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1 Introduction

It is well-known that local supersymmetry imposes stringent restrictions on the higher-

derivative structure of supergravity theories. Studying the allowed invariants is directly

relevant to understand the effective actions arising in supersymmetric compactifications of

string theory. The latter play an important role, for instance, in computing corrections to

the entropy of certain extremal black holes. Constructing these higher-derivative actions is

however notoriously difficult. This is because the addition of higher-derivative terms typically

triggers the start of an iterative procedure where the transformation rules, and consequently
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the action, have to be repeatedly modified to ensure closure of the supersymmetry algebra

on the fields modulo the equations of motion. A major exception is when supersymmetry

is realized off-shell, since in this case the supersymmetry algebra closes independently of the

dynamics considered. The transformation rules are then fixed and supersymmetric higher-

derivative actions can be analyzed on their own.

A standard method for constructing off-shell supergravity actions is to employ a descrip-

tion in which the theory is invariant under local superconformal transformations and coupled

to various compensating matter multiplets. These compensating matter fields can optionally

be used to fix the extraneous conformal symmetries, and in this way, ensure gauge equivalence

with the original Poincaré supergravity [2, 3]. In the superconformal formulation, the local

Weyl symmetry implies that the conformal mode of the metric, along with its superpartners,

must be absent. The resulting so-called Weyl multiplet, turns out (when it exists) to be a

unique off-shell multiplet, which contains fewer fields than its Poincaré analogue.

In four dimensions, the Weyl multiplet exists up through N = 4, which means it can

in fact provide an off-shell formalism even in cases when its Poincaré counterpart does not.

There is one type of action which involves the Weyl multiplet alone with no other matter

multiplets or compensators – this is the conformal supergravity action which corresponds to

the supersymmetrization of the square of the Weyl tensor. This particular action can be

considered either as an off-shell action in its own right, or as a higher-derivative correction to

Poincaré supergravity. It will be the main focus of this paper.

Conformal supergravity actions in four dimensions were first constructed for N ≤ 2 forty

years ago [4–6]. In the N = 4 case, while the full non-linear superconformal transformations

of the Weyl multiplet fields were already determined in [6], the conformal supergravity action

remained largely unstudied beyond the linearized level until this decade.1 Some results were

first obtained for the purely bosonic sector of the action by computing the conformal anomaly

of N = 4 vector multiplets in a background of conformal supergravity [15]. All the terms

up to quadratic order in the fermion fields were then derived in [16] by starting with the

linearized action and iteratively adding terms required by supersymmetry. Proceeding to all

orders in this manner would however seem practically impossible. This has to do the fact

that, unlike for N ≤ 2, the N = 4 Weyl multiplet contains a dimension-1/2 fermion field Λi.

This means that the complete action should be fairly involved, with terms up to O(Λ8).

Another singular feature of the N = 4 Weyl multiplet is the presence of dimensionless

scalar fields φα parametrizing an SU(1, 1)/U(1) coset space. It is therefore possible to consider

a whole class of conformal supergravity actions, where the leading Weyl squared term is

1Even the 4D N = 3 Weyl multiplet was terra incognita until recently [7, 8], when its transformation laws

were first written down, and the action remains unstudied. In three dimensions, the conformal supergravity

actions are Lorentz-Chern-Simons and their complete form for N ≤ 6 were constructed in [9–11]. The half-

maximal N = 8 multiplet possesses at most a pseudo-action [12]. In six dimensions, there are three conformal

gravity actions, but (1, 0) supersymmetry selects out two [13, 14]; the unique (2, 0) supersymmetric combination

was partly constructed in [14] by lifting from (1, 0). In five dimensions, there is no pure conformal supergravity

action although the Weyl multiplet exists for N = 1.
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multiplied by a function of the coset scalars. This modification was already mentioned in [17],

and represents a deviation from the N < 4 cases for which there is a unique action. Such

“non-minimal” couplings later emerged in the effective action of type IIA strings compactified

onK3×T 2 [18] in the form of a modular function multiplying the square of the Weyl tensor, as

well as in the semiclassical approximation of the microscopic degeneracy formula for certain

dyonic N = 4 black holes [19, 20]. In the context of on-shell Poincaré supergravity, an

analysis of higher-derivative invariants [21, 22] established the existence of similar couplings

where the Riemann tensor squared is multiplied by a generic holomorphic function. The

corresponding class of conformal supergravity actions however remained entirely unknown,

even at the purely bosonic level.

This was resolved in a recent letter [1], in which we reported on the construction of the

full N = 4 conformal supergravity action for the case of a generic holomorphic function. This

is the most general case, which encompasses all possible actions, including the “minimal”

action partially constructed in [16] which is recovered by setting the function to a constant.

The complete set of bosonic terms was presented, but the mechanism for its construction was

only briefly sketched. The aim of this paper is to fill in the gaps by presenting the fermionic

terms and describing in detail the method that was used. The complete action turns out to

be significantly complicated, and the computer algebra program Cadabra [23, 24] played an

essential role in its construction. In the following, we sketch the main lines of our approach.

In general, the problem of constructing off-shell supersymmetric actions can be tackled

in various ways. A first option is to build the action by iteratively adding terms to impose

supersymmetry order by order in the fields. As mentioned above, this method was used for

the minimal N = 4 conformal supergravity action in [16]. Another common approach is

to employ superspace, which guarantees supersymmetry but requires integration over Grass-

mann (fermionic) coordinates. The integration must be over the entire superspace or some

invariant subspace (e.g. chiral superspace), but for sufficiently many supercharges this leads

to rather high dimension expressions corresponding to terms with a large number of bosonic

derivatives. While there are ways to reduce the number of fermionic dimensions, for exam-

ple, by introducing an auxiliary bosonic manifold as with harmonic/projective superspace or

pure spinor superspace, these typically require infinite numbers of auxiliary fields or other

complications.

In this paper, we take a more pragmatic approach which relies on the construction of

a generic supersymmetric action principle, also known as a density formula, directly at the

component level. Such a density formula is built upon an abstract multiplet whose component

fields appear linearly in the expression, along with some of the supergravity fields such as the

vielbein. The multiplet in question is typically required to obey only very mild supersymmetry

constraints (e.g. chirality), and it is in this sense that the action principle is generic. If one

can build such a multiplet, for example by combining more fundamental constituents, the

action principle can be applied. This approach is not distinct from superspace: whenever an

invariant superspace exists, the corresponding component action always falls into this type,

where the multiplet in question is identified with the superspace Lagrangian. The converse
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does not generally hold, and a density formula may exist in the absence of a corresponding

superspace.

As we will show, there exists such a density formula for four-dimensional N = 4 theories

with local superconformal symmetry. It is based on an abstract multiplet involving super-

conformally primary fields Cijkl, C̄
ij
kl = (Cklij)

∗, and Aijkl = (Aklij)
∗, each in the 20′ of the

SU(4) R-symmetry group, and whose supersymmetry transformations into the 60 and 60 are

constrained. That is,

δǫC
ij
kl = ǭm Ξijkl,m + ǭm Ξij,mkl ,

δǫA
ij
kl = ǭmΩijkl,m + ǭmΩij,mkl , (1.1)

for fermions Ξ and Ω whose traceless parts are fixed as

[Ξijkl,m]60 = [2ΛmA
ij
kl]60 , [Ξij,mkl]60 = 0 , [Ωijkl,m]60 = [ΛmC̄

ij
kl]60 (1.2)

in terms of the dimension-1/2 fermion Λi of the Weyl multiplet. This implies that the fields

Cijkl and A
ij
kl must be intricately related. The density formula is

e−1L = F + 2 ψ̄µi(Ω
µi + γµΩi) + 2 ψ̄µ

i(Ωµi + γµΩi)

+
1

8
ψ̄[µiγ

µψν]
j Eνij −

1

8

(

i ψ̄µiγ
µνψνjE

ij +
i

2
εµνρσψ̄µiψνjEρσ

ij + h.c.
)

+
i

8
εµνρσ

(

ψ̄µiψνj ψ̄ρkγσρrs
k εijrs + 2 ψ̄µiψνj ψ̄ρ

kγσκ
ij
k + h.c.

)

−
i

4
εµνρσ

(

ψ̄µiψνjψ̄ρkψσl ε
klrsCijrs + 2 ψ̄µiψνjψ̄ρ

kψσ
lAijkl + h.c.

)

. (1.3)

The fields Cijkl and Aijkl of lowest Weyl weight multiply four gravitini ψ, while higher

weight fields of the abstract multiplet appear with fewer gravitini: these include fermions

ρij
k, κijk, Ωai and Ωi, as well as bosons Ea

i
j, Eab

ij, E ij , and F . They descend from the

fields Cijkl and A
ij
kl via supersymmetry in a manner that will be described in due course.

Their superconformal transformations, which leave (1.3) invariant, turn out to be determined

entirely by the basic supersymmetry constraints (1.2). Provided such fields can be constructed

out of more fundamental constituents, invariant actions follow. The composite field F then

contains all the bosonic terms of these actions.

This is by no means the only possible density formula for N = 4, but it turns out to

be sufficient for our needs. Once one specifies the form of the basic fields Cijkl and Aijkl
in terms of the N = 4 Weyl multiplet fields, it allows the direct construction of the class of

superconformal Weyl squared actions which depend on a generic holomorphic function. As a

bonus, we will show that the locally superconformal super Yang-Mills (SYM) action [25, 26]

can also be described by the same density formula, albeit at the on-shell level only.

The paper is arranged as follows. In section 2, we describe the superform action principle

that leads to the density formula (1.3). In section 3, we explain how to apply the density

formula to build the conformal supergravity actions, by explicitly solving the supersymmetry
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constraints on the basic fields Cijkl and A
ij
kl. We also give a proof that this must lead to the

most general class of actions. In section 4 we review the bosonic action presented in [1] and

give the covariant (non-gravitino) two-fermion contributions. These terms already are quite

substantial in number. Because of the sheer complexity of the full action, we cannot present

it explicitly here. Instead, we include an addendum file in the arXiv submission that contains

the full set of terms. In section 5, we speculate on the origin of the density formula and show

how it can recover the on-shell SYM action, suggesting that it may have broader applications

than conformal supergravity alone. Two appendices are included. The first summarizes the

conventions we use and gives technical details on the N = 4 superspace we employ. The

second elaborates on certain details of the analysis of superspace Bianchi identities.

2 Superform action principle

The superform action principle is a common method to construct supersymmetric invariants.

In the superspace literature, it was proposed by Gates et al. under the name “ectoplasm”

[27, 28], but is equivalent to how actions are built in the rheonomic or group manifold approach

to supersymmetric theories, see [29] and the review in [30]. The approach itself has nothing

to do with supersymmetry per se, but can be applied to any local symmetry that can be

interpreted as a diffeomorphism in some higher dimensional spacetime. The basic approach

is as follows. Suppose one has some D-dimensional manifold M and some d-dimensional

submanifold M over which one wants to integrate a d-form J . The action integral

S =

∫

M
J (2.1)

transforms under arbitrary diffeomorphisms on M as

δξJ = ıξdJ + dıξJ =⇒ δS =

∫

M
ıξdJ +

∫

∂M
ıξJ . (2.2)

The second term vanishes if M is closed, or if we put fall-off conditions at infinity. In

either case, the condition for invariance is that the d-form J should be closed, dJ = 0.

Schematically, we may decompose a general diffeomorphism into pieces normal and tangent

to M . Invariance under tangent diffeomorphisms follows if M is closed, while invariance

under normal diffeomorphisms means that the precise embedding of M into M is irrelevant:

this latter condition is what requires J to be a closed form on M.

The key idea is to think of the submanifold M as the full spacetime and M as a larger

manifold where we have geometrized some gauge symmetry (such as supersymmetry). Finding

a gauge invariant Lagrangian is then translated into finding a closed d-form J . This is

distinct from the procedure of superspace integration, where one integrates over the anti-

commuting θ coordinates of chiral or full superspace. Such actions typically exist only for

simple superspaces; but where they do, they can always be identified with some appropriate

closed d-form J .
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Let us now consider the supersymmetric case in some detail. Superspace comes equipped

with a supervielbein EA = (Ea, Eα), which generically has coordinate legs in all of superspace,

EA = dxµEµ
A + dθmEm

A , (2.3)

where θm are Grassmann coordinates. For now, we will use α to denote a general tangent

space spinor index, which will later decompose into an irreducible spinor and an R-symmetry

index. When restricted to θ = dθ = 0, Ea is identified with the vielbein 1-form ea, while

Eα is identified with 1
2ψ

α where ψα is the gravitino 1-form in spacetime. For the rest of this

section, we will abuse notation somewhat and identify ea ≡ Ea and 1
2ψ

α ≡ Eα without taking

θ = dθ = 0 so that these 1-forms live on the entire superspace.

We are interested in supersymmetric actions in d = 4 spacetime corresponding to 4-forms

J that possess a covariant expansion in terms of EA,2

J =
1

4!
EAEBECEDJDCBA , (2.4)

where JDCBA are covariant superfields. The action is constructed by integrating the four-form

J over the bosonic spacetime manifold at θ = 0,

S =
1

4!

∫

dxµdxνdxρdxσ Eµ
AEν

BEρ
CEσ

DJDCBA

∣

∣

∣

θ=0

= −
i

4!

∫

d4x εµνρσEµ
AEν

BEρ
CEσ

DJDCBA

∣

∣

∣

θ=0
. (2.5)

We use conventions where εabcd and εµνρσ are imaginary, see appendix A. The 4-form J is

assumed to be invariant under the other gauge symmetries. In the case of N = 4 conformal

supergravity, this means J should be a Lorentz scalar, inert under Weyl transformations, a

singlet under the SU(4)×U(1) R-symmetry, and a conformal primary – that is, annihilated by

S-supersymmetry and conformal boosts (K). All but the last condition are easy to realize, by

taking the terms JDCBA to transform in the obvious way under Lorentz transformations and

homogeneously under Weyl and R-symmetries with certain weights. Because the one-forms

ea and ψα are K-inert, the components JDCBA will also be K-inert; however, because ψα

transforms into ea under S-supersymmetry, some of the components JDCBA will transform

into each other in a complementary way to leave J unchanged. We will elaborate on this in

due course.

In the superform approach, invariance of the action follows if J is a closed form in

superspace. Because J is assumed to be gauge-invariant, closure is equivalent to covariant

closure, ∇J = 0, where ∇ carries all of the gauge connections, except for the gravitino which

is now interpreted as part of the supervielbein. For N = 4 conformal supergravity, these

connections are associated with the local symmetries mentioned above. For further details on

2This precludes Chern-Simons type actions, which would require other connections to appear explicitly,

but these can straightforwardly be included. For the actions we will be discussing, there will be no need to

consider such cases.
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the Weyl multiplet fields and their superconformal transformation rules, we refer to appendix

A.

Defining the torsion 2-form as the covariant exterior derivative of the supervielbein,

TA ≡ ∇EA =
1

2
EBECTCB

A , (2.6)

the condition of covariant closure of J amounts to

∇J =
1

4!
EAEBECEDEF

(

∇FJDCBA + 2TFD
GJGCBA

)

= 0 . (2.7)

The construction of a supersymmetric action principle then amounts to finding covariant

tensors JDCBA that satisfy this equation.

