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Abstract	36 
	37 
Visual	 object	 representations	 are	 commonly	 thought	 to	 emerge	 rapidly,	 yet	 it	 has	 remained	38 
unclear	 to	what	 extent	 early	 brain	 responses	 reflect	 purely	 low-level	 visual	 features	of	 these	39 
objects	 and	 how	 strongly	 those	 features	 contribute	 to	 later	 categorical	 or	 conceptual	40 
representations.	 Here,	we	 aimed	 to	 estimate	 a	 lower	 temporal	 bound	 for	 the	 emergence	 of	41 
conceptual	 representations	by	defining	two	criteria	 that	characterize	such	representations:	1)	42 
conceptual	 object	 representations	 should	 generalize	 across	 different	 exemplars	 of	 the	 same	43 
object,	and	2)	these	representations	should	reflect	high-level	behavioral	judgments.	To	test	these	44 
criteria,	 we	 compared	 magnetoencephalography	 (MEG)	 recordings	 between	 two	 groups	 of	45 
participants	 (n	 =	 16	 per	 group)	 exposed	 to	 different	 exemplar	 images	 of	 the	 same	 object	46 
concepts.	Further,	we	disentangled	low-level	from	high-level	MEG	responses	by	estimating	the	47 
unique	 and	 shared	 contribution	of	models	 of	 behavioral	 judgments,	 semantics,	 and	different	48 
layers	of	deep	neural	networks	of	visual	object	processing.	We	find	that	1)	both	generalization	49 
across	exemplars	as	well	as	generalization	of	object-related	signals	across	time	increase	after	150	50 
ms,	peaking	around	230	ms;	2)	behavioral	 judgments	explain	the	most	unique	variance	in	the	51 
response	after	150	ms.	Collectively,	these	results	suggest	a	lower	bound	for	the	emergence	of	52 
conceptual	object	representations	around	150	ms	following	stimulus	onset.		53 
	54 
Introduction	55 
	56 
There	is	enormous	variability	in	the	visual	appearance	of	objects,	yet	we	can	rapidly	recognize	57 
them	without	effort,	even	under	difficult	viewing	conditions	(DiCarlo	&	Cox,	2007;	Potter	et	al.,	58 
2013).	 Evidence	 from	 neurophysiological	 studies	 in	 human	 suggests	 the	 emergence	 of	 visual	59 
object	representations	within	the	first	150	ms	of	visual	processing	(Thorpe	et	al.,	1996;	Carlson	60 
et	al.,	2013,	Cichy	et	al.,	2014).	For	example,	the	specific	identity	of	objects	can	be	decoded	from	61 
the	magnetoencephalography	(MEG)	signal	with	high	accuracy	around	100	ms	(Cichy	et	al.,	2014).	62 
However,	knowing	when	discriminative	 information	about	visual	objects	 is	available	does	not	63 
inform	us	about	the	nature	of	those	representations,	in	particular	whether	they	primarily	reflect	64 
(low-level)	visual	features	or	(high-level)	conceptual	aspects	of	the	objects	(Clarke	et	al.,	2015).	65 
To	address	this	issue,	in	this	study	we	employed	multivariate	MEG	decoding	and	model-based	66 
representational	similarity	analysis	(RSA)	to	elucidate	the	nature	of	object	representations	over	67 
time. 	68 

Previous	 studies	 have	 demonstrated	 increasing	 category	 specificity	 (van	 de	69 
Nieuwenhuijzen	et	al.,	2013;	Cichy	et	al.,	2014),	tolerance	for	position	and	size	(Isik	et	al.,	2014)	70 
and	 semantic	 information	 (Clarke	et	 al.,	 2013)	over	 the	 first	 200ms	 following	 stimulus	onset,	71 
suggesting	some	degree	of	abstraction	from	low-level	visual	features.	However,	identifying	the	72 
nature	of	object	 representations	 is	an	 inherently	difficult	problem:	 low-level	 features	may	be	73 
predictive	of	object	identity,	making	it	hard	to	disentangle	the	relative	contribution	of	low	and	74 
high-level	properties	to	measured	brain	signals	(Groen	et	al.,	2017).	In	this	study,	we	addressed	75 
this	problem	by	combining	tests	for	the	generalization	of	object	representations	with	methods	76 
to	separate	the	independent	contributions	of	low-	and	high-level	properties.	We	focused	on	two	77 
specific	criteria	that	would	need	to	be	fulfilled	for	a	representation	to	be	considered	conceptual.	78 
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First,	a	conceptual	representation	should	generalize	beyond	the	specific	exemplar	presented,	not	79 
just	variations	of	 the	same	exemplar.	Second,	a	conceptual	 representation	should	also	reflect	80 
high-level	behavioral	 judgments	about	objects	(Clarke	&	Tyler,	2015;	Wardle	et	al.,	2016).	We	81 
consider	fulfillment	of	these	two	properties	to	provide	a	lower	bound	at	which	a	representation	82 
could	be	considered	conceptual.		83 

We	collected	MEG	and	behavioral	 data	 from	32	participants	 allowing	us	 to	probe	 the	84 
temporal	dynamics	of	conceptual	object	representations	according	to	the	two	criteria	above.	To	85 
test	 for	 generalization	 across	 specific	 exemplars,	 we	 assessed	 the	 reliability	 of	 object	86 
representations	across	 two	 independent	 sets	of	objects.	 Further,	we	assessed	 the	 relation	of	87 
those	object	representations	to	behavior	by	comparing	participants’	behavioral	judgments	with	88 
