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Gesture Networks: Introducing Dynamic Time Warping and
Network Analysis for the Kinematic Study of Gesture Ensembles
Wim Pouw a,b and James A. Dixona

aCenter for the Ecological Study of Perception and Action University of Connecticut; bDepartment of Psychology,
Educational, and Child Studies, Erasmus University Rotterdam

ABSTRACT
We introduce applications of established methods in time-series and net-
work analysis that we jointly apply here for the kinematic study of gesture
ensembles. We define a gesture ensemble as the set of gestures produced
during discourse by a single person or a group of persons. Here we are
interested in how gestures kinematically relate to one another. We use
a bivariate time-series analysis called dynamic time warping to assess how
similar each gesture is to other gestures in the ensemble in terms of their
velocity profiles (as well as studying multivariate cases with gesture velocity
and speech amplitude envelope profiles). By relating each gesture event to
all other gesture events produced in the ensemble, we obtain a weighted
matrix that essentially represents a network of similarity relationships. We
can therefore apply network analysis that can gauge, for example, how
diverse or coherent certain gestures are with respect to the gesture ensem-
ble. We believe these analyses promise to be of great value for gesture
studies, as we can come to understand how low-level gesture features
(kinematics of gesture) relate to the higher-order organizational structures
present at the level of discourse.

Introduction

Hand gestures come in a variety of forms that support their various functions. Gestures can serve
to point out objects in the environment, they can signal an object’s presence through iconic
reference, or they may beat with the rhythm of speech. Despite these different apparent functions,
we know that gesture typologies are to some extent artificial. For example, even iconic and
pointing gestures, both of which reserve degrees of freedom for referential expression, often still
exhibit beat-like functions as they couple with prosodic contrasts in speech (Esteve-Gibert &
Prieto, 2013; Shattuck-Hufnagel & Prieto, 2019; Shattuck-Hufnagel & Ren, 2018). Complicating
matters further, gesture’s role in discourse operates on multiple time scales. Beat gestures may beat
with the rhythm of speech (Leonard & Cummins, 2011; McClave, 1994; Wagner, Malisz, & Kopp,
2014); such rhythmic gestures couple with speech on a time scale that transcends single gesture
events. In a similar vein, some gestures have recurring forms that are repeatedly used to maintain
discourse cohesion (McNeill et al., 2001); such cohesion is established by producing recurrent
kinematic features in gestures over the time span of a narrative or discourse. In sum, gesticulation
is a complex, multiscale, spatiotemporal phenomenon, which means that multilevel approaches are
need to understand its dynamics.

Despite the general acknowledgment by theoreticians that gestures are not isolated events and
have a story to tell in terms of their higher-order organization during discourse (Kendon, 2004;

CONTACT Wim Pouw wimpouw@gmail.com Center for the Ecological Study of Perception and Action, University of
Connecticut, 406 Babbidge Road, Unit 1020, Bousfield Building, room 367
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/hdsp.
© 2019 Taylor & Francis Group, LLC

DISCOURSE PROCESSES
2020, VOL. 57, NO. 4, 301–319
https://doi.org/10.1080/0163853X.2019.1678967

http://orcid.org/0000-0003-2729-6502
http://www.tandfonline.com/hdsp
https://crossmark.crossref.org/dialog/?doi=10.1080/0163853X.2019.1678967&domain=pdf&date_stamp=2020-03-04


McNeill, 2005), there is currently a lack of quantitative approaches in gesture studies that relate
lower-order gestural features with the higher-order organizations of what we might call gesture
ensembles. We define gesture ensembles here as a researcher-defined set of gestures that can be
produced by a person or a group of persons to be investigated for possible structural properties that
these gestures possibly have in common. For example, one such prototypical structural property are
gestures that are similar in their spatial trajectories, which McNeill (2005) called “catchments.” In the
current article we aim to innovate the quantitative study of gesture ensembles. We hope therefore to
fortify ongoing innovations in the quantitative study of gesture kinematics together with speech
dynamics (Alviar, Dale, & Galati, 2019; Danner, Barbosa, & Goldstein, 2018; Pouw, Trujillo, &
Dixon, in press) by enriching the investigation into how gestural low-level events feed into higher-
level linguistic structures (Krivokapić, 2014; Ravignani et al., 2019; Shattuck-Hufnagel & Ren, 2018).

Study of gesture as a multiscale phenomenon

Pioneering the quantitative investigation of the idea of coherent subsets in gestural ensembles,
gesture researcher and theorist David McNeill and computer scientist Francis Queck introduced
new applications of methods of how to relate low-level gesture features with higher-order phenom-
ena in gesture (McNeill et al., 2001; Quek, 2004; Quek, Bryll, McNeill, & Harper, 2001; Quek et al.,
2002; Xiong, Quek, & McNeill, 2003). Central to this research program was the concept of “catch-
ment” gestures, which are gestures that are recognizably similar in form and repeat during discourse
(McNeill, 2000). Such catchments were of interest given the assumption “that the recurrence of
imagery in a speaker’s thinking will generate recurrent gesture features. Recurrent images suggest
a common discourse theme” (Quek et al., 2002, p. 178). The goal was to uncover the organization of
a gestural discourse, by matching recurrent low-level features such as hand displacement and
location, as well as symmetry relations between left- and right-hand gesticulation, with recurring
topics in the discourse (Quek, 2004).

This search for relevant commonalities in low-level features between different gestures has been
aided by recent developments in human–computer interaction research, where machine learning has
been successfully used to differentiate between, for example, beat versus iconic gestures or between
gestural phases, such as the main stroke versus the retraction phase (Madeo, Lima, & Peres, 2017).
However, so far the idea of catchments as a quantifiable construct that can be of interest for
understanding gesture dynamics under psychological experimentation has not gained ground.
Rather the concept of catchments in psychological research is still primarily quantified through
multirater judgments of gesture similarity (Kimbara, 2008; Mol, Krahmer, Maes, & Swerts, 2012).
Multirater judgments might in some cases be optimal to judge gesture similarities. For example,
when the meaning of a gesture needs to be recognized for recurrence in a discourse, we would need
a human interpreter. However, low-level feature recurrences of gesture (e.g., kinematic profiles)
cannot be reliably based on experimenter judgments. Therefore, the potential way in which higher-
order organization emerges from low-level dynamic gestural features is not studied at the moment,
whereas detecting such higher-order organization might be crucial for understanding discourse
processes.