Let us focus our attention on the lowest Weyl weight terms, corresponding to Jδγβα, and

make the extremely restrictive ansatz that only Lorentz scalars appear at this level. This

implies the following three structures in terms of the gravitino one-forms ψα
i = dxµ ψµα

i,

with SU(4) index i = 1, · · · , 4 and chiral spinor index α = 1, 2:

Jψ4
R
=

1

4
ψ̄iψj ψ̄kψl ε

klrsCijrs = −
i

4
d4x εµνρσ ψ̄µiψνjψ̄ρkψσl ε

klrsCijrs , (2.8a)

Jψ4
L
=

1

4
ψ̄iψj ψ̄kψl εklrs C̄

rs
ij = −

i

4
d4x εµνρσ ψ̄µ

iψν
jψ̄ρ

kψσ
l εklrs C̄

rs
ij , (2.8b)

Jψ2
L
ψ2
R
= ψ̄iψj ψ̄

kψlAijkl = −id4x εµνρσ ψ̄µiψνjψ̄ρ
kψσ

lAijkl . (2.8c)

We will frequently as above employ Dirac notation to suppress spinor indices. The fields Cijkl
and Aijkl are assumed to be supercovariant and S-invariant. The four gravitini of like chirality

multiplying Cijkl imply that it transforms only in the 20′ representation. We shall further

assume the same is true for Aijkl.
3 While we have made a number of strong assumptions

about the form of the action principle (2.5), we will find that it nevertheless leads to the most

general conformal supergravity action (see section 3.4) .

We now derive the supersymmetry transformation properties of these fields in order to

construct an invariant action principle. In principle, this can be done directly using a tangent

space decomposition as in (2.7), but this can become unwieldy with the (anti)symmetrizations

on the tangent space indices. An abstract form-based approach is more efficient. The idea is

to decompose the covariant exterior derivative into formal pieces corresponding to the various

torsion tensors and covariant derivatives that appear in (2.7). For example, if Φ is a covariant

superfield (such as JDCBA), we may decompose

∇Φ = ea∇aΦ+
1

2
ψαi∇αiΦ+

1

2
ψα̇i∇

α̇iΦ ≡ ∇1Φ+∇L
1/2Φ+∇R

1/2Φ, (2.9)

with the numerical subscripts on ∇ denoting the Weyl weights of the operators in tangent

space. We use L and R superscripts to denote the left and right-handed spinor derivative

3A contribution to Aij
kl in the 15 or 1 could be removed by adding an appropriate total derivative.
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operations. For the one-forms, ea, ψα
i, and ψα̇i, exterior covariant differentiation generates

the torsion tensors,

∇ea = −
1

2
ψαk(γa)αα̇ψ

α̇
k ≡ t0e

a , (2.10)

∇ψα
i =

1

2
eaebR(Q)baα

i −
1

4
Tab

ijec(γabγc)αα̇ψ
α̇
j +

1

4
εijklψα̇jψ

α̇
kΛαl

≡ tL3/2ψα
i + tL1ψα

i + tL1/2ψα
i , (2.11)

and similarly for ∇ψα̇i. In both expressions above, the first equality gives the expansion

of the superspace torsion tensors as defined in Appendix A. The second equality introduces

shorthand tn for the various torsion components, with subscripts denoting their Weyl weights.

Note the appearance of the covariant fields Λαi, Tab
ij , and the gravitino curvature R(Q)abα

i

of the Weyl multiplet. Their properties as well as those of the other supercovariant fields of

the Weyl multiplet are also summarized in Appendix A.

On a given four-form J decomposed in tangent space, the closure condition (2.7) can now

be written
(

∇1 +∇L
1/2 +∇R

1/2 + t0 + tL1/2 + tR1/2 + tL1 + tR1 + tL3/2 + tR3/2

)

J = 0 . (2.12)

The advantage of this formalism is that it lets one more easily decompose the five-form

∇J into terms with five gravitini, four gravitini, etc., and check that each batch of terms

separately vanishes.

2.1 Solving the ψ5 Bianchi identities

We begin by solving the part of (2.12) involving five dotted spinor indices. In form notation,

this corresponds to the part of ∇J involving five right-handed gravitini, which is simply

0 = ∇R
1/2Jψ4

R
. (2.13)

It is easy to check that the five gravitino term appearing in this expression is in the 60, so

the content of this identity is

[∇α̇mCijkl]60 = 0 , (2.14)

which implies ∇α̇mCijkl = δm[k Υ
α̇ ij

l] + δ
[i
[k Υ

α̇j]m
l] for some spinor Υα̇ij

k in the 20. This field

will not appear in the action principle, although it is part of the multiplet that is used to

define it.

The ψLψ
4
R Bianchi identity reads

0 = ∇L
1/2Jψ4

R
+ tL1/2Jψ2

L
ψ2
R
+ t0Jeψ3

R
. (2.15)

Projecting onto the 60, only the first two terms contribute, leading to

[∇αmC
ij
rs]60 = [2ΛαmA

ij
rs]60 (2.16)
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We solve this constraint by introducing a fermion ρα ij
k in the 20,

∇αmC
ij
rs = δ[imρα rs

j] + δ
[i
[rραs]m

j] + 2ΛαmA
ij
rs + 4 δ[imΛαpA

j]p
rs + 4Λαp δ

[i
[rA

j]p
s]m . (2.17)

We have included a certain factor of ΛαmA
ij
rs in the 20 on the right-hand side so that the

remaining part of the Bianchi identity (2.15) implies that

Jeψ3
R
= −

1

8
ψ̄iψj ψα̇k e

a (γa)
α̇αεijrsραrs

k . (2.18)

There is a subtlety at this stage associated with the cohomology of the operators appear-

ing in (2.12). In particular, t0 satisfies (t0)
2 = 0, so Jeψ3

R
can be shifted by terms that are

t0-exact.
4 Such terms generally correspond to parts of total derivatives, so they can be dis-

carded. This is also incidentally the reason to take Aijkl in the 20′ as smaller representations

lead to t0-exact contributions.

The final Bianchi identity at this dimension involves ψ2
Lψ

3
R:

0 = tR1/2Jψ4
R
+∇R

1/2Jψ2
L
ψ2
R
+ t0JeψLψ

2
R
. (2.19)

This implies that

[∇α̇mAijkl]60 = [Λα̇mCijkl]60 (2.20)

which we solve as

∇α̇mAijkl = Λα̇mCijkl + δ
[i
[k

(

κα̇j]ml] − 4Λα̇pCj]mpl]

)

+ δm[k

(

κα̇ij l] − 4Λα̇pCijpl]

)

(2.21)

for some fermion κα̇ ijk in the 20, which appears at the next level in the action principle

JeψLψ
2
R
= −

1

4
ψ̄iψj ψ

αkea (γa)αα̇ κ
α̇ ij

k . (2.22)

The other Bianchi identities follow by complex conjugation.

At this point, we emphasize that the supersymmetry constraints (2.14), (2.17), and (2.20)

amount to the basic constraints (1.2) mentioned in the introduction. It will turn out that all

the other constraints we encounter are consequences of these.

2.2 Solving the eψ4 Bianchi identities

The eψ4
R Bianchi identity reads

0 = ∇1Jψ4
R
+∇R

1/2Jeψ3
R
+ tL1/2Jeψψ2

R
. (2.23)

Because the expression involves only quantities we have already defined, it leads only to new

constraints on the fields:
[

1
4(γa)

α̇α∇α̇
[kρα rs

l] + 2∇aC
kl
rs −

1
2(γa)αα̇Λ

α
[rκ

α̇kl
s]

]

20′

= 0 , [∇β̇(mρα ij
k)]45 = 0 . (2.24)

4Actually, the terms need only be t0-closed, but one can show for N = 4 supersymmetry that all t0-closed

terms are t0-exact [31].
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It turns out that these conditions (as well as other ones we will find shortly) are not indepen-

dent of the basic constraints (1.2). They actually follow using closure of the supersymmetry

algebra, which is a welcome result. Establishing this result is rather technical, so we delay

an explicit discussion to appendix B.

The eψLψ
3
R Bianchi identity is a bit more involved:

0 = ∇L
1/2Jeψ3

R
+∇R

1/2JeψLψ
2
R
+ t0Je2ψ2

R
+ tL1/2Jeψ2

L
ψR

+ tR1 Jψ4
R
+ tL1 Jψ2

L
ψ2
R
. (2.25)

It possesses a t0 term, which can be used to determine Je2ψ2
R

up to a t0-exact piece. This

term generically involves the 6 and the 10, so constraints can be found by first requiring the

64 to vanish. No other SU(4) representations are present. Because the Lorentz structure of

eψLψ
3
R is already quite complicated, a number of constraints emerge when projected upon

irreducible representations:

[

εijrs∇(αlρβ)rs
k − εijrsΛ(αlκβ)rs

k + 8(γbc)αβTbc
mkAij lm

]

64

= 0 , (2.26)
[

∇(α̇kκβ̇)ij l + 2(γbc)α̇β̇Tbclmε
klrsCijrs

]

64

= 0 , (2.27)
[

εijrs∇α
l ραrs

k − εijrsΛαl καrs
k + 2∇k

α̇κ
α̇ij

l

]

64

= 0 . (2.28)

For the 6 and the 10, there are two Lorentz representations each, one leading to a constraint

and one that allows the determination of Je2ψ2
R
. The constraints are

3 εijrs∇γ
kργrs

k + 4∇k
γ̇κ

γ̇ ij
k + 2 εijrsΛγkκγrs

k = 0 , (2.29)
(

∇(αlρβ)rs
(k + 2Λ(αlκβ)rs

(k
)

εj)lrs = 0 . (2.30)

The representations appearing in Je2ψ2
R
are

Je2ψ2
R
=

1

16
ψ̄iγabψj e

aeb E ij +
1

16
ψ̄iψj e

aeb Eab
ij (2.31)

where the fields E ij = E(ij) and Eab
ij = E[ab]

[ij] are determined by supersymmetry as

Eab
ij = −

1

20
(γab)

αβ
(

3 εijrs∇αkρβrs
k + 2 εijrsΛαkκβrs

k − 16Tcd
rs(γcd)αβ A

ij
rs

)

−
1

5
(γab)α̇β̇

(

∇α̇lκβ̇ij l − 3Tcdkl(γ
cd)α̇β̇ εklrsCijrs

)

, (2.32)

E ij =
1

6

(

∇α
l ραrs

(i + 2Λαl καrs
(i
)

εj)lrs . (2.33)

Note that Eab
ij is a complex tensor with both self-dual and anti-self-dual parts.

Finally, we have the eψ2
Lψ

2
R Bianchi identity:

0 = ∇L
1/2JeψLψ

2
R
+∇R

1/2Jeψ2
L
ψR

+∇1Jψ2
L
ψ2
R
+ t0Je2ψLψR

+ tL1/2Jeψ3
L
+ tR1/2Jeψ3

R
. (2.34)
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The terms in the 45, 45, and the 20′ cannot be cancelled by t0Je2ψLψR
. These lead to the

constraints

[

∇β(kκ
α̇ ij

l) − Λβ(kρ
α̇ ij

l)

]

45

= 0 ,
[

∇β̇(kκα ij
l) − Λβ̇(kρα ij

l)
]

45

= 0 , (2.35)

1

16
(γa)

α̇α
[

∇αiκα̇
kl
j +∇k

α̇καij
l − 3Λαiρα̇

kl
j − 3Λkα̇ραij

l
]

20′

+∇aA
kl
ij = 0 . (2.36)

The terms in the 15 that cannot be cancelled by t0Je2ψLψR
require

∇k
α̇καkj

i + 3Λkα̇ραkj
i +∇αkκα̇

ki
j + 3Λαkρα̇

ki
j = 0 . (2.37)

The remaining terms are cancelled if we choose

Je2ψLψR
=

i

32
eaeb ψ̄iγ

cψj εabcd E
d i
j (2.38)

for a pseudoreal field Ea
i
j in the 15 given by

i(γa)αα̇Ea
i
j = ∇k

α̇καkj
i + 3Λkα̇ραkj

i −∇αkκα̇
ki
j − 3Λαkρα̇

ki
j . (2.39)

2.3 Solving the remaining Bianchi identities

At this point, we trust that the procedure is fairly clear, if tedious. As we have already

mentioned, new constraints that emerge at each level turn out to be consequences of the

closure of the superconformal algebra and the basic constraints (1.2). The only independent

information we determine at each level is the specific form of the new terms that we need to

add and how they are related by supersymmetry to terms that have already appeared.

The e2ψ3
R Bianchi identity only leads to constraints, so we omit its discussion. The

e2ψLψ
2
R Bianchi requires the introduction of new terms

Je3ψR
=
i

3
eaebec ψ̄kΩ

dk εabcd +
i

3
eaebec ψ̄kγ

dΩk εabcd , (2.40)

where Ωa
α̇k is gamma-traceless. These fermions are determined to be

Ωa
α̇k = −

i

256
(γbcγa)

α̇β∇βlEbc
lk +

i

256
εijkmEbcij(γ

bcγa)
α̇βΛβm , (2.41)

Ωα
k = −

i

40
∇αlE

lk −
1

640
(γa)αβ̇∇

β̇lEa
k
l −

i

40
Tab

ij(γab)α
βκβij

k . (2.42)

The last piece of the action principle is a Lorentz scalar,

Je4 =
i

4!
eaebeced F εabcd , (2.43)

and it is determined from the e3ψLψR Bianchi identities as

F = −
1

4

(

∇α
kΩα

k +∇α̇
kΩα̇k

)

−
i

32

(

Tab ijE
ab ij − Tab

ijEabij
)

. (2.44)
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2.4 Summary

The full 4-form J , rewritten as a Lagrangian, gives the density formula

e−1L = F + 2 ψ̄µi(Ω
µi + γµΩi) + 2 ψ̄µ

i(Ωµi + γµΩi)

+
1

8
ψ̄[µiγ

µψν]
j Eν ij −

1

8

(

i ψ̄µiγ
µνψνjE

ij +
i

2
εµνρσψ̄µiψνjEρσ

ij + h.c.
)

+
i

8
εµνρσ

(

ψ̄µiψνj ψ̄ρkγσρrs
k εijrs + 2 ψ̄µiψνj ψ̄ρ

kγσκ
ij
k + h.c.

)

−
i

4
εµνρσ

(

ψ̄µiψνjψ̄ρkψσl ε
klrsCijrs + 2 ψ̄µiψνjψ̄ρ

kψσ
lAijkl + h.c.

)

. (2.45)

The basic constraints are imposed on the constituents C and A, which must obey

0 = [∇α̇mCijkl]60 = [∇α̇mAijkl − Λα̇mCijkl]60 = [∇α̇mC̄ijrs − 2Λα̇mAijrs]60 , (2.46a)

0 = [∇αmC̄
ij
kl]60 = [∇αmA

ij
kl − ΛαmC̄

ij
kl]60 = [∇αmC

ij
rs − 2ΛαmA

ij
rs]60 (2.46b)

The other fields appearing in the density formula are defined by

ρα rs
i = ∇αkC

ki
rs + 2ΛαkA

ki
rs , (2.47a)

καrs
i = ∇αkA

ki
rs + 3ΛαkC̄

ki
rs , (2.47b)

E ij =
1

6

(

∇α
l ραrs

(i + 2Λαl καrs
(i
)

εj)lrs , (2.47c)

Eab
ij = −

1

20
(γab)

αβ
(

3 εijrs∇αkρβrs
k + 2 εijrsΛαkκβrs

k − 16Tcd
rs(γcd)αβ A

ij
rs

)

−
1

5
(γab)α̇β̇

(

∇α̇lκβ̇ij l − 3Tcdkl(γ
cd)α̇β̇ εklrsCijrs

)

, (2.47d)

Ea
i
j = −

i

2
(γa)

α̇α∇k
α̇καkj

i −
3i

2
(γa)

α̇αΛkα̇ ραkj
i − h.c. , (2.47e)

Ωa
α̇k = −

i

256
(γbcγa)

α̇β∇βlEbc
lk +

i

256
εijkmEbcij(γ

bcγa)
α̇βΛβm , (2.47f)

Ωα
k = −

i

40
∇αlE

lk −
1

640
(γa)αβ̇∇

β̇lEa
k
l −

i

40
(γab)α

βTab
ijκβij

k , (2.47g)

F = −
1

4

(

∇α
kΩα

k +∇α̇
kΩα̇k

)

−
i

32

(

Tab ijE
ab ij − Tab

ijEabij
)

. (2.47h)

Their Weyl (w) and chiral (c) weight as well as their SU(4) representation and algebraic

properties are summarised in Table 1.