the	MEG	response	patterns	using	RSA.	Importantly,	to	isolate	the	relative	contributions	of	low-89 
level	and	conceptual	properties	 to	 those	MEG	responses,	we	 identified	 the	variance	uniquely	90 
explained	by	behavioral	 judgments,	 isolating	 low-level	 representations	using	early	 layers	of	 a	91 
deep	neural	network,	which	have	been	shown	to	capture	low-	to	mid-level	responses	in	fMRI	and	92 
monkey	ventral	visual	cortex	(Cadieu	et	al.,	2014;	Cichy	et	al.,	2016a;	Eickenberg	&	Thirion,	2017;	93 
Güçlü	&	van	Gerven,	2015;	Khaligh-Razavi	&	Kriegeskorte,	2014;	Yamins	et	al.,	2014;	Wen	et	al.,	94 
2017).	Finally,	to	achieve	a	more	interpretable	understanding	of	the	contribution	of	behavior	to	95 
MEG	responses,	we	identified	the	unique	and	shared	variance	explained	in	the	MEG	response	by	96 
behavior	and	two	high-level	conceptual	models,	one	perceptual	(upper	layers	in	a	deep	neural	97 
network)	and	one	semantic	(based	on	word	co-occurrence	statistics).	98 
	99 
Methods	100 
	101 
Participants	102 
32	healthy	participants	(18	female,	mean	25.8,	range	19-47)	with	normal	or	corrected-to-normal	103 
vision	took	part	in	this	study.	As	a	part	of	a	pilot	experiment	used	for	purely	illustrative	purposes	104 
(see	Figure	4a),	8	participants	(5	overlap)	completed	the	same	behavioral	task	with	a	different	105 
set	of	stimuli.	All	participants	gave	written	informed	consent	prior	to	participation	in	the	study	106 
as	 a	 part	 of	 the	 study	 protocol	 (93-M-0170,	 NCT00001360).	 The	 study	was	 approved	 by	 the	107 
Institutional	Review	Board	of	the	National	Institutes	of	Health	and	was	conducted	according	to	108 
the	Declaration	of	Helsinki.	109 
	110 
Stimuli	111 
We	created	two	independent	sets	of	84	object	images	each	that	were	cropped	and	placed	on	a	112 
grey	 background.	 Each	 stimulus	 set	 contained	 a	 unique	 exemplar	 for	 each	 of	 the	 84	 object	113 
concepts,	as	shown	 in	Figure	1a.	We	selected	object	concepts	by	using	a	combination	of	 two	114 
word	 databases,	 one	 of	word	 frequency	 (Corpus	 of	 Contemporary	 American	 English,	 Davies,	115 
2008)	and	the	other	of	word	concreteness	(Brysbaert	et	al.,	2014).	First,	based	on	our	corpus	we	116 
selected	the	5000	most	 frequent	nouns	 in	American	English.	From	this	set	of	words,	we	then	117 
selected	 nouns	with	 concreteness	 ratings	 >	 4/5.	 Finally,	 for	words	 that	would	 be	 difficult	 or	118 
impossible	to	distinguish	when	presented	as	an	image	(e.g.	‘woman’,	‘mother’,	‘wife’),	we	used	119 
only	the	most	frequent	entry.	This	selection	left	us	with	a	set	of	112	objects.	120 
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	 To	evaluate	whether	those	categories	would	be	labeled	consistently,	we	generated	three	121 
distinct	images	of	each	object	concept	and	asked	three	individuals	who	were	not	involved	in	the	122 
study	to	provide	a	verbal	label	for	each	of	the	three	versions	of	the	112	objects.	Images	that	were	123 
not	labeled	correctly	by	all	raters	were	discarded,	leaving	us	with	84	object	concepts.	From	the	124 
three	sets	of	object	images,	we	then	randomly	sampled	two	per	object	concept.	This	generated	125 
two	sets	of	unique	object	exemplars	for	84	object	concepts,	divided	into	Image	Set	1	and	Image	126 
Set	2.	The	two	sets	of	object	stimuli	are	shown	in	Supplemental	Figure	S1.	127 
	128 
Procedure	129 
	130 
MEG	131 
During	MEG	recordings,	participants	were	seated	upright	in	an	electromagnetically	shielded	MEG	132 
chamber.	Stimuli	were	presented	using	the	Psychophysics	Toolbox	(Brainard,	1997)	in	MATLAB	133 
(version	2016a,	Mathworks,	Natick,	MA).	Visual	stimulation	was	controlled	by	a	Panasonic	PT-134 
D3500U	DLP	projector	with	an	ET-DLE400	lens,	 located	outside	of	the	chamber	and	projected	135 
through	 a	 waveguide	 and	 series	 of	 mirrors	 onto	 a	 back-projection	 screen	 in	 front	 of	 the	136 
participant.	Participants	were	assigned	to	one	of	two	groups	and	completed	the	experiment	with	137 
either	Image	Set	1	or	Image	Set	2.	All	stimuli	were	presented	on	a	grey	background	with	a	white	138 
fixation	 cross	 in	 the	 center	 (viewing	 distance:	 70	 cm,	 stimulus	 width:	 6°	 of	 visual	 angle).	139 
Participants	completed	an	oddball	detection	task,	pressing	a	button	in	response	to	catch	trials	140 
containing	 the	oddball	 stimulus	 (desk	stapler)	 that	appeared	pseudorandomly	every	2-6	 trials	141 
(average	 4,	 flat	 distribution).	 On	 each	 trial	 (Figure	 1b),	 an	 object	 stimulus	 was	 presented	 at	142 
fixation	for	500	ms,	followed	by	a	variable	fixation	period	(regular	trials:	pseudorandomly	500-143 
600	ms,	catch	trials:	1500	ms).	In	addition,	participants	were	instructed	to	blink	their	eyes	only	144 
as	they	pressed	the	button	of	the	MEG-compatible	button	box	during	catch	trials,	 in	order	to	145 
avoid	any	eye	blink	artifacts	at	other	points	of	the	experiment.	Participants	completed	18	runs	146 
