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Abstract Interactions among microbial cells can generate new chemistries and functions, but

exploitation requires establishment of communities that reliably recapitulate community-level

phenotypes. Using mechanistic mathematical models, we show how simple manipulations to

population structure can exogenously impose Darwinian-like properties on communities. Such

scaffolding causes communities to participate directly in the process of evolution by natural

selection and drives the evolution of cell-level interactions to the point where, despite underlying

stochasticity, derived communities give rise to offspring communities that faithfully re-establish

parental phenotype. The mechanism is akin to a developmental process (developmental correction)

that arises from density-dependent interactions among cells. Knowledge of ecological factors

affecting evolution of developmental correction has implications for understanding the evolutionary

origin of major egalitarian transitions, symbioses, and for top-down engineering of microbial

communities.

Introduction
Thirty years ago, in an article arguing the importance of the ‘superorganism’, Wilson and Sober

expressed surprise that biologists had not recognised that communities — in the laboratory —

‘could be treated as entities with heritable variation and selected accordingly’ (Wilson and Sober,

1989). That they might be treated as such, stemmed from recognition that the eukaryotic cell is a

tight-knit community of two once free-living microbes (Margulis, 1970), but also from observations

in nature of social insect colonies (Wilson, 1985), cellular slime molds (Bonner, 1982; Buss, 1982),

and especially of phoretic insect communities (Wilson and Knollenberg, 1987).

Phoretic insect communities comprise a focal organism — often an insect such as a beetle — that

moves between patchily distributed ephemeral resources carrying with it a myriad of associated

organisms, including mites, nematodes and microbes. Communities associated with each insect dif-

fer by virtue of the composite members, with the conceivable possibility that some associations may

harm the carrier insect, while others may bring benefit. Given that the role of dispersal is loosely

analogous to a community-level reproduction event, Wilson and Sober argued that selection at the

level of insect communities was likely to trump within-community selection leading to communities
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‘becoming organised into an elaborate mutualistic network that protects the insect from its natural

enemies, gathers food, and so on’.

If this might happen in nature, then why might this not be realised even more potently in the lab-

oratory? Indeed, the logic of Darwinism says it should. Provided there exists heritable variance in fit-

ness at the level of communities, then communities will participate as units (in their own right) in the

process of evolution by natural selection (Lewontin, 1970; Godfrey-Smith, 2009). In nature, the

necessary conditions are likely rare (Goodnight and Stevens, 1997), but ecological circumstances

can sometimes conspire to ensure that variation among communities is discrete, that communities

replicate and that offspring communities show some resemblance to parental communities. Phoretic

insect communities are a plausible case in point. In the laboratory, however, the experimenter can

readily construct conditions that ensure communities (or any collective of cells) are units of selection

(Johnson and Boerlijst, 2002; Day et al., 2011; Xie and Shou, 2018; Xie et al., 2019). A critical

requirement is a birth-death process operating over a time scale longer than the doubling time of

individual cells (Hammerschmidt et al., 2014; Rainey et al., 2017; Black et al., 2020).

Empirical support for the prediction that selection really can shape communities was provided by

Swenson and colleagues who performed two studies in which artificial selection was imposed on

microbial communities from soil (Swenson et al., 2000a; Swenson et al., 2000b). In the first, they

selected communities that affected plant growth. In the second, they selected communities for abil-

ity to degrade the environmental pollutant 3-chloroaniline. In both instances, communities at

extreme values of community function were repeatedly propagated. In both studies, a significant

response was measured at the level of the community.

Although the finding was a surprise (Goodnight, 2000), it is consistent with expectations that

communities of entities — no matter their identity — will participate in the process of evolution by

natural selection provided communities are discrete, they replicate, and that offspring communities

resemble parental communities (Godfrey-Smith, 2009). Discreteness is conferred by simply com-

partmentalising communities via their placement in independent vessels. Replication is achieved by

taking a sample of the selected communities with transfer to a new vessel. Heredity, however, is less

tangible, especially in the Swenson experiments, where the selected communities were pooled

before redistribution into fresh vessels. Nonetheless, intuition says that heredity becomes estab-

lished through interactions (Wilson and Sober, 1989; Goodnight, 2000). Understanding the mecha-

nistic bases of community-level heredity and its emergence motivates our study.

We begin by posing a thought experiment realisable via ever improving capacity to manipulate

small volumes of liquid (Baraban et al., 2011; Sackmann et al., 2014; Cottinet et al., 2016). Con-

sider a millifluidic device that controls the composition of emulsions. Consider thousands of micro-

litre-sized droplets each harbouring communities comprised of two types of microbes that differ

solely in the colour of a fluorescent protein: one type encodes a red fluorescent protein and the

other a blue fluorescent protein. Interest is in the evolution of communities that are of the colour

purple (an equal ratio of red-to-blue cells). Within each droplet, red and blue microbes replicate

with growth rate and interaction rates being subject to evolutionary change. In the mean time, the

experimenter, via lasers installed on the device, has determined the precise colour of each droplet

and a priori decided that half of the droplets with composition furthest from an equal ratio of red-

to-blue will be eliminated, whilst the fraction whose colour is closest to purple will be allowed to rep-

licate. Replication involves a dilution step during which an aliquot of cells are sampled and nutrients

replenished. A further round of growth then ensues along with a further round of droplet-level selec-

tion. The protocol continues thereafter with selection taking place at the level of communities via a

birth-death process. In essence the schema, outlined in Figure 1 and inherent in the work of Swen-

son and colleagues, involves exogenous imposition of ecological conditions sufficient to cause drop-

lets to function as units of selection. The concept, elaborated in detail elsewhere, is referred to as

‘ecological scaffolding’ (Black et al., 2020).

Under this scaffolded-regime, communities within droplets are endowed with Darwinian-like

properties (we use this term to convey the fact that removal of the scaffold leads, at least initially, to

complete loss of community-level individuality). Collective-level variation is discretised by virtue of

the bounds provided by the immiscibility of oil and water (communities are thus confined to drop-

lets). Additionally, the device ensures that droplets engage in a birth-death process: droplets fur-

thest from the collective-level trait are extinguished, whereas those closest to the colour purple are

diluted and split, thus effecting collective-level reproduction. Not determined by the device however
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is the relationship between parent and offspring droplets. Because the trait of the parent community

depends on properties of the cellular constituents, there is — in the absence of interactions between

red and blue cells — little chance that purple-coloured communities will reliably give rise to purple-

coloured offspring. This is in part due to the stochastic nature of the dilution phase (a droplet with

an equal ratio of red to blue is unlikely to give rise to offspring droplets founded with the same

equal ratio of types) but also to within-droplet selection favouring fast growing types. Purple-col-

oured droplets can be maintained, as envisioned by the ‘stochastic corrector’ model

(Maynard Smith and Szathmary, 1995; Grey et al., 1995; Johnston and Jones, 2015), provided

only those communities with the correct colour are propagated. However, within-droplet selection

favours rapidly growing cells resulting in successive reduction of the number of viable droplets.

Here, we show that when cellular interactions are also allowed to evolve, selection imposed at

the collective level, leads to evolution of a developmental-like process, which ensures that offspring

communities resemble parental communities, irrespective of the initial phenotype at the moment of

birth. We illustrate the evolutionary process by means of stochastic simulations for nested popula-

tions of cells (particles) and communities (collectives) undergoing a death-birth process. In order to

generalise our findings we derive a deterministic approximation, which we then use to show how

Figure 1. Nested model of evolution. Collectives (large circles) follow a birth-death process (grey) with non-overlapping generations. Collectives are

composed of particles (small spheres) that also follow a birth-death process (growth, represented by thick green arrows). Offspring collectives are

founded by sampling particles from parent collectives (dilution, represented by thin green arrows, first and third rows). Survival of collectives depends

on colour. Collectives that contain too many blue (second row) or red (fourth row) particles are marked for extinction. The number of collectives is kept

constant. Mutation affects particle traits (see main text for details).
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selection on community phenotype drives the evolution of ecological interactions that are the basis

of community-level heredity.

Results

A nested model of collective evolution
As described above and depicted in Figure 1, we consider a nested model in which particles are dis-

cretised into a population of collectives. Each collective is comprised of two kinds of self-replicating

particle (red and blue) that together determine collective colour. Colour is important because it is

the phenotype upon which collectives succeed or fail. Collectives that are too far from an optimal

colour face extinction, whereas those within acceptable bounds persist with the possibility of repro-

duction. Birth-death at the level of collectives affects the eco-evolutionary dynamics of particles as

particle-level traits that give rise to unfit collectives are eliminated.

We firstly present numerical simulations where particles undergo a stochastic birth-death process

(Champagnat et al., 2006; Doebeli et al., 2017) and collectives are selected based on colour. The

details of the model are described in Appendix 1, but we introduce the main assumptions and

underlying principles here. Each particle of type i 2 f0; 1g is characterised by four traits (hereafter

particle traits): colour (ci, red or blue), net maximum growth rate ri, and two competition parameters

(aintrai and ainteri ). At any particular instant particles either reproduce or die. Particles of type i repro-

duce with a constant birth rate ri and die as a consequence of competition. The rate of death is den-

sity-dependent such that each particle of type increases the death rate of i-type particles by ria
intra
j if

they share the same colour (cj ¼ ci), or by ria
inter
j when colours are different (cj 6¼ ci). All transition

rates can be found in Appendix 1, paragraph ’particle-level ecology’. Competition rates are referred

to as ‘interaction’ traits or parameters. We expand on more general types of interaction — from

exploitative to mutualistic — in the Discussion and in Appendix 3.

Mutations are introduced at the level of particles. Mutation affects either particle maximum

growth rate (r) or the inter-colour competition parameter (ainter) by a small random quantity. In the

spirit of adaptive dynamics (Geritz et al., 1998), the particle type carrying the new set of traits is

referred to as a mutant, and the existing type is designated the resident. Within every collective and

at any time, there are four populations composed of resident and mutant types of the two colours.

Mutations are assumed to be rare. In order to accelerate numerical simulations, one mutant individ-

ual is introduced every time one population of a given colour goes extinct in one of the collectives.

The newly added type has the the same colour as the extinct type.

Collectives also undergo a birth-death process. The number of collectives D is constant and col-

lective generations are discrete and non-overlapping. Each collective generation begins at time t ¼ 0

with offspring collectives containing B founding particles. Particles replicate, interact and evolve

according to the particle traits. After duration T, collectives attain ‘adult’ stage, and a fixed propor-

tion of collectives � is marked for extinction. This allows the possibility of selection on collectives

based on their properties (the collective phenotype), which is derived from the composing particles.

Our focus is collective colour, which is defined as the proportion f of red particles.

Initially, collectives contain red and blue particles in uniformly distributed ratios. Collectives are

subject to evolution under two contrasting regimes: one neutral and the other selective. Under the

neutral regime, the pool of collectives marked for extinction is sampled at random, whereas under

the selective regime, collectives marked for extinction are those whose adult colour departs most

from an arbitrarily fixed optimal colour bf. Extinguished collectives are replaced by offspring from

uniformly sampled extant collectives (Figure 1). All other collectives are replaced by their own off-

spring. Reproduction involves uniformly sampling B particles from the parent collective. Particles

from one collective never mix with particles from any other. This establishes an unambiguous parent-

offspring relationship (De Monte and Rainey, 2014). The adult colour of offspring collectives

depends on the founding frequencies of particles (whose variance is negatively related to bottleneck

size B), and on ensuing particle-level population dynamics.
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Selection on collectives drives the evolution of particle traits
In the absence of collective-level selection (neutral regime), collectives converge to a monochromatic

phenotype (Figure 2A). Once collectives are composed of either all-red or all-blue particles, the con-

trasting colour cannot be rescued (colour change by mutation or migration is not possible). The dis-

tribution of collective colour becomes biased toward faster-growing particle types, with selection

driving a gradual increase in particle growth rate (Figure 2C). The inter-colour competition trait

Figure 2. Evolutionary dynamics of collectives and particles. A population of D = 1000 D collectives was allowed to evolve for M = 10,000 generations

under the stochastic birth-death model described in the main text (see Appendix 1 for details on the algorithm used for the numerical simulations).