There is one final important check that is necessary. In the construction of J , we assumed

that it was gauge invariant in order to exchange closure for covariant closure. While it

is manifestly invariant under Lorentz, Weyl, and R-symmetry transformations, invariance

under S-supersymmetry and conformal boosts must be verified. These are consequences of

closure of the superconformal algebra. Provided Cijkl and A
ij
kl are S and K-invariant, one

can show that each of their descendants appearing in the Lagrangian are also K-invariant.
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Type Fields Properties SU(4) w c

Bosonic

Aijkl Aijkl = (Aklij)
∗ 20′ 2 0

Cijkl 20′ 2 −2

E ij 10 1 −1

Eab
ij E(ab)

ij = 0 6 1 −1

Ea
i
j 15 1 0

F F = F ∗ 1 0 0

Fermionic

ρij
k γ5 ρij

k = ρij
k 20 3

2 −3
2

κij
k γ5 κij

k = κij
k 20 3

2
1
2

Ωi γ5 Ω
i = Ωi 4 1

2 −1
2

Ωa
i γ5 Ωa

i = −Ωa
i , γaΩa

i = 0 4 1
2 −1

2

Table 1. Fields appearing in the density formula.

Their S-supersymmetry transformations are given by

δSρij
k = 8 ηl C

lk
ij , δSκ

ij
k = 8 ηl Aij lk ,

δSEab
ij = 3 εijrs η̄kγabρrs

k + 4 η̄kγabκ
ij
k , δSE

ij = 2 η̄kρrs
(iεj)krs ,

δSEa
i
j = 8i η̄kγaκ

ki
j − 8i η̄kγaκkj

i ,

δSΩ
i = −

3i

8
E ij ηj +

i

32
Eab

ij γabηj ,

δSΩa
i = −

i

16
Eab

ijγbηj −
i

32
εabcd E

bcijγdηj −
3

32
Ea
i
j η

j +
1

32
Ebij γabη

j ,

δSF = −8η̄iΩ
i − 8η̄iΩi . (2.48)

3 Building all N = 4 conformal supergravity actions

In this section, we provide the foundation for the construction of all N = 4 conformal su-

pergravity actions. Making use of the density formula built in the previous section, we only

need to specify the lowest Weight covariant fields Cijkl and A
ij
kl. Our goal will be to build

candidates for these composites, using only the fields of the Weyl multiplet (summarized in

Appendix A) as our constituents. Once such composite fields are specified, the supersymmetry

transformations (2.47) can be used to build all of the other composite fields appearing in the

density formula. Invariance under local superconformal transformations is then guaranteed.

This approach is however not a priori guaranteed to lead to all possible conformal su-

pergravity actions. To establish that the class we construct is actually exhaustive, we show

in section 3.4 that its supercurrent (the multiplet containing the energy-momentum tensor)

corresponds to the most general supercurrent of conformal supergravity.
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3.1 Ansatz for Cij
kl and A

ij
kl

Let us attempt to construct Cijkl and Aijkl out of the constituent fields of the N = 4

Weyl multiplet. We will need basic “building blocks” Xij
kl corresponding to S-invariant

combinations of Weyl weight two in the 20′. It turns out that there are essentially four possible

combinations which we denote Xn, with n = 1, · · · , 4 indicating the degree of homogeneity

in the covariant Weyl multiplet fields appearing within:5

X1
ij
kl = Dij

kl ,

X2
ij
kl = 2Λ̄[kχ

ij
l] + 2δ

[i
[kΛ̄mχ

j]m
l] −

1

4
εijmnEmkEnl

+
1

2
T ij · Tmnεklmn −

1

12
δ
[i
k δ

j]
l T

pq · T rsεpqrs ,

X3
ij
kl = −

1

4
Λ̄kγcdΛlTcd

ij +
1

2
δ
[i
[kΛ̄l]γcdΛm Tcd

j]m −
1

12
δ
[i
k δ

j]
l Λ̄mγcdΛnTcd

mn

+
1

4
εijmnEm[k Λ̄l]Λn ,

X4
ij
kl = −

1

24
εijmn Λ̄kΛm Λ̄nΛl . (3.1)

X1 is real, and we simply denote it as Dij
kl from now on. X2, X3, and X4 are complex. We

then choose the following ansatz for Cijkl and A
ij
kl:

Cijkl = C
(−2)
1 Dij

kl

+ C
(0)
2 X2

ij
kl + C

(−4)
2 X̄2

ij
kl

+ C
(+2)
3 X3

ij
kl +C

(−6)
3 X̄3

ij
kl

+ C
(+4)
4 X4

ij
kl +C

(−8)
4 X̄4

ij
kl ,

Aijkl = A
(0)
1 Dij

kl

+A
(+2)
2 X2

ij
kl + Ā

(−2)
2 X̄2

ij
kl

+A
(+4)
3 X3

ij
kl + Ā

(−4)
3 X̄3

ij
kl

+A
(+6)
4 X4

ij
kl + Ā

(−6)
4 X̄4

ij
kl ,

(3.2)

with C̄ijkl given by complex conjugation. The factors C
(−2)
1 , A

(0)
1 , A

(+2)
2 , etc., are functions

of the coset scalars φα , φ
α, and their superscript correspond to their U(1) charge. Their

complex conjugates are denoted by C̄
(+2)
1 , Ā

(0)
1 , Ā

(−2)
2 , etc.

The supersymmetry constraints (1.2) on Cijkl and A
ij
kl should then become constraints

on these functions of the coset scalars. This is indeed the case since the four combinations Xn

turn out to transform into each other under supersymmetry when we restrict to the largest

SU(4) representations:

[∇αmD
ij
kl]60 = 0 ,

[∇αmX2
ij
kl + ΛαmD

ij
kl]60 = 0 , [∇̄α̇mX2

ij
kl − 2Λ̄α̇mX3

ij
kl]60 = 0 ,

[∇αmX3
ij
kl + ΛαmX2

ij
kl]60 = 0 , [∇̄α̇mX3

ij
kl − 6Λ̄α̇mX4

ij
kl]60 = 0 ,

[∇αmX4
ij
kl + ΛαmX3

ij
kl]60 = 0 , [∇̄α̇mX4

ij
kl]60 = 0 ,

[ΛαmX4
ij
kl]60 = 0 .

(3.3)

5The Xn combinations (3.1), which obey (3.3) below, should coincide with the similarly-named functions

in eq. (3.59) of [22], in the context of on-shell N = 4 supergravity.
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The final condition arises because five Λi’s cannot be placed into the 60. From these results,

one can derive a set of differential equations on the coset functions and search for a solution.

To explain these conditions, we first make a brief detour to discuss the structure of the coset

space geometry.

3.2 SU(1, 1)/U(1) coset fields and derivatives

The coset scalar fields φα and φα present in the N = 4 Weyl multiplet may be understood as

constrained coordinates describing an SU(1, 1) group manifold. In addition to the constraint,

φαφα = 1, they are related by complex conjugation φα = ηαβ(φβ)
∗ with ηαβ = diag(1,−1),

which ensures that the coordinates describe a three-dimensional real manifold. Because they

may be identified up to a local U(1) transformation, φα ∼ eiλφα, they actually describe an

SU(1, 1)/U(1) coset space.

Let us introduce the three derivative operators associated with the group manifold. It is

convenient to define these as

D++ ≡ −φαεαβ
∂

∂φβ
, D−− ≡ φαε

αβ ∂

∂φβ
, D0 ≡ φα

∂

∂φα
− φα

∂

∂φα
. (3.4)

The first two derivatives were denoted D ≡ D++ and D† ≡ D−− in [1]. We will return to this

notation later on, but in the next few subsections, it will be useful to keep the U(1) charge

explicit. D0 measures the U(1) charge of the fields, while D++ and D−− convert φα to φα

and vice-versa. These satisfy the SU(1,1) algebra

[D0,D++] = 2D++ , [D0,D−−] = −2D−− , [D++,D−−] = D0 . (3.5)

It is sometimes convenient to work with complex coordinates on the coset space SU(1, 1)/U(1)

directly. We define S = φ2/φ1 and S̄ = −φ2/φ1 and introduce the phase e2iψ = φ1/φ1 to

describe the U(1). The coset space, parametrized by S with 0 ≤ |S| < 1, is the Poincaré disk.

In these coordinates,

D++ = −e2iψ
(

(1− SS̄)∂S +
i

2
S̄∂ψ

)

, D−− = (D++)∗ , D0 = −i∂ψ . (3.6)

D++ and D−− may be thought of as modified holomorphic and anti-holomorphic derivatives.

For example, a function that has vanishing U(1) charge that is also annihilated by D−− is

necessarily holomorphic in S. We will abuse terminology somewhat and refer to a function

of any U(1) charge that is annihilated by D−− as a holomorphic function.

3.3 Solving for Cij
kl and A

ij
kl

Let us now analyze the conditions for supersymmetry (2.46a), (2.46b) on Cijkl and Aijkl.

The condition [∇̄α̇mCijkl]60 = 0 implies that

D−−C
(0)
2 = 0 ,

D−−C
(+2)
3 = 2C

(0)
2 ,

D−−C
(+4)
4 = 6C

(+2)
3 ,

D−−C
(−2)
1 = −C

(−4)
2 ,

D−−C
(−4)
2 = −C

(−6)
3 ,

D−−C
(−6)
3 = −C

(−8)
4 .

(3.7)
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The first equation implies that C
(0)
2 must be holomorphic in S. Let us denote

C
(0)
2 ≡ −

i

2
H(S) , C̄

(0)
2 ≡

i

2
H̄(S̄) . (3.8)

The holomorphic function H(S) will turn out to govern the conformal supergravity action.

The numerical factor has been chosen to give the same normalization as [1].

The second column of equations defines C
(−4)
2 , C

(−6)
3 and C

(−8)
4 as successive derivatives

of C
(−2)
1 . The remaining equations for C

(+2)
3 and C

(+4)
4 imply that

−
i

2
H(S) ≡ C

(0)
2 =

1

12
(D−−)2C

(+4)
4 (3.9)

and so C
(+4)
4 can be interpreted as a potential for H(S).

The other constraints are a bit more involved. The constraint [∇αmC
ij
rs]60 = [2ΛαmA

ij
rs]60

and its complex conjugate imply the following set of coupled equations

−D++C
(−2)
1 − C

(0)
2 = 2A

(0)
1 = −D−−C̄

(+2)
1 − C̄

(0)
2 (3.10a)

−D++C
(0)
2 − C

(+2)
3 =2A

(+2)
2 = −D−−C̄

(+4)
2 (3.10b)

−D++C
(+2)
3 − C

(+4)
4 =2A

(+4)
3 = −D−−C̄

(+6)
3 + 2 C̄

(+4)
2 (3.10c)

2A
(+6)
4 = −D−−C̄+8

4 + 6 C̄
(+6)
3 . (3.10d)

The constraint [∇α̇mAijkl]60 = [Λ̄α̇mCijkl]60 leads to

C
(0)
2 = −D−−A

(+2)
2 , C

(−2)
1 = −D−−A

(0)
1 − Ā

(−2)
2 , (3.11a)

C
(+2)
3 = −D−−A

(+4)
3 + 2A

(+2)
2 , C

(−4)
2 = −D−−Ā

(−2)
2 − Ā

(−4)
3 , (3.11b)

C
(+4)
4 = −D−−A

(+6)
4 + 6A

(+4)
3 , C

(−6)
3 = −D−−Ā

(−4)
3 − Ā

(−6)
4 . (3.11c)

To disentangle these equations, it is helpful to start with the second equation of (3.11a)

as the definition of C
(−2)
1 and insert it into (3.10a). The result reads

D++D−−A
(0)
1 +

i

2
(H− H̄) = 2A

(0)
1 . (3.12)

This suggests to write A
(0)
1 = B + i

4(H− H̄) where B is a real function obeying

D++D−−B = 2B . (3.13)

We will discuss this equation shortly, but one immediate implication is D−−(D++)2B = 0.

Next, we need to equate both solutions for A
(+2)
2 in (3.10b). This implies that

C
(+4)
4 − 2(D++)2B =

3i

2
(D++)2H−

1

2
D++D−−C

(+4)
4 . (3.14)

To disentangle B from this equation, we write

C
(+4)
4 = −6iI(+4) −

3i

2
(D++)2H+ 2(D++)2B (3.15)
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in terms of a new quantity I(+4). Then (3.14) and (3.9) are equivalent to the two equations

I(+4) = −
1

2
D++D−−I(+4) −

1

4
(D++)2(D−−)2I(+4) , (3.16)

H = (D−−)2I(+4) . (3.17)

Furthermore, one can show that provided I(+4) obeys (3.16), the quantity (3.17) is automat-

ically holomorphic.

One finds using the remaining equations that each of the coset scalar functions is de-

termined and all of the required equations are satisfied. It is actually remarkable because

the system is overdetermined, with numerous overlapping differential equations. The coset

functions appearing in Cijkl are

C
(−2)
1 = −D−−B +

i

4
D−−H̄ +

i

2
D++Ī(−4) , (3.18a)

C
(0)
2 = −

i

2
H , C

(−4)
2 = −D−−C

(−2)
1 , (3.18b)

C
(+2)
3 = −iD−−I+4 +

i

2
D++H , C

(−6)
3 = (D−−)2C

(−2)
1 , (3.18c)

C
(+4)
4 = −6iI(+4) −

3i

2
(D++)2H + 2(D++)2B , C

(−8)
4 = −(D−−)3C

(−2)
1 . (3.18d)

while those in Aijkl become

A
(0)
1 = B +

i

4
(H − H̄) , (3.19a)

A
(+2)
2 =

i

2
D−−I(+4) , (3.19b)

A
(+4)
3 = −(D++)2B − iD++D−−I(+4) −

i

4
(D++)2H , (3.19c)

A
(+6)
4 = 2(D++)3B +

i

2
(D++)3H +

3i

2
(D++)2D−−I(+4) . (3.19d)

There are two linearly independent solutions described above. One involves a function

B obeying (3.13). This equation is just the massive Laplace equation on SU(1, 1)/U(1).

Remarkably, the action generated from B turns out to be a total derivative, which is not at

all obvious at this stage. We will justify this claim via a formal argument in section 3.4 below.

We have also checked this by analyzing the bosonic part of the action it generates.

The second solution involves a function I(+4) obeying (3.16), which is used to construct

a holomorphic function H(S) from (3.17). At first glance, this does not quite match our

expectations as it is not at all obvious that a suitable I(+4) can be constructed for any

given H(S), nor is it clear that the action will depend on H(S) alone. The latter claim will be

justified in the next subsection. For the former claim, observe that if we can find some function

K obeying D++D−−K = H for any H(S), then I(+4) can be chosen as I(+4) = −1
2(D

++)2K.

The required equation for K is simply the inhomogeneous Poisson equation on the coset

space SU(1, 1)/U(1): in Poincaré disk coordinates, it reads (1−SS̄)2∂S∂S̄K = H(S). We have

denoted the function K because, although complex, it is defined up to Kähler transformations

where it is shifted by purely holomorphic or anti-holomorphic functions.
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3.4 Uniqueness of the conformal supergravity action

Before moving on to construct the explicit action based on the Weyl multiplet fields, let us

first justify an important claim that was made previously: the most general action of N = 4

conformal supergravity is parametrized by a single holomorphic function of the coset scalars.

