximal errors are defined over all the parameters in the training set Ξ. In particular,
Δmax ∶= max

𝜇∈Ξ
Δ(𝜇), where Δ(𝜇) is defined in (31). The maximal true error is defined as: max

𝜇∈Ξ
1
K

∑K
i=1 ||yti − yti

r ||, where ti,

with i= 1,2,… ,K, are the time instances where the snapshots are taken. The improved convergence of Algorithm 7 is a
direct consequence of enriching the basis in an adaptive manner.

http://wileyonlinelibrary.com
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F I G U R E 7 Burgers’ equation: Convergence of the greedy algorithms:
Algorithms 5 versus 7 [Colour figure can be viewed at wileyonlinelibrary.com]

0 3 6 9 12
0

10

20

30

40

Number of RB basis vectors

N
u
m
b
er

o
f
E
IM

b
as
is
v
ec
to
rs

(A)

4 6 8 10
0

10

20

30

40

Iterations

E
ff
ec
ti
v
it
y

Original error indicator

Modified error indicator

(B)

F I G U R E 8 Algorithm 7 for the Burgers’
equation. A, Adaptive increment of RB versus
EIM basis vectors. B, Effectivity: Original versus
modified indicator [Colour figure can be viewed at
wileyonlinelibrary.com]

In Figure 8A, we plot the successive increments of the RB, EIM basis vectors. Starting from a value of 1 for each,
we can see that the biggest jumps are at the first few steps when the output error is estimated to be large. Subsequent
steps moderate the number of basis vectors to be added, as the algorithm converges. We end up with a final value of
(𝓁RB,𝓁EI)= (14,40) for the RB, EIM basis respectively. As for the standard implementation, where the EIM basis is pre-
computed outside the greedy loop, the resulting ROM has dimension (𝓁RB,𝓁EI)= (16,154). Thus, our proposed algorithm
not only produces a ROM that meets a certain tolerance but also leads to a more compact ROM.

In Table 4(a), we show the runtime taken for the adaptive and nonadaptive greedy algorithms till convergence. The
adaptive algorithm needs much less time. The reduced runtime of the adaptive approach is mainly contributed by the
reduced number of FOM simulations. For the inf-sup constant (the smallest singular value of the system matrix), we
apply radial basis function interpolation. From Table 4(b), it is clear that the RBF approach is much faster as compared to
using SVD to determine the smallest singular value of the system matrix. One can imagine, the savings in time would be
much more significant for large-scale systems with N ≫ 500. Figure 9A shows the output y(t, 𝜇) of the FOM and yr(t, 𝜇)
of the ROM at 𝜇 = 5. 10−4. The ROM solution is nearly indistinguishable from the FOM solution. Finally, in Figure 9B,
we plot the number of RB, EIM basis vectors as a function of the iteration number. Note that, both RB, EIM basis start
with just one basis vector at the first iteration.

Batch chromatography model

The last example is from batch chromatography, a process used to separate components of a mixture. We give the
schematic of the process in Figure 10. The mixture containing two components that need to be separated is periodically
injected at one end of the column. In the column, a static bed of a substance called the stationary phase is present. The
injected mixture has to pass through this stationary phase. Batch chromatography relies on the phenomenon of adsorp-
tion. The components that need to be separated have different adsorption affinities toward the stationary phase and hence
tend to move through the column with varying velocities. The separated components are then collected at the end of the

http://wileyonlinelibrary.com
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T A B L E 4 Runtime comparison for the Burgers’ equation (a) Adaptive versus nonadaptive

Method Runtime (s)

Adaptive 606

Nonadaptive 933

(b) Inf-sup constant computed over training set

Method Runtime (s)

SVD 3.7

RBF 0.4

F I G U R E 9 Burgers’ equation. A,
Output at 𝜇 = 5. 10−4. B, RB, EIM basis
versus iteration number [Colour figure can
be viewed at wileyonlinelibrary.com]
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F I G U R E 10 The schematic of a batch chromatographic
process34

column. The time of collecting the two components of the original mixture is determined based on the required purity
specifications. The dynamic equations for the process can be given as,