This situation highlights the need for innovation in the multiscale study of gesture ensembles,
where multiple levels that comprise gesture activity are connected. Such innovation could be part
of a toolkit including already adopted multiscale approaches to gesture–speech dynamics. For
example, (bivariate) spectral analyses methods (cf. Xiong et al., 2003) have reappeared in the
gesture literature. These methods allow for the decomposition of gesture and speech time series
into several dominant time scales to further gauge on which temporal scales gesture and speech
couple their activity (Danner et al., 2018; Pouw & Dixon, 2019). Such spectral decomposition
approaches help quantify and correlate gesture and speech activity that happens on the syllable,
clause, and sentence time scales. Others have used approaches in dynamical systems research
whereby changes in temporal structures of categorical events or continuous time series
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(recurrence quantification analysis; Wallot, 2017; Webber & Marwan, 2015) are the object of study
as opposed to averaged metrics of speech or gesture activity (De Jonge-Hoekstra, Van der Steen,
Van Geert, & Cox, 2016; Fusaroli & Tylén, 2016; Pouw, De Jonge-Hoekstra, & Dixon, 2018). These
recurrence quantification analysis approaches are especially potent for understanding global
gesture patterns that reflect stability of recurrent behavior through a time-dependent analysis of
local fluctuations in gesture activity. As can be seen, all these approaches are heavily influenced by
dynamical systems thinking of “emergence” (Pikovsky, Kurths, & Rosenblum, 2001) and therefore
have as their common denominator the quantification of meaningful relationships between
a system’s local fast-scale activity with that of global slower forming patterns, without reducing
one scale into another. The new gesture analysis we are about to propose falls within this
endeavor.

In the current article we introduce established analyses in time-series and network analyses as
a novel approach to the study of the emergent structure of gesture kinematics. We call this approach
gesture network analysis. We use two previously obtained datasets that include motion-tracking data
of spontaneous gestures produced during narration (Lücking, Bergmann, Hahn, Kopp, & Rieser,
2010; Pouw, De Jonge-Hoekstra, & Dixon, 2018). We then assessed similarity in structure of the
velocity profiles of gestures using dynamic time warping (DTW; Giorgino, 2009; Mueen & Keogh,
2016). By performing these analyses for each gesture relative to each other gesture in the set of all
gestures produced in an ensemble, we are left with a weighted matrix where each pair of gestures is
given a similarity score. Such a weighted matrix can thus be treated as a network of similarity
relationships. This opens up the study of gestures via a network approach whereby gestures are
understood relative to its position in the network of the gesture ensemble (i.e., the set of all gestures).
We apply these analyses to assess a number of research questions serving to demonstrate the
versatility of the current methodology.

In the next section the basic procedure of gesture network analysis is introduced. This procedure
first requires a quantification of similarities between two time series, for which we introduce DTW.
The second procedure is the construction and statistical evaluation of networks from the produced
DTW similarity metrics.

Methods

Datasets

We reanalyze two previously collected motion-tracking gesture datasets to assess gesture ensemble
dynamics under varying contexts. For each dataset, “gesture events” were recorded and identified by
human annotators whereby an event consisted of the meaningful dominant hand stroke that
coordinated and co-occurred with speech.

DAF dataset
The first dataset is fully reported in Pouw and Dixon (2019) and concerns a within-subject kinematic
study of gesture’s coordination with speech when retelling a cartoon to the experimenter (who was
not speaking back) during a delayed auditory feedback (DAF) manipulation of 140 ms or retelling
without such a manipulation (NO DAF). In this study participants’ hand movements were recorded
with a Polhemus Liberty wired motion tracker. Only the dominant hand was allowed to gesture to
simplify analysis. We originally found that gesture–speech synchrony was more pronounced under
DAF but that gestures were also attracted to synchronize with the auditory delay. For the current
data we excluded 3 participants of the original experiment as these had fewer than 10 gestures per
condition given that they produced shorter narratives (i.e., gestures per minute were not necessarily
lower for these participants). The dataset therefore consisted of seven participants
(M age = 18.8 years, 2 women) producing 532 gestures in total (mean gesture count, 76; i.e., the
mean size of the gesture ensemble).
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Speech and Gesture Alignment Corpus dataset
The second dataset concerns the Bielefeld Speech and Gesture Alignment Corpus (SAGA) as
reported in Lücking et al. (2010), which was further enriched with videography motion tracking
by Pouw et al. (2018). The dataset involves German-speaking participants retelling a route navigation
they had learned in a virtual reality simulation. Participants were route-givers, explaining the route
to a conversational partner who was tasked to listen to be able to navigate the route afterward. The
SAGA dataset is richly annotated, and here we are interested in annotations relating gesture type of
the dominant hand, as well the semantic reference of speech co-occurring with gesture (see below).
The dataset consisted of six participants (5 males; no age reported) consisting of 864 gestures in total
(mean gesture count, 144; i.e., the mean size of the gesture ensemble).