Our path to this result involves establishing the uniqueness of the corresponding supercurrent.

A similar line of argument was used in [13] to establish the uniqueness of the 6D N = (1, 0)

conformal supergravity actions.

Any classically superconformal theory possesses a supercurrent, which is the multiplet

containing the stress-energy tensor. The bottom component of this multiplet is a S-invariant

pseudoreal field J ijkl transforming in the 20′ representation with Weyl weight w = 2. The

defining constraint is that [∇α̇mJ ijkl]60 = 0, and similarly for its complex conjugate [6].

When the theory is coupled to conformal supergravity – or in this case is itself conformal

supergravity – then J ijkl may be identified with the functional variation of the action with

respect to Dkl
ij . Its weight and the restriction on its supersymmetry variation follow rather

easily.

Suppose the theory in question involves the Weyl multiplet alone. Then J ijkl can only

have an expansion of the form

J ijkl = J
(0)
1 Dij

kl

+ J
(+2)
2 X2

ij
kl + J̄

(−2)
2 X̄2

ij
kl

+ J
(+4)
3 X3

ij
kl + J̄

(−4)
3 X̄3

ij
kl

+ J
(+6)
4 X4

ij
kl + J̄

(−6)
4 X̄4

ij
kl (3.20)

involving the same tensors Xn appearing in (3.1). These constitute the S-invariant combi-

nations that are of Weyl weight 2. If we require that the supersymmetry transformation of

J ijkl does not involve either the 60 or the 60, we find a sequence of equations

J
(+2)
2 = −D++J

(0)
1 , D−−J

(+2)
2 = 0 ,

J
(+4)
3 = (D++)2J

(0)
1 , D−−J

(+4)
3 = 2J

(+2)
2 ,

J
(+2)
4 = −(D++)3J

(0)
1 , D−−J

(+6)
4 = 6J

(+4)
3 . (3.21)

The two equations involving J
(+2)
2 imply that D−−D++J

(0)
1 = 0, which means J

(0)
1 is the sum

of a holomorphic and anti-holomorphic piece. Calling these pieces J (S) and J̄ (S̄), we have

J
(0)
1 = J + J̄ , J

(+2)
2 = −D++J , J

(+4)
3 = (D++)2J , J

(+6)
3 = −(D++)3J . (3.22)

The supercurrent is parametrized by a single holomorphic function. This implies that the

action whose variation yields this supercurrent must also be parametrized by a single holo-

morphic function. Since J ijkl can be identified as the functional variation of the action with

respect to Dij
kl, the action we are discussing must possess the term (J + J̄ )Dij

klD
kl
ij .
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It is then enough to show that for the class of actions we have constructed, the coefficient

of Dij
klD

kl
ij involves only H(S) and not I(+4) or B. The apparent dependence on I(+4) must

just be an artefact of how we built the conformal supergravity action and can be removed by

extracting a total derivative. Similarly, the independent action that can be constructed out

of B must be a total derivative, since that action has no supercurrent.

4 Presentation of results

From the expressions of the lowest dimension composite (3.2) in terms of the Weyl multiplet

fields and the supersymmetry transformations rules (2.47), we use the computer algebra

package Cadabra [23, 24] to generate the full N = 4 conformal supergravity Lagrangian. The

resulting complete expression is attached as a separate file. The purely bosonic part LB of

the Lagrangian was already presented in [1] and can be written as6

e−1LB = H
[

1
2 R(M)abcdR(M)−abcd +R(V )abij R(V )−ab

j
i +

1
8 D

ij
klD

kl
ij +

1
4 EijD

2Eij

− 4Tab
ijDaDc T

cb
ij − P̄ aDaDbP

b + P 2P̄ 2 + 1
3(P

aP̄a)
2 − 1

6 P
aP̄aEij E

ij

− 8Pa P̄
c T abij Tbc

ij − 1
16 Eij E

jk EklE
li + 1

48 (Eij E
ij)2 + T abij Tab kl T

cd ij Tcd
kl

− T abij Tcd
jk Tab kl T

cd li − 1
2 E

ij T ab klR(V )ab
m
i εjklm + 1

2 Eij T
ab
klR(V )ab

i
m ε

jklm

− 1
16 EijEkl T

ab
mn Tab pq ε

ikmn εjlpq − 1
16 E

ijEkl T abmn Tab
pq εikmn εjlpq

− 2T ab ij
(

P[aDc]Tb
c kl + 1

6 P
cDcTab

kl + 1
3 Tab

klDcP
c
)

εijkl

− 2T abij
(

P̄[aDc]Tb
c
kl −

1
2 P̄

cDcTab kl
)

εijkl
]

+DH
[

1
4 Tab

ij Tcd
klR(M)abcd εijkl + Eij T

ab ik R(V )ab
j
k + T ab ij Ta

c klR(V )bc
m
k εijlm

− 1
24 Eij E

ij T ab kl Tab
mn εklmn −

1
6 E

ij Tab
kl T acmn T bc

pq εiklm εjpqn

− 1
8 D

ij
kl

(

T abmn Tab
kl εijmn −

1
2 EimEjn ε

klmn
)

]

+D2H
[

1
32 T

ab ij T cd pq Tab
mn Tcd

kl εijkl εmnpq −
1
64 T

ab ij T cd pq Tab
kl Tcd

mn εijkl εmnpq

+ 1
6 Eij Tab

ik T ac jl T bc
mn εklmn +

1
384 Eij EklEmnEpq ε

ikmp εjlnq

− 1
8 Eij Ekl Tab

ik T ab jl
]

+ 2H ea
µfµ

c ηcb

[

P a P̄ b − P d P̄d η
ab
]

+ h.c. (4.1)

The coset derivatives D ≡ D++ and D† ≡ D−− are defined in (3.4); here we use the nota-

tions of [1] where the U(1) charges are suppressed. Da is the fully supercovariant derivative

(including the gravitino connection) and it coincides with the projection to components of

6The Lagrangian has been rescaled by a factor of 2 relative to [1].

– 19 –



the superspace derivative ∇a defined in (A.5). All covariant fields of the Weyl multiplet play

a role in the action, including Eij and Dij
kl, as well as the SU(4) curvature R(V )ab

i
j and

the Lorentz curvature R(M)abcd. Pa is the supercovariant vielbein on the coset space and is

defined in (A.18).

From the point of view of the density formula (2.45), this Lagrangian corresponds to the

bosonic part of the composite field F . As explained in section 3.3, the conformal supergravity

Lagrangian obtained from our action principle a priori depends on the real and complex

functions of the coset scalars B and I, respectively. It was further argued in section 3.4 that

the dependence on these functions can be removed by extracting a total derivative. The

elimination of I in this way however typically generates terms that depend on H through

(3.17). These terms can modify the structure of the density formula (2.45). In particular, at

the purely bosonic level this total derivative introduces a dependence on the bare K-gauge

field. This explains the last term in (4.1) whose presence also ensures the invariance of the

kinetic term for the coset scalars under conformal boosts. The expression (4.1) is then fully

invariant all the bosonic symmetries.

A very stringent check of our result can be performed by setting the function H to a

constant. The Lagrangian is then invariant under rigid SU(1,1) transformations and the

bosonic terms (4.1) reduce precisely to the result of [16]. In this case, the bare K-gauge field

can also be eliminated by extracting a total derivative and writing a kinetic term for the

coset scalars which is invariant under conformal boosts up to fermionic terms. For any other

holomorphic function, the rigid SU(1,1) invariance is broken.

Let us now present all the supercovariant terms which are quadratic in the fermion fields.

They are still all contained in the field F and for legibility we will decompose them according

to the number of coset derivatives acting on the holomorphic function H. Once again, all the

terms depending on the function I can be eliminated by splitting off a total derivative. The

terms which do not depend on derivatives of H read

H
[

R̄(Q)iabR(S)
ab
i − 3

4 χ̄
ij
k /Dχij

k − 1
4 χ̄ij

k /Dχijk −
3
8 Λ̄

i
(

/DD2 +D2 /D − /D
3
)

Λi

− 1
8 Λ̄i

(

/DD2 +D2 /D − /D
3
)

Λi − 1
8 χ̄

lm
kγ · /DT ijΛkεijlm − 1

8 χ̄
k
lmγ · /DTijΛk ε

ijlm

+ 1
8 χ̄

lm
kγ · T ij /DΛkεijlm + 1

8 χ̄
k
lmγ · Tij /DΛkε

ijlm − 1
4E

ijχ̄kliχ
mn

jεklmn

− 1
4Eij χ̄

i
klχ

j
mn ε

klmn − 1
2R̄(Q)ab i /DTab

klΛjεijkl −
1
2 R̄(Q)abi /DTab kl Λj ε

ijkl

−DcR̄(Q)ab iγcΛ
jTab

klεijkl −
1
2DcR̄(Q)abi γcΛjTab kl ε

ijkl + 2DaΛ̄iR(Q)ab iPb

+ 1
2Tij · Tkl Λ̄mχ

kl
n ε

ijmn + 1
2T

ij · T klΛ̄mχkl
nεijmn +

1
2P

aΛ̄kγ · T ijγaχ
k
ij

+ 1
2 P̄

aΛ̄kγ · Tijγaχ
ij
k −

1
12E

ijEklΛ̄iχ
mn

k εjlmn −
1
12EijEklΛ̄

iχkmn ε
jlmn

− 1
6E

ijP̄ aΛ̄kγaχ
lm
i εjklm − 1

6EijP
aΛ̄mγaχ

i
kl ε

jklm − 1
6E

ijDaEjk Λ̄iγ
aΛk

− 1
48E

ijDaEij Λ̄kγ
aΛk − 1

48EijDaE
ijΛ̄kγ

aΛk − 1
16E

ijEijΛ̄kγ
aDaΛ

k

+ 1
48E

ijEijDaΛ̄kγ
aΛk + 1

12E
ikEij Λ̄kγ

aDaΛ
j − 1

4EikE
ijDaΛ̄jγ

aΛk
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+ 5
12DaE

ijP aΛ̄iΛj +
5
12DaEijP̄

aΛ̄iΛj − 1
3E

ijP aΛ̄iγabDbΛj +
1
3E

ijDaP
aΛ̄iΛj

+ 1
3Eij DaP̄

aΛ̄iΛj − 1
4 Λ̄

iγaΛiDbP̄aP
b − 5

12 Λ̄
iγaΛiDbPaP̄

b + 2
3 Λ̄

iγaDbΛiP̄aP
b

− 2
3DaΛ̄

iγbΛiP̄
aP b + 1

12 Λ̄
iγbΛiDaP̄

aP b − 1
12 Λ̄

iγbΛiDaP
aP̄ b − 2

3DaΛ̄
iγaΛiP̄

bPb

+ 4
3 Λ̄iγaDbΛ

iP̄cPdε
abcd − 2Tab ijT

ac ikΛ̄kγ
bDcΛ

j − 2Tab ijDcT
ac ikΛ̄kγ

bΛj

− 2TabijT
acijDcΛ̄kγ

bΛk − 2DcTabijT
acijΛ̄kγ

bΛk + 1
3PaT

ab
ijΛ̄kDbΛlε

ijkl

+ 1
3 P̄aT

ab ijΛ̄kDbΛ
lεijkl −

1
2PcD

bTab ijΛ̄kγ
acΛlε

ijkl − 1
2 P̄

cDbT
ab ijΛ̄kγacΛ

lεijkl

− 1
3D

cPbT
ab
ijΛ̄kγacΛlε

ijkl − 1
3D

cP̄bT
ab ijΛ̄kγacΛ

lεijkl +
1
6E

ijDbT
ab lmΛ̄iγaΛ

kεjklm

− 1
6EijDbT

ab
lmΛ̄kγaΛ

iεjklm − 1
3EijT

ab
klDbΛ̄mγaΛ

iεjklm + 1
3E

ijT ab klΛ̄iγaDbΛ
mεjklm

− 1
2DbE

kmT ab ijΛ̄kγaΛ
lεijlm +DbEkmT

ab
ijΛ̄lγaΛ

kεijlm − 1
24E

ijTab klT
ab
mnΛ̄iΛjε

klmn

− 1
24EijTab

klT abmnΛ̄iΛjεklmn −
1
3EijP

aTab
ikΛ̄kγ

bΛj + 1
3E

ijP aTab ikΛ̄jγ
bΛk

− 1
6P

cPcTab
ijΛ̄iγ

abΛj −
1
6 P̄

cP̄cTabijΛ̄
iγabΛj − 1

24Tab
ijT ab klΛ̄mγcΛ

mP cεijkl

+ 1
24TabijT

ab
klΛ̄mγcΛ

mP̄ cεijkl − 1
2 Λ̄iγ

aΛjDbR(V )ab
i
j

]

+ h.c. . (4.2)

This result can once more be checked by setting the function H to a constant. In this case,

the above expression indeed reduces again to the result of [16]. The remaining terms which

are quadratic in fermions depend on derivatives of H. Those with a single derivative can be