that	were	divided	into	6	blocks	of	3	runs	each,	with	self-paced	breaks	between	each	block.	Each	147 
run	lasted	240	s,	resulting	in	a	total	experimental	time	of	72	min.	In	total,	participants	viewed	148 
each	of	the	84	images	36	times	over	the	course	of	the	experiment.		149 
	150 
Behavior:	Object	arrangement	task 151 
Within	two	days	of	completing	the	MEG	session,	participants	took	part	in	a	follow-up	behavioral	152 
experiment	to	provide	us	with	behavioral	estimates	of	the	representational	similarity	between	153 
all	possible	object	pairs.	This	was	done	using	the	object	arrangement	method	(Goldstone	1994;	154 
Kriegeskorte	&	Mur,	2012).	In	this	method,	participants	arrange	objects	in	a	2D	“arena”	based	on	155 
their	subjective	similarity,	and	the	distance	between	the	items	is	used	to	generate	(n	´ n-1)/2	156 
pairwise	 distance	 estimates	 between	 object	 pairs.	 Participants	 were	 seated	 at	 a	 distance	 of	157 
approximately	57	cm	in	front	of	a	30”	monitor	(resolution:	1440	´	900	pixels)	and	completed	the	158 
object	arrangement	task	on	the	same	84	object	images	used	in	the	MEG	experiment.	All	items	159 
were	presented	simultaneously	but	in	random	order	and	with	equal	distance	around	the	circular	160 
arena	(image	width:	1.5°	of	visual	angle).	Participants	were	instructed	to	use	the	computer	mouse	161 
and	arrange	 the	 items	according	 to	 their	 similarity	at	 their	own	pace,	 taking	~20	minutes	on	162 
average	to	complete	the	task.	In	contrast	to	the	original	implementation	of	this	method	that	used	163 
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additional	 trials	with	 selective	 subsets	of	objects	 (Kriegeskorte	et	 al.,	 2012),	we	only	 chose	a	164 
single	arrangement,	based	on	our	experience	with	the	multi-arrangement	task	exhibiting	very	165 
high	correlations	between	results	of	the	first	and	the	last	trial	(unpublished	data).	We	deliberately	166 
did	not	provide	participants	with	an	explicit	strategy	or	instructions	on	what	object	features	to	167 
focus,	so	as	to	not	bias	them	to	focus	on	any	specific	aspect	of	the	stimuli.	To	facilitate	the	task,	168 
when	a	participant	clicked	on	a	certain	image	around	the	arena,	an	enlarged	version	spanning	169 
150	´	200	pixels	(6.75	´	9°	of	visual	angle)	was	displayed	in	the	top	right	of	the	computer	screen.	170 
After	completion	of	the	experiment,	we	extracted	the	pixel-wise	distance	between	each	pair	of	171 
items,	yielding	an	84	´	84	distance	matrix	 for	each	participant.	Note	that	 the	distance	matrix	172 
discards	the	absolute	position	of	objects	and	only	retains	their	relative	location,	which	should	173 
minimize	bias	related	to	the	initial	placement	of	objects.	174 
	175 

	176 
Figure	1.	Stimulus	format	and	trial	progression.	a.	Two	unique	object	exemplars	were	selected	for	each	of	the	84	177 
object	concepts	used	in	the	study.	b.	Stimuli	were	presented	on	a	grey	background	for	500	ms,	followed	by	fixation	178 
for	500-600	ms	(catch	trials:	1500	ms).	All	84	stimuli	from	both	image	sets	are	shown	in	Supplemental	Figure	S1.	179 
	180 
MEG	acquisition	and	preprocessing	181 
MEG	data	were	 recorded	continuously	at	a	 sampling	 rate	of	1200	Hz	with	a	275-channel	CTF	182 
whole-head	MEG	system	(MEG	International	Services,	Ltd.,	Coquitlam,	BC,	Canada).	All	analyses	183 
were	 conducted	 in	MATLAB	 (version	 2016a,	 The	Mathworks,	Natick,	MA).	 Preprocessing	was	184 
carried	out	using	Brainstorm	3.4	(version	02/2016,	Tadel	et	al.,	2011)	and	custom-written	code,	185 
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using	similar	preprocessing	steps	as	previously	published	MEG	decoding	work	(Cichy	et	al.,	2014;	186 
Grootswagers	et	al.,	2016,	Hebart	et	al.,	2018).	Recordings	were	available	 from	272	channels	187 
(dead	 channels:	MLF25,	MRF43,	MRO13).	 The	whole-head	 array	 consists	 of	 radial	 first-order	188 
gradiometer	channels	equipped	with	synthetic	third-gradient	balancing	to	remove	background	189 
noise	 online.	 At	 the	 beginning	 of	 the	 experiment	 and	 after	 every	 third	 experimental	 run,	190 
participants’	head	position	was	localized	based	on	fiducial	coil	placement	at	the	nasion,	left	and	191 
right	preauricular	points.	Head	position	was	recorded	to	provide	the	experimenter	with	feedback	192 
about	the	head	position	to	reposition	the	participant’s	head	in	the	dewar	if	necessary.	Data	were	193 
bandpass	filtered	between	0.1	and	300	Hz,	and	bandstop	filtered	at	60	Hz	and	harmonics.	We	194 
segmented	 the	 data	 into	 single	 trial	 bins,	 with	 each	 trial	 consisting	 of	 100	 ms	 baseline	 for	195 
normalization	purposes	and	1000	ms	post-stimulus	activity,	yielding	a	total	of	1321	time	samples	196 
for	each	trial.	Catch	trials	were	discarded.	197 

Three	pre-analysis	steps	allowed	us	to	increase	SNR	and	reduce	computational	demand:	198 
PCA	 dimensionality	 reduction,	 temporal	 smoothing	 on	 PCA	 components,	 and	 data	199 