Gesture network analysis

Step 1. Choosing a kinematic variable
We use 3D speed of the dominant hand (hereinafter velocity) as the key kinematic parameter under
investigation. We chose velocity as it is a simple one-dimensional vector that captures gross intensity
in gesture. Note, however, that what kinematic variable or variables should be chosen depends on the
research question. When interested in the absolute spatial trajectory or geometrical form of a gesture
(Shattuck-Hufnagel & Ren, 2018) one can choose 3D (x, y, z) or 6D (adding pitch, yaw, roll) motion
variables. Such analysis does require the researcher to further specify frames of reference that allow
for meaningful comparison (e.g., body-centric frame of reference or joint angles). If interested in
scale-free geometrical forms (e.g., Cook & Tanenhaus, 2009), such that for example a smaller-sized
circling gesture trajectory is deemed equal in kind as a larger-sized circling gesture, the researcher
should normalize the time series. Alternatively, in some cases the researcher wants to normalize time
for each gesture if interested in the absolute trajectory of a gesture while ignoring how slow or fast
such a trajectory is completed. As mentioned, for simplicity, however, we use the untransformed
velocity of the dominant hand as the main kinematic variable.

Step 2. Dynamic time warping
DTW enables a quantification of similarity between two univariate or multivariate time series
(Giorgino, 2009; Mueen & Keogh, 2016; Müller, 2007; Silva, Batista, & Keogh, 2016). It is applied
to “time series” (i.e., an ordered sequence of values of n length along some ordering dimension t),
and “time warping” refers to the procedure of computing the “distance” after nonlinear alignment
(i.e., warping) of observations between the time series. For example, for two gesture time series it can
be assessed how the first time series (e.g., velocity of a gesture event 1) must be stretched or
truncated so that values of time series 1 are maximally aligned with values of time series 2 (e.g.,
velocity of a gesture event 2), where maximal alignment means which observation in time series 1 is
a closest match (in time and absolute value) with an observation in time series 2. Then, the distance
for each matched observation is computed and finally summed yielding a measure of the dissim-
ilarity between both time series. The stretching and truncating (i.e., matching of the observations)
follows several rules; for example the order of observations after warping must be preserved (for
formal definitions see Müller, 2007 and Silva et al., 2016).

Figure 1 shows an example of two time series and the relative distances between them as
computed by R package dtw (Giorgino, 2009); we use this R package for DTW analyses
throughout the article. For computing the DTW distance measure, the distances for each matched
observation are summed and optionally then normalized for the length of the time series.
Normalization is needed given that distance is the result of adding up distances for each matched
observation of the time series. Therefore, longer time series will also have higher distance scores if
not normalized for time. Therefore, we normalize the distance measure (by the cumulative length
of the two time series compared; Giorgino, 2009) since we compare a great many time series with
variable lengths.

304 W. POUW AND J. A. DIXON



We have briefly mentioned that the warping procedure is defined by rules that constrain how the
cross-matching of values between time series is performed. Although for the current demonstration
article we do not modify the default rules as set by R package dtw (Giorgino, 2009), it should be noted
that there are a host of customizations to DTW depending on unique features of the researcher’s data.
We highlight one common departure from generic DTW. Recently the so-called end-points constraint
has come under scrutiny (Silva et al., 2016). The end-point constraint dictates that the matching
procedure should be performed from beginning to end of the time series. However, often the beginning
and end of an event (e.g., a start and ending of a gesture event) are not the most important points of
interest, and often it is difficult to define when an event (e.g., gesture) really starts and ends. As
a consequence, distances that are computed for the beginning and end points may inadvertently inject
noise into the distance estimate. Indeed, we prioritize the comparison of most important part of an event
that defines the most variance in the signal (i.e., the central chunk of information in the gesture event).
Therefore, Silva et al. (2016) reviewed several techniques and introduced their own solution (called ψ-
DTW) that relaxes the end-point constraint; this solution has been found to increase accuracy and
computation speed in several classification tasks.1

Multivariate DTW. DTW was originally developed for speech recognition purposes, whereby
differences in, for example, syllable length could be ignored while commonalities in acoustic
structure recognized. However, such analyses were performed not with a set of one-dimensional
time series but with multidimensional time series containing spectral coefficients. Indeed, we can
imagine that DTW analysis is equally applicable when the time series has an extra dimension.
Figure 2 shows the same time series as above, but this time a speech component (amplitude
envelope2) is added to the “state-space” for the time series. State-space here merely means a space
onto which states (e.g., gesture and speech states) of a system can be mapped. In the current
multivariate case a state at time t is not only defined by the velocity of a gesture at t but also the
amplitude envelope of speech at t. Again, we can imagine that DTW can be applied here in a similar
fashion by computing the relative distances between the two multivariate time series that need to be
applied in warping one onto the other but this time in a multidimensional state-space. Note that this
multivariate DTW estimate we use assumes some kind of dependence. We assume a dependence
between speech and gesture, as they are a strongly coupled systems, one affecting the other and vice
versa. However, we could also opt for an independent comparison, whereby we assume that speech
and gesture are two states of two different systems that define an outcome of interest. For such an
independent approach we simply calculate the distance between time series for each dimension
separately as to then sum the independent distance estimates (Mueen & Keogh, 2016). Note that for

Figure 1. Example DTW distance graph of two velocity profiles. This graph is produced by R package dtw and concerns two
gesture velocity profiles (TS1 = gesture 1 velocity; TS2 = gesture 2 velocity) that were extracted from the DAF dataset (Pouw &
Dixon, 2018). At regular time intervals a non-normalized DTW distance is indicated with the gray dashed lines, but note that DTW
computes these distances for each observed value.
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all the multivariate DTW analyses performed, we z-normalized the amplitude envelope and the
gesture velocity for each participant’s range such that distances are computed on comparable
dimensions.

Step 3. Network analyses
Weighted networks. The third step is extracting DTW’s output for each possible comparison of gesture
pairs in the gesture ensemble and construct matrices that can be used as input for network analyses. For
network analyses and graphing we use the R package igraph (Csardi & Nepusz, 2006). Figure 3A shows
an example of how a weightedmatrix is constructed containing for each cell DTW results for a gesture pair
comparison. The resulting matrix of values is often referred to as a weighted matrix (or distance matrix), as
each cell of the matrix expresses a continuous “weight” of the relationship between two nodes (i.e., gesture
nodes). The relationships are also called “edges” and are graphically expressed as connections between
nodes, and the length of those edges reflects (in the case of weighted networks) the degree of dissimilarity
(i.e., distance) between two (gesture) nodes. Figure 3A shows such a network graphic expression of the
weighted matrix, where it is important to understand that each edge connecting each node pair has
a certain length that reflects the DTW distance between these two gesture events’ velocity profiles3 (or
whatever gestural dimension that might be compared).