written as

DH
[

1
4 χ̄

ij
kγaχ

k
ijP̄

a − 1
2 χ̄

ik
lχ
jl
kEij −

1
4 χ̄

kl
mγ

abχmnkTab
ijεijln −

1
2EijR̄(Q)iabR(Q)ab j

− 3
4Tab

ijR̄(Q)ab kχlmkεijlm − 1
2D

ij
klΛ̄iχ

kl
j −

1
2R(V )ab

j
kΛ̄iγ

abχikj −
1
4EijE

ikΛ̄lχ
jl
k

− 1
4EijΛ̄k /Dχ

i
lmε

jklm + 1
24E

ijTab
klΛ̄iγ

abχmnjεklmn +
1
8E

ijTab
klΛ̄mγ

abχmniεjkln

+ 1
4 Λ̄iγ · T jk /Dχijk −

1
12 χ̄

lm
kγ · T ij /̄PΛkεijlm + 1

8 χ̄
k
lmγ · Tij /̄PΛkε

ijlm − 3
8 Λ̄

iγaD
2ΛiP̄

a

+ 1
3E

ijTab
klΛ̄iR(Q)abmεjklm + 1

6T
ab
ijP̄

cΛ̄kγcR(Q)ablε
ijkl − 3

4Tab
ijP̄ cR̄(Q)ab kγcΛ

lεijkl

+ 1
3 Λ̄iR(Q)iabP̄

aP b − 7
6 Λ̄iR(Q)ab jR(V )ab

i
j −

3
2 Λ̄iT

ij ·R(S)j +
1
4 Λ̄iγ

cdR(Q)ab iR(M)abcd

+ 1
8 Λ̄

iγdΛjR(V )ab
j
iP̄cε

abcd + 1
6 Λ̄kΛlT

ab
ijR(V )ab

k
mε

ijlm + 8
3 Λ̄

iγbΛiP
aP̄aP̄b +

7
24DaΛ̄

iγbDcΛiP̄dε
abcd

− 7
12 Λ̄

iγbDaDbΛiP̄
a − 1

4 Λ̄
i /DΛiDaP̄

a − 1
2 Λ̄

iγaDbΛiDaP̄
b + 1

24 Λ̄iγ
aD2ΛiP̄a

+ 1
24D

bΛ̄iγ
aDbΛ

iP̄a −
1
12 Λ̄iγ

bDaDbΛ
iP̄ a − 1

12 Λ̄i /DΛiDaP̄
a − 1

6 Λ̄iγ
aDbΛ

iDaP̄
b

− 1
8DaΛ̄i /DΛiP̄ a + 1

8DaΛ̄
i /DΛiP̄

a − 1
6 Λ̄

iγaΛiDaDbP̄
b − 17

12 Λ̄
iγaΛiPaP̄

bP̄b

+ 5
6EijTab klΛ̄mγ

bΛiP̄ aεjklm + 1
18E

ijTab
klΛ̄iγ

bΛmP̄ aεjklm + 1
6EijTab

ikDbΛ̄kγ
aΛj

+ 1
6D

bEjkTab
ijΛ̄iγ

aΛk + 1
3EijTab

ikΛ̄kγ
aDbΛj − 1

3EijD
bTab

ikΛ̄kγ
aΛj

− TabijΛ̄kγ
acDbDcΛlε

ijkl + 1
6DaD

cTbc klΛ̄iγ
abΛjε

ijkl − 1
6T

ab
ijDaΛ̄kDbΛlε

ijkl

− 1
6DaT

ab
ijΛ̄kDbΛlε

ijkl + 1
12DaTbc ijΛ̄kγ

abDcΛlε
ijkl − 1

12D
cTac ijΛ̄kγ

abDbΛlε
ijkl
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− 1
3Tab ijD

bΛ̄kγ
acDcΛlε

ijkl + 2
3PaT

ab ijΛ̄iDbΛj −
1
2D

cTbc
ijPaΛ̄iγ

abΛj

− 1
24P

aDaTbc
ijΛ̄iγ

bcΛj +
1
3PaTbc

ijΛ̄iγ
abDcΛj +

5
12P

aTbc
ijΛ̄iγ

bcDaΛj

− 5
9Tac

ijP̄ aP̄bΛ̄
kγbcΛlεijkl +

7
12Tabij P̄

bPcΛ̄kγ
acΛlε

ijkl − 1
3EijE

ikΛ̄kγaΛ
jP̄ a

+ 1
48EijE

ijΛ̄kγ
aΛkP̄a −

2
3Tac

klT abijΛ̄kγbD
cΛmεijlm + 1

8T
kl · T ijΛ̄m /DΛmεijkl

+ 1
3Tac

klT abijDcΛ̄kγbΛ
mεijlm − 1

24T
kl · T ijΛ̄m /DΛmεijkl −

1
3Tac

ijDbT
abklΛ̄kγ

cΛmεijlm

+ 1
6Tac

ijDbT
abklΛ̄mγ

cΛmεijkl +
1
3Tab

ijDcT
abklΛ̄kγ

cΛmεijlm + 1
3Tab

ijDcT
abklΛ̄mγ

cΛmεijkl

+ 1
8D

2EijΛ̄iΛj +
1
2 P̄

aP̄aEijΛ̄
iΛj − 1

6 P̄
aPaE

ijΛ̄iΛj −
1
24 Λ̄iγ ·R(V )kjΛkE

ij

+ 1
24EijE

ijEklΛ̄kΛl −
1
16EijE

ikEjlΛ̄kΛl −
7

288E
ijEklTab

mnΛ̄iγ
abΛkεjlmn

+ 1
16Tab ijT

ab
klTcd

ijΛ̄mγ
cdΛnε

klmn + 1
16Tab ijT

ab
klTcd

klΛ̄mγ
cdΛnε

ijmn

− 1
8EijT

ab
klTabmnΛ̄pΛqε

iklpεjmnq
]

+ h.c. , (4.3)

while those with two and three derivatives of the function read

D2H
[

1
4EijTab

ikΛ̄lγ
abχjlk −

5
8EijTab

ikΛ̄kR(Q)ab j − 1
8EijEklΛ̄mχ

ik
nε
jlmn

+ 1
4 Λ̄kχ

mn
lT
ij · T klεijmn +

1
4 Λ̄mγ

b
cχ
mn

iTab
ijT ac klεjkln +

5
64 Λ̄mγ

cdR(Q)mab T
ab ijTcd

klεijkl

+ 5
8 Λ̄iR(Q)mbc T

ab ijTa
c klεjklm − 3

4 Λ̄
iγaDbΛiP̄aP̄

b − 5
24 Λ̄

i /DΛiP̄
aP̄a −

5
12 Λ̄

iγaΛiP̄
aDbP̄

b

− 1
2 Λ̄

iγbΛiP̄
aDaP̄b +

1
12 Λ̄iγ

aDbΛ
iP̄aP̄

b − 1
8 Λ̄i /DΛiP̄ aP̄a −

1
6EijP̄

bΛ̄kγ
aΛiTab

jk

− 1
6Tab ijP̄

aΛ̄kD
bΛlε

ijkl + 1
24 P̄aD

cTbcijΛ̄kγ
abΛlε

ijkl − 7
12Tab ijP̄cΛ̄kγ

acDbΛlε
ijkl

− 1
8Tab ijDcP̄

bΛ̄kγ
acΛlε

ijkl + 1
6Tbc

ijP aP̄aΛ̄iγ
bcΛj +

1
48Tab

ijT abklP̄cΛ̄mγ
cΛmεijkl

− 1
2 Λ̄iγb

cΛkR(V )ac
k
jT

ab ij + 1
2 Λ̄iΛkR(V )ab

k
jT

ab ij + 1
16 Λ̄kγ

abΛlR(V )ab
i
mEijε

jklm

+ 1
8 Λ̄iγ

cdΛjR(M)abcdT
ab ij − 1

16 Λ̄iγ
abΛjTab

klDij
kl +

1
16 Λ̄jΛnEimD

ij
klε

klmn

− 1
48EijE

ijTab
klΛ̄kγ

abΛl +
1
24EijE

ikTab
jlΛ̄kγ

abΛl −
1
48E

ijT ab klTab
mnΛ̄iΛjεklmn

− 1
12E

ijT ab klTac
mnΛ̄iγb

cΛkεjlmn

]

+D3H
[

1
8Tab ijP̄

aP̄cΛ̄kγ
bcΛlε

ijkl − 1
64EijEklTab

ikΛ̄mγ
abΛnε

jlmn − 1
12T

ab ijTac
klTb

cmnΛ̄iΛmεjkln

+ 1
64T

ab ijTab
klTcd

mnΛ̄iγ
cdΛjεklmn −

1
32Tab

ijT ac klTcd
mnΛ̄iγ

bdΛjεklmn

+ 1
32Tab

ijT ac klTcd
mnΛ̄kγ

bdΛlεijmn +
1

192EijEklEmnΛ̄pΛqε
ikmpεjlnq − 3

8 Λ̄
iγbΛiP̄aP̄

aP̄ b
]

+ h.c. (4.4)

We emphasize that (4.2),(4.3) and (4.4) correspond to all the terms quadratic in the super-

covariant fermion fields. The remaining fermionic terms at this order then necessarily involve

bare gravitini and/or S-supersymmetry gauge fields. From the perspective of the density

formula (2.45), these bare gravitini terms are associated with the composite fields Ωi, Ωa
i,
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E ij , E ijab and Ea
i
j. However, there will also be contributions coming from the various total

derivatives we have extracted in order to write the result as above.

5 A possible origin of the action principle and on-shell N = 4 SYM

A curious feature of the action principle we have uncovered is the requirement that it should

be built from three separate superfields Cijkl, C̄
ij
kl, and A

ij
kl, constrained according to (1.2).

In this section, we first show that they can be derived from a single superfield, provided we

are willing to introduce explicit dependence on the coset scalars. Then we demonstrate that

the on-shell action for N = 4 super Yang-Mills can be recovered using this approach.

5.1 A more fundamental action principle

Suppose Φijkl is a pseudoreal superfield in the 20′ for which

0 = [∇̄α̇pΦijkl]60 = [∇αpΦ
ij
kl]60 . (5.1)

Let us take

Cijkl = c(−2)Φijkl , Aijkl = c(0)Φijkl , C̄ijkl = c(+2)Φijkl (5.2)

where the functions c(±2) and c(0) are built from the SU(1, 1)/U(1) coset fields φα alone. We

have labelled them with their U(1) charge. In order for the constraints (1.2) to follow from

those on Φijkl, the coefficient functions must be chosen to obey

D−−c(−2) = 0 , D−−c(0) = −c(−2) , D−−c(+2) = −2 c(0) ,

D++c(−2) = −2 c(0) , D++c(0) = −c(+2) , D++c(+2) = 0 . (5.3)

It is not hard to show that the above conditions are uniquely solved by

c(+2) = cαβ φ
αφβ , c(−2) = cαβ φαφβ , c(0) = −cα

β φαφβ , (5.4)

where cαβ is symmetric, and where we use NW-SE conventions for lowering indices, i.e.

cαβ ≡ εαγεβδc
γδ and cα

β ≡ cγβ εγα. In order for Φijkl to be pseudo-real, cαβ must be

pseudoreal, i.e.

ηαγηβδ(c
γδ)∗ = cαβ = εαγεβδc

γδ . (5.5)

This implies that (c11)∗ = c22 and (c12)∗ = c12, so that the SU(1, 1) invariant

cαβcαβ = 2 c11c22 − 2 c12c12 (5.6)

can be any real number. Naturally, the triplet cαβ may be identified with a vector of

SO(2, 1) ∼= SU(1, 1), and this vector may be spacelike, null, or timelike. This means that

any Φijkl subject to the condition (5.1) along with a choice of triplet cαβ defines an invariant

action.
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A natural question to ask is whether the converse relation holds. Can one build a field

Φ̃ijkl out of Cijkl and Aijkl, and is it related to the field Φijkl given above? The answer is

yes, and it is given by

Φ̃ijkl = a(+2)Cijkl − 2a(0)Aijkl + a(−2)C̄ijkl , (5.7)

where a(±2), a(0) are built out of a pseudoreal aαβ in the same manner as for the c’s. In fact,

if Cijkl and A
ij
kl are given by (5.2), it is easy to show that

Φ̃ijkl = (a(+2)c(−2) − 2a(0)c(0) + a(−2)c(+2))Φijkl = aαβcαβΦ
ij
kl , (5.8)

and so Φ̃ = Φ up to an overall constant. Given any cαβ, one can always find an aαβ (not

necessarily unique) so that this overall constant is unity.

We want to apply this observation to two cases. One case is the vector multiplet action of

de Roo [25], which will be discussed in the next subsection. The other case is the Weyl mul-

tiplet action constructed in the previous sections. Here, the only choice for Φijkl is to build it

out of the fields Xn
ij
kl defined in (3.1). Its Weyl weight and supersymmetry properties dic-

tate that it be structurally identical to the supercurrent (3.20) for some holomorphic function

J (S). We also must make a choice for cαβ. Once this choice is made, it is straightforward

to use (5.2) to show that

−
i

2
H = −c(−2)D++J ,

B = c(0)J −
1

2
c(−2)D++J + h.c. ,

−
i

2
I+4 = c(+2)D++J −

3

2
c(0)(D++)2J +

1

4
c(−2)(D++)3J . (5.9)

These in turn obey the required identities (3.13), (3.16) and (3.17). Inverting the relationship

for aαβcαβ = 1, one can write

J + J̄ = −
i

4
a(−2)D++H−

i

2
a(0)H−

i

2
a(−2)D−−I+4

−
1

2
(a(+2)D−− + 2a(0) + a(−2)D++)B + h.c. (5.10)

While this approach can be considered more fundamental since it relies on a single superfield,

in the case of conformal supergravity it does not facilitate the construction of the action

because it introduces a spurious dependence on cαβ and obscures the fact that the action

depends only on H.

5.2 Deriving the on-shell SYM action

Let us now address how a suitable Φijkl may be constructed for the on-shell super-Yang-Mills

action. We first briefly review the structure of on-shell super-Yang-Mills in N = 4 superspace.

This is a relatively straightforward extension of the flat superspace result [32] and will lead to
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the component result of de Roo [25]. Let F be a covariantly closed field strength associated

with a non-abelian superspace one-form. We impose the constraints (as in flat superspace)

Fαi βj = 4 ǫαβW̄ij , F α̇i β̇j = 4 ǫα̇β̇W ij , (5.11)

where (W ij)∗ = W̄ij. Requiring that the lowest dimension Bianchi identity is satisfied leads

to the conditions

[∇αkW̄ij ]20 = 0 , [∇̄α̇kW̄ij]20 = [12Λ
α̇kεijpqW

pq]
20
. (5.12)

In flat superspace, one would take W ij = −1
2ε
ijklW̄kl and identify its lowest component with

the six scalars φij of the vector multiplet. In curved superspace that is not possible because

the two superfields carry differing U(1) charges, and the constraints (5.12) are inconsistent

with such an assignment. Instead, one takes7

W̄ij = Φ+ φij , W ij = Φ− φij , φij = (φij)
∗ = −

1

2
εijklφkl (5.13)

where Φ+ = (Φ−)∗ is a function of the coset scalars with U(1) charge +1. The superfield φij

here, which is U(1) neutral, will have its lowest component identified with the scalars of the

vector multiplet, so we use the same name for it. As a consequence of the constraints (5.12),

one can show that

D−−Φ+ = Φ− , D++Φ− = Φ+ (5.14)

provided that φij obeys the same constraint as in flat space

[∇αkφ
ij ]20 = 0 , [∇̄α̇kφij ]

20
= 0 . (5.15)

This puts the vector multiplet on-shell. The conditions on Φ+ and Φ− imply that they are

linear in φα and φα, respectively,

Φ+ = d̄αφ
α , Φ− = dαφα , (5.16)

and that the constants dα and d̄α obey

d̄α = dβεβα = ηαβ(d
β)∗ . (5.17)

The supersymmetry algebra given in [25] corresponds to the choice d̄α = (1, 1), and Φ+ =

φ1 + φ2. It is easy to show that the most general choice for dα is

d̄α = (eiδ , e−iδ) , dα = (e−iδ,−eiδ) (5.18)

as an overall normalization of dα can always be absorbed into a rescaling of φij .

7We follow the same pseudoreality convention for φij as de Roo [25], but we denote his Φ and Φ∗ as Φ+

and Φ− respectively.
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Now we may attempt to construct an action involving the above on-shell multiplet. Be-

cause of the constraint (5.15), it’s easy to check that the superfield

Φijkl ≡ [Trφijφkl]20′ = Trφijφkl − traces (5.19)

obeys the constraint (5.1). One can then go about constructing an action for it as in the

previous subsection, by choosing Cijkl and Aijkl to obey (5.2) in terms of some cαβ and

then applying the density formula. However, because the multiplet is on-shell, the action is

recovered only modulo equations of motion. Let us focus only on the bosonic part of the

action and for simplicity take the abelian limit. The Lagrangian recovered in this way is

L = c(−2)
[

−
i

(Φ−)2
(F−

ab)
2 − 2i

Φ+

(Φ−)2
FabK

ab+ +
i

3
Da(φijφ

ijP a) + i(K+
ab)

2 − i(K−
ab)

2 (Φ
+)2

(Φ−)2

]

+ c(+2)
[ i

(Φ+)2
(F+

ab)
2 + 2i

Φ−

(Φ+)2
FabK

ab+ −
i

3
Da(φijφ

ijP̄ a)− i(K−
ab)

2 + i(K+
ab)

2 (Φ
−)2

(Φ+)2

]

+ c(0)
[ 2i

Φ+
FabK

ab+ −
2i

Φ−
FabK

ab− + 2i
Φ−

Φ+
(K+

ab)
2 − 2i

Φ+

Φ−
(K−

ab)
2
]

(5.20)

where

K−
ab = Tab

ijφij , K+
ab = Tabijφ

ij . (5.21)

A conspicuous feature about this on-shell Lagrangian is that no kinetic terms for φij

appear. This is a necessary consequence of working with an on-shell multiplet – it is blind to

such terms. However, we have recovered the Aµ kinetic terms correctly; this is because there

is no way to exploit the equation of motion for Aµ without exposing the naked connection

and breaking manifest gauge invariance.