Initially, each collective was composed of B ¼ 15 particles of two types: red (r0 ¼ 6; aintra
0
¼ 0:8=K; ainter

0
¼ 0:15=K; c0 ¼ red) and blue

(r1 ¼ 4; aintra
1
¼ 0:3=K; ainter

1
¼ 0:15=K; c1 ¼ blue), with K = 1500. The proportions at generation 0 were randomly drawn from a uniform distribution. At the

beginning of every successive collective generation, each offspring collective was seeded with founding particles sampled from its parent. Particles

were then grown for a duration of T = 1. When the adult stage was attained, 200 collectives (� ¼ 20%) were extinguished, allowing opportunity for

extant collectives to reproduce. Collectives were marked for extinction either uniformly at random (neutral regime, panels A, C, E, as well as

Appendix 1—figures 1A and 4A), or based on departure of the adult colour from the optimal purple colour (bf ¼ 0:5) (selective regime, panels B, D, F,

as well as Appendix 1—figures 1B and 4B). Panels A and B, respectively, show how the distribution of the collective phenotype changes in the

absence and presence of selection on collective colour. The first 30 collective generations (before the grey line) are magnified in order to make

apparent early rapid changes. In the absence of collective-level selection purple collectives are lost in fewer than 10 generations leaving only red

collectives (A) whereas purple collectives are maintained in the selective regime (B). Panels C-F illustrate time-resolved variation in the distribution of

underlying particle traits. A diversity of traits is maintained in the population because every lineage harbours two sets of traits for every colour (see

Appendix 1). Selection for purple-coloured collectives drives evolutionary increase in particle growth rate (D) compared to the neutral regime (C). In the

neutral regime, inter-colour evolution of competition traits is driven by drift (E), whereas with collective-level selection density-dependent interaction

rates between particles of different colours rapidly achieve evolutionarily stable values, with one colour loosing its density-dependence on the other (F).
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(Figure 2E) is irrelevant once collectives become monochromatic (evolution is then governed by

drift).

The dynamic is very different once selection is imposed at the level of collectives. By rewarding

collectives closest to the colour purple (a fixed bf ¼ 0:5 ratio of red to blue particles), it is possible to

prevent fixation of either colour (Figure 2B). Starting, as above, from collectives containing red and

blue particles in uniformly distributed ratios, mean collective colour shifts toward red. The time scale

is, as in the neutral case, a consequence of the faster initial growth rate of red particles. For a few

tens of generations, the population of collectives remains strongly biased towards red. The optimal

phenotype is maintained by selection for the least worse collective colour precisely as envisaged by

the stochastic corrector model (Maynard Smith and Szathmary, 1995; Appendix 1—figure 5). Sub-

sequently, however, the trend reverses and mean collective colour progressively approaches purple.

From generation 1000, variance in the distribution of colour decreases, as a consequence of

improvement in the ability of purple-parent collectives to give rise to offspring collectives that at

adult age resemble parental types. This is associated with escalating particle growth rate

(Figure 2D) and a saturating increase in between-colour competition (Figure 2F). The latter reflects

directional selection that moves the average phenotype in the population of collectives towards the

optimal colour bf (reached by generation 7000).

By affecting particle traits, selection on colour also modifies dynamics within collectives. Figure 3

shows variation of colour within a single collective growth phase at generation 3 and generation

9000. Prior to selection shaping particle traits, both red and blue particle types follow approximately

exponential growth (Figure 3C). The resulting adult collective colour is thus biased towards the

faster-growing red type (Figure 3A). In contrast, at generation 9000 (Figure 3B), both particle types

reach a saturating steady state that ensures that adult colour is purple. Initial departures from a 1:1

ratio — caused by the stochasticity of collective reproduction and/or particle growth dynamics —

Figure 3. Ecological dynamics of particles. A sample of 300 (from a total of 1000) collectives were taken from each of generations 3 (A,C) and 9000 (B,

D) in the evolutionary trajectory of Figure 2. The dynamic of particles was simulated through a single collective generation (0 � t � T ¼ 1), based on

the particle traits of each collective. Each grey line denotes a single collective. The frequency distribution of adult collective colour (the fraction of red

particles at time T ), is represented in the panel to the right. The grey area indicates the fraction � of collectives whose adult colour is furthest from

bf ¼ 0:5, that will be eliminated in the following collective generation. Single orange lines indicate collectives whose growth dynamic — number of

individual particles — is shown in C and D, respectively. Dotted lines show the deterministic approximation of the particle numbers during growth

(Appendix 2 Equation 1). Initial trait values result in exponential growth of particles (C), leading to a systematic bias in collective colour towards fast

growing types (A). Derived trait values after selection yield a saturating growth toward an equilibrium (B) leading to the re-establishment of the purple

colour by the end of the generation, despite initial departure (A). This is associated to the transition from a skewed distribution of collective colour,

where almost all collectives are equally bad, to a narrow distribution centered on the target colour.
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are compensated for during the growth phase (Figure 3D). Compensation is a consequence of the

evolution of inter-colour competition traits (Figure 2F). Population expansion is in turn dependent

upon earlier increases in particle growth rate (Figure 2D). Moreover, selection favours competition

trait values for which blue types have no effect on red types: ainter of blue types is close to zero by

generation 5000 (Figure 2F).

Key features of the evolutionary trajectory discussed so far are representative of replicate realisa-

tions of the stochastic individual-based nested model. In the section ‘Variability of the derived parti-

cle traits’ of Appendix 1 we show that in repeated simulations, the average adult collective colour

always falls within a few percentage of the target colour. Moreover, collective-level selection applies

more stringently to interaction parameters than to growth rates, with the latter showing a broader

distribution of derived values. These conclusions also hold when the target colour bf is different from

0.5, with broader variation from one realisation to the other and slower convergence to the target as

colour ratios become more extreme (see Appendix 1, paragraph ‘Different target colours’).

Ability of offspring collectives to correct departures from the optimal colour during the course of

growth is akin to a developmental, or canalising process: irrespective of the phenotype of the new-

born (which will likely be different to that of the adult) the child — as it grows to adulthood — devel-

ops a phenotype that closely resembles that of the parent. Evidence of this apparent canalising

process can be seen upon removal of collective-level selection (Figure 4). Collectives founded by

particles with ancestral traits become composed of a single (red or blue) colour in less than 10 gen-

erations (Figure 4A). In contrast, derived collectives are comprised of particles whose traits ensure

that collectives continue to express phenotypes narrowly distributed around the optimal (purple)

phenotype (as long as there is no mutation [Figure 4B]). Even when mutation is allowed to drive

within- and between-collective dynamics, stability of phenoytpe holds for more than 200 generations

(Appendix 1—figure 6).

From particle ecology to collective phenotype
To understand the mechanistic basis of the canalising process, particle traits must be linked to the

evolutionary emergence of collective-level inheritance, which we define as the capacity of collectives

to re-establish the parental collective colour. Figure 5 shows the relationship between the initial col-

our of collectives at the moment of birth (the moment immediately following dilution, t ¼ 0 [the new-

born colour]), and collective colour after a single particle growth cycle (the moment immediately

preceding dilution, t ¼ T [the adult colour]). Figure 5A shows this relationship at generation 3 while

Figure 5B shows this relationship at generation 9000.

Figure 4. Dynamics of ancestral and derived collectives in the neutral regime. Comparison of the dynamics of the colour distribution after removing

selection (neutral regime). The population of 1000 collectives is initially composed of collectives with a colour distribution identical to that at generation

10,000 in Figure 2B. Particle traits are: (A) as in generation 1 of Figure 2; (B) derived after 10,000 generations of collective-level selection for purple. In

both instances, particle mutation was turned off in order to focus on ecological dynamics, otherwise parameters are the same as in Figure 2A.

Appendix 1—figure 6 shows the outcome with particle mutation turned on. The first 10 collective generations are magnified in order to make

apparent the initial rapid changes. The particle traits derived after evolution are such that the majority of collectives maintains a composition close to

the optimum bf even when the selective pressure is removed. This feature is instead rapidly lost in populations of collectives with the same initial colour,

but with particle traits not tuned by evolution.

Doulcier et al. eLife 2020;9:e53433. DOI: https://doi.org/10.7554/eLife.53433 7 of 39

Research article Ecology Evolutionary Biology

https://doi.org/10.7554/eLife.53433


At generation 3, the proportion of red particles increases (within a collective generation), irre-

spective of the initial proportion. This is because red particles grow faster than blue and the primary

determinant of particle success is growth rate (interactions are negligible in exponential growth).

Thus, the only way that purple collectives can be maintained is if the collective phenotype is suffi-

ciently noisy, to ensure that some collectives happen by chance to be purple, due to, for example,

stochastic effects at dilution. Even if offspring collectives do not resemble their parents, purple col-

our is maintained via strong purifying selection that purges collectives that are either too red or too

blue. The mechanism is stochastic correction (Maynard Smith and Szathmary, 1995; Grey et al.,

1995; Johnston and Jones, 2015).

This is in marked contrast to the situation at generation 9000. After a single growth cycle, the

proportion of red particles increases when the initial proportion is below, and decreases when it is

above, the optimal proportion 0.5. Thus, at generation 9000, irrespective of initial conditions, the

adult colour of any given collective will be closer to bf ¼ 0:5 than it was on founding. Accordingly,

extreme purifying selection is no longer required to maintain the parent-offspring relationship.

Indeed, offspring collectives return to the parent phenotype even when the phenotype at birth

departs significantly from the parent (adult) phenotype. ‘‘Correction’’ stems from the ecological

dynamics of the particles and resembles a developmental process. Hereafter we refer to this correc-

tion process as the developmental corrector.

The relationship between newborn and adult colour of collectives shown in Figure 5 can be used

to follow the fate of collectives over several cycles of growth and reproduction, provided the sto-

chastic effects associated with the dilution phase are momentarily ignored. The iteration using parti-

cle trait values from generation 3 is shown by the dotted line in Figure 5A (the adult colour of a

Figure 5. Effect of collective-level selection on newborn-to-adult colour. The adult colour of collectives as a function of their newborn colour is

displayed for collectives of uniformly distributed initial colour. Stochastic simulations are realized by using particle traits representative of: (A)

generation 3 and (B) generation 9000 (as in Figure 3). Dots indicate the mean adult colour from 50 simulations and its standard deviation. The orange

line depicts the growth function G for the corresponding deterministic approximation (see main text and Appendix 2). The dashed line traces the

discrete-time deterministic dynamics of the collective colour, starting from f ¼ 1

B
, and across cycles of growth and noise-less dilution. For ancestral

particle traits (A), collective colour converges towards the red monochromatic fixed point. After selection for collective colour (B), the growth function is

such that the optimum colour (bf) is reliably produced within a single generation for virtually the whole range of possible founding colour ratios. The

latter mechanism ensures efficient correction of alea occurring at birth and during development.
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collective is the newborn colour for the next cycle, following a ’staircase’ geometric procedure).