downsampling.	Principal	components	analysis	(PCA)	was	run	to	reduce	the	number	of	channels	200 
into	 the	 set	 of	most	 descriptive	 components.	All	 data	 for	 an	MEG	 channel	 across	 trials	were	201 
concatenated	for	PCA,	and	the	components	explaining	the	least	variance	were	removed	to	speed-202 
up	 further	 processing,	 with	 a	 maximum	 removal	 of	 50	 %	 of	 the	 components	 (i.e.	 136	203 
components)	or	1	%	of	the	variance,	whichever	was	reached	first	(Hebart	et	al.,	2018).	Since	for	204 
all	participants	the	smallest	136	components	explained	less	than	1	%	of	the	variance,	the	data	for	205 
further	 analyses	 contained	 136	 components.	 Data	 across	 all	 time	 points	 were	 normalized	206 
according	to	the	baseline	period	of	-100	to	0	ms	relative	to	stimulus	presentation.	To	do	so,	the	207 
mean	and	standard	deviation	of	the	baseline	period	for	each	component	were	computed,	and	208 
the	mean	was	subtracted	from	the	data	before	dividing	by	the	standard	deviation.	We	then	used	209 
a	Gaussian	kernel	of ± 15	ms	half	duration	at	half	maximum	(HDHM)	to	temporally	smooth	the	210 
remaining	components,	and	downsampled	the	components	to	120	Hz	(132	samples	/	trial). 211 
	212 
Multivariate	decoding	and	temporal	generalization	analysis	213 
	214 
Multivariate	MEG	decoding		215 
Our	goal	was	to	study	the	representational	dynamics	during	visual	object	recognition	and	the	216 
emergence	 of	 generalizable,	 conceptual	 object	 representations	 over	 time.	 To	 determine	 the	217 
amount	 of	 object	 information	 contained	 in	 the	MEG	 signal	 over	 time,	 we	 ran	 time-resolved	218 
multivariate	decoding	of	MEG	data	using	a	linear	support	vector	machine	classifier	(SVM;	Chang	219 
&	 Lin,	 2011).	 The	 analysis	 steps	 were	 chosen	 according	 to	 general	 recommendations	220 
(Grootswagers	et	al.,	2016)	and	a	recent	study	from	our	lab	(Hebart	et	al.,	2018).	Multivariate	221 
analyses	were	conducted	using	functions	from	The	Decoding	Toolbox	(Hebart	et	al.,	2015)	and	222 
custom-written	code.	The	following	analysis	steps	were	applied	to	all	participants,	regardless	of	223 
experimental	group.	224 

First,	 we	 created	 supertrials	 by	 averaging	 6	 trials	 of	 the	 same	 object	 concept	 drawn	225 
randomly	without	replacement	(Isik	et	al.,	2014).	For	each	time	point,	preprocessed	MEG	data	226 
within	each	supertrial	were	arranged	as	P	dimensional	measurement	vectors	(corresponding	to	227 
the	number	of	components	from	PCA	preprocessing),	yielding	K	pattern	vectors	for	each	time	228 
point	and	object	concept.	For	each	pair	of	object	concepts	and	each	time	point,	we	then	trained	229 
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the	classifier	on	K-1	pattern	vectors	and	tested	it	on	the	pair	of	left-out	pattern	vectors,	yielding	230 
a	decoding	accuracy	for	each	pair	of	object	categories	at	each	time	point.	Note	that	while	leave-231 
one-out	cross-validation	can	lead	to	some	overfitting	to	the	data	at	hand,	when	the	purpose	is	to	232 
demonstrate	 a	 statistical	 dependence	 in	 combination	 with	 classical	 statistics	 this	 is	 a	 valid	233 
approach	 (Hebart	 &	 Baker,	 2017).	 The	 assignment	 to	 training	 and	 testing	 sets	 and	 resulting	234 
classification	procedure	was	repeated	100	times	for	each	pair	of	object	concepts	and	each	time	235 
point,	with	 a	 new	 random	generation	of	 supertrials	 in	 each	 iteration.	 The	 resulting	decoding	236 
accuracies	were	averaged	across	the	100	iterations	and	presented	as	an	84	´ 84	matrix	at	every	237 
time	point,	with	rows	and	columns	indexed	according	to	object	conditions,	and	with	the	diagonal	238 
undefined.	We	used	these	matrices	to	evaluate	average	decoding	accuracy	at	each	time	point	by	239 
computing	the	average	of	the	lower	triangular	matrix.	240 
	 Significance	for	the	decoding	analysis	was	assessed	using	a	sign	permutation	test.	A	null	241 
distribution	 of	 group	means	was	 generated	 by	 running	 the	 decoding	 procedure	 1,000	 times,	242 
randomly	generating	a	sign-permuted	accuracy	per	participant	and	averaging	those	values.	P-243 
values	were	 determined	 as	 one	minus	 the	 percentile	 of	 the	 original	 group	mean	 in	 this	 null	244 
distribution.	Those	p-values	were	corrected	according	to	the	false-discovery	rate	(FDR)	and	were	245 
deemed	significant	if	the	corrected	p-value	did	not	exceed	0.05	(i.e.	the	test	was	one-sided).		246 
	247 
Temporal	generalization	of	object	representation	248 
While	time-resolved	multivariate	decoding	can	reveal	when	specific	mental	representations	are	249 
present	in	patterns	of	neural	activity,	it	cannot	identify	how	said	patterns	at	one	time	point	relate	250 
to	 other	 time	points.	We	were	 interested	 in	 investigating	 the	 extent	 to	which	 object-related	251 
information	 is	 static	or	dynamic	over	 time,	which	 can	give	us	an	 index	of	how	 rapidly	neural	252 