Measures for weighted networks. For simplicity we only use two network measures that reflect two
properties of how a gesture node is situated relative to the gesture ensemble. First, how central is the
position of gesture in the gesture ensemble network? Second, how diverse are the relationships of the
gesture node relative to the gesture ensemble? Both measures are standard measures computed by
igraph (Csardi & Nepusz, 2006).
Mean distance. The mean distance is a simple measurement of the average DTW distance of
a gesture to all other produced gestures in the ensemble. It is computed by averaging all distances
for each gesture, and in network graphic terms lower mean distance expresses the centrality of the
gesture in the gesture ensemble. Namely, when gestures are least dissimilar to other gestures (i.e.,

Figure 2. Example multivariate distance graph. This graph (produced by the authors) provides an example of multivariate state
space where DTW can be applied. The gestures velocity profiles (cm/s) of Figure 1 are replicated here, but this time, differences in
concomitant speech (ENV, amplitude envelope) are added as another dimension. The gray lines now reflect how DTW would
compute distances in such a multivariate state-space.
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have a lower mean distance to all gestures in the ensemble) they will occupy a position in a gesture
network such that distances between all nodes are minimized (i.e., more central position).
Diversity. Diversity is a more complex measure tracking variability of a pattern and is used in
network analysis to quantify the relative diversity or complexity of a node’s relationships (Eagle,
Macy, & Claxton, 2010). The measure is the scaled Shannon entropy of the weights of the node’s
edges, which in our case means the entropy of the gesture’s DTW distances to all the other gestures
in the ensemble. Higher entropy indicates that a node (gesture) is more diversely connected (more
diverse DTW distances) to all other nodes (gestures) in the network; in other words, the gesture has
more variable similarity relations and there is no typical way to describe its relationships. A lower
entropy indicates that a node has more uniform relationship with all other nodes in the network; for
example, all gestures have the same similarity (then entropy = 0), or if there are gestures that are very
alike and gestures that are not alike but nothing in between.

Figure 3. Example data processing for network analysis of gesture ensembles. (A) Weighted matrix G reflecting a gesture
ensemble of five gestures. Each matrix cell Gij consists of DTW distance values. For example, cell G15 contains the DTW distance
of gesture event g1 and g5. The diagonal of the matrix always contains 0 as the DTW distance between an identical gesture event
is 0. On the right-hand side the weighted matrix is expressed in a network graph, whereby each DTW distance is expressed as an
edge connection between gesture events. Gesture events are expressed as the nodes of the graph. It can be seen that G23 (in
purple) has a higher-length edge than G53 (in green), which means that gesture event g2 and g3 are more dissimilar (higher DTW
distance) than gesture event g5 and g3. (B) Result of dichotomizing the weighted matrix G into what is called an adjacency matrix
G’. We can for example dichotomize each cell of G to a 0 or a 1 provided the value is under or above the median DTW distance of
G. This results in an adjacency matrix G’, which now leads to empty edge connections between nodes. This is clearly reflected in
the network graph of G’ where now only short edge lengths survive. This adjacency network further provides detection of
subnetworks called cliques. It can be seen that gesture events g3-g5-g4 now form a subgroup, which could mean that these
gestures are meaningfully related (as they are comparable in their kinematics).
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Adjacency networks. We mostly work in this article with weighted networks. Weighted networks
are a special kind of network as each node is connected to some weighted degree with all other nodes.
However, we might be interested in studying how networks may be parsed into subnetworks. One
way to accomplish this is transforming a weighted matrix into an adjacency matrix, whereby each
value of a cell is given a 0 or a 1 based on some distance threshold, for example, any DTW distance
values (i.e., edge weights/distance) higher than the median DTW distance for a gesture ensemble
should be treated as unconnected (0) and all other DTW distance values under the median are
similar enough to be treated as connected (1). To see how a weighted matrix is transformed into an
adjacency matrix and what this means for the network graph please see Figure 3B. Basically, an
adjacency matrix is a dichotomized version of weighted matrix, where each value in weighted matrix
is transformed to a 0 or 1 for the adjacency matrix depending on some threshold (e.g., median split).
A 0 in the adjacency matrix indicates that a gesture pair (two nodes) will not have an edge
connection, and a 1 indicates that the two gesture nodes do get a connection. If the network
graph in Figure 3A and B are compared, it can be seen that the adjacency network has now fewer
connections between its nodes as large distances between gesture velocity profiles are treated as
unrelated events.

The reason for transforming a weighted network with continuous similarity scores into an
adjacency matrix with 0 (no edge connection) and 1 (edge connection) primarily lies in making
apparent hidden subnetworks within the larger ensemble. We could for example in our case wonder
whether gesture velocity profiles that are so dissimilar from each other should be linked with an edge
as this might obfuscate possible higher order structures (e.g., subnetworks) that are difficult to detect
otherwise in a weighted network graph where nodes are all connected (but spatially dispersed based
on similarity distance). Thus, although to some extent arbitrary, the result of dichotomizing
a weighted matrix into an adjacency matrix will allow for further study of sub-networks.