Because red particles grow faster than blue, it takes just six collective generations for red particles

to fix within collectives. Conversely, after particle trait evolution (Figure 5B), the same staircase

approach applied to newborn collectives of any colour shows rapid convergence to the colour pur-

ple (0.5) irrespective of the starting point. The difference in the relationship between initial and final

colour at generation 3 and 9000 is evidence of the emergence of a mechanism for developmental

correction.

In order to systematically explore the possible newborn-to-adult colour map and to understand

how it changes through the evolution of particle traits, we use a deterministic approximation (orange

line in Figure 5). This approximation is denoted G or growth function (Appendix 2, Definition 2) and

stems from an ordinary differential equation model often referred to as the competitive Lotka-Vol-

terra system (Appendix 2, Equation 1). This model is the limit for vanishing noise of the stochastic

particle ecology, and provides a good approximation of the simulations (Dotted lines in Figure 3C–

D). The growth function G captures the outcome of the ecological dynamics (i.e. the fraction of red

particles) after founding populations are allowed to grow for a finite time interval T . We note similar-

ity between the G function and the recently proposed ‘community-function landscape’ (Xie and

Shou, 2018). The shape of G depends on the value of particle traits � (growth rates r0 and r1, and

competition parameters a00 ¼ aintra0 , a10 ¼ ainter0 , a01 ¼ ainter1 , a11 ¼ aintra1 ), but also on the bottleneck

size at dilution B and the collective generation duration T. The fixed points of G (i.e. f such that

GðfÞ ¼ f) are of particular interest: in the deterministic model, these represent colours that are left

unchanged during a generation. Such a fixed point is stable if the colours of collectives starting in its

neighbourhood all converge to it (f ¼ 1 in Figure 5A, f ¼ 0:5 in Figure 5B), and unstable otherwise

(f ¼ 0 in Figure 5A, f ¼ 0 and f ¼ 1 in Figure 5B).

Under collective-level selection for colour, T and B are constant and particle traits evolve so that

G eventually has a stable fixed point, corresponding to the target colour bf. Progressive change in

shape of the G function across collective generations in a simulated lineage (Figure 2B) is illustrated

Figure 6. Evolutionary variation of the growth function under collective selection. function associated with the resident types for a single lineage of

collectives from the simulation of Figure 2B, plotted every 20 collective generations from 0 to 9000. The result of iterations of G gradually changes from

fixation of the fast growing particle (Figure 5A) to convergence toward the colour purple (Figure 5B).
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in Figure 6. Note that these changes are continuous: small mutations in particle traits reflect as small

changes in the shape of G.

The evolutionary trajectory of Figure 2B can now be understood in terms of the progressive evo-

lution of particle traits (see Appendix 2 for a detailed description). At the beginning, particles com-

pete mostly during exponential phase, so that adult colour is biased towards the fast-growing type.

Initial improvement in transmission of colour from parent to offspring arises as exponential growth

rates ri of the particles align. Correspondingly, the G function approaches linearity. A successive

increase in maximal growth rate separates particle and collective time scales, allowing particles to

experience density-dependent interactions. Eventually, such interactions evolve towards a regime

where the G function is nonlinear and fluctuations are readily compensated, thus developmental cor-

rection ensures a reliable colour inheritance.

The G function, which allows characterisation of particle ecology, can now be used as a guide to

optimise the ‘life cycle’ of growth and dilution that acts as a scaffold for the evolutionary process. In

a typical experiment of community-level evolution, collective generation duration T and bottleneck

size B are fixed. Some choices of these collective-level parameters are however likely to lead to col-

lective phenotypes that are so far from the optimum that collective lineages go extinct. For instance,

if in the first-generation competitive exclusion occurs rapidly, then distinguishing collectives based

on collective colour may be impossible. Intuition suggests that the closer the fixed point of the G

function is to the target colour, the more efficient collective-level selection will be, and the faster the

evolutionary dynamic. It is thus possible to use the distance between the fixed point of G and the

target composition bf as a proxy for the probability that collective lineages will go extinct before

attaining the desired colour. Below, we examine how the position of the fixed point of G changes as

a function of collective generation duration T and bottleneck size B.

Effect of collective generation duration and bottleneck size
The growth function G is readily computed from the particle traits and collective parameters even

though it has in general no analytic expression (but see Appendix 2 for limit cases of exponential

and saturating particle growth). There are four possible qualitative shapes of G, that differ in the

position and stability of the fixed points (illustrated in Appendix 2—figure 3-1 to 3-4).

The qualitative dependence of G and its fixed points on collective-level parameters varies with

the underpinning particle ecology, making it easier for some communities to be starting points for

the successful evolution of inheritance. Particle traits can be classified in four broad classes, based of

the nature of the corresponding ecological equilibrium. For each of these classes, and when red par-

ticles grow faster than blue r0>r1, the fixed points of G are illustrated in Appendix 2—figure 3-A to

3-D as a function of the collective-level parameters B and T. Figure 7 refers to the situation where

inter-colour interaction traits are smaller than intra-colour interaction traits. Here, particle popula-

tions converge in the long term to a coexistence equilibrium, where collective colour is

f� ¼ a11�a01
a11�a01þa00�a10

(in general, different from the optimum). This equilibrium can be approached

within a single collective generation if T and B are large (top right corner). On the other hand, when

T and B are small (red region), the only stable fixed point invovles collectives composed solely of

fast-growing particles. This corresponds to cases where individual and collective time scales (quanti-

fied by r�1 and T , respectively) are insufficiently separated, or newborn size is too small, so that par-

ticle demography is essentially exponential and interactions cannot provide sufficient correction. For

rapid evolution of collective colour, the most favourable starting position is one where the fixed

point is closest to the optimal colour (for bf ¼ 0:5 this occurs for intermediate collective generation

duration and bottleneck size for the trait values in Figure 7). Knowledge of the exact values requires,

however, some preliminary measure of the ecological dynamics. Even in the absence of such infor-

mation, the diagram in Figure 7 can be used to optimise experimental design by revealing intrinsic

trade-offs. A decrease in generation time, necessary for practical reasons, may for instance, be com-

pensated by an increase in bottleneck size, without affecting the average collective phenotype.

Even when collective-level parameters are optimised so that the attractor of the G function is ini-

tially close to the target colour, collective-level selection will keep acting on the particle traits, and

affect phenotypic variability within the population of collectives. As stability of the fixed point

increases, so to does fidelity of phenotype transmission from parent to offspring collectives. Once

collective-level processes are set as to minimise the probability of collective extinction, the main
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obstacles to evolving higher inheritance come from constrains acting on particle traits, which may

limit the range of attainable G functions. Trade-offs on particle ecology may prevent the G function

to attain an internal fixed point. We discuss two examples on constrained evolution in the following

paragraph.

Constrained trajectories
Thus far, we have considered evolution within a four-dimensional parameter space defined by maxi-

mum growth rates and inter-colour competition parameters. In real systems, however, constrains

and trade-offs may limit the range of achievable variations in particle traits. For instance, even

though faster growing particles will always experience positive selection, cell replication rate cannot

increase boundlessly. Here, we consider two instances of constrained evolution, where only a subset

of particle traits are allowed to mutate.

First, we consider the case where competition parameters are vanishingly small, so that G has no

internal fixed point. Under such conditions, particle growth rates evolve to be identical (Figure 8A).

In the absence of interactions, this is the only available solution to maintain collectives with an equal

number of red and blue type particles. Under these circumstances, G converges to the identity func-

tion. In the deterministic approximation, collective composition remains constant in time, but

Figure 7. Stable fixed point of G as a function of collective-level parameters. Classification of the qualitative shape of the growth function and

dependence on collective parameters B (bottleneck size) and T (growth phase duration). Considered here are particle traits that allow coexistence

(a01<a11 and a10<a00, r0>r1, see Appendix 2—figure 3 for the other possible parameter regions). The black line represents the limit of the region of

stability of the fixed point of G, separating the two qualitatively different scenarios illustrated in the inset (see Appendix 2, Proposition 4 for its analytic

derivation): for short collective generations and small bottleneck size, the faster growing red type competitively excludes the blue type over multiple

collective generations. In order for particle types to coexist over the long term, growth rate and the initial number of particles must both be large

enough for density-dependent effects to manifest at the time that selection is applied.
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stochastic fluctuations that cause colour to deviate from the optimum are amplified across collective

generations. These deviations are nonetheless corrected in the collective population by propagating

only those collectives whose colour is closest to the optimum. Such stochastic correction

(Maynard Smith and Szathmary, 1995), however, has a high risk of failure if selection is strong and

collective population size is small.

Second, we consider the case when mutations only affect the two inter-type competition parame-

ters, while growth rates are held constant (to sufficiently high values, so that particles experience

density-dependent effects in the growth phase). The evolutionary trajectory can be visualised in the

plane of competition parameters ða01; a10Þ. Figure 8B shows the result of a stochastic simulation

superimposed to the value of Gð0:5Þ. Independent of the initial values of the interaction parameters,

evolution draws the system to the manifold associated with the optimal proportion bf (white dashed

line). Evolution within this manifold is neutral in the deterministic approximation, but the presence of

stochastic fluctuations drives further improvement of the fitness landscape. Correction is indeed

more efficient and the distribution of collective phenotypic diversity narrower when the gradient of

G in the fixed point is smaller. The condition on particle traits for the latter to vanish only depends

on the carrying capacities of the two particle types, and corresponds to the type with smallest carry-

ing capacity having zero interaction rate (see Appendix 2). A similar outcome is observed when,

along an evolutionary trajectory, growth rates no longer influence adult colour (Figure 2). Develop-

mental correction thus selects for maximal asymmetry in interactions, whereby one particle type

drives the ecological dynamics of the other type, but is itself only affected by its own type (this is

fully elaborated in Appendix 2).

Figure 8. Constrained evolutionary trajectories. Dynamics through time of resident particle traits (black dots, whose size measures their abundance in

the collective population) along simulated evolutionary trajectories of 300 generations, when particle-level traits are constrained. For both panels

D ¼ 1000, bf ¼ 0:5; � ¼ 20%, B ¼ 15, and T ¼ 1. The trajectory of the average resident traits is shown in white. The heatmap represents the value of

Gð0:5Þ as a function of the evolvable traits, and the white dotted line indicates where collective colour is optimum. (A) Particle growth rates evolve and

particles do not compete (ainter ¼ aintra ¼ 0). The evolutionary dynamics leads to alignment of growth rates (r0 ¼ r1). (B) Inter-colour competition traits

evolve and particle growth rates are constant (r0 ¼ r1 ¼ 25). The evolutionary dynamics first converge toward the optimality line. In a second step,

asymmetric competition evolves: ainter
1
! 0 and ainter

0
! aintra

0
� aintra

1
. This results in a flatter G function around the fixed point, providing a faster

convergence to optimum colour across collective generations (Appendix 2—figure 6). Similar results are obtained for non-identical, but sufficiently

high, growth rates.
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Discussion
In nature, communities rarely ever qualify as units of selection in the traditional sense (Lewon-

tin, 1970; Godfrey-Smith, 2009), because communities in nature rarely manifest heritable variance

in fitness. In the laboratory, however, experimenters can exogenously impose (scaffold) Darwinian-

like properties on communities such that they have no choice, but to become units of selection

(Wilson and Sober, 1989; Xie et al., 2019; Black et al., 2020). This typically involves placement of

communities in some kind of container (pot, test-tube, flask, droplet, etc.) so they are bounded and

variation at the community level is thus discrete. Communities are then allowed time for individual

members to replicate and interact. At the end of the ’growth’ period, community function is

assessed based on pre-determined criteria. The experimenter then effects replication of successful

communities while discarding those that under-perform. Replication typically involves transferring a

sample of individuals from a successful community to a new container replete with a fresh supply of

nutrients.