signals	evolve.	To	 investigate	this,	we	conducted	a	cross-classification	analysis	over	time,	also	253 
known	as	the	temporal	generalization	method	(King	&	Dehaene,	2014;	Meyers	et	al.,	2008).	If	a	254 
classifier	 can	 successfully	 generalize	 from	 one	 time	 point	 to	 another,	 this	 shows	 that	255 
representational	 content	 is	 highly	 similar	 between	 these	 two	 time	 points.	 Conversely,	 if	 the	256 
classifier	does	not	generalize,	this	shows	that	patterns	of	neural	activity	have	evolved	to	an	extent	257 
that	representational	content	is	no	longer	similar.		258 
	 To	 carry	 out	 this	 temporal	 generalization	 analysis,	 we	 used	 the	 same	 classification	259 
approach	described	above;	however,	instead	of	only	testing	the	classifier	at	the	same	time	point	260 
we	also	tested	its	performance	at	all	other	time	points.	We	repeated	the	analysis	with	all	time	261 
points	each	serving	as	training	data	once	for	the	classifier,	and	generated	a	132	x	132	time-time	262 
decoding	matrix	that	shows	the	extent	to	which	our	classifier	generalizes	across	time.		263 
	264 
Representational	similarity	analysis	(RSA)	265 
	266 
RSA	is	a	method	to	analyze	and	compare	data	patterns,	for	example	brain	activity	patterns	with	267 
behavioral	judgments	or	computational	models	(Kriegeskorte	et	al.,	2008).	Instead	of	comparing	268 
these	 patterns	 directly,	 in	 RSA	patterns	 are	 converted	 to	 representational	 similarity	matrices	269 
(RSMs),	quantifying	all	pairwise	similarities	of	all	patterns.	These	RSMs	can	then	be	compared	to	270 
other	RSMs	based	on	other	data.		271 

In	 this	 study,	 we	 used	 RSA	 for	 two	 purposes.	 First,	 across	 participants	 we	 directly	272 
compared	the	time	courses	of	MEG	RSMs	evoked	by	the	same	exemplar	with	MEG	RSMs	evoked	273 
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by	different	exemplars.	This	allows	an	estimate	of	the	generalizability	of	representations	across	274 
exemplars	 and	 thus	 the	 extent	 to	which	 a	 representation	 reflects	 high-level	 versus	 low-level	275 
properties,	assuming	that	a	generalized	representation	indicates	a	more	high-level,	conceptual	276 
representation.	Second,	we	used	RSA	 to	study	 the	 relationship	between	evoked	MEG	activity	277 
patterns	 and	 computational,	 semantic,	 and	 behavioral	 models.	 In	 particular,	 we	 wanted	 to	278 
identify	 time	 periods	 at	 which	 the	 MEG	 responses	 reflected	 predominantly	 behavioral	279 
judgments,	 which	 we	 take	 as	 an	 index	 of	 high-level	 conceptual	 processing.	 To	 do	 this,	 we	280 
quantified	the	unique	and	shared	variance	of	each	model	RSM	with	RSMs	based	on	MEG	activity	281 
patterns.	282 
	283 
Construction	of	MEG	similarity	matrices	284 
MEG	RSMs	were	constructed	as	follows.	For	each	time	point,	we	averaged	the	preprocessed	MEG	285 
data	for	all	36	trials	of	each	object	concept,	yielding	84	object	concept	MEG	patterns.	Then	we	286 
computed	the	similarity	between	all	pairs	of	those	84	patterns	across	P	principal	components	287 
using	 a	 Spearman	 correlation,	 yielding	 an	 84	 ´	 84	MEG	 RSM	 for	 each	 time	 point.	We	 then	288 
analyzed	these	RSMs	further	for	the	two	purposes	described	above.		289 
	290 
Comparison	of	low-level	image	similarity	between	image	sets	291 
To	 quantify	 the	 low-level	 similarity	 between	 image	 sets	 directly,	we	 computed	 the	 pixelwise	292 
similarity	across	both	 image	sets,	concatenating	the	three	color	channels	of	each	 images	to	a	293 
vector	and	calculating	the	Spearman	correlation	between	image	vectors.	This	resulted	in	an	84	´	294 
84	matrix,	with	the	diagonal	corresponding	to	the	similarity	within	each	object	concept	across	295 
image	 sets	 (e.g.	 “baby”	 in	 Image	 Set	 1	 with	 “baby”	 in	 Image	 Set	 2)	 and	 the	 off-diagonals	296 
corresponding	 to	 the	 similarity	 across	 object	 concepts	 across	 object	 concepts	 (e.g.	 “baby”	 in	297 
Image	Set	1	with	“woman”	in	Image	Set	2).	In	addition,	as	a	computational	model	of	low-level	298 
object	processing	we	computed	the	GIST	features	(Oliva	&	Torralba,	2001)	for	each	object	image	299 
using	default	model	parameters.	We	then	calculated	the	Spearman	correlation	between	those	300 
feature	vectors	in	the	same	manner	as	described	for	pixelwise	similarities.	301 
	302 
Generalization	of	MEG	similarity	patterns	across	exemplars	303 
To	determine	 time	periods	 that	 generalize	 between	 representations	of	 object	 exemplars,	we	304 
compared	the	time	courses	of	similarity	of	RSMs	within	each	image	set	to	the	similarity	between	305 
image	sets	(see	e.g.	Guggenmos	et	al.,	2018,	for	a	similar	methodological	approach).	To	this	end,	306 
we	split	data	between	the	groups	for	Image	Set	1	and	Image	Set	2	and	conducted	within-	and	307 
between-group	split-half	correlation	analyses	with	the	RSMs	for	each	participant.	We	chose	a	308 
repeated	subsampling	procedure	within	group	to	allow	us	to	use	the	same	analysis	within	and	309 