Results

Now that the general procedure for gesture network analysis has been laid out, we provide four
research-specific implementations to demonstrate the versatility of gesture network analysis. First,
we use a simple approach to DTW with univariate time series (gesture velocity) where we assess how
different categories of gestures (e.g., beat vs. iconic) are situated in a gesture network. Second, we use
a multivariate DTW approach, wherein we also include a speech time series so as to see how
a behavioral perturbation can affect a network constructed out of gesture + speech events (as shown
in Figure 2). For the third analysis, we combine annotations about what is said in speech with
gesture network analysis, whereby we can show that referents in speech can predict dynamic aspects
of gesture (i.e., positions of co-occurring gestures in the gesture network). In the final proof-of-
concept “mock” analysis, we show that gesture network analysis is especially promising for assessing
large-scale gesture dynamics at levels that transcend individual people, whereby we construct a large
gesture network of an ensemble of gestures produced by multiple persons who speak the same or
a different language. This final analysis promises to provide a way to assess whether gestures are
affected in their kinematics when produced under different spoken language.

Simple approach with univariate time series: gesture categorization

Figure 4 shows an example of a network of a gesture ensemble produced by single participant, with
colored nodes for three types of gestures that were coded in the DAF dataset (Pouw & Dixon, 2019).
Three types of gestures were coded. First, beat gestures are those gestures that do not have depictive
or symbolic content and oscillate with the prosody of speech. Second, iconic gestures are those
gestures that have depictive or symbolic content. Third, undefined gestures are those gestures that
did not fit the above categories. For this analysis we include all gestures that are produced under
DAF and NO DAF conditions.
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An assumption in the literature is that iconic gestures are more complex in their trajectories as
compared with beat gestures. In the current network analyses this translates into clear-cut predic-
tions about how gesture nodes should be situated to other nodes in a network. Namely, iconic
gestures should be connected to other gestures with farther distances (they are more likely to be
dissimilar to the other gestures), and they are more likely to hold more diverse similarity relation-
ships with the other nodes. To assess this we constructed a weighted matrix with DTW distances
between velocity profiles of gestures (only iconic and beat gestures) for each participant individually
and extracted the distance and diversity measures. This procedure enables the comparison of
differences in gesture categorization within participants.

To test the differences for gesture categorization as shown in Figure 5, we performed mixed
regression analyses with R package nlme (Pinheiro, Douglas, Debroy, Yes, & Yes, 2011). All models
have participant as random intercept. A model containing gesture type (iconic vs. beat) as
a predictor for distance improved model fit as compared with a base model predicting the overall
mean, change in χ2 [1] = 14.95, p < .001. The model showed that iconic gestures were farther
spatially removed from all other nodes as compared with beat gestures, b Iconic = 0.025, 95% CI
[0.013, 0.038], t(475) = 20.16, p < .001. Thus, we can conclude that iconic gestures are more
dissimilar in their velocity profile to all other gestures in the ensemble, whereas beat gestures have
a higher likelihood to have a similar velocity profile as other gestures.

We would equally predict that iconic gestures will have more variable similarity with other
gestures, because they are often more complex in their trajectories (as compared with beat gestures).
We tested this, and a model containing gesture type (iconic vs. beat) as a predictor for diversity
improved model fit as compared with a base model predicting the overall mean, change in χ2

[1] = 59.50, p < .001. Indeed, iconic gestures had a higher diversity score as compared with beat
gestures, b Iconic = 0.013, 95% CI [0.010, 0.016], t(475) = 7.96, p < .001.

Figure 4. Example gesture ensemble for single participant. This gesture network reflects beat (red), iconic (blue), and undefined
gestures (gray) which are compared with each other. It can be seen that the iconic gestures are more spatially dispersed as
compared with beat gestures, which seem to occupy a more cluttered region. Note that spatial dispersion means a higher dynamic
time warping distance (i.e., higher dissimilarity in velocity profiles). For all the different networks for each participant see here:
https://osf.io/teuyn/.
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Multivariate approach: gesture–speech trajectories when speech is perturbed

Using the DAF dataset again, we constructed a similarity network not only on the basis of comparing
a velocity profile of a gesture but also on comparing a concomitant speech event during the gestures using
the amplitude envelope time series. This multivariate approach of DTW provides a comparison of the
similarity of gesture–speech events (see Figure 2 again for reference). Figure 6 shows an example of such
a gesture–speech ensemble network. In the current application, wewant to see if a gesture–speech ensemble
is affected by DAF of speech (which affects speech fluency) as compared with a control condition with no
DAF. In the original study (Pouw&Dixon, 2019), we obtained that DAF perturbation led tomore gesture–
speech synchrony and a slight gesture–speech offset. The dis-synchronization of gesture wasmoved toward
the auditory delay. We have no specific hypothesis of what will happen to the gesture–speech ensemble
when under DAF. On the one hand, it can be reasoned that gesture-speech events becomemore variable as
compared with other gesture–speech events when under a perturbation, as gesture and speech is pushed
out of its usual routine. On the other hand, we might expect that gesture–speech events will become more
uniform, given that we have found earlier that there is stability under perturbance in terms gesture–speech
synchrony (although note that we are assessing uniformity on different levels of analyses—the level of
gesture ensembles rather than gesture–speech synchrony within single events).

We performed network analyses for each subject’s gesture ensemble as exemplified in Figure 6. As
shown in Figure 7, we find that a DAF speech perturbation lead to more dissimilarity (higher
distances between nodes) and more diversity as compared with gesture–speech events that were not
produced under a speech perturbation. Namely, a model predicting distances based on condition
(NO DAF vs. DAF) reliably accounted for more variance as compared with a base model predicting
the overall mean, χ2 [1] = 29.55, p < .001. We also added gesture type (Iconic vs. Beat) and its
interaction with condition to the model, but this did not lead to improved model fit. The best fitting
model with condition as predictor shows that DAF perturbation led to higher distances (more
overall dissimilarity) for gesture–speech events as compared with the NO DAF condition, b NO DAF
vs. DAF = −0.002, 95% CI [−0.0028, −0.0018], t(475) = −3.86, p < .001.