Experimental and theoretical studies indicate that artificial selection on microbial communities

results in rapid functional improvement (Swenson et al., 2000a; Swenson et al., 2000b; Good-

night, 2000; Wade, 2016; Xie et al., 2019). This is not unexpected given that experimental manipu-

lations ensure that communities engage directly in the process of evolution by (artificial) selection as

units in their own right. However, for such effects to manifest there must exist a mechanism of com-

munity-level inheritance.

Consideration of both the effectiveness of artificial selection and the problem of heredity has led

to recognition that the answer likely lies in interactions (Wilson and Sober, 1989; Swenson et al.,

2000a; Swenson et al., 2000b; Goodnight, 2000; Rainey et al., 2017). The intuition stems from

the fact that in the absence of interactions, communities selected to reproduce because of their ben-

eficial phenotype will likely fail to produce offspring communities with similar functionality. If so,

then these communities will be eliminated at the next round. Consider, however, an optimal commu-

nity in which interactions emerge among individuals that increase the chance that offspring commu-

nities resemble the parental type. Such an offspring community will then likely avoid extinction at

the next round: selection at the level of communities is thus expected to favour the evolution of

interactions because inheritance of phenotype is now the primary determinant of the success (at the

community level). Indeed, simulations of multi-species assemblages have shown that evolution of

interaction rates not only improves diversity-dependent fitness, but also increases collective ‘herita-

bility’, defined as the capacity of randomly seeded offspring communities to reach the same dynam-

ical state as their parents (Ikegami and Hashimoto, 2002; Penn, 2003). Further studies have

stressed the role of the extracellular environment and of specific interaction networks, pointing out

that microscopic constrains can affect the capacity of communities to participate in evolutionary

dynamics at the higher level (Williams and Lenton, 2007; Xie and Shou, 2018; Xie et al., 2019).

Here, inspired by advances in millifluidics, we have developed a minimal mechanistic model con-

taining essential ingredients of multi-scale evolution and within-community competition. We consid-

ered collectives composed of two types of particles (red and blue) that interact by density-

dependent competition. By explicitly modelling demographic processes at two levels of organisa-

tion, we have obtained mechanistic understanding of how selection on collective character affects

evolution of composing particle traits. Between-collective selection fuels changes in particle-level

traits that feedback to affect collective phenotype. Selection at the level of communities thus drives

the evolution of interactions among particles to the point where derived communities, despite sto-

chastic effects associated with sampling at the moment of birth, give rise to offspring communities

that reliably recapitulate the parental community phenotype. Such is the basis of community-level

inheritance. Significantly, it has arisen from the simplest of ingredients and marks an important initial

step in the endogenisation of Darwinian properties: properties externally imposed stand to become

endogenous features of the evolving system (Black et al., 2020).

The mechanism by which particles interact to establish community phenotype is reminiscent of a

development process. We have refered to this as the ‘developmental corrector’. In essence, it is akin

to canalisation, a central feature of development in complex living systems (Buss, 1987), and the

basis of inheritance (Griesemer, 2002). Developmental correction solves the problem of implement-

ing specific protocols for mitigating non-heritable variations in community function (Xie et al.,

2019).
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Developmental correction can be viewed as an evolutionary refinement of the stochastic corrector

mechanism (Maynard Smith and Szathmary, 1995; Grey et al., 1995; Johnston and Jones, 2015).

Both stochastic and developmental correctors solve the problem of producing enough well-formed

collectives at each successive generation to prevent community-level extinction. The stochastic cor-

rector mechanism relies on a low-fidelity reproduction process coupled to high population sizes.

Deviations from successful collective states are corrected by purging collectives that depart signifi-

cantly from the optimal collective phenotype. However, in the absence of strong collective-level

selection the optimal community phenotype is rapidly lost. In contrast, the developmental corrector

mechanism ensures that the optimal community phenotype is maintained without need for hard

selection. Regardless of perturbations introduced by demography or low initial particle number,

most collectives reliably reach a successful adult state. In our simulations, we show that community

phenotype is maintained even in the absence of community-level selection, although ultimately

mutational processes affecting particle dynamics result in eventual loss of the developmental correc-

tor mechanism.

An operationally relevant question concerns the conditions (the initial state of the population, the

nature of the scaffold and of particle-level interactions) for selection on a collective character to

result in evolution of developmental correction. While we did not detail the probability of collective

lineage extinction, it is possible that collectives become monochromatic before evolution has had

time to act on particle traits. In such cases, which are more likely if particle-level traits are far from

the region of coexistence, and if time-scales of particle and collective generations are not well sepa-

rated, then collective-level evolution will grind to a halt. In all other cases, provided there are no

other evolutionary constraints, selection will eventually lead the system toward regions of particle

trait-space where the collective phenotype becomes reliably re-established. The efficiency of this

selective process and its transient behaviour depend on collective-level parameters that control

growth and reproduction.

From our individual-based simulations and ensuing deterministic approximation, it is clear that

once density-dependent interactions govern the adult state, then collective-level selection for colour

is promptly effected. This happens provided the intra-collective ecology lasts long enough for non-

linear effects to curb particle growth. When this is not the case, for example when the bottleneck at

birth is small, or collective-level generation time is too short, evolution of developmental correction

will be impeded. The latter favours rapidly growing particles (Abreu et al., 2019) and offers little

possibility for the evolution of developmental correction. When the ecological attractor within collec-

tives leads to the extinction of one of the two types, long collective-level generation times are

incompatible with the maintenance of diversity (van Vliet and Doebeli, 2019). However, in our

model, particle-level evolution changes the nature of the attractor from extinction of one of two

types to stable coexistence, and concomitantly particle and collective time-scales become sepa-

rated. Even before developmental correction becomes established, evolution can transiently rely on

stochastic correction to ensure the maintenance of particle co-existence.

There are two aspects to heredity: resemblance — the extent to which reproduction and develop-

ment maintain the average offspring phenotype — and fidelity (or determination) — a measure of

phenotypic variance (Jacquard, 1983; Bourrat, 2017). In our model, resemblance is established

once density-dependent interactions counter the bias toward fast replicating particles: when the G

function has an internal fixed point in bf, systematic drift of average collective colour is prevented.

The increase in resemblance is associated with progressive divergence of particle and collective

demographic time scales. As a consequence, the collective phenotype is placed under the control of

particle traits rather than demographic stochasticity. On a longer time scale, fidelity improves by

subsequent changes in interaction parameters under the constraint that they do not affect average

adult colour. The variance of the phenotype around the optimum is reduced by increasing canalisa-

tion (flattening of the G function). This is best achieved by a strong asymmetry in the competition

traits, whereby one type has a logistic, uncoupled, dynamic, and the second type adjusts its growth

to the former’s density. Interestingly, it is always the type with the lower carrying capacity, regardless

of its relative growth rate, that acts as the driver.

The relationship between parameters on very long time scales, when the adult colour is essentially

dependent on interaction rates, depends critically on the space of possible values particle traits can

assume. For instance, our analysis took into account only competitive intractions between colours.
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Extension of the deterministic approximation to cases when ecological interactions between colours

are exploitative or mutualistic indicates that selection for collective coulour can drive changes in the

very nature of the interactions so as to make them progress towards less and less reciprocally harm-

ful coexistence (for full elaboration see Appendix 3).

Our goal has been to produce a simple, tractable scenario for studying the effects of artificial

selection on collectives, which while theoretical, is firmly connected to plausible biological experi-

ments. The model could be extended in multiple ways in order to analyse the effects of additional

factors, including impact of non-overlapping generations and variation in the timing of reproduction

(which would introduce an element of bet-hedging), of migration and mixing between collectives

(which could be akin to gamete production and zygote formation), and inclusion of more than two

kinds of particle types. More complex selective regimes can also be envisaged, such as those that

reward collectives based on absolute population size of particle types, which would allow less

abstract collective functions to be considered. However, regardless of these refinements, we suspect

that our core conclusion will stand firm: collective-level selection favours particle dynamics that

improve collective-level heredity. The ability to reliably re-establish successful adult states of past-

generations from simpler and potentially noisy initial conditions is adaptive at the collective level.

The mechanism of developmental correction is broadly relevant and extends beyond cells and

communities to particles of any kind that happen to be nested within higher-level self-replicating

structures. As such, the mechanism of developmental correction may be relevant to the early stages

in each of the major (egalitarian) evolutionary transitions in individuality (Queller, 1997;

Maynard Smith and Szathmary, 1995), where maintenance of particle types in optimal proportions

was likely an essential requirement. For example, it is hard to see how protocells cells evolved from

lower level components (Takeuchi and Hogeweg, 2009; Baum and Vetsigian, 2017), chromosomes

from genes (Smith and Szathmáry, 1993), and the eukaryotic cell from independent bacterial enti-

ties (Martin and Müller, 1998) without some kind of self-correcting mechanism acting at the collec-

tive level.

Beyond these fundamental considerations, the mechanism of developmental correction and the

ecological factors underpinning its evolution have important implications for top-down engineering

of microbial communities for discovery of new chemistries, new functions, and even new organisms.

The minimal recipe involves partitioning communities into discrete packages, provision of a period

of time for cell growth, selective criteria that lead to purging of sub-optimal collectives and repro-

duction of optimal collectives to establish the next generation of collectives. These manipulations

are readily achieved using millifluidic devices that can be engineered to operate in a Turing-like man-

ner allowing artificial selection on community-level traits across thousands of independent communi-

ties. As mentioned above, critical tuneable parameters beyond number of communities, mode of

selection and population size, are duration of collective generation time and bottleneck size at the

moment of birth.

The extent to which the conclusions based on our simple abstract model are generally applicable

to the evolution of more complex associations, such as symbioses leading to new forms of life, will

require future exploration of a broader range of particle-level ecologies. Possibilities to make com-

munity dynamics more realistic by complexifying mathematical descriptions of particle-level pro-

cesses are plentiful (Williams and Lenton, 2007; Zomorrodi and Segrè, 2016). Of particular

interest for the evolution of efficient developmental correction are cases when community ecology

has multiple attractors (Penn and Harvey, 2004), is highly sensitive to initial conditions

(Swenson et al., 2000b), or presents finite-effect mutations sustaining ‘eco-evolutionary tunnelling’

(Kotil and Vetsigian, 2018). Besides enlarging the spectrum of possible within-collective interac-

tions, future relevant extensions might explore the role of physical coupling among particles and of

horizontal transmission between collectives (van Vliet and Doebeli, 2019) in enhancing or hamper-

ing efficient inheritance of collective-level characters.

Methods
Methods are described in Appendix 1, 2 and 3, interspersed with more technical descriptions of the

results presented in the main text.
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Appendix 1

Stochastic model
This appendix presents an outline for the approximated stochastic simulation of nested population

dynamics described in the main text. We first attend to the case where particle populations are

monomorphic without mutation and then move to consider the role of particle-level mutation. Full

implementation of the model is available as Source code 1 and at https://gitlab.com/ecoevomath/

estaudel (Doulcier, 2020).

Parameters

First, we list the parameters of the numerical model introduced in the main text. The collective selec-

tion regime is specified by a set of collective-level parameters that are kept constant along the evo-

lutionary trajectory.

== Parameters

D 1000 == Number of collectives

M 10;000 == Number of collective generations
B 15 == Bottleneck size

T 1:0 == Duration of a collective generation

regime  selective == Selective or Neutral regime

� 0:2 == Fraction of extinguished collectives
bf 0:5 == Optimal collective colour ðfor selective regimeÞ

Collectives are comprised of two kinds of self-replicating particle (red and blue) that carry a differ-

ent set of traits. Traits can mutate (see the mutation section below), and are represented as global

variables.