Actually, we can reconstruct all of the Aµ-dependent terms. The full Lagrangian should

formally possess the structure

L =
1

2
AO1A+AO2φ+

1

2
φO3φ , (5.22)

for operators Oi. Putting φ on-shell leads to

L =
1

2
AO1A+

1

2
AO2φ . (5.23)

Therefore, the terms linear in Aµ in (5.20) should be doubled to recover the corresponding

terms in the original Lagrangian. In principle, we could also reconstruct O3 using the equation

of motion that follows from supersymmetry.8

This observation raises an important point. The conditions (5.13) together with (5.15)

imply that the vector multiplet obeys on-shell constraints following from the closure of the

supersymmetry algebra. These have the structure of equations of motion, but they are not

8This argument implies that the O(φ2) terms in (5.20) must vanish. This is indeed the case (up to a total

derivative) provided the additional constraint (5.26) holds.
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necessarily the field equations that follow from the Lagrangian (5.20). In particular, the on-

shell constraints depend only on dα while the field equations depend on cαβ, too. Focusing on

the Aµ on-shell constraint (and for simplicity dropping terms involving the vector multiplet

scalars), we find

0 = DbFab + 2F−
abP̄

bΦ
+

Φ−
+ 2F+

abP
bΦ

−

Φ+
+O(φij) . (5.24)

The field equation that derives from (5.20) is on the other hand proportional to

0 =
(1

2

c(+2)

(Φ+)2
+

1

2

c(−2)

(Φ−)2

)

DbFab − F−
abP̄

bD++
( c(−2)

(Φ−)2

)

+ F+
abP

bD−−
( c(+2)

(Φ+)2

)

+O(φij) .

(5.25)

It is not hard to show that these two equations are equivalent only if

cαβd̄αd̄β = 0 =⇒ cαβ = d(αbβ) (5.26)

where bα obeys the same pseudoreality condition (5.17) as dα. We can parametrize it as

b̄α = (λ eiβ , λ e−iβ) , bα = (λ e−iβ ,−λ eiβ) . (5.27)

The action given by de Roo [25] corresponds to the choice bα = − i
4(1, 1) and dα = (1,−1).

This can be seen both by looking at the leading bosonic terms (5.20) or by examining the

four gravitino terms.9 Note that if bα ∝ dα, then the Lagrangian becomes a total derivative.

We should add that the physical significance of bα is that it parametrizes the on-shell dual

field strength Gab constructed by taking εabcd ∂L/∂Fcd, just as d
α parametrizes Fab.

While this appears to be a generalization of de Roo’s action, this is not actually the

case. What is happening is that we have parametrized the action and the supersymmetry

transformations in terms of the three real parameters β, λ and δ, which are precisely the

same degrees of freedom associated with an SL(2,R) duality transformation. In other words,

we have constructed the duality orbit of de Roo’s action.

6 Conclusions and outlook

In this paper, we have explicitly constructed an N = 4 density formula using the superform

method. Invariance under the local N = 4 superconformal symmetries is ensured provided

the lowest Weyl weight fields satisfy the set of constraints (2.46), and that the remaining

fields are defined via the supersymmetry transformation rules (2.47). We then showed that,

by expressing these fields in terms of those of the N = 4 Weyl multiplet such that the

constraints are satisfied, the density formula leads to a class of N = 4 conformal supergravity

9The Lagrangian given in eq. (3.16) of [25] appears to have a typo. We believe the last four gravitino term

should be removed to match the four gravitino terms we have found. This can also independently be checked

by reconstructing the equation of motion of φij .
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actions parametrized by a holomorphic function of the coset scalars. Based on the uniqueness

of the N = 4 supercurrent, we further argued that this must correspond to the most general

class of maximal conformal supergravity actions. We presented its expression up to terms

which are quadratic in the covariant fermion fields. A stringent check of this result is that

when the function is set to a constant, it recovers [16]. For ergonomic considerations, the

complete action is given explicitly in an addendum file. As a second application of the density

formula, we also re-derived an on-shell sector of the action constructed in [25] for a vector

multiplet in a background of conformal supergravity.

An intriguing feature of the density formula we employed is that it seems it could be

derived from a single superfield Φijkl and a constant cαβ. The properties of this superfield

resemble those of a G-analytic superfield in (4, 2, 2) superspace [33, 34], but it cannot be a

Lagrangian in that superspace because it has the wrong dimension. Perhaps it can be used

to build an action principle in (4, 2, 2) superspace along the lines of [35].

The construction of the full class of N = 4 conformal supergravity actions opens up

various perspectives on the higher-derivative structure of the Poincaré theory. As was shown

already long ago in [25], N = 4 Poincaré supergravity at the two-derivative level can be

described as a system of six vector multiplets coupled to conformal supergravity. The standard

Poincaré action is recovered after gauge fixing the conformal symmetries and integrating out

the various auxiliary fields of the Weyl multiplet. It is now possible to consider the class

of actions constructed in this paper as a deformation of the two-derivative conformal setup.

In this case the transition to the Poincaré theory is non-trivial as the field equations of the

auxiliary fields have now become non-linear. This requires to integrate out the fields through

an iterative procedure, which will result in an infinite power series of the spin-1 field strengths

and their derivatives. We will show in an upcoming paper that this procedure can be carried

out consistently and leads to a class of supersymmetric higher-derivative Poincaré invariants

which depends on the holomorphic function of the coset scalars. The procedure can also be

applied to describe Poincaré supergravity coupled to vector multiplets.

These higher-derivative Poincaré couplings are relevant from several point views. When

considered on-shell, they could be directly compared with the results obtained in [22]. It would

also be interesting to see if they could be embedded in the formalism of [36] where higher-

derivative corrections are described as deformations of the twisted self-duality constraint

relating the spin-1 field strengths to their magnetic duals. Another application concerns the

matching of subleading corrections to the microscopic entropy of N = 4 black holes obtained

via state counting. From the supergravity point of view, some of these corrections are known

to originate from the class of couplings considered in this paper, and could be calculated by

considering the induced modifications to the area law as in [37, 38] or [39, 40], or perhaps by

using more recent localization techniques along the lines of [41, 42]. These approaches have

so far relied on a truncated N = 2 setting and it should be interesting to reconsider these

results in a fully N = 4 supersymmetric formalism.

Finally, these invariants might clarify the ultraviolet properties of the Poincaré theory.

Explicit loop computations have revealed a divergence at four loops [43] which is believed to
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be connected to the presence of a potential anomaly in the duality symmetry of the theory.

It was however shown recently that there exists a finite counterterm, whose leading term

includes the square of the Riemann tensor multiplied by a holomorphic function of the coset

scalars, and which cancels the anomalous contribution of the graphs up to two loops [44–46].

The consequences of this counterterm for the finiteness of the Poincaré theory at four loops

however remain to be explored. While these amplitude computations rely on a description

of the counterterm via the double copy construction, its explicit supersymmetric expression

should follow from the class of invariants constructed in this paper, provided the correct

holomorphic function is chosen.
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A The Weyl multiplet in N = 4 superspace

The Weyl multiplet of N = 4 conformal supergravity was introduced in [6]. The gauge field

content involves a vielbein eµ
a, gravitino ψµ

i, spin connection ωµ
ab, dilatation connection

bµ, SU(4) × U(1) R-symmetry gauge fields Vµ
i
j and aµ, S-supersymmetry connection φµi,

and a special conformal (K) connection fµ
a. Together these fields gauge the superconformal

algebra su(2, 2|4). Constraints are imposed on the various curvatures such that the spin

connection, U(1) gauge field, S-supersymmetry connection, and special conformal connection

are algebraically determined in terms of the other fields. This leaves the vielbein, gravitino,

and SU(4) gauge field as the independent connections; the dilatation connection, while also

independent, is pure gauge and can be eliminated by a special conformal transformation (i.e.

a conformal boost).

Additional supercovariant fields are required to complete the multiplet. The scalar fields

φα parametrize the coset SU(1, 1)/U(1), obeying φα = ηαβ(φβ)
∗ for ηαβ = diag(1,−1) and

φαφα = 1 with α = 1, 2. Under supersymmetry, they transform into a chiral fermion Λi.

This in turn transforms into two bosonic fields: a scalar field Eij and an anti-self-dual field

Tab
ij in the 10 and the 6 of SU(4), respectively. At a higher Weyl weight, one finds a chiral

fermion χijk in the 20. At the top of the multiplet lies a scalar field Dij
kl transforming

in the 20′. The field content consists of 128+128 degrees of freedom and is summarized in

Table 2, where we also give the Weyl weight w and the U(1) chiral weight c. Note that

only the positive chirality fermions are presented in the table; the negative chirality fermions
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Field SU(4) w c

eµ
a vierbein 1 −1 0

Gauge fields ψµ
i gravitino 4 −1

2 −1
2

(Independent) bµ dilatation gauge field 1 0 0

Vµ
i
j SU(4) gauge field 15 0 0

ωµ
ab spin connection 1 0 0

Gauge fields aµ U(1) gauge field 1 0 0

(Composite) φµi S-gauge field 4 1
2

1
2

fµ
a K-gauge field 1 1 0

φα 1 0 −1

Λi 4 1
2 −3

2

Covariant fields Eij 10 1 −1

Tab
ij 6 1 −1

χijk 20 3
2 −1

2

Dij
kl 20′ 2 0

Table 2. Independent and composite fields of the N = 4 Weyl multiplet.

transform in conjugate SU(4) representations and with opposite chiral U(1) weights. The

superconformal transformation rules of the various fields can be found in [6].

Below we will discuss a formulation of N = 4 superspace that corresponds precisely to the

superspace version of the N = 4 Weyl multiplet. The result, which we call N = 4 conformal

superspace, is constructed in direct analogy with the N = 1, 2 cases [47, 48], to which we

refer for further details such as the construction of superspace torsion tensors and curvatures.

This superspace can be shown to be equivalent, via a degauging procedure and a redefinition

of the U(1) connection, to the N = 4 superspace introduced by Howe [49], up to differences in

conventions and some field redefinitions. Our conventions are similar to the original reference

[6]. We take ηab = diag(−1, 1, 1, 1) and εabcd imaginary with γabcd = εabcd γ5. We also employ

two-component notation. The dictionary for gamma matrices is

γ5 =

(

δα
β 0

0 −δα̇β̇

)

, γa =

(

0 (γa)αβ̇
(γa)

α̇β 0

)

(A.1)

where α = 1, 2 and α̇ = 1, 2 denote left-handed and right-handed spinor indices. The matrices

(γa)αβ̇ are equivalent to i(σa)αβ̇ where σa obey the same relations as in Wess and Bagger [50].

A 4D N = 4 superspace is a supermanifold parametrized by local coordinates zM =

(xµ, θm, θ̄ṁ). Along with superdiffeomorphisms (which include spacetime diffeomorphisms and

supersymmetry at the component level), the superspace admits additional structure group

symmetries – Lorentz transformations (Mab), Weyl dilatations (D), chiral U(1) rotations (A),

SU(4) transformations (Iij), special conformal transformations (Ka), and S-supersymmetry

(Sα
i and S̄α̇i). Connection one-forms are associated with each of these generators. These
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include a supervielbein EM
A associated with covariant superdiffeomorphisms. The full su-

percovariant derivative in superspace is given by

∇A ≡ EA
M
(

∂M −
1

2
ΩM

abMab −BMD−AMA− VM
i
j I

j
i

− 1
2ΦM

α
i Sα

i − 1
2Φ̄Mα̇

i S̄α̇i − FM
aKa

)

. (A.2)

There is no explicit gravitino connection as it has been absorbed into the supervielbein. To

recover the action of ∇a on a component field φ, one identifies

dzM∇Mφ
∣

∣

∣

θ=0, dθ=0
= dxµ∇µφ (A.3)

with

EA∇Aφ
∣

∣

∣

θ=0, dθ=0
= dxµeµ

a∇aφ+
1

2
dxµψµ

αi∇αiφ+
1

2
dxµψµα̇i∇

α̇iφ . (A.4)

Here we have chosen Eµ
αi|θ=0 ≡ 1

2ψµ
αi as the definition of the gravitino. The factor of 1

2 is

to match conventions. From this expression, one finds

eµ
a∇aφ ≡ ∇µφ−

1

2
ψµ

αi∇αiφ−
1

2
ψµα̇i∇

α̇iφ (A.5)

where ∇µ carries all the connections other than the gravitino. It is ∇a rather than ∇µ that

corresponds to the supercovariant derivative Da in the component formalism [6].

The gauge transformations of the various connections are defined so that ∇A transforms

under Lorentz, dilatation, and SU(4) ×U(1) R-symmetry transformations as

[Mab,∇c] = −ηbc∇a + ηac∇b , [Mab,∇γi] =
1
2(γab)γ

β∇βi , [Mab, ∇̄
γ̇i] = −1

2(γab)
γ̇
β̇∇̄

β̇i ,

[D,∇a] = ∇a, [D,∇αi] =
1
2∇αi, [D, ∇̄α̇i] = 1

2∇̄
α̇i ,

[A,∇αi] =
1
2 i∇αi, [A, ∇̄α̇i] = −1

2 i ∇̄
α̇i ,

[Ij i,∇αk] = −δjk∇αi +
1
4δ
j
i∇αk, [Ij i, ∇̄

α̇k] = +δik∇̄
α̇j − 1

4δ
i
j∇̄

α̇k . (A.6)

The (anti)commutators involving the special conformal and S-supersymmetry generators in-

clude

{Sα
i, S̄α̇j} = −δij (γ

a)αα̇Ka , [Ka,∇b] = −ηabD−Mab ,

{Sα
i,∇βj} = −δijǫαβD+ 2δijMαβ − 2ǫαβI

i
j ,

{S̄α̇i, ∇̄
β̇j} = −δji ǫ

α̇β̇
D+ 2δji M̄

α̇β̇ + 2ǫα̇β̇Ij i ,

[Ka,∇αi] = (γa)αβ̇ S̄
β̇
i, [Ka, ∇̄

α̇i] = (γa)
α̇β Sβ

i , (A.7)

whereMαβ = 1
4(γ

ab)αβMab and M̄
α̇β̇ = 1

4(γ
ab)α̇β̇Mab are the anti-self-dual and self-dual parts

of the Lorentz generator. These coincide with the commutators of the superconformal algebra
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su(2, 2|4). Field-dependent deviations are found in the S-supersymmetry transformations of

the covariant derivatives, or equivalently, in the transformations of the connections, so that

[Sα
i,∇a] = −1

2(γa)αβ̇ ∇̄
β̇i − 1

12Tbc
ij(γbcγa)αβ̇ S

β̇
j +

1
4R(Q)abα

iKb

[S̄α̇i,∇a] = −1
2(γa)

α̇β∇βi −
1
12Tbcij(γ

bcγa)
α̇β Sβ

j + 1
4R(Q)ab

α̇
iK

b ,

{Sβ
j , ∇̄α̇i} = −

1

2
εjiklΛβk S

α̇
l +

1

6
Tbc

ji(γbcγa)ββ̇ ǫ
β̇α̇Ka

{Sβ̇ j,∇αi} = −
1

2
εjiklΛ

β̇k Sα
l +

1

6
Tbcji(γ

bcγa)β̇β ǫβαKa . (A.8)

Here we are using covariant superfields Tab
ij and R(Q)ab α

i whose θ = 0 pieces correspond

to the identically named component fields. The deformation of the above (anti)commutators

from the flat su(2, 2|4) superalgebra is necessary for N = 4, but not for N ≤ 2.10

The anti-commutators of the spinor covariant derivatives are

{∇αi,∇βj} = ǫαβ

(

εijklΛ̄
k
γ̇∇̄

γ̇l − 2T abijMab + εijklE
pkI lp −

1
2εijkl(γ

c)γ γ̇∇cΛ
γ̇lSγ

k

+ 2 χ̄β̇ ij
kS̄β̇k −

2
3 (Ek[iΛ̄γ̇

k + 2(γa)γ̇
γPaΛγ[i)S̄

γ̇
j] +

8
3∇bT

ab
ijKa

)

,

{∇̄α̇i, ∇̄β̇j} = ǫα̇β̇
(

εijklΛαk∇αl − 2T abijMab − εijklEpkI
p
l −

1
2ε
ijkl(γc)γ̇

γ∇cΛγlS̄
γ̇
k

+ 2χγijkSγ
k − 2

3 (E
k[iΛγk + 2(γc)γ γ̇P̄cΛ

γ̇[i)Sγ
j] + 8

3∇bT
abijKa

)

,

{∇αi,∇α̇
j} = (γa)αα̇

{

− 2 δji ∇a +
i
2 (Λ̄

jγaΛi − δji Λ̄
kγaΛk)A

+ 1
2 (−Λ̄kγaΛiI

j
k − Λ̄jγaΛkI

k
i + Λ̄kγaΛkI

j
i + δji Λ̄

kγaΛlI
l
k)

+ ǫδ̇γ̇

(

1
2(γa)

γ̇γχγ
kj
i −

1
4ε
kjlp(γbcγaΛl)

γ̇ Tbcip

+ 1
6δ

[k
i δ

j]
l (E

lp(γaΛp)
γ̇ + 2P̄c (γaγ

cΛl)γ̇)
)

S̄ δ̇k

+ ǫδγ
(

1
2(γa)γγ̇χ

γ̇
ki
j − 1

4εkilp(γ
bcγaΛ

l)γ Tbc
jp

+ 1
6δ

[j
k δ

l]
i (Elp(γaΛ

p)γ + 2Pc (γaγ
cΛl)γ

)

)Sδ
k

+
(

1
3εabcdR(V )cdji −

i
6δ
j
i εabcdF

cd − 2(Tad
jkTb

d
ki + Tb

djkTadki)
)

Kb
}

.