Figure 5. Distance and diversity scores for beat and iconic gestures. The boxplots contain summary data (average and quartiles)
for distance and diversity for the gestures that were produced. The violin plots indicate the smoothed density distribution. The
jitter plot indicates the individual observations for distance and diversity estimates, whereby they are randomly jittered on the
horizontal axis as to increase visibility. As can be seen beat gestures have shorter distances to other gestures (i.e., are more similar
in their velocity profiles) and show a lower diversity (have less diversity relative to other gestures in the ensemble).
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We also found that condition was reliably more predictive for diversity of gesture–speech event
nodes as compared with a base model, change in χ2 [1] = 14.70, p < .001. Although an interaction of
condition and gesture type was not reliable as an added predictor, adding gesture type as a main
effect to the model containing condition did improve model fit, change χ2 [1] = 20.79, p < .001. The
final model shows that DAF speech perturbation lead to more diverse distance relations of gesture–
speech events, b DAF vs. NO DAF = −0.002, 95% CI [−0.002, −0.001], t(475) = −4.22, p < .001.
Further, Iconic gesture–speech events had more diverse distance relations, b Beat vs. Iconic = 0.0012,
95% CI [0.001, 0.003], t(475) = −4.56, p < .001.

Figure 6. Gesture–speech network with DAF manipulation. The current gesture–speech network comprises gesture–speech events
produced by single participant. Each node reflects a gesture (velocity) and speech (amplitude envelope) event that is compared
with the other gesture–speech events. In gold, gesture–speech events were produced under DAF manipulation; in black are the
gesture–speech events produced under control NO DAF condition. It can be seen that gesture–speech events produced within
DAF or within NO DAF conditions are closer to each other. For all the different networks for each participant see here: https://osf.
io/3csfu/.

Figure 7. Effects of speech perturbation on distance and diversity measures.
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Thus, interestingly, we can obtain new insights in how gesture and speech are affected in their
dynamics relative to the ensemble of gesture–speech events. We find that perturbing the speech
system leads to more diverse and dissimilar gesture–speech trajectories as compared with the gesture
ensemble.

Speech annotation-enriched gesture networks: relating semantic processes to gesture
kinematics

The German-speaking SAGA dataset contains codings of the references that were made in speech
(see section 3.4.3, of documentation Bergmann et al., 2014). That is, all possible landmarks that were
referred to during the route-navigation speech task were coded. We quantified how often references
were made during iconic4 gesturing by a participant. Namely, some references to objects that were
likely more important in the route navigation are talked about more often than other referents
during gesturing. We asked whether gestures that were produced with semantic references occurring
repeatedly during a discourse are more likely to be different from gestures that co-occur during
novel references (i.e., references that are made less often). Indeed, recall from the introduction this is
precisely what “catchments” were about, where gestures with recurring semantics have recurring
kinematics. If gestures co-occur with a recurring reference in speech, we would then predict that
such gestures have lower distance scores, as they are more like most other gestures and occupy
a more central position in the gesture network. To test this we first assessed for each gesture event in
the participant’s gesture ensemble which speech reference was concurrently made (if two references
were made, then the reference which was talked about longer during the gesture was used). Having
the number of “occurrences” of references, we could then relate the distance measure with the
recurrences.

We find that that gestures which co-occur with speech references that are more prevalent during
the discourse seem to be more similar in their kinematics to most other gestures. Figure 8 seems to
further show that this relationship follows a power-law relationship. This means that the relationship
between number of speech references and gesture network position is nonlinear; particularly for the
first levels of increasing speech references, the network position is heavily affected. After a particular

Figure 8. Relationship with distance measures as compared to the number of occurrences of reference in speech. This graph
shows whether gesture distance to the gesture ensemble was affected by whether that gesture was produced with a speech
referent that occurred more or less (occurrences). The graphs seem to show a relationship such that especially within about 15
references it seems that gestures become more similar relative to the gesture ensemble when the speech referral is less novel (as it
occurred more during the discourse). The right-hand plot shows the log-log plot for occurrences and distance.
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higher level of speech references has been reached, further increases in references does not further
affect a gesture’s network position (or at least less so as compared with increases from lower levels of
speech references). If there is a power-law relationship, there should be a linear relationship between
the logarithm of distance and the logarithm of occurrences. Indeed, when regressing (random
intercept participant) log(occurrences) on the log(mean distance), we obtain that this model fits
better than a model predicting the overall mean of log(distance), change in χ2 [1] = 8.64, p = .003.
The final model indicated that when occurrences of a speech referent increases, there is a lower
distance (higher similarity) with the other gestures in the ensemble, b = −0.044, 95% CI [−0.072,
−0.015], t(420) = −2.987, p = .003. The power law indicates that at a certain extreme of occurrences,
the negative relationship with distance becomes saturated; in other words, at some point more
recurrences do not predict lower distance. Note that a linear model yielded a marginally reliable
result indicating a similar conclusion (p = .076).

Proof-of-concept large-scale analysis: language-specific gesture kinematics in groups of
speakers

As juxtaposed in Methods, so far the network graphs we have used are organized such that all
gesture events are connected to all other gesture events (as we have performed DTW for each gesture
comparison). This means that all gesture events are linked and only spatially separated by their
similarity distances. We can, however, force the gesture-similarity network to break ties when
gestures are too dissimilar to each other with some arbitrary threshold. In this way we can force
subnetworks to form that may be more revealing than simply spatially separating them. We use this
analysis as a proof-of-concept “mock” analysis to show how our approach can study kinematic
similarities in gestures in large groups, groups of speakers producing gestures while speaking
different languages. Note though, due to large differences in the datasets used, we cannot and do
not draw any conclusions or apply any inferential statistics on the results.