== Particle traits
== Carried by red particles

r0 ==Maximum growth rate
aintra
0

== Competition with red particles

ainter
0

== Competition with blue particles

==Carried by blue particles

r1 ==Maximum growth rate
aintra
1

== Competition with blue particles

ainter
1

== Competition with red particles

The state variables (DxM matrices) store the adult state of collectives along a trajectory.

==State variables
N0 ==number of blue individuals in each collective at each generation

N1 ==number of red individuals in each collective at each generation

F ==proportion of red individuals in each collective at each generation

Initial conditions

Initial conditions consist in defining the number of red and blue particles in each collective at the

beginning of generation 0.

procedure INITIAL CONDITIONS

x0 0:5 ==Initial red-blue ratio
for d from 1 to D do

N0½d;0�  RandomBinomialðB;x0Þ
N1½d;0�  B�N0½d;0�

Outline of the main loop

The main loop of the algorithm applies the sequence growth-selection-reproduction for each

generation.
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procedureMAIN LOOP

for m from 1 toM do

==Particle Growth
for d from 1 to D do

N0½d;m�;N1½d;m�  GROWTHðN0½d;m�;N1½d;m�; r0; r1;a
intra
0

ainter
0

;aintra
1

ainter
1
Þ

F½d;m�  N1½d;m�=ðN0½d;m� þN1½d;m�Þ
== Collective� level selection

parents  SELECT COLLECTIVESðF½d;m�; �; bfÞ
== Collective� level reproduction

for d from 1 to D do

N0½d;mþ 1�  RandomBinomialðB;F½parents½d�;m�Þ
N1½d;mþ 1�  B�N0½d;mþ 1�

Particle-level ecology

The ecological dynamics of particles is expressed by a multi-type birth-death process with a linear

birth rate and a linearly density-dependent death rate. Each type of particle i is characterised by four

traits: colour (ci, red or blue), maximum growth rate ri, and two density-dependent interaction

parameters. Particles of the same colour interact according to aintrai , whereas particles of different

colour interact according to ainteri . Interaction terms are in the order of 0.1 and scaled by a carrying

capacity term K. The dynamic is modelled by a continuous-time Markov jump process with rates:

Each particle of type i . . . With rate. . .

Reproduces (add a particle of type i)
Dies (remove a particle of type i)

ri
rið

P
j dci¼cjxja

intra
j K�1 þ

P
j dci 6¼cjxja

inter
j K�1Þ

di¼i ¼ 1 if i ¼ j or 0 if i 6¼ j. Additionally di 6¼i ¼ 1 if i 6¼ j or 0 if i ¼ j.

The stochastic trajectory of the system is simulated using a Poissonian approximation used in the

basic t �leap algorithm (Gillespie, 2001), dt is chosen to be small enough so that population size

never becomes negative.

function GROWTH ðn0;n1; r0; r1;a
intra
0

ainter
0

;aintra
1

ainter
1
Þ

==Stochastic simulation of the population dynamics
while t do

birth0 RandomPoissonðdt� n0r0Þ
birth1 RandomPoissonðdt� n1r1Þ
death0 RandomPoissonðdt� n0r0ðn0a

intra
0
þ n1a

inter
1
ÞÞ

death1 RandomPoissonðdt� n1r1ðn0a
inter
0
þ n1aintra

1
ÞÞ

n1 n1þbirth1�death1

n0 n0þbirth0�death0

t tþ dt

Return n0;n1

Early tests using an exact stochastic simulation algorithm (Doob-Gillespie SSA, Gillespie, 1976) did

not exhibit qualitative changes in the trajectory, but greatly increased the computation duration.

Collective-level selection

The collective-level selection phase consists in associating each of the D new collectives from gener-

ation mþ 1 with a single parent at generation m. In the main text we contrast two regimes: colour-

neutral and colour-selective. In both cases, a fixed proportion � of the collective population at gener-

ation m is marked for extinction. In the neutral regime, collectives to be eliminated are selected uni-

formly at random (Appendix 1—figure 1A), whereas in the selective regime they are those that rank

the highest in their distance to the optimal colour bf (Appendix 1—figure 1B). Each surviving collec-

tive produces offspring. Moreover, the remaining collectives from generation mþ 1 are generated

by a parent chosen uniformly at random from the set of surviving collectives.
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Appendix 1—figure 1. Collective-level selection regimes. Each ring represents a collective. The blue

section of the ring represents the proportion of blue particles at the adult stage of the collective.

Parent and offspring are linked by a black line. (A) One generation of the neutral regime. (B) One

generation of the selective regime. In both cases M ¼ 1; D ¼ 40; � ¼ 0:4.

function SELECT COLLECTIVES ðf; �; bf; regimeÞ
==Return the indices of the new collectives0 parents

surviving empty list== indices of the surviving collectives
reproducing empty list== indiceof the reproducing collectives
parents empty list== indices of the parent collectives
if regime is selective then

threshold Percentileððf� bfÞ2;�Þ
for d from 1 to D do

if ðf½d�� bfÞ2<threshold then

Add d to surviving
else if regime is neutral then

surviving¼RandomMultinomialWithoutReplacementð1:::d;n¼ ð1� �ÞDÞ
==Extinct collectives are replaced by the offspring of a randomly drawn surviving collective

for 1 to D-LengthðsurvivingÞ do
Add RandomChoiceðsurvivingÞ to reproducing

==Surviving collectives have at least one offspring; and the population

size is kept constant by additional reproduction events:
parents Concatenateðsurviving; reproducingÞ
Return parents

Other selection procedures can be implemented, such as randomly sampling �D collectives with

weight based on the colour-deviation to the optimal colour. A non-exhaustive exploration of other

selection rules indicates that the qualitative results of the model are robust to changes in the selec-

tive regime, as long as collectives with an optimal colour are favoured and the collective population

does not go extinct.

Collective reproduction is implemented by seeding an offspring collective with a sample of B par-

ticles drawn according to the proportion of the parent collective. We assume that the final particle

population sizes are big enough so that each reproduction event can be modelled as an indepen-

dent binomial sample. Smaller population sizes might require simultaneous multinomial sampling of

all offspring.

Mutation of particle traits

The complete model adds the possibility for particle trait (r; ainter) to mutate. Each collective contains

two variants of each colour. Whenever a variant goes extinct, the remaining type is called the ‘resi-

dent’, and a mutant type is created as follows. First, traits of the resident are copied in one newborn

particle, then one of the mutable traits — either the growth rate (r) or the inter-colour competition

trait (ainter) — is chosen at random, and finally a random value is added that is taken from a uniform

distribution over ½�"; "� (in Figure 2, " ¼ 0:1). Traits are kept positive by taking the absolute value of

the result. This process is in the spirit of adaptive dynamics in which invasion of a single new mutant

is repeatedly assessed in a monomorphic population.
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We checked that relaxing this assumption (i.e. allowing more than two types of each colour in

each collective), or waiting for rare mutations to appear did not change the qualitative results. The

pseudo-code outlined above was modified in order to track the trait value of both resident and

mutant types in each collective, rather than having the trait values as global variables.

Variability of the derived particle traits
The single trajectory of the stochastic model discussed in the main text (Figure 2) is obtained by set-

ting initial conditions for both collective composition (fraction of red and blue particles in each col-

lective at the beginning of the first collective generation) and for the value of particle-level

parameters that are subjected to mutations. We used this specific trajectory to illustrate key features

of the evolutionary outcome, that are then explained by the deterministic approximation (Appendix

2). Such approximation, discussed below, allows exhaustive exploration of parameter space, that

would otherwise prove impossible because of computation demands. However, it provides only indi-

rect insight on the expected variance of the corresponding particle-based stochastic process. Here,

we address variability of the evolutionary outcome of stochastic simulations in a few relevant cases.

Appendix 1—figure 2. Distribution of average mutable traits values across several simulations.

Three parameters sets are represented in which red and blue types have respectively equal carrying

capacity (aintra
0
¼ aintra

1
¼ 0:7=K), red types have a higher carrying capacity (aintra

0
¼ 0:4) and lower

carrying capacity (aintra
0
¼ 0:8). The results of 20 independent simulations for each of the parameters

sets are shown. For each simulation, D ¼ 100 collectives, M ¼ 10; 000 generations, B ¼ 15 particles,

the optimal collective colour is bf ¼ 0:5 and initial particle traits are

ðr1 ¼ r0 ¼ 5; aintra
1
¼ 0:7=K; ainter

0
¼ ainter

1
¼ 0:3=KÞ, with K ¼ 1500.

Appendix 1—figure 2 illustrates the distribution of average colour in a population of collectives

(A) and of the average associated traits (interaction rates [B]; growth rates [C]) after

M ¼ 10; 000 collective generations for three different values of the red type’s carrying capacity. For

each set of parameters, 20 trajectories where simulated. In none of the 60 simulations do popula-

tions became entirely monochromatic.

The evolutionary outcome of the stochastic model is highly reproducible, with only a small per-

centage variation in the average collective colour achieved in different realizations of the stochastic

process. Apart from a small systematic bias toward the type with the higher carrying capacity (i.e.

the lower aintra), changing the carrying capacity does not affect the ability of selection to achieve the

target colour (Appendix 1—figure 2A).

The effects of collective selection on particle traits instead change depending on the role of such

traits in determining the collective colour. Figure 2 of the main text illustrates the convergence, over

one single evolutionary trajectory, of the inter-colour interaction parameters to specific values. Cor-

respondingly, the average of these parameters in the population also changes little across multiple

realizations of the stochastic evolutionary process (Appendix 1—figure 2B). As expected, the values

depend on the parameters that do not evolve, that in the cases illustrated here, are the carrying

capacities. However, one can notice that as long as interaction rates are bounded to be positive,

one interaction (in the specific case where carrying capacities are equal) will in the long run vanish,

indicating that one of the types drives the intra-collective dynamics. This corresponds to predictions,

as discussed in Appendix 2 and 3.

Maximal growth rates, that were observed to change within one single realization of the evolu-

tionary trajectory, also vary considerably across realizations (Appendix 1—figure 2C). This is a
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consequence of their quasi-neutrality with respect to collective selection: once the particle popula-

tion approaches a steady-state within any collective generation, the speed at which it grows at low

density is less important.

Different target colours
In the main text, we have considered that the target of selection was a situation when collectives are

composed of half red and half blue particles. Here, we repeated the numerical simulations for differ-

ent target proportions of the two types and discuss how the choice of bf affects the outcome of the

evolutionary trajectory. We performed ten independent simulations for 10,000 collective genera-

tions, starting from the same initial conditions and parameter values, but varying the target of

selection.

Appendix 1—figure 3A shows that different target colours, that is, compositions of the collec-

tives, can be selected with an overall accuracy of a few percent. However, the variability among sim-

ulations is larger when the target is strongly skewed toward one or another monochromatic state.

This reflects an increased variability in the selected particle traits, which manifests when the derived

interaction rates are considered (Appendix 1—figure 3B) and maximal growth rate (Appendix 1—

figure 3B). While maintaining the previously observed lower variability in interaction rates than in

growth rates, all derived traits change more from run to run when the target is extreme. This is likely

the consequence of a lower effectiveness in the action of collective-level selection, as a considerable

part of the population ends up being monochromatic just because of sampling at birth. As a conse-

quence, convergence towards the target is also considerably slower.