between	groups.	The	following	analyses	are	described	for	one	RSM	at	one	time	point,	but	were	310 
repeated	for	all	time	points.		311 

Within	each	group	of	participants	(n	=	16),	we	randomly	assigned	participants’	RSMs	to	312 
one	of	two	arbitrary	subsets	of	8	participants	and	averaged	participants’	RSMs	within	subsets.	313 
Next,	we	calculated	the	Spearman	rank	correlation	coefficient	between	the	lower	triangular	part	314 
of	each	84	´	84	matrix,	separately	for	every	time	point.	We	repeated	this	split-half	analysis	1000	315 
times	with	novel	assignments	of	participants	and	averaged	across	 repetitions,	yielding	a	 time	316 
course	of	within-exemplar	 correlation.	 The	 same	procedure	was	 completed	 for	 the	between-317 
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group	split-half	analysis,	but	here	the	two	subsets	were	each	drawn	from	eight	randomly	selected	318 
participants	in	each	group,	yielding	a	time-course	of	between-exemplar	correlations.	319 

To	assess	statistical	significance,	we	conducted	a	randomization	test.	We	repeated	the	320 
analysis	above	1000	times	(i.e.	a	total	of	106	split-half	analyses,	 for	both	within-exemplar	and	321 
between-exemplar	 comparisons).	 For	 each	 of	 those	 1000	 randomizations,	 we	 randomly	322 
permuted	 the	 rows	 and	 columns	 of	 the	matrices	 in	 one	 of	 the	 subgroups	 before	 calculating	323 
Spearman’s	r.	P-values	were	determined	as	one	minus	 the	percentile	of	 the	original	 split-half	324 
analysis,	and	FDR-corrected	to	p	<	0.05.	325 

	326 
Representational	similarity	matrices	for	computational	models	and	behavior	327 
To	 identify	 and	 characterize	 the	 temporal	 evolution	 of	 the	 representational	 content	 of	MEG	328 
responses	in	relation	to	behavior	judgments,	we	chose	multiple	behavioral	and	computational	329 
models	 that	we	 later	 compared	 to	MEG	data:	 a	 behavioral	model	 based	on	 the	 group	mean	330 
behavioral	similarity,	a	semantic	model	to	capture	similarity	at	the	semantic	level,	and	two	layers	331 
of	a	deep	neural	network	to	capture	different	visual	processing	stages	(low-to-mid	level	and	high-332 
level,	respectively).	The	purpose	of	 including	those	models	was	to	identify	the	contribution	of	333 
those	processing	stages	to	behavior,	in	order	to	gain	a	better	understanding	of	the	nature	of	the	334 
behavioral	judgments.	For	a	first	comparison,	we	characterized	the	pairwise	similarity	of	these	335 
models	 to	assess	 their	general	 similarity	 irrespective	of	MEG.	We	calculated	Spearman’s	r	 for	336 
each	pair	of	models.	Significance	of	correlations	was	tested	using	a	randomization	test:	The	rows	337 
and	columns	of	one	model	RSM	were	randomly	permuted	before	computing	the	Spearman’s	r	338 
between	with	the	other	model	RSM.	This	procedure	was	repeated	1,000	times	to	generate	a	null	339 
distribution	of	 correlation	 coefficients,	 and	 results	were	deemed	 significant	 if	 they	 showed	a	340 
higher	correlation	coefficient	than	the	distribution	cut-off	determined	by	a	level	of	p	<	0.05.	341 
		342 

Behavior	343 
We	generated	an	RSM	for	behavioral	judgments	by	extracting	the	84	́  84	distance	matrices	from	344 
each	participant	within	a	group	and	averaging	them	together.	Next,	we	converted	this	distance	345 
matrix	to	an	RSM	by	subtracting	the	distances	from	1.	Note	that	subsequent	analyses	only	use	346 
the	ranks	of	the	entries	of	the	distance	matrices,	which	are	simply	inverted	by	this	subtraction	347 
procedure.	This	step	yielded	two	group-level	behavior	RSMs	corresponding	to	Image	Set	1	and	348 
Image	Set	2.	349 

Semantic	model:	Global	Vectors	for	Word	Representation	(GloVe)	350 
Global	Vectors	for	Word	Representations	(GloVe)	is	an	unsupervised	algorithm	that	is	trained	on	351 
corpus	word	 co-occurrence	 statistics	 to	 yield	 vector	 representations	 for	words	 in	 the	 corpus,	352 
representing	semantic	relationships	between	words	(Pennington	et	al.,	2014).	As	a	distributional	353 
measure	of	the	semantic	relatedness	of	words	based	on	their	shared	linguistic	contexts,	GloVe	is	354 
similar	to	other	traditional	co-occurrence	models	of	word	meaning	but	is	particularly	well-suited	355 
to	the	analysis	here	because	of	the	high-dimensional	similarity	structure	that	shows	semantic	356 
similarity	between	pairs	of	individual	words,	outperforming	similar	models	in	similarity	tasks.	As	357 
such,	the	structure	of	GloVe	provides	a	fine-grained	metric	to	evaluate	how	the	representational	358 
space	of	MEG	signals	reflects	semantic	relationships	as	derived	from	shared	lexical	contexts.	We	359 
chose	 50-dimensional	 word	 vectors	 pre-trained	 on	 a	 6-billion	 token	 Wikipedia	 database,	360 
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extracted	them	for	each	object	concept	in	the	stimulus	set	and	calculated	Spearman’s	r	between	361 