The “mock” research question that we want to assess is whether gestures produced within
a particular language can be differentiated purely by gesture kinematics. In other words, can we
detect regularities in kinematics of gesture ensembles that reflect whether they belong to a particular
language? This question can now be addressed quantitatively via gesture network analysis. Given that
we have two datasets where participants spoke a different language, namely the American-English
DAF dataset (Pouw & Dixon, 2018) and the German SAGA dataset (Lücking et al., 2010), we could
approach this question via network analysis, and specifically we might want to use dichotomized
adjacency networks for this. Before we proceed, however, it is important to note that these results are
not conclusive in any way as the current datasets are different in a number of ways next to the
difference in spoken language. Namely, in the DAF dataset, participants could only move their
dominant hand whereas in the SAGA dataset they could move both hands. Furthermore, different
motion-tracking technology was used. In the DAF dataset a high-sampling 3D motion tracker was
used, whereas in the SAGA dataset we obtained 2D motion tracking using videography motion-
tracking (Mathis et al., 2018), which has a lower sampling rate. Finally, retelling a cartoon narrative
as in the DAF dataset is different and will most likely solicit different types of gestures, as compared
with explaining a route to a particular landmark as was the case for the SAGA dataset. Thus, the
method and nature of the tasks was different on a number of dimensions.

To assess whether gesture kinematics of Germans could be differentiated from North Americans, we
constructed a large network comparing all velocity profiles of iconic gestures produced in the two
datasets (a total of 802 iconic gestures, of which 542 German gestures). We chose iconic gestures as
these gestures are likely to be most differentiable and have a higher variability as compared with for
example beat gestures. The velocity profiles were z-normalized for each dataset, such that absolute
differences in motion-tracking output were not taken into account for DTW analyses. After construct-
ing a weighted matrix (802*802 = 643,204 cells) we transformed this matrix into an adjacency matrix
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where each value under the median was given a value of 1 and all values reflecting high DTW distances
(above median) were given a 0. The adjacency matrix was plotted using igraph shown in Figure 9.

As can be seen in Figure 9, iconic gestures that were produced in the North American speaking
dataset were much more interconnected with each other (as now represented by their relative positions
to each other) as compared with their connections with gestures produced in the German-speaking
dataset. Although we want to showcase the promise of this method to study language-modulated
gesture kinematics, we should not make anything out of the current results, given the fact that these
gestures are produced under completely different circumstances. Rather we aim to show with this
demonstration that the current network approach is able to provide a graphical description of how
gesture ensembles are produced by a different group of people. Thus, whether the current pattern in the
data reflect true language differences (or methodological differences) we must leave for more controlled
experimentation. Note that if we wanted to test the current reliability of the cluttering, we could assess
whether for example North American gestures are more likely to have edges with other North American
gestures (as compared with German gestures). Other more advanced network analysis measures
concern the identification of subcliques of networks (subnetworks) and see whether they correlate
with predefined labels (Csardi & Nepusz, 2006). In a weighted network approach we could compare the
mean distance of German–German connections as compared with German–American connections.

Discussion

The goal of the current article was to show the potential of novel applications of bivariate time series
and network analyses for the kinematic study of gesture ensembles. This novel approach in gesture

Figure 9. A gesture ensemble network of groups of speakers (Germans and North Americans). The current adjacency network is
built from dichotomizing (based on a median threshold) a weighted network containing the DTW analyses of the velocity profiles
of gesture pairs. The geographical position of each node is now determined by the number of connections it has with the other
nodes. It can be seen that for example the most highly placed blue (North America – US) node only has connections to other
gestures that were also produced by North Americans but not to the gold (German) nodes (in a weighted network it would still
connect to all other German nodes). Nodes that have no connection with other nodes are not plotted here. It can be seen that
there is a clear case of cluttering where iconic gestures from the North American dataset are more likely to be connected with
other North American gestures.
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research we may call gesture network analysis. These analyses allow for the study of how low-level
features of multimodal language (e.g., gesture velocity profiles, concomitant speech) are intercon-
nected in a way that reflects higher-order structure on a discourse level. Namely, all analyses have
shown structural properties in gesturing that emerge over time that are apparent when looking at the
kinematic inter-relations between gestures. Although the current results are exploratory and need to
be replicated, we have obtained novel insights into how gesture categorization, speech perturbations,
and semantics of co-current speech affect gesture ensemble dynamics. Finally, we have shown in
a proof-of-concept fashion, how one could study with gesture network analysis whether the language
spoken is reflected in the higher-order dynamics at the level of gesture ensemble kinematics.
However, again note that these final analyses do not provide any evidence for this and was purely
demonstrative for the potential of gesture network analysis. Below we summarize the results and
further emphasize the potential of each of these analyses for future research.

Gesture categorization

The current analyses showed that iconic-labeled gestures showed much more dissimilarity from all
other gestures in the ensemble and showed higher diversity as compared with beat-labeled gestures.
This is a straightforward result that dovetails with general assumptions about these gesture types.
A further potential of this type of analysis is to seek further differentiations of more fine-grained
gesture typologies (e.g., character-viewpoint gestures, metaphoric gestures) in gesture networks.
Thus, the current analyses provide a way to quantitatively ground the existence of the myriad of
gesture-typologies that theorists have proposed (Kendon, 2004; McNeill, 2005).

Gesture–speech trajectories when speech is perturbed

The speech perturbation analyses were aimed to show that the effect of experimental manipulations
can be studied on the ensemble level and that networks can be constructed out of gesture–speech
ensembles as well by applying multivariate DTW analyses. For this analysis we defined the time
series of each event by gesture velocity as well as amplitude envelope of concomitant speech. We
found that perturbing speech with a DAF (which yields speech disfluency) affected how gesture–
speech events were situated relative to the gesture–speech ensemble. Namely, under DAF gesture–
speech events were more different from the other gesture–speech events in the ensemble and also
showed a higher diversity of relationships with the events in the ensemble. This is an interesting
result that shines new light on our earlier findings, which showed that gesture and speech were more
synchronized under the DAF. When combining these results, it seems that when under perturbation
gesture–speech synchrony is stable, whereas the gesture and speech trajectories become more diverse
as compared with the ensemble. Again, such results need to be replicated, but the potential of
probing experimental manipulations in the current fashion might have great implications for
understanding gesture and speech as a multiscale phenomenon.