Appendix 1—figure 3. Distribution of the final traits across several experiments for different optimal

colours. Ten independent simulations are performed for each value of f̂. In all simulations, D ¼ 100

collectives, M ¼ 10,000 generations, B ¼ 15 particles, and initial particle traits are

ðr0 ¼ r1 ¼ 5; aintra
0
¼ aintra

1
¼ 0:7=K; ainter

0
¼ ainter

1
¼ 0:3=KÞ, with K ¼ 1500.
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Appendix 1—figure 4. Example of collective genealogy (Supplement of Figure 2). Symbols and

colours are as in Appendix 1—figure 1 and extinct lineages are marked transparent. Collective-level

parameters in this simulation are M ¼ 30; D ¼ 20; � ¼ 0:1. A. Neutral regime: at the final generation,

collectives are monochromatic and most likely composed of the faster-growing type. B. Selective

regime: at the final generation, collectives contain both red and blue particles.

Appendix 1—figure 5. The stochastic-corrector mechanism can maintain both types of particles in

the absence of mutations (Supplement of Figure 2). Collective phenotype distribution through time

in the selective regime with ancestral particle traits and no mutations. Without collective-level

mutation, the only mechanism maintaining both types within the population is the stochastic

corrector, whereby a fraction of the collectives with colour closer to the target are propagated to

the next collective generation. This means that at every generation the distribution of collective

phenotypes is skewed towards the colour that has higher maximal growth rate, and the target

colour is realized, in a small fraction of collective population, thanks to stochastic fluctuations in the
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composition at birth. Parameters are D ¼ 1000, M ¼ 1000, bf ¼ 0:5, B ¼ 15 and initial traits ðr0 ¼

6; aintra
0
¼ 0:8=K; ainter

0
¼ 0:15=K; c0 ¼ redÞ for red particles and ðr1 ¼ 4; aintra

1
¼ 0:3=K; ainter

1
¼

0:15=K; c1 ¼ blueÞ for blue particles, with K ¼ 1500. The initial proportions at generation 0 were

randomly drawn from a uniform distribution.

Appendix 1—figure 6. Particle trait mutations lead to slow loss of optimal collective colour after

removal of collective-level selection (Supplement of Figure 4). Modification of the collective

phenotype distribution when particle traits mutate and no selection for colour is applied, starting

from the particle traits after 10,000 generations of selection for purple colour (as in Figure 4B).

Collectives continue to produce purple offspring for more than 200 generations, before drift of

particle traits erodes developmental correction. In contrast, for the ancestral particle traits, lineages

become monochromatic in less than 10 generations (Figure 4A).

Doulcier et al. eLife 2020;9:e53433. DOI: https://doi.org/10.7554/eLife.53433 25 of 39

Research article Ecology Evolutionary Biology

https://doi.org/10.7554/eLife.53433


Appendix 2

Lotka-Volterra deterministic particle ecology

Model for intra-collective dynamics

The stochastic ecological dynamics of red (N0) and blue (N1) particles within a collective simulated by

the algorithm described in Appendix 1 is approximated (see Figure 3) by the deterministic competi-

tive Lotka-Volterra Ordinary Differential Equation:

dN0

dt
¼ r0N0 1� a00

K
N0�

a01
K
N1

� �

dN1

dt
¼ r1N1 1� a10

K
N0�

a11
K
N1

� �
(

(1)

Here, r¼ ðr0; r1Þ is the pair of maximal growth rates for red and blue particles. Since the system is

symmetric, we consider only the case where red particles grow faster than blue particles (r0>r1). The

effect of pairwise competitive interactions between cells are encoded in the matrix A¼ ðaijÞi;j2f0;1g2 .

All competitive interactions are considered harmful or neutral (0� aij) (see Appendix 3 for more gen-

eral types of interactions). Here and in the main text, we consider that the four free parameters can

evolve at the same time. In the last section of the Results in the main text we explore cases when

their variation is constrained by trade-offs.

So as to explore the space of all possible interaction intensities, no specific mechanism of interac-

tion is assumed, and thus qualitatively different ecological dynamics of the particle populations. Evo-

lutionary trajectories constrained by particle traits are briefly discussed in the last section of the

Results (main text).

The carrying capacity of a monochromatic collective is K
a00

for red particles and K
a11

for blue par-

ticles. K is a scaling factor for the intensity of pairwise interactions that can be used to rescale the

deterministic system to match the stochastic trajectories. Without loss of generality, we thus assume

that K ¼ 1.

A natural set of alternate coordinates for the system in Equation 1 are total population size N :¼

N0 þ N1 and collective colour, defined as the frequency of red individuals x :¼ N0

N
. In these coordi-

nates, the deterministic dynamics are the solution to the following ODE.

dN
dt

=Ng(x,N)

dx
dt

=x(1-x)h(x,N)

(
(2)

The functions g and h are polynomials in x and N, of coefficients:

Monomial Coefficient in h Monomial Coefficient in g

1 r0 � r1 1 r1

N a11r1 � a01r0 N �a11r1

Nx r1ða10 � a11Þ þ r0ða01 � a00Þ x r0 � r1

xN r1ð2a11 � a10Þ � r0a01

x2N r0ða01 � a00Þ þ r1ða10 � a11Þ

Appendix 2—figure 1 shows an example of the ODE flow in both coordinate systems. Two unstable

trivial equilibria and a stable coexistence equilibrium are located at the intersection of the isoclines.

Within one collective generation, the dynamics follow such flows for duration T , starting from initial

conditions on the line N0 ¼ B� N1 (that is, N ¼ B).
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Appendix 2—figure 1. Left: A Lotka-Volterra flow (Equation 1 ) in ðN0;N1Þ coordinates.

Right: The same flow in ðN; xÞ coordinates. Coloured lines are the null isoclines. Empty (resp. filled)

circles mark unstable (resp. stable) equilibria.

Even though Equation 1 is more directly related to the individual-based stochastic simulation, the

dynamics of collective colour are understood more easily using Equation 2. Therefore, in the follow-

ing we will use the latter formulation.

The dynamics of particle types across collective generations are modelled as a piecewise continuous

time change (Appendix 2—figure 2), where xmðtÞ is the fraction of red particles at time t 2 ½0; T� dur-

ing collective generation m.

Appendix 2—figure 2. Piecewise continuous trajectory.

Iterating the deterministic model yields a piecewise continuous trajectory in the ðN0;N1Þ space. The

growth phase (continuous lines) alternates with the dilution (dotted lines). In (A, B) traits are taken

from generation 3 and in (C,D) from generation 9000 of the main simulation with selection (Figure 2).

Successive adult states can be computed using the G� function as a recurrence map (see Figure 5 in

the main text).

We focus in particular on the succession NmðTÞ; xmðTÞ of collective ‘‘adult’’ states at the end of each

successive generation m. In the following we note fm ¼ xmðTÞ, which is the adult colour of the collec-

tive at the end of the growth phase. At the beginning of each collective generation, we impose that,

regardless of the number of cells in the parent, every collective contains the same number of cells

Nmð0Þ ¼ B 2 R8m. In contrast, the newborn collective colour xmð0Þ depends on the colour of the
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parent. In this deterministic model, we consider that there is no stochastic variation or bias due to

sampling at birth, so the collective colour of the newborn is equal to that of its parent:

xmð0Þ ¼ xm�1ðTÞ ¼ fm�1. In the first generation (m ¼ 0), the population size is B in every collective and

the fraction of red particles is chosen uniformly at random between 0 and 1.

The proportion of red particles at adult stage fm is obtained from these initial conditions ðB;fm�1Þ by

integrating Equation 2. Since these equations are not explicitly solvable, there is no analytic expres-

sion for the result of the transient dynamics. However, having constrained the initial conditions to a

single dimension, the adult colour is a single-valued function of the initial composition of the collec-

tive, defined as follows.

Definition (Growth function)

Given the set of particle traits � :¼ ðr;AÞ 2 E :¼ ½0;¥Þ2 � ½0;¥Þ4, the bottleneck size B 2 ð0;¥Þ and

the duration of the growth phase T 2 ð0;¥Þ, the growth function G� is defined as the application that

maps an initial proportion of red particles f to the proportion of red particles after duration T . Thus,

G�ðf; T;BÞ ¼ xðTÞ, with xðtÞ is the unique solution to the following Cauchy problem:

dN
dt

=Ng(x,N)

dx
dt

=x(1-x)h(x,N)

Nð0Þ =B

xð0Þ =f

8
>>><
>>>:

(3)

To simplify notations in the main text, we set GðfÞ ¼G�ðf;B;TÞ.

Relation with the stochastic evolutionary model

As explained in the main text, the growth function G� defines the recurrence relation between the

colour of the newborn offspring and its colour at adulthood. If the reproduction process entails no

stochasticity, the latter also defines the composition of collectives at the next generation. As a con-

sequence, the iterative application of G� approximates the change in time of the adult colour when a

population with a given, fixed, set of parameters and traits is transferred across collective

generations.

The fixed points of this discrete-time system allow understanding and classifcation of behaviours

observed along stochastic evolutionary trajectories. When mutation rate of particle traits is suffi-

ciently small and growth rates are not vanishing, collectives approach such fixed points in a few col-

lective generations by iteration of the G� function (Figure 5). The evolutionary trajectory can thus be

seen as a succession of fixed points of G�. The surface of the fixed points of G� as a function of the

particle parameters can be computed numerically, as well as its dependence on the collective gener-

ation duration T and bottleneck size B. A small number of qualitatively different configurations are

possible for the fixed points (illustrated in Appendix 2—figure 3 1-4). In particular, the case in which

G� possesses an internal, stable fixed point (Appendix 2—figure 3) constitutes the optimal solution

to constant selection for collective colour, in that it ensures the highest degree of colour reproduc-

ibility, on average, across collective generations.
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Appendix 2—figure 3. Qualitative behaviours of the growth function G�. Panels 1–4 represent the

possible qualitative shapes, differing in the position and stability of the fixed points, of the growth

function G� that approximates the within-collective particle dynamics (orange line in Figure 5). (1)

f ¼ 1 is the only stable fixed point (Figure 5A), and iteration of the red G� function leads to fixation

of red particles. (2) f ¼ 0 is the only stable fixed point, and iteration of the blue G� function leads to

fixation of blue particles. (3) f ¼ 0 and f ¼ 1 are two stable fixed points, and iteration of the grey G�

function leads to fixation of either red or blue particles depending on initial conditions. (4) f ¼ 0 and

f ¼ 1 are unstable and there is a stable fixed point between 0 and 1. Iteration of the grey G�

function leads to coexistence of both particle types. Panels (A-D) show that when red particles are

the fast growing types (r0>r1), the shape of G� and the position of its fixed points depend on the

collective-level parameters B (bottleneck size) and T (growth phase duration). Particle interaction

traits generically belong to one of the four intervals (A) a01<a11 and a00<a10; (B) a11<a01 and a10<a00;

(C) a11<a01 and a00<a10 ; (D) a01<a11 and a10<a00 (qualitative nature of the corresponding ecological

equilibria is indicated in the titles of the panels, see also Appendix 2). Lines represent the limit of

the region of stability of the fixed point of G�, as derived by Proposition 4: blue lines for the ‘all

blue’ state f ¼ 0 and red lines for the ‘all red’ state f ¼ 1.

The parameter values that separate regions with qualitatively different fixed points correspond to

transcritical bifurcations, where one of the monochromatic fixed points changes its stability. These

lines are analytically computed below, thus allowing generalisation of the conclusions drawn from

analysing the representative trajectory of Figure 2. In the following, we detail analysis of how the

fixed points of the G� function depend on particle- and collective-level parameters.