each	pair	of	vectors,	generating	an	84	´	84	RSM.		362 

Visual	model:	Deep	neural	network	VGG-F	363 
We	used	the	MatConvNet	toolbox	(Vedaldi	&	Lenc,	2015)	to	implement	a	pre-trained	version	of	364 
the	Visual	Geometry	Group-Fast	deep	neural	network	(VGG-F	DNN)	(Chatfield	et	al.,	2014)	that	365 
was	trained	to	perform	the	ImageNet	ILSVRC	2012	object	classification	task.	This	network	was	366 
chosen	based	on	its	high	classification	performance,	ease	of	implementation,	and	suitability	for	367 
our	visual	object	concept	stimuli.	DNN	representations	for	each	image	in	both	image	sets	were	368 
extracted	from	both	convolutional	layers	(1-5)	and	fully-connected	layers	(6-8)	of	the	network.	369 
We	focused	on	representative	examples	of	the	convolutional	and	fully	connected	layers	(3	and	370 
7,	respectively)	to	reflect	low-to-midlevel	vision	and	high-level	vision,	respectively.		Within	each	371 
layer,	we	calculated	Spearman’s	r	between	each	of	the	object	conditions	that	yielded	an	84	´	84	372 
RSM	for	both	layers	within	each	participant	group.	This	yielded	four	distinct	RSMs:	DNN	Layer	3	373 
and	Layer	7	for	Image	Set	1,	and	DNN	Layer	3	and	Layer	7	for	Image	Set	2.	374 

	375 
Representational	similarity	analysis:	Model	comparisons	to	MEG	376 
To	directly	compare	each	model	to	MEG	activity	patterns,	we	calculated	Spearman’s	r	between	377 
the	lower	diagonals	of	the	model	variables	and	MEG	RSMs	at	each	time	point	within	each	group.	378 
These	group-specific	 correlations	were	averaged	 together	 to	yield	a	 time	course	 showing	 the	379 
level	of	correlation	between	the	model	and	MEG	responses.	Upper	and	lower	bounds	for	noise	380 
ceilings	were	determined	within	each	of	the	two	groups	of	participants	according	to	Nili	et	al.	381 
(2014):	The	upper	bound	was	estimated	by	calculating	the	correlation	between	each	participant’s	382 
RSM	and	the	mean	group	RSM	including	that	participant,	while	the	lower	bound	was	estimated	383 
by	 calculating	 the	 correlation	 between	 each	 participant’s	 RSM	 and	 the	 mean	 group	 RSM	384 
excluding	that	participant.	The	upper	and	lower	bounds	from	each	group	were	averaged	together	385 
to	yield	a	mean	noise	ceiling	across	all	participants.	The	statistical	significance	of	 this	suite	of	386 
representational	 similarity	 analyses	 was	 determined	 using	 randomization	 tests	 as	 described	387 
above,	permuting	the	rows	and	columns	of	a	given	model	RSM	(behavior,	GloVe,	DNN	Layer	3,	388 
DNN	Layer	7)	and	for	each	randomization	computing	correlation	time	courses	with	the	original	389 
MEG	 RSMs.	 Correlations	 were	 deemed	 significant	 if	 they	 exceeded	 a	 correlation	 cut-off	390 
determined	by	a	level	of	p	<	0.05	(FDR-corrected).	391 
	392 
Establishing	the	unique	and	shared	contributions	of	individual	models	393 
To	determine	the	unique	and	shared	variance	between	models	and	MEG	signals,	we	conducted	394 
multiple	linear	regression	analyses	using	the	behavior	RSM,	DNN	Layer	3	RSM,	and	DNN	Layer	7	395 
RSM	 as	 regressors	 to	 predict	 MEG	 RSMs	 from	 these	 variables	 (see	 See	 Groen	 et	 al.,	 2012;	396 
Lescroart	et	al.,	2015;	Greene	et	al.,	2016,	2018;	Hebart	et	al.,	2018	for	similar	approaches).	Given	397 
the	 complexities	 of	 describing	 the	unique	 and	 shared	 variance	partitions	 of	more	 than	 three	398 
regressors,	we	decided	to	exclude	the	GloVe	model,	which	showed	the	weakest	correlation	with	399 
MEG.	Post-hoc	analyses	running	different	versions	of	the	variance	partitioning	analysis	(replacing	400 
the	 behavior	 model	 by	 GloVe,	 and	 separately	 replacing	 the	 DNN	 Layer	 7	 model	 by	 GloVe)	401 
demonstrated	 that	 the	 GloVe	 model	 overall	 explained	 less	 MEG	 variance	 than	 behavior	402 
(Supplemental	Figure	S4),	while	explaining	very	little	unique	variance	(Supplemental	Figure	S5).	403 
By	conducting	a	series	of	different	multiple	 regressions	with	different	combinations	of	model	404 
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variables,	this	approach	allows	us	to	determine	not	only	the	unique	MEG	variance	explained	by	405 
each	model	RSM	individually,	but	also	the	variance	shared	between	any	combination	of	model	406 
RSMs.	Before	conducting	variance	partitioning	analyses,	we	averaged	the	group-specific	RSMs	of	407 
both	image	sets	for	behavior	and	DNN	models,	which	yielded	very	similar	results	as	compared	to	408 
calculating	them	separately	and	averaging	results	afterwards.	We	extracted	the	lower	diagonal	409 
from	the	mean	MEG	RSM	at	each	time	point	as	dependent	variables,	and	assigned	each	of	the	410 
models	as	 independent	variables.	 In	sum,	7	regression	analyses	were	performed	at	each	time	411 
point	 that	 each	 included	 different	 combinations	 of	models	 as	 regressors:	 1)	 ‘full’	 regression,	412 
including	 all	 three	models	 (DNN	 Layer	 3,	 DNN	 Layer	 7,	 behavior),	 (2-4)	 ‘combined-predictor’	413 