𝜕cz

𝜕t
+ 1 − 𝜖

𝜖

𝜕qz

𝜕t
= −

𝜕cz

𝜕x
+ 1

Pe
𝜕2cz

𝜕x2 ,

𝜕qz

𝜕t
= L

Q∕𝜖Ac
𝜅z(qeq

z − qz), (37)

where

• cz,qz are the concentrations of the two components (z= a,b) to be separated, in the solid and the liquid phase,
respectively,

• 𝜖 is the column porosity, Pe is the Peclet number, L is the length of the column, Q is the volumetric feed flow rate, Ac
is the cross-section area, and 𝜅z is the mass transfer coefficient,
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Interpolation N Parameter training set 𝚵 tolerance 𝝐POD

DEIM 1000 60 samples uniformly distributed 10−4 10−10

in [0.0667,0.1667]× [0.5,2.0]

T A B L E 5 Simulation
parameters for the batch
chromatography equation

• qeq
z is the adsorption equilibrium and it is the nonlinear term in the equation. It can be given as,

qeq
z =

Hz1cz

1 + Ka1cf
aca + Kb1cf

bcb
+

Hz2cz

1 + Ka2cf
aca + Kb2cf

bcb
,

• Hz1,Hz2 are Henry’s constants, Kz1,Kz2 are thermodynamic coefficients, and cf
z is the feed concentration of each

component (z= a,b).

The PDE defining the batch chromatographic process is discretized using the finite volume method in space and a
Crank-Nicolson scheme in time. Thus we have

Eck+1
z = Ack

z + dk
z −

1 − 𝜖

𝜖
Δthk

z ,

qk+1
z = qk

z + Δthk
z . (38)

Here, E,A are both nonparametric tri-diagonal matrices. The injection time tin ∈ [0.5,2.0] and the volumetric feed flow
rate Q∈ [0.0667,0.1667] are the two parameters of interest. dk

z depends on tin. In particular,

dk
z = dk

0(1, 0, 0, … , 0)T ,

where dk
0 ∶= ΔxPe

(
Δt

2Δx
+ Δt

PeΔx2

)
𝜒(tk). The term 𝜒(tk) can be given as

𝜒(tk) = 1 if tk ∈ [0 , tin], else 0.

hk
z just corresponds to the right hand side of the second equation in Equation (37), showing its dependency on Q. Addition-

ally, we note that for this example, we use the adaptive snapshot selection (AdSS) technique53 to reduce the computational
cost of SVD inside the DEIM algorithm and the greedy loop.

Adaptive snapshot selection
For models where the number of time steps is large, it is often cumbersome to perform the SVD on such a large snapshot
matrix. AdSS serves as a pre-treatment step to avoid this difficulty. It is essentially an algorithm to determine the linear
dependency of successive vectors in the snapshot matrix. The angle between a new vector and the last selected vector is
evaluated. If it falls below a tolerance it means that the new vector is almost linearly dependent on the last selected vector
and thus can be discarded. For more details on this approach, the reader is referred to Reference 54. Finally, a much
thinner snapshot matrix is obtained, reducing the costs of SVD in either the DEIM or the POD-Greedy algorithm.

The parameters used for the simulations are shown in Table 5. The system dimension is N = 1000, where the finite
volume method is used for space discretization. The Lax-Friedrichs flux is used for the convection term, while a central
difference scheme is applied for the diffusion term. For details, we refer to Reference 54. A semi-implicit discretization
is considered here for the time variable. We take 60 uniformly distributed parameters 𝜇 ∶= (Q, tin) from the parameter
domain. The simulation time varies depending on the choice of Q. This is due to the fact that the volumetric feed flow (Q)
determines the speed of flow of the components through the column. This speed in turn determines the time for which
the model needs to be simulated per switching cycle. The tolerance for the ROM error is set as 10−4. Since EIM is used
for Burger’s equation, for this example, we use DEIM as the interpolation method, to show the flexibility of the adaptive
algorithm. We set 𝜖POD to be 10−10.