It is worth stressing here that the deterministic model provides a good quantitative approxima-

tion of the system with particle-level and collective-level stochasticity provided that fluctuations at

both levels are small. This is the case if populations of particles are large (as for instance in the case

of bacterial populations) and if mutations of particle traits are rare and of small magnitude. However,

in the numerical simulations we performed, the conclusions drawn from ensuing analysis held qualita-

tively also in the case of large fluctuations.

Fixed Points of the G� function and their stability
In this paragraph, we list the key properties of the G� function, that determine how the asymptotic

collective colour depends on particle and collective parameters. Proofs of the propositions are pro-

vided in the following paragraph.
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Proposition 1 (Fixed points of G�)

Let � 2 E be a set of particle traits, T 2 ð0;¥Þ the duration of the growth phase and B 2 ð0;¥Þ the

bottleneck size.

Then, G�ð0; T;BÞ ¼ 0, and G�ð1; T ;BÞ ¼ 1, hence f ¼ 0 and f ¼ 1 are fixed points of G� 8�.

Moreover, if the stability with respect to f of 0 and 1 is the same, then G� has at least one fixed

point f 2 ð0; 1Þ.

The stability of the monochromatic fixed points with respect to the fraction f can be numerically

assessed. The number and stability of the fixed points as a function of collective-level parameters B

and T are illustrated in Appendix 2—figure 3. Four different cases are considered, corresponding to

the four qualitatively different outcomes of particle-level ecology (competitive exclusion by one or

the other type, bistability, coexistence).

The fixed points can be analytically calculated in certain limit cases, corresponding to parameter

values when within-collective particle dynamics are exponential or saturating.

Proposition 2 (Quasi-exponential growth)

When T is close to 0 and Bamax � 1 with amax ¼ maxi;j aij the highest element of the competition

matrix A, then G� has only two fixed points f ¼ 0 and f ¼ 1.

Moreover, the monochromatic fixed point f ¼ 1, corresponding to a population completely com-

posed of the (faster) red type of particle, is stable, whereas the fixed point f ¼ 0, corresponding to

a population composed of the slow growing type of particle, is unstable.

Proposition 3 (Saturating growth)

As T ! ¥ the fixed points f�of G� and their stability correspond to the equilibria x�of Equation 1.

These equilibria and their stability range are listed below.

Red alone Blue alone Coexistence

Equilibrium x� 1 0 a11�a01
TrðAÞ�CoTrðAÞ

Stability range a00<a10 a11<a01 a11>a01 and a00>a10

Here TrðAÞ :¼ a00 þ a11 is the sum of the diagonal (or trace) of A, and CoTrðAÞ :¼ a10 þ a01 denotes

the sum of the anti-diagonal elements of A.

By linearising the system in proximity of the fixed points, it is possible to find exactly the bifurcation

parameters where one equilibrium changes stability, thus the limit of the region where there exists an

interior fixed point f�. The bifurcation values in the space of the collective parameters T and B delimit

the region in Figure 7 where the G� function has an internal fixed point.

Even when the fixed point is different from the optimal value bf, it can nonetheless provide a starting

point for evolution to optimise collective colour. Extinction of one of the two colours of particles hap-

pens instead very rapidly in the region when the monochromatic fixed points are stable, so that col-

lectives have a higher risk of being extinct before inheritance-increasing mutations appear.

Proposition 4 (Bifurcations of the monochromatic fixed points of G�)

The stability of 0 changes at ðT�B;B
�
BÞand the stability of 1 at ðT�R;B

�
RÞsuch that:

B�R ¼
e�a1T

�
R � er0T

�
R

a00ð1� e�a1T
�
RÞ

with a1 ¼ r0r1
a00� a10

r0a00� r1a10

B�B ¼
e�a0T

�
B � er1T

�
B

a11ð1� e�a0T
�
BÞ

with a0 ¼ r0r1
a11� a01

r1a11� r0a01

These results allow understanding of the interplay between time scales of particle-level ecology

and collective reproduction, whose relationship changes along an evolutionary trajectory. Appen-

dix 2—figure 4 illustrates the change of the fixed point of G� with the collective generation duration

T for typical particle traits corresponding to the four qualitative classes of asymptotic equilibria for

particle ecology. Of particular relevance for understanding the stochastic trajectory illustrated in Fig-

ure 2 is panel D.
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Appendix 2—figure 4. Bifurcation diagrams showing the position and stability of the fixed points of

G� as a function of the duration of the collective generation T. (A-D) Particle traits are representative

of the scenarios illustrated in Figure 7A–D. Of particular interest is the case illustrated in panel D,

where the G� function acquires — for a sufficiently large separation between the particle maximum

division time and the collective generation time — a stable internal fixed point.

When the time scale of exponential particle growth is comparable to T, (such as at the beginning

of the evolutionary trajectory displayed in Figure 2) Proposition 2 indicates that the system is

expected to converge to an all-red solution (f ¼ 1 is the only stable equilibrium). However, at the

same time as this fast dynamic occurs, the growth rates change by mutation. Selection during the

exponential phase generally favours fast growing mutants, which means that particle populations

achieve high-density conditions in a shorter time. The system then effectively behaves as if T had

increased, thus leading selection to ’see’ interaction traits.

When the time scale of collective reproduction is sufficiently slow with respect to the intra-collec-

tive dynamics, the system crosses the bifurcation point T�R (Proposition 4), so that the function G�

now has an internal fixed point (Figure 6). In the stochastic simulations, this means that more collec-

tives are reproducibly found close to the optimal colour. It takes a relatively short time to adjust the

particle traits so that the fixed point is close to the optimum bf. In this case, the deterministic approx-

imation produces a close to perfect inheritance of the collective colour. However, fluctuations in par-

ticle numbers and in composition at birth still result in a large variance of colours among collectives

in the stochastic system.
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Appendix 2—figure 5. Stable equilibria of the particle ecology as a function of inter-colour competi-

tion traits. These equilibria correspond to the limit of the fixed points of the G� function when

particle-level and collective-level time scales are well separated ( r � 1

T
), derived in proposition 3.

Other interaction parameters are a00 ¼ 0:7 and a11 ¼ 0:8, and the result is independent of growth

rates. The grey area indicates bistability.

Here, starts the last and slowest phase of the evolutionary trajectory, which results in colour vari-

ance reduction through improvement of the ability of particles to correct variations in colour. This is

achieved by attaining faster the particle ecological equilibrium, so that fluctuations are more effi-

ciently dampened by demographic dynamics. As a consequence, the conditions described by Propo-

sition 3 will be met. This allows identification of a surface in parameter space, where the fixed point

of the G� function f� identifies with the ecological equilibrium x�, that contains evolutionary equilib-

ria. The ecological equilibrium is displayed in Appendix 2—figure 4 as a function of the cross-colour

interaction parameters a01 and a10. In the regime where particle and collective time scales are well

separated (r � 1=T ), then interaction parameters that correspond to the optimal colour satisfy the

following relationship:

a00� a10þ 1�
1

x�

� �
a11� a01ð Þ ¼ 0: (4)

This relation identifies the white dotted line in Appendix 2—figure 4 (and in Figure 8B). Once it

is attained, mutations cause the deterministic system to move neutrally on this surface. As the sto-

chastic simulation shows, particle parameters keep evolving directionally so as to reduce phenotypic

variance. This is achieved by making G� increasingly flatter in the vicinity of the fixed point, so that

the target colour is not only more stable, but it is reached in fewer collective generations.

Successive events of mutation and substitution progressively lead to a growing asymmetry in the

ecological relationship between the two types of particles: that with smaller carrying capacity

becomes insensitive to the other colour; the latter instead experiences competition, so that its

growth is curbed and optimal proportion of colours is eventually realized (see Figure 3D). As
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illustrated by Appendix 2—figure 6, this conclusion is independent of what is the maximum growth

rate, that only affects the advantage of one type at initial stages of growth. Indeed, the position on

the intercept between the optimality line and the y axis in Appendix 2—figure 5 and Appendix 2—

figure 6 only depends on the difference between intra-type competition parameters. A conse-

quence of this is that fast-growing types systematically display, when they are also those with a

larger carrying capacity, a population overshoot.

Appendix 2—figure 6. Asymmetric interaction ensures fastest convergence toward the ecological

equilibrium. Particle population dynamics are illustrated for increasingly asymmetric values of

ða01; a10Þ, keeping the ecological equilibrium fix at x� ¼ 0:5 (along white manifold, in the direction of

the arrow). The top panels correspond to cases when the faster-growing particles have a higher

carrying capacity (ða00; a11Þ ¼ ð0:7; 0:8Þ), the bottom panels to the opposite (ða00; a11Þ ¼ ð0:8; 0:5Þ). In

both cases r0 ¼ 60, r1 ¼ 40, T ¼ 1, B ¼ 0:001.

Proofs
In this section, we present the proof of propositions 2–4 above.

Proof of Proposition 1

In the ðN; xÞ coordinates we have seen that df ðtÞ
dt
¼ gðxðtÞ;NðtÞÞ and that xðtÞ ¼ 0 and xðtÞ ¼ 1 are trivial

roots of the polynomial g (Equation 2). Hence 0 and 1 are always fixed points of G�.

Since g and h (from Equation 2) are polynomials of ðN; xÞ, they are smooth (of differentiability

class C¥) on R
2. Thus, the global flow corresponding to the Cauchy problem is also smooth on R2 is

the partial application of the global flow to the case where N0 ¼ B. Therefore, G� is continuous on

½0; 1�.

Moreover, let us suppose that 0 and 1 are both unstable. Then G0�ð0; T;BÞ>1 and G0�ð1; T;BÞ>1,

with G0� the derivative of G� with respect to its first variable. As a consequence there is an " 2 R such

that G�ð"; T;BÞ>" and G�ð1� "; T;BÞ<1� ". Since G� is continuous, there is at least one c 2 ½0; 1� such

that G�ðc; T;BÞ ¼ c by virtue of the intermediate value theorem.

In practice, we never encountered cases when more than one internal fixed point was present.

However multistability is expected to occur if the equations describing particle ecology had higher-

order nonlinearities.

Proof of Proposition 2

Since the nonlinear terms in Equation 3 are smaller than Bamax, and this is negligible with respect to

1, particle ecology is approximated by its linearization as long as the population size remains close

to the bottleneck value. Around t ¼ 0, the Cauchy problem can be written as:

dN0

dt
¼ r0Bx

dN1

dt
¼ r1Bð1� xÞ

N0ð0Þ ¼ xB

N1ð0Þ ¼ ð1� xÞB

8
>><
>>:

In the ðN;xÞ coordinates, the total population size grows exponentially and is decoupled from the

colour. On the other hand, xðtÞ follows the logistic differential equation:
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dx

dt
¼

d

dt

N0

N0þN1

¼ ðr0� r1Þxð1� xÞ (5)

which can be integrated.

For T sufficiently small for the population to be in exponential growth phase, the growth map G�

can be approximated by the solution eG� of Equation 5:

G�ðx;T ;BÞ»
1

1þ 1

x
� 1

� �
e�ðr0�r1ÞT

:¼ eG�ðx;T ;BÞ

This function is strictly convex (or concave) on (0, 1) depending on the sign of r0� r1:

q
2eG�ðx;T;BÞ

qx2
¼

2 1� eðr0�r1Þt
� �

xeðr0�r1Þt þ 1� xð Þ
3

Since 0<x<1 and t>0, q
2eG�ðx;TÞ
qx2

is of the same sign as 1� etðr0�r1Þ, that is strictly positive if r1>r0, or

strictly negative if r0>r1.