(A.9)

While the first two anti-commutators mirror the constraint structure of super-Yang-Mills

(5.11), as in the N ≤ 2 case, the third anti-commutator does not involve only δi
j∇a on

the right-hand side. The additional terms can be decomposed into a singlet and a traceless

operator in the 15. While the singlet operator could be absorbed into a redefinition of ∇a,

the operator in the 15 cannot be.11

10Corresponding deviations are also required for the N = (2, 0) theory in six dimensions [51] but not for

N = (1, 0).
11We leave the singlet operator unabsorbed in order to maintain contact with the conventional constraints

chosen in [6]. Note that this is in contrast to the choice made in N = 2 where a corresponding singlet operator

was absorbed [48].
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The commutators between spinor and vector derivatives are

[∇βi,∇a] = −1
4Tbcik (γaγ

bc)βγ̇ ∇̄
γ̇k − 1

2(γa)ββ̇R(Q)bcβ̇ iMbc

+ i
4Eij (γaΛ

j)β A+ i
2Pc (γaγ

cΛi)β A+ i
8εijklTbc

kl(γbcγaΛ
j)β A

− (γa)ββ̇χ
β̇
ij
kIjk +

1
4εkilpTbc

lj(γbcγaΛ
p)βI

k
j −

1
6Ejk(γaΛ

k)β I
j
i −

1
3Pc (γaγ

cΛj)βI
j
i

+ 1
8TbcijTde

jk(γdeγaγ
bc)ββ̇S

β̇
k −

1
12

(

R(V )bc
j
i −

i
2Fbcδ

j
i

)

(γbcγa − 3γaγ
bc)βγ̇S

γ̇
j

+ 1
24 ∇bTef ij (γcγ

ef )βδ̇(γ
bcγa − 3γaγ

bc)δ̇δ Sδ
j

+ 1
8εijklR(Q)bcβ

k ǫαγ(13γaγ
bcΛl − γbcγaΛ

l)γSα
j

+
(

1
8εabcdR(S)

cd
βi − (γa)ββ̇∇

cR(Q)cb
β̇
i − 2Ta

c
ijR(Q)cbβ

j
)

Kb ,

[∇̄β̇i,∇a] = −1
4Tbc

ik (γaγ
bc)β̇γ∇γk −

1
2(γa)

β̇β R(Q)bcβ
iMbc

− i
4E

ij(γaΛj)
β̇
A− i

2 P̄c (γaγ
cΛi)β̇ A− i

8ε
ijklTbckl(γ

bcγaΛj)
β̇
A

+ (γa)
β̇β χβ

ij
k I

k
j −

1
4ε
kilpTbclj (γ

bcγaΛp)
β̇ Ijk +

1
6E

jk(γaΛk)
β̇ Iij +

1
3 P̄c(γaγ

cΛj)β̇ Iij

+ 1
8Tbc

ijTdejk(γ
deγaγ

bc)β̇βSβ
k + 1

12

(

R(V )bc
i
j −

i
2Fbcδ

i
j

)

(γbcγa − 3γaγ
bc)β̇γSγ

j

+ 1
24∇bTef

ij(γcγ
ef )β̇δ(γbcγa − 3γaγ

bc)δγ̇S
γ̇
j

+ 1
8ε
ijklR(Q)bc

β̇
kǫα̇γ̇(

1
3γaγ

bcΛl − γbcγaΛl)
γ̇Sα̇j

+
(

− 1
8εabcdR(S)

cdβ̇i − (γa)
β̇β∇cR(Q)cbβ

i − 2Ta
cijR(Q)cb

β̇
j

)

Kb . (A.10)

Finally, the purely vector commutator defines the various curvatures

[∇a,∇b] = −1
2R(Q)ab

αi∇αi −
1
2R(Q)abα̇i∇̄

α̇i − 1
2R(M)ab

cdMcd −R(V )ab
i
j I

j
i

− Fab A− 1
2R(S)ab

α
iSα

i − 1
2R(S)abα̇

iSα̇i −R(K)ab
cKc . (A.11)

The torsion tensor Tab
c has been constrained to vanish.

The superfield content exactly mirrors the component field content of [6] summarized in

Table 2. Their superconformal transformations are exactly the same in superspace. Below

we give these transformations in our conventions.

Recall the lowest dimension covariant superfields of the N = 4 Weyl multiplet are a

doublet of superfields φα describing an element of SU(1, 1). φα carries U(1) charge −1. It is

natural to introduce three vielbeins for the group manifold

P ≡ εαβφ
αdφβ , P̄ ≡ −εαβφαdφβ , A ≡ i φαdφα = −idφαφα , (A.12)

so that the exterior derivative on SU(1, 1) becomes d = iAD0+PD−−+P̄D++. The one-forms

obey

dP = 2iP ∧ A , dP̄ = −2iP̄ ∧A . (A.13)
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On the coset space SU(1, 1)/U(1), P and P̄ are the vielbeins and A is the U(1) connection.

The pullback of these one-forms to superspace gives superconnections obeying identical equa-

tions. For P and P̄ , the expressions are unchanged if one replaces the exterior differential d

with the covariant one ∇ so that the expansion in tangent space reads

PM ≡ EM
APA = EM

Aεαβφ
α∇Aφ

β , P̄M ≡ EM
AP̄A = −EM

Aεαβφα∇Aφβ . (A.14)

However, in order to match the conventions for the U(1) connection A used in [6], it is

necessary to shift A by a fermion bilinear,

AM = AM −
i

4
EM

aΛ̄iγaΛi . (A.15)

From a superspace perspective this complicates the basic equations above but simplifies the

gravitino torsion tensor. Note that the standard N = 4 superspace reference [49] does not

make this redefinition, along with other differences.

The superspace one-form P in (A.14) is constrained so that

P̄ α̇i = 0 , P̄αi ≡ −Λαi ,

Pαi = 0 , P α̇i ≡ −Λα̇i . (A.16)

By choosing the spinor component of the U(1) connection appropriately, one can ensure that

φα is chiral, with

∇α̇iφα = 0 , ∇αiφα = −Λαi εαβφ
β . (A.17)

The remaining vector component is defined (as in the component formalism) to be

Pa ≡ εαβ φ
α∇aφ

β , P̄a ≡ −εαβ φα∇aφβ . (A.18)

The spinor superfield Λαi is S-invariant. It transforms under supersymmetry as

∇αiΛβj = −ǫαβEij −
1
2εijklTbc

kl(γbc)αβ ,

∇βjΛ
α̇i = 2 δij (γ

a)β
α̇ Pa . (A.19)

Eij is symmetric in its SU(4) indices while Tab
ij is antisymmetric in its SU(4) indices and

anti-self-dual in its Lorentz indices. These and their complex conjugates transform as

∇αkEij = −2χα
rs

(i εj)krs ,

∇αkE
ij = 2 δ

(i
k (γ

c)αβ̇∇cΛ
β̇j) − Λγ̇

iΛγ̇j Λαk + 2Λγ̇
lΛγ(iΛα̇lδ

j)
k ,

∇αkTab
ij = 2δ

[i
kR(Q)abα

j] + (γab)α
β
(

1
2χβ

ij
k −

1
6E

l[iδ
j]
k Λβl +

1
3δ
i
k(γ

c)ββ̇P̄cΛ
β̇j
)

,

∇αkTabij =
1
4εkijl(γ

cγab)αβ̇∇cΛ
β̇l . (A.20)
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Complex conjugation gives the other transformations. χα
ij
k is in the 20 of SU(4). R(Q)abα

j

is anti-self-dual and gamma-traceless, meaning it can be written

R(Q)abα
j =

1

2
(γab)

βγR(Q)γβα
j (A.21)

in terms of a totally symmetric R(Q)γβα
j . Their supersymmetry transformations are given

by

∇βlχα
ij
k = (γab)αβR(V )ab

[i
kδ
j]
l + ǫαβD

ij
kl +

1
6εkrst(γ

ab)αβ E
r[i(Tab

j]tδsl + δ
j]
l Tab

st)

+ 1
2ǫαβ δ

[j
l E

i]mEkm + 1
4ǫαβ δ

[i
l (2Λγ̇

j](γc)
γ̇γ∇cΛγk +Λγk(γc)γγ̇∇cΛ

γ̇j])

+ 1
4(γ

ab)αβ δ
[i
l (2Λγ̇

j](γa)
γ̇γ∇bΛγk − Λγk(γa)γγ̇∇bΛ

γ̇j])

+ 1
2ǫαβ δ

[i
l Λγ̇

j]Λγ̇mΛγkΛγm − traces ,

∇βlχ
α̇
ij
k = −1

2δ
k
l (γ

abγc)α̇γǫγβ∇cTabij +
1
2εijml(γ

c)β
α̇∇cE

km

− 1
2εijml(γ

cγab)α̇γǫγβ Pc Tab
km − 1

4(γ
a)β

α̇(2εijmlχ
γmk

n − εijmnχ
γmk

l)(γa)γγ̇Λ
γ̇n

+ 5
12δ

k
pεijlmΛ

α̇m(EpnΛβn + 2(γc)βγ̇P̄cΛ
γ̇p)

− 1
12δ

k
l εijpmΛ

α̇m(EpnΛβn + 2(γc)βγ̇P̄cΛ
γ̇p)

− 1
4(γ

abγc)α̇αǫαβTabij(δ
k
l Λ

γ
m(γc)γγ̇Λ

γ̇m − δml Λγ̇m(γc)γγ̇Λ
γ̇k)

− 1
4(γ

abγc)α̇αǫαβTabmi(δ
k
l Λ

γ̇
j(γc)γγ̇Λ

γ̇m − δml Λγ̇ j(γc)γγ̇Λ
γ̇k)

− traces ,

∇βjR(Q)abα
i = 1

2δ
i
j(γcd)αβ R(M)ab

cd + 1
4 (γ

cdγab +
1
3γabγ

cd)α
γǫγβ(R(V )cd

i
j −

i
2Fcdδ

i
j) ,

∇βjR(Q)ab
α̇
i =

1
4(γ

cdγabγ
e + 1

3γabγ
cdγe)α̇γǫγβ∇eTcdij . (A.22)

The superfield Dij
kl is pseudo-real and in the 20′ of SU(4). It transforms as

∇αmD
ij
kl = δm

[i
{

− 4 (γc)αβ̇∇cχ
β̇
kl
j] + 2(γa)αβ̇χ

β̇
kl
rΛγ̇

j](γa)
γ̇γΛγr

+ εklrs(−2Ej]tχα
rs
t +

1
2 (γ

abγc)αβ̇ ∇cΛ
β̇j] Tab

rs − 1
2 (γ

abγc)αβ̇ Λ
β̇j]∇cTab

rs

+ 1
3E

j]rEstΛαt −
2
3(γ

c)αβ̇P̄cΛ
β̇rEj]s + 1

2Λβ̇
j]Λβ̇t (γab)α

βTab
rsΛβt)

+ 2P̄c(γ
cγab)αγ̇ Tabkl Λ

γ̇j] + 1
3ΛαkElrΛγ̇

j]Λγ̇r − 1
3ΛαlEkrΛγ̇

j]Λγ̇r

− 1
6(γ

abγc)αβ̇PcΛ
β̇j](γab)

δǫΛδkΛǫl − 2εj]mrsT abklTabrsΛαm

}

− traces . (A.23)
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The SU(4) curvature R(V )ab
i
j and the Lorentz curvature R(M)ab

cd transform as

∇αkR(V )ab
i
j = −2Tabkl χα

il
j + δik R(S)abαj + 2 (γ[a)αα̇∇b]χ

α̇
jk
i − 1

3E
ilTabjkΛαl

+ 1
2εjklmE

ilR(Q)abα
m − 1

3δ
i
kEjl(γ[a)αα̇∇b]Λ

α̇l − 2
3TabjkP̄c(γ

c)αα̇Λ
α̇i

+ 1
2ΛαjΛβ̇

iR(Q)ab
β̇
k −

1
2ΛαkΛβ̇

iR(Q)ab
β̇
j −

1
3δ
i
k(γ[a)αα̇∇b]EjlΛ

α̇l

− 1
2δ
i
kΛαjΛβ̇

lR(Q)ab
β̇
l +

1
2δ
i
kΛαlΛβ̇

lR(Q)ab
β̇
j −

2
3δ
i
k(γ[aγ

c)α
β Λβj ∇b]Pc

+ 1
2εjklm (γcdγ[a)αα̇∇b]Tcd

imΛα̇l − 1
8ε
ilmn Tcd jlTef km(γ[aγ

efγcdγb])α
βΛβn

− 2
3δ
i
kPc(γ[aγ

c)α
β∇b]Λβj −

1
2εjklmTcd

il(γcdγ[a)αα̇∇b]Λ
α̇m − trace ,

∇αiR(M)abcd = −1
4(γab)α

βR(S)−cdβi −
1
4(γcd)α

βR(S)−abβi

+ 1
4(γ

eγab)αβ̇∇eR(Q)cd
β̇
i +

1
4(γ

eγcd)αβ̇∇eR(Q)ab
β̇
i . (A.24)

The Lorentz curvature is purely self-dual or anti-self-dual and traceless in its indices, meaning

R(M)abcd =
1

4
(γab)

αβ(γcd)
γδR(M)αβγδ + h.c. (A.25)

where R(M)αβγδ is totally symmetric.