CHELLAPPA et al. 5345

F I G U R E 11 Batch chromatography: Convergence of the greedy algorithms:
Algorithms 5 and 7 [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 12 Batch
chromatography example. A, RB,
DEIM basis versus iteration
number. B, Adaptive increment of
RB versus DEIM basis vectors
[Colour figure can be viewed at
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The dual system is a linear algebraic system without parameters; therefore, we propose to use the Krylov method
GMRES (with the same configurations as done for the FBC example in Section 5.1) to compute the approximate solution
to the dual system. The results are to be compared with the one obtained using the primal RB to reduce the dual system.

As for the Burgers’ equation, for the batch chromatography example, we show the convergence of the modified error
indicator and the corresponding true error, taken as the maximum over all parameters in Ξ, for each iteration. As can be
seen in Figure 11, the proposed adaptive POD-Greedy-(D)EIM algorithm results in a quicker convergence as compared
to the standard POD-Greedy. The standard POD-Greedy results in a ROM of size (𝓁RB,𝓁EI)= (47,109) in 47 iterations,
whereas the proposed adaptive POD-Greedy method leads to a ROM of size (𝓁RB,𝓁EI)= (46,50) in 29 iterations. Figure 12A
shows the number of RB, DEIM basis vectors as a function of the iteration number, while Figure 12B shows the adaptive
increase of the RB, DEIM basis vectors. Similar to the Burgers’ equation, the largest jumps are in the first few steps
when the error is large. In Figure 13A, we compare the effectivities of the original and the modified error indicators. The
modified indicator offers more efficient results. This is due to the combination of two facts,

• the use of GMRES for solving the dual system leads to a faster decay of the dual residual norm.
• the second term of the modified error indicator is multiplied by the term 1 − 𝜌. In Figure 14A, we can see that 𝜌 tends

to one as the iteration proceeds.

In Figure 13B, we compare the effectivities of the modified error indicator in two cases: in one case, we use the primal
RB to reduce the dual system and get the approximate dual solution (x̂du) from the reduced dual system; while in the
other case, we use the GMRESmethod to solve the dual system. It is clear that the case of using GMRES results in a smaller
effectivity. This is due to the fact that the residual of the dual system is very small when using a Krylov space method to
solve the dual system. In Figure 14B, we compare the effectivity of the original error indicator with the modified error

http://wileyonlinelibrary.com
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F I G U R E 13 Effectivity
comparison inside Algorithm 7 for
the batch chromatography example.
A, Effectivity: original versus
modified, B, modified error indicator
using the primal reduced basis
versus GMRES for the dual system
[Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 14 Results of the
adaptive process for batch
chromatography. A, The value of 𝜌(𝜇∗)
at selected 𝜇∗ at each iteration of
Algorithm 7. B, Effectivities of the two
error indicators in Equations (29) and
(30), respectively [Colour figure can be
viewed at wileyonlinelibrary.com]

Method Runtime (s)

Adaptive 7140

Nonadaptive 11260

T A B L E 6 Runtime comparison for the batch chromatography example

indicator, for estimating the final ROM at the final iteration of Algorithm 7. This shows that the modified error indicator
is much sharper for the final ROM. Finally, it can be seen from Table 6 that the proposed adaptive approach is able to find
a more compact ROM in a much shorter time.

6 CONCLUSIONS

In this work, we propose an adaptive scheme to generate the RB and (D)EIM basis. A good balance between the approxi-
mations of the state and the nonlinear term is achieved, while obtaining a ROM of desired tolerance. Whenever necessary,
the proposed scheme adaptively adds new basis vectors to, or removes redundant basis vectors from the existing RB,
(D)EIM projection matrices, in order to obtain a compact ROM. Expensive FOM simulations at all samples of the training
set is avoided. The adaptive scheme is driven by a suitable a posteriori error indicator, which makes use of an appropriate
dual system solver. We have tested the adaptive approach on several examples from applications. The method is shown
to work successfully for both nonparametric and parametric systems. The adaptive POD-Greedy-(D)EIM scheme is able
to deliver a ROM with much fewer iterations when compared to the standard approach. Also, we demonstrated that the

http://wileyonlinelibrary.com
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proposed modified error indicator offers a better effectivity when compared to a similar indicator. The current error indi-
cator is based on a semi-implicit time discretization. Future work would be to derive an error indicator for implicit time
integration schemes involving nonlinear solvers, such as the Newton method.
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