Relating semantic processes to gesture kinematics

Possibly one the most daunting explanations in gesture research is how low-level features of gestures
are reflecting meaning at the level of discourse. Our current analysis provides one way into this
research question by assessing how gesture kinematics on the ensemble level might change in
structure as a function of the concomitant informative value of referents in speech. Using the
meticulous semantic coding in the SAGA dataset (Lücking et al., 2010), we find that gestures that
are produced during more-often-referred-to objects or landmarks are also more similar to other
gestures in terms of their velocity profiles. In other words, we find larger distances for gestures that
co-occur with novel references. This result can be explained in that gestures must be maximally
informative when new information in speech is conveyed, which dovetails with findings that have
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shown that gestures are reduced in their production rate when they are referring to something that is
becoming common ground in the discourse (Hoetjes, Koolen, Goudbeek, Krahmer, & Swerts, 2015)
as well as with research showing that gestures are more prevalent when speech referents are less
accessible (Debreslioska & Gullberg, 2019). The informativeness of a gesture might then be in part
defined by its relative novel trajectory relative to the gesture ensemble. Gestures that are more
similar to the rest of the gesture ensemble are less informative, and thus they are more likely to co-
occur with speech that covers common ground.

Language-specific gesture kinematics in groups of speakers

With the demonstration of the group-level gesture network analysis, we hope to have sparked the
interest for the quantitative assessment of large group-level discourse processes. For our mock
question we were interested in whether gesture kinematics of U.S. or German speakers were
different at the group level by relating them in on large-scale gesture network. This mock research
hypothesis that gesture kinematics is directly constrained by language spoken is theoretically
plausible, as we know that gestures might be changed in terms of their syntactical combination as
a function of the language spoken (Kita, Alibali, & Chu, 2017; Kita & Özyürek, 2003). The current
analyses, unfortunately, cannot provide any evidence for this given the many differences of the
datasets that we used here next to the differences in spoken language. But the point is that these
analyses as introduced here provide a methodological route to such evidence.

Other implementations of the current approach

The emphasis in the current article lies in providing one particular implementation of gesture
network analysis. However, it is easy to develop other implementations for this approach. For
example, where we have used DTW results as input for network analysis, attractor dynamics
analysis (Borjon, Abney, Smith, & Yu, 2018) could also be performed and used as network’s input.
Such an analysis is interesting for gauging the variability of movement. For instance, we can
compare two gestures on multiple kinematic dimensions of a gesture event (e.g., as state space
containing acceleration + position) to gauge whether they occupy similar regions of state-space,
regardless of their temporal ordering. Such analyses would not so much gauge whether gestures
are similar in their absolute trajectory through time but rather whether gestures use similar degrees
of freedom to perform different types of gestures. Another way to make comparisons between
gestures is based on their spectral coherence (Pouw & Dixon, 2019). Then we could assess the
question of whether some gestures oscillate at a shared frequency, whereas other gestures oscillate
at different or more complex combinations of frequencies. Thus, there are endless ways you can
construct a weighted matrix containing comparisons between gestures on some relevant
dimension.

Note further that with respect to network analysis, we have not introduced analyses that map
properties of the network as a whole (e.g., subnetwork analyses, overall connectivity measures).
Instead, we have focused on quantifying gestures’ position relative to other gestures in the network.
The now-ignored subnetwork analyses provide means to test whether the gesture ensemble contains
unique clustered subnetworks, which would indicate that underlying dynamics force gestures to
bifurcate in one form or another. Thus, discovery of subnetworks in gesture ensembles could be
helpful in motivating categorical differences between different gestures. Another potent application
of the current network approach is to apply it to dyadic conversation research (Garrod & Pickering,
2009) or research on musical gestures (Hospelhorn & Radinsky, 2017; Pearson, 2013). For example,
the current analysis can be used to assess gestural alignment between dyads, whereby two persons
become more aligned in the way they gesture as time develops, gauged by the degree to which
which a dyadic gesture network contracts as (DTW-calculated) distances between gestures become
smaller. Finally, we note that network graphing can be valuable for qualitative analysts of gesture and
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conversation as well, as network graphing allows for an intuitive visual representation of gesture
ensemble that might help in describing conversation dynamics.

In conclusion, we believe the versatility of gesture networks is endless, and we have argued that they
can provide novel insights about multimodal language within and between individuals. We hope that
the current approach becomes part of the general toolkit of gesture researchers, leading to potential
novel discoveries about how higher-order discourse structure can emerge from gesture kinematics.

Notes

1. Unfortunately, ψ-DTW has not been implemented in R package dtw yet, but MATLAB code is made available
by Silva et al. (2016).

2. The amplitude envelope referred to here is retrieved by taking the modulus of the Hilbert transform of the
speech signal and then smoothing it with a low-pass filter (He & Dellwo, 2017). Please see https://osf.io/uvkj6/
for a helpful R script for extracting the amplitude envelope from audio files (Pouw & Trujillo, 2019).
Consequently, this metric tracks the rough (i.e., envelope) intensity (i.e., amplitude) changes in speech. The
amplitude envelope is a key dynamic property of the rhythm of speech and highly correlates with articulatory
kinematics (Chandrasekaran, Trubanova, Stillittano, Caplier, & Ghazanfar, 2009).

3. Of note, the 2D graphical expression of the weighted matrix must always be an approximation of the weighted
edges given that basic laws of triangles are violated when having to graph several weighted relationships of
nodes in 2D. Igraph enables the approximation of the topology of a 2D representation of the weighted matrix,
through a technique called multidimensional scaling. That network statistics are, however, performed with
nonapproximated weights.

4. We only assessed iconic gestures as these are the gestures that are meaningfully related to what is said in speech
(rather then how it is said as in the case of beat gestures).
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