The S-supersymmetry curvature decomposes as

R(S)abαi = R(S)−abαi + (γc)αα̇∇cR(Q)ab
α̇
i, (A.26)

where its anti-self-dual part is gamma-traceless,

R(S)−abαi =
1

2
(γab)

βγR(S)γβα i . (A.27)

It transforms as

∇δjR(S)
−
abαi =

1
4ǫγδ(γ

cdγab +
1
3γabγ

cd)α
γ(4∇c∇

eTedij + 2Tcd
lkT ef ilTef kj)

− 1
2εijkl(γ

c)αδ̇∇cΛ
δ̇kR(Q)abδ

l − 1
2εijkl εδα Λγ̇

k(γc)γ̇γ∇cR(Q)abγ
l

+ 1
8εijkl(γ

deγabγ
c)αδ̇∇c

(

Λδ̇k R(Q)deδ
l
)

,

∇αjR(S)
+
ab
α̇i = 2δij(γd)α

α̇∇cR(M)+ab
cd

+ 1
4(γ

cdγabγ
e + 1

3γabγ
cdγe)α̇βǫβα(∇eR(V )cd

i
j −

i
2∇eFcdδ

i
j

− 4∇fTfe
ikTcdkj − 2∇fTcdkjTfe

ik)

−R(Q)ab
α̇
kχα

ik
j −

1
6E

ikΛαkR(Q)ab
α̇
j +

1
6δ
i
jE

klΛαkR(Q)ab
α̇
l

− 1
3(γ

c)αβ̇P̄cΛ
β̇iR(Q)ab

α̇
j +

1
3δ
i
j(γ

c)αβ̇P̄cΛ
β̇kR(Q)ab

α̇
k

+ 1
3ε
iklm (γab)

α̇
β̇ T

cd
jkΛαlR(Q)cd

β̇
m

− 1
8ε
iklm (γab)

δ̇
β̇(γ

cd)γ̇δ̇(γ
ef )β̇γ̇ TcdjkΛαlR(Q)ef

α̇
m . (A.28)
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For reference, we give the supersymmetry transformations of Pa,

∇αiPa = −1
4(γaγ

bc)αβ̇Λ
β̇j Tbcji , ∇αiP̄a = −∇aΛαi −

1
2Λαi Λβ̇

j(γa)
β̇βΛβj . (A.29)

The S-supersymmetry transformations of all the independent fields are

Sα
kEij = 2δk(iΛαj) ,

Sβ
kTab

ij = −1
4ε
ijkl(γab)β

γΛγl ,

Sβ
lχα

ij
k = −1

2(γ
ab)αβδ

l
kTab

ij − 1
3 (γ

ab)αβδ
[i
kTab

j]l − 1
2ǫαβε

ijmlEkm ,

Sβ
lχα̇ij

k = 1
2δ
l
[iΛβj]Λ

α̇k − traces ,

Sβ
kTabij = 0 , Sα

kEij = 0 , Sα
mDij

kl = 0 , (A.30)

while the transformations of the curvatures are

Sα
iPa =

1
2(γa)αα̇Λ

α̇i , Sα
iP̄a = 0 ,

Sβ
jR(Q)abα

i = 1
2(γabγ

cd + 1
3γ

cdγab)β
δǫαδTcd

ij, Sβ
jR(Q)ab

α̇
i = 0 ,

Sα
kR(V )ab

i
j = −δkjR(Q)abα

i + εiklmTabjlΛαm + (γab)α
βχβ

ki
j

+ 1
6δ
k
j (γab)α

β
(

2P̄c(γ
c)ββ̇Λ

β̇i + EilΛβl

)

− trace ,

Sα
iR(M)abcd = −3

4(γab)α
βR(Q)cdβ

i − 3
4(γcd)α

βR(Q)abβ
i ,

Sα
jR(S)+ab

α̇i = 3
2ε
ijklΛαkR(Q)ab

α̇
l ,

Sβ
jR(S)−abαi = −3

4(γ
cdγab +

1
3γabγ

cd)α
γǫγβ(R(V )cd

j
i −

i
2Fcdδ

j
i )

+ 1
2δ
j
i (γ

cd)αβR(M)abcd (A.31)

The K-curvature R(K) is given by

R(K)ab
c = −∇dR(M)ab

cd . (A.32)

In analyzing the superspace Bianchi identities, we have corrected some minor typos that

have appeared earlier in the literature. In [6], the definition of aµ in eq. (4.8) should have −1/4

for the coefficient of the fermion bilinear rather than −1/2. Also in eq. (4.13), δQR(Q)ab
i,

the “+ h.c.” appearing in the Λ bilinear should be “-h.c.” A few minor typos in [16] have

also been corrected. In eq. (2.8), the sign of δSP̄a was incorrect. In eq. (B.2), δQR(S) and

δSR(S) did not include terms quadratic in fermions.

B Analysis of the Bianchi identities

B.1 Higher Bianchi identities from SUSY closure: an explicit example

Below we use the closure of the superconformal algebra to derive the full supersymmetry

transformations of the fields ρ and κ of the abstract multiplet defining the action principle.
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The resulting transformations can be shown to obey the various supersymmetry constraints

we encountered in section 2.2.

Let us start with ∇βmραij
k. This decomposes into a singlet and triplet of the left-handed

part of the Lorentz group and into the 6, 10 and 64 of SU(4). Schematically,

∇βmραij
k = (6,1) + (10,1) + (64,1) + (6,3) + (10,3) + (64,3) . (B.1)

Now observe that the condition for closure of ∇αi on C
ij
kl decomposes as

{∇βr,∇αs}C
ij
kl =

(

(6,1) + (10,3)
)

⊗ (20′,1)

= (6,1) + (50,1) + (64,1) + (10,3) + (64,3) + (126,3) . (B.2)

When one actually computes the explicit terms in {∇βr,∇αs}C
ij
kl, the leading terms will

be of the form ∇βmραij
k. The terms therein corresponding to the (10,1) and the (6,3) are

undetermined by supersymmetry – they involve the new fields E−
ab
ij and E ij. All the others

are determined. Solving for these and recombining all the various representations gives:

∇βlραij
k = −

1

16
Eab

mnδkl (γ
ab)αβεijmn +

1

2
Ekmǫαβεlijm −

8

3
AkmijElmǫαβ +

8

3
Akml[iEj]mǫαβ

−
4

3
AkmijTab

np(γab)αβεlmnp +
4

3
Akml[iTab

np(γab)αβεj]mnp

+
4

15
AmnijTab

pqδkl (γ
ab)αβεmnpq +

2

5
AmnpqTab

pqδkl (γ
ab)αβεijmn

+
4

3
CmnijE

kpǫαβεlmnp −
4

3
Cmnl[iE

kpǫαβεj]mnp +
4

15
Cmnp[iεj]mnqE

pqδkl ǫαβ

−
14

3
C̄kmijΛαlΛβm −

2

3
C̄kmijΛαmΛβl −

4

3
C̄kml[iΛαj]Λβm +

20

3
C̄kml[i|ΛαmΛβ|j]

+ 2C̄mnijΛαmΛβnδ
k
l −

2

3
Λα[i|κβl|j]

k −
2

3
Λαlκβij

k +
8

3
Λβ[i|καl|j]

k +
2

3
Λβlκαij

k

+
1

3
Λαmδ

k
l κβij

m −
1

3
Λβmδ

k
l καij

m +
1

3
Λα̇kǫαβǫα̇β̇Υ

β̇mn
[iεj]lmn

−
1

3
Λα̇kǫαβǫα̇β̇Υ

β̇mn
lεijmn −

1

15
Λα̇mδkl ǫαβǫα̇β̇Υ

β̇np
[iεj]mnp

+
13

60
Λα̇mδkl ǫαβǫα̇β̇Υ

β̇np
mεijnp − traces (kij) . (B.3)

An interesting feature is that Υα̇ij
k explicitly appears, even though this fermion does not

appear in the action principle. This is acceptable because when invariance of the action

principle is checked, these terms cancel against similar terms in the spinor derivative of κα̇ijk.

Next, let us analyze ∇̄β̇lραij
k. This is in a vector representation of the Lorentz group, so

let us focus just on the SU(4) group structure: 4 × 20 = 15 + 20′ + 45. To evaluate this,

we use {∇αi, ∇̄
β̇j}Crskl, which is generically in the 15 + 20′ + 20′ + 45 + 45 + 175. We

have already checked that the 45 gets set to zero. The 20′ can be solved straightforwardly.

The 15 is complicated: it gives a linear combination between the 15 of ∇̄β̇lραij
k and the

15 of ∇αiΥ
β̇kl

j. In other words, we must introduce a new field in the 15 into which ραij
k
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transforms and also declare that is the same 15 (up to additional terms) into which Υβ̇ij
k

transforms. Schematically, this leads to

∇̄β̇lραij
k = 2Λα[iκ

β̇lk
j] + δl[i|Λαmκ

β̇km
|j] − 4(γa)α

β̇∇aC
lk
ij + 15

+
8

3
CkmijΛαmΛ

β̇l −
8

3
C lmijΛαmΛ

β̇k +
8

3
C lkijΛαmΛ

β̇m

−
16

3
C lk[i|mΛα|j]Λ

β̇m +
16

3
δl[iC

kn
j]mΛαnΛ

β̇m − traces (kij) . (B.4)

We have left the 15 unspecified. Note that the two terms involving δli are actually in the

15 and could be absorbed into this term. They correspond to traces that are subtracted out

from other terms, when the 20′ was built. Since this 15 does not appear in the action, we

will not worry about how to precisely define it.

Now let us analyze the supersymmetry transformation of κα̇ijk. The ∇̄
α̇i transformation

is very similar to the calculation of ∇αi on ρ. Decomposing under SU(4) and the right-handed

part of the Lorentz group gives

∇̄β̇mκ̄α̇ijk = (6,1) + (10,1) + (64,1) + (6,3) + (10,3) + (64,3) (B.5)

and

{∇̄β̇i, ∇̄α̇j}Arskl =
(

(6,1) + (10,3)
)

⊗ (20′,1)

= (6,1) + (50,1) + (64,1) + (10,3) + (64,3) + (126,3) . (B.6)

The calculation is essentially identical to the prior one. The difference is that while we

determine the (6,3) to be essentially defined as the self-dual part of Eab
ij , the (10,1) does

not appear in the action. We denote it Xij . We find

∇̄β̇mκ̄α̇ijk = −
3

16
δmk Eab

ij(γab)α̇β̇ −Xklǫ
α̇β̇εmlij +

8

3
Cij lkE

mlǫα̇β̇ −
8

3
Cm[i

lkE
j]lǫα̇β̇

+ 2Aij rsEkpǫ
α̇β̇εrsmp + 2CijrsT

ab
kp(γab)

α̇β̇εrsmp +
1

2
δmk C

ij
rsT

ab
np(γab)

α̇β̇εrsnp

− 2C̄ijrsΛαkΛβpǫ
αβǫα̇β̇εrsmp −

7

6
Λα̇mΥβ̇ij

k −
1

3
Λα̇[iΥβ̇j]m

k +
5

6
δmk Λα̇pΥβ̇ij

p

+
1

6
Λβ̇mΥα̇ij

k −
5

3
Λβ̇[iΥα̇j]m

k −
1

3
δmk Λβ̇pΥα̇ij

p −
1

2
Λαkǫ

αβǫα̇β̇κβrs
mεijrs

+
1

4
δmk Λαpǫ

αβǫα̇β̇κβrs
pεijrs − traces (ijk) . (B.7)

Now we analyze ∇αi on κ̄. The steps are quite similar again. We expect something in

the 4 × 20 = 15 + 20′ + 45. To evaluate this, we use {∇αi, ∇̄
β̇j}Arskl, generically in the

15+ 20′ + 20′ + 45+ 45+ 175, which is self-conjugate. We will be able to fix the 45 in this

way and presumably the 20′ since we have two 20′ identities to use between ∇αiκ̄ and ∇α̇iκ.

Only one real combination of the 15 should be fixed between ∇αiκ̄ and ∇α̇iκ. The remaining
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15 should be the new field Ea
i
j . The calculation leads to

∇αlκ
α̇ ij

k = −
3i

8
δ[ilEa

j]
k(γ

a)α
α̇ +

i

8
δ[ikEa

j]
l(γ

a)α
α̇ − 4(γa)α

α̇∇aA
ij
lk

+ 4Aij lkΛαmΛ
α̇m + 4Cij lkPa(γ

a)α
α̇ − 4C̄ij lkP̄a(γ

a)α
α̇

+ Λαlρ
α̇ij

k − δ
[i
kΛαmρ

α̇j]m
l + 3δ

[i
l Λαmρ

α̇j]m
k

− 2Λα̇[iραkl
j] − Λα̇mδ

[i
k ραlm

j] + Λα̇mδ
[i
l ραkm

j] , (B.8)

∇α̇lκα ij
k =

3i

8
δ[i
lEa

k
j](γ

a)α
α̇ −

i

8
δ[i
kEa

l
j](γ

a)α
α̇ − 4(γa)α

α̇∇aA
lk
ij

+ 4AlkijΛ
α̇mΛαm + 4C̄ lkijP̄

a(γa)α
α̇ − 4C lkijP

a(γa)α
α̇

+ Λα̇lραij
k − δk[iΛ

α̇mραj]m
l + 3δl[iΛ

α̇mραj]m
k

− 2Λα[iρ
α̇kl

j] − Λαmδ
k
[iρ

α̇lm
j] + Λαmδ

l
[iρ

α̇km
j] . (B.9)

One can proceed in a similar way to compute the full supersymmetry transformations of the

fields appearing in the action principle using closure of the algebra.

However, the explicit form of the supersymmetry transformations is not particularly use-

ful. Aside from the relations (2.47) that define the higher dimension components from the

lower ones, the conditions for supersymmetric invariance must be direct consequences of the

basic constraints on Cijkl and A
ij
kl. To see this without explicitly building the transforma-

tions, we employ a standard technique in superspace: the Bianchi identity of the Bianchi

identity. We discuss this below.

B.2 The Bianchi identity of the Bianchi identity

It is commonly the case in superspace that checking Bianchi identities involves imposing only

a few independent constraints. Here we will demonstrate this by showing that the higher

dimension constraints are automatically satisfied once the lowest ones are fulfilled.

Let J be a gauge-invariant super-four-form, that is a scalar under Lorentz and R-

symmetry transformations as well as a conformal primary. It follows that I ≡ ∇J = dJ

is a gauge-invariant super-five-form, and its various components correspond to the Bianchi

identities that we wish to check. Our goal is to show that if the lowest dimension components

of I vanish, the higher ones necessarily do as well. The key to this computation is to exploit

that I must itself be closed, ∇I = dI = d2J = 0. The latter equation is the Bianchi identity

of the Bianchi identity.

Our starting assumption is that Iψ5 = 0. This is the basic supersymmetry constraint

(1.2). One easily sees that

0 = (∇I)ψLψ
5
R
= t0Ieψ4

R
,

0 = (∇I)ψ2
L
ψ4
R
= t0IeψLψ

3
R
,

0 = (∇I)ψ3
L
ψ3
R
= t0Ieψ2

L
ψ2
R
, (B.10)
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with the others following from complex conjugation. The key ingredient is that for N = 4

supersymmetry, the t0 cohomology is (almost) empty. That is, there are no forms that are

t0 closed that are not also t0 exact, except for terms that only contain gravitini (so that

t0 immediately annihilates it). This is a technical proof found in [31]. Now Ieψ4
R
clearly is

not t0 exact as it possesses gravitini of only one chirality; therefore, it must vanish. IeψLψ
3
R

and Ieψ2
L
ψ2
R

may both be t0 exact. However, if they are t0 exact, one can always choose a

different J to make them vanish. That is, IeψLψ
3
R

involves a term t0Jeψ2
R

and Jeψ2
R

can be

chosen to eliminate the t0-exact piece IeψLψ3
R
. In fact, this is what we did when we solved

Bianchi identities to this order: we used the t0-exact piece to determine the next part of J

and required all the other pieces to vanish. The same argument applies to Ieψ2
L
ψ2
R
, and one

concludes that Ieψ4 must vanish. Iterating this argument ultimately leads to the conclusion

that I = 0, and therefore J is closed.
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