Thus, eG is strictly convex on ð0; 1Þ if r1>r0, and strictly concave on ð0; 1Þ if r0>r1. In the first case,

red colour x ¼ 0 is an unstable equilibrium and blue colour x ¼ 1 a stable one, and vice-versa in the

second case. Note that the segment s ¼ ½ð0; 0Þ; ð1; 1Þ� is a chord of eG. Therefore, the strictly convex

(resp. concave) eG do not intersect s except in ð0; 0Þ and ð1; 1Þ.

Proof of Proposition 3

When the collective generation time T is much longer than the demographic time scale, the popula-

tions within droplets at the adult stage are well approximated by the equilibrium solution of the

Lotka-Volterra Equation 1. Solving simultaneously equations dN0

dt
¼ 0 and dN1

dt
¼ 0 (or equivalently

dN
dt
¼ 0, dx

dt
¼ 0) yields the four equilibria listed below in both coordinate systems. Linear stability analy-

sis allows one to determine the parameter intervals where these are stable, listed below.

Name Red alone Blue alone Coexistence Extinction

Position in ½N0;N1� ½ 1
a00

; 0� ½0; 1

a11
� ½a11�a01

detðAÞ ;
a00�a10
detðAÞ � [0,0]

Position in ½N; f � ½ 1
a00

; 1� ½ 1
a11

; 0� ½TrðAÞ�CoTrðAÞ
detðAÞ ; a11�a01

TrðAÞ�CoTrðAÞ�
Undefined

Condition for stability a00<a10 a11<a01 a11>a01 and a00>a10 Never

Proof of Proposition 4

We consider the case when the fixed point 0 changes stability. The stability of the fixed point 1 can

be studied analogously.

We aim at identifying the values of the collective parameters ðT ;BÞ where a fixed point with x ¼ 0

changes stability through a transcritical bifurcation. The difficulty lies in the fact that one needs to

estimate the dynamics of the second variable N in order to study the stability of the 2-D system.

Luckily, this can be done in the limit when the collective contains almost exclusively particles of one

single colour (in this case, blue).

Total population size is in this case decoupled from colour and Equation 2 can be integrated

with initial condition ðN0x0Þ ¼ ðB; 0Þ, yielding the following trajectory:

eNðt;BÞ ¼ 1

a11� a11�
1

B

� �
e�r1t

As long as x is small, the time derivative is approximated by the non-autonomous system:

dx

dt
»xhðx; eNðt;BÞÞ

with h as defined in Equation 2:
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hð0; eNðt;BÞÞ ¼ ðr0� r1Þþ eNðt;BÞða11r1� a01r0Þ

Solving this equation allows computation of the adult colour as a function of the parameters T

and B. At the bifurcation point ðT�;B�Þ, where stability of the 0 fixed point changes, the newborn col-

our is the same as the adult colour: xðT�;B�Þ ¼ xð0;B�Þ. ðT�;B�Þ are then solutions of the integral

equation:

0¼

Z T�

0

hð0; eNðs;B�ÞÞds

0¼ ðr0� r1Þþ ða11r1� a01r0Þ

Z T�

0

eNðs;B�Þds

0¼ T�r0 1�
a01

a11

� �
þ 1�

r0

r1

a01

a11

� �
ln

B�a11þ e�r1T
�

B�a11þ 1

� �

Solving for B� we get:

B� ¼
e�aT

�
� er0T

�

a00ð1� e�aT
�Þ

With a¼ r0r1
a00�a10

r0a00�r1a10

Figure 7 shows that this approximation retrieves accurately the numerically computed bifurcation

lines.
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Appendix 3

Beyond competitive interactions
In the main text, the model is limited to deleterious (competitive) interactions, whereby the inter-col-

our interactions are such that one colour always has a negative density-dependent effect on the

growth of the other colour. This choice reflects the expectation that, as in the example of the drop-

let experiment, competition would be the main driver of interactions among two previously uncon-

nected bacterial species growing on a common resource.

However, it is interesting to consider what happens if interactions of other types are taken into

account. This section presents two additional interaction classes: exploitative (e.g. predator-prey or

parasitic) interactions (a01<0<a10 or a10<0<a01), and mutualism (a01<0 and a10<0). Note that exploit-

ative interactions correspond to non-obligate predation (or parasitism): the predator (or the parasite)

can sustain a non-null population density even in the absence of the prey (or host). Obligate interac-

tions can be modelled in the limit where the carrying capacity of the exploiters tends to zero. Simi-

larly, unless the carrying capacities of both types tend to zero, mutualism is also not obligate.

The deterministic model (Appendix 2 Equation 1) can be straightforwardly extended to these

larger parameter ranges, allowing prediction of the outcome of the evolutionary dynamics. Appen-

dix 2—figure 5 presents the position of the stable fixed point of G� for negative inter-colour interac-

tion parameters when the time scale of collective reproduction is sufficiently slow with respect to the

intra-collective dynamic r � 1

T

� �
. Appendix 3—figure 1 represents the same fixed point for

extended values of the interaction parameters. Each quadrant corresponds to a different kind of

ecological interaction (competition, exploitation and mutualism). While competition is discussed in

the main text, other kinds of interactions are discussed below.

Whenever evolution leads to separation in time-scales between particle and collective dynamics

(typically by increasing particle growth rates), the evolutionary dynamic within each quadrant will be

akin to the competition case: first, successive invasions of mutants bring the system on the manifold

of interaction parameters where the equilibrium colour x� corresponds to the selected colour bf
(Appendix 2 Equation 4); second, the system evolves on this manifold toward regions of faster

ecological convergence.

Doulcier et al. eLife 2020;9:e53433. DOI: https://doi.org/10.7554/eLife.53433 36 of 39

Research article Ecology Evolutionary Biology

https://doi.org/10.7554/eLife.53433


Appendix 3—figure 1. Asymptotic colour of the particle ecology as a function of inter-colour com-

petition traits. These equilibria correspond to the limit of the fixed points of the G� function when

particle-level and collective-level time scales are well separated ( r � 1

T
), derived in proposition 3.

Other interaction parameters are a00 ¼ 0:7 and a11 ¼ 0:8, and the result is independent of growth

rates. The grey area indicates bistability. This figure extends Appendix 2—figure 5.

Exploitative interactions
Consider first that a01<0<a10, so that red individuals (type 0) are the exploiters (predators or para-

sites) and blue individuals (type 1) are the exploited (prey or hosts). This corresponds to the bottom-

right quadrant of Appendix 3—figure 1.

When the exploiter competes with the exploited more than with other exploiters (a00<a10), the

stable equilibrium for Appendix 2 Equation 1 is monochromatic red (see Appendix 2 Proposition 3).

However, when the the competitive interaction is stronger among exploiters (a00>a10), the coexis-

tence equilibrium is stable and correspond to a colour of a11�a01
TrðAÞ�CoTrðAÞ (see Appendix 2 Proposition 3).

In the coexistence region of the bottom-left quadrant, the collective colour can take up values in the

range a11
a11þa00

; 1
h i

bounded on one side by the extinction of the exploited type, and on the other side

by the ratio of carrying capacity obtained when there is no competitive interactions. This range does

not contain the target colour bf ¼ 0:5 in the example illustrated in Appendix 3—figure 1 because

the exploiter has a higher carrying capacity than the exploited 1

a11
< 1

a00

� �
. It is thus impossible to

achieve the target colour bf ¼ 0:5 in the lower right quadrant. Unless the nature of ecological interac-

tions changes, over evolutionary times the population of collectives will move towards the absence

of interactions. Here, collectives of colour close to the optimum can still manifest in the stochastic

individual-based model as the effect of sampling at dilution and fluctuations during growth, but the

average colour will remain off target.

In the upper left quadrant, where a10<0<a01, blue individuals (type 0) are the exploiters (predators

or parasites) and red individuals are the exploited (prey or hosts). In the coexistence region (i.e.,
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when the competition is stronger among exploiters than between exploiters and exploited a01<a11),

the collective colour can take up values in the range 0; a11
a11þa00

h i
, that contains the target bf ¼ 0:5 in

the example illustrated in Appendix 3—figure 1 because the exploiter has a lower carrying capacity

than the exploited 1

a11
< 1

a00

� �
. Within the boundaries of this quadrant, long-term evolution will tend

to reduce the (positive) interaction a01, thus mitigating exploitation, while at the same time making

the (negative) interaction term a10 smaller, that is increasing the advantage provided by the

exploited to the exploiter. Again, if the nature of ecological interactions does not change, the sys-

tem will evolve towards a case where one particle type (in this case, the exploiter, that also has

smaller carrying capacity), gets decoupled from the demography of the other type.

Mutualistic interactions
Consider now that red and blue individuals have non-obligate, mutualistic interactions. This corre-

sponds to both inter-colour competition traits a01 and a10 being negative, and can be visualised in

the bottom-left quadrant of Appendix 3—figure 1.

When interactions are mutualistic, the equilibria of Appendix 2 Equation 1 resulting from the

extinction of one type or the other are never stable (a00<a10 or a11<a01 are never fulfilled since

a01<0<a00 and a01<0<a11 respectively, see Appendix 2 Proposition 3) and the solution is always

coexistence.

Depending on the sign of the determinant of the interaction matrix A, the dynamics within a col-

lective generation can have two qualitatively different behaviours. When mutualistic interactions

have small intensity, the intra-collective dynamics attains an equilibrium, even though the population

size of one of the two particle types is larger than their respective carrying capacities (because of the

positive contribution of the other type). However, when a00a11
a01a10

<1 (white line in Appendix 3—figure

1), the populations would undergo unbounded growth if they were not embedded in collectives of

finite lifetime.

This unrealistic feature of simplified Lotka-Volterra models, that makes them not well fit to

describe mutualistic interactions, is not particularly problematic in our case, since the fraction x of

red particles converges to its equilibrium value even though the population size N diverges. Appen-

dix 3—figure 1 illustrates how the within-collective particle dynamics changes along an evolutionary

trajectory towards increasingly strong mutualistic interactions. If no physical or biological constraint

keeps parameters in the region of bounded growth, then adherence of the model predictions from

reality would need to be tested by studying their robustness to inclusion of other sources of co-limi-

tation, such as, for instance, nutrient exhaustion.

Appendix 3—figure 2. Mutualistic interaction can lead to non-saturating population growth.

Particle population dynamics are illustrated for increasingly mutualistic values of ða01; a10Þ, keeping

the ecological equilibrium fixed at x� ¼ 0:5 (moving along the white manifold, in the direction of the

arrow). When the determinant of A is negative, population growth is unbounded in the limit of

infinitely long duration of the collective generation. As long as T is finite, however, the adult

proportion of red and blue particles can be reached even though both populations grow

exponentially (with growth rates that depend on the interaction parameters). The top panels

correspond to cases when the faster growing particles have a higher carrying capacity

(ða00; a11Þ ¼ ð0:5; 0:8Þ), the bottom panels is the opposite (ða00; a11Þ ¼ ð0:8; 0:5Þ). In both cases r0 ¼ 30,

r1 ¼ 30, T ¼ 1, B ¼ 0:001.
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Transition between classes of ecological interactions
So far, we have examined different ecological interactions separately, as they are usually considered

to belong to separate categories. It is, however, conceivable that mutations induce a competitive

interaction to become exploitative, or an exploitative interaction to become mutualistic

(Sørensen et al., 2019), which in our case would be the consequence of the inter-colour interaction

parameters changing sign. In this case, the prediction of the deterministic model is that, as long as

there are no constraints that limit the variation of the interaction parameters, selection at the collec-

tive level should lead particles to become more and more benign towards each other, and eventually

reach a regime where their exchanges are mutualistic.
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