regression,	including	all	pairwise	combinations	of	two	models	(DNN	Layer	3	and	behavior,	DNN	414 
Layer	 7	 and	 behavior,	 DNN	 Layer	 3	 and	DNN	 Layer	 7),	 and	 (5-7)	 ‘single-predictor	 regression’	415 
including	each	model	on	its	own.	Subtracting	the	explained	variance	(R2)	values	of	these	different	416 
regression	analyses	yields	portions	of	variance	that	are	independently	explained	by	each	model,	417 
the	variance	that	each	model	shares	with	the	other	two	models,	and	the	variance	shared	by	all	418 
three.	419 

For	example,	the	unique	variance	explained	by	behavior	(region	c	in	the	Venn	diagram	420 
depicted	 in	Figure	6a)	 is	 computed	as	 the	difference	 in	R2	between	 the	 full	 regression	model	421 
(which	includes	all	three	regressors	and	therefore	encompasses	all	regions	described	by	the	red,	422 
green	and	blue	circle,	i.e.	a+b+c+ab+ac+bc+abc)	and	a	regression	model	including	only	DNN	Layer	423 
3	and	7	(encompassing	all	regions	described	by	the	green	and	blue	circle,	i.e.	a+b+ab+ac+bc+abc).	424 
Once	the	three	regions	of	unique	variance	(a,	b,	and	c)	are	obtained	in	this	way,	shared	variances	425 
can	be	computed.	For	example,	the	variance	shared	by	behavior	and	DNN	Layer	7	(region	bc)	is	426 
computed	by	taking	the	R2	resulting	from	including	behavior	and	the	third	model	(DNN	Layer	3)	427 
(corresponding	 to	 all	 regions	 covered	by	 the	 red	 and	blue	 circle,	 i.e.	 a+ac+ab+abc+c+bc)	 and	428 
subtracting	both	the	R2	obtained	when	including	DNN	Layer	3	alone	(blue	circle,	a+ab+ac+abc)	as	429 
well	as	the	unique	variance	explained	by	behavior	(region	c).	Finally,	the	variance	shared	by	all	430 
three	models	(region	abc)	is	computed	as	the	difference	between	the	full	regression	R2	and	all	431 
the	sum	of	all	unique	variances	(a+b+c)	and	shared	variances	between	all	combinations	of	two	432 
models	 (ab+ac+bc).	 Statistical	 significance	 was	 determined	 using	 a	 randomization	 test	 as	433 
described	above,	randomizing	columns	and	rows	of	model	matrices	1000	times	and	repeating	434 
the	original	analysis.	For	a	given	iteration,	the	same	randomization	was	used	across	all	models	to	435 
fulfill	the	assumptions	of	the	randomization	test.	Significance	cutoffs	for	R2 were set	to	p	<	0.05	436 
(FDR-corrected).	437 
		438 
	439 
Results		440 
	441 
Our	aim	in	this	study	was	to	characterize	the	emergence	of	conceptual	representations	for	visual	442 
objects.	We	applied	multivariate	decoding	and	representational	similarity	analysis	to	MEG	data	443 
to	examine	(1)	how	object	representations	generalize	across	time	and	object	exemplars,	and	(2)	444 
to	elucidate	 the	unique	and	 shared	 contributions	of	behavioral	 judgments	 to	measured	MEG	445 
responses.	The	resulting	temporal	profiles	inform	us	about	stages	of	object	processing	from	low-446 
level	visual	to	conceptual	representations.		447 
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	448 
Time-resolved	representation	of	object	identity	449 
To	characterize	the	time	course	by	which	neural	signals	in	the	human	brain	convey	information	450 
about	 object	 identity,	 we	 used	 time-resolved	 multivariate	 decoding,	 conducting	 pairwise	451 
classification	between	MEG	patterns	 in	 response	 to	object	 stimuli	 (Figure	2a).	Object	 identity	452 
information	rose	rapidly	in	response	to	stimulus	presentation,	with	decoding	accuracy	peaking	453 
at	 100	ms	 (mean	 accuracy:	 91.1	%),	 followed	 by	 a	 slow	 decay	 of	 information	 that	 remained	454 
significantly	above	chance	after	stimulus	offset	and	 for	 the	duration	of	 the	 trial	 time	window	455 
(1000	ms	post	stimulus	onset).	These	results	indicate	that	we	were	able	to	detect	the	temporal	456 
unfolding	of	object-identity	information	encoded	in	MEG	signals	with	high	accuracy,	establishing	457 
a	correspondence	to	previous	research	demonstrating	that	discriminable	object	representations	458 
emerge	well	within	100	ms	of	visual	recognition	(Carlson	et	al.,	2013;	Cichy	et	al.,	2014).	Further,	459 
these	results	lay	an	important	foundation	for	the	following	analyses	in	which	we	delineate	what	460 
information	specifically	contributes	to	these	discriminable	object	representations.	461 
			462 
Temporal	generalization	of	object	information		463 
While	 time-resolved	 multivariate	 decoding	 reveals	 the	 temporal	 evolution	 of	 discriminable	464 
object	 representations,	 it	 does	 not	 inform	 about	 the	 dynamics	 and	 stability	 of	 those	465 
representations	across	time.	To	identify	the	degree	to	which	object	representations	generalize	466 
across	time,	we	ran	a	temporal	generalization	analysis	by	training	a	classifier	on	data	at	every	467 
time	point	and	testing	it	at	all	other	time	points.	This	yielded	a	temporal	generalization	matrix	468 
(Figure	2b),	with	the	diagonal	representing	training	and	testing	at	the	same	time	points,	mirroring	469 
the	results	presented	in	Figure	2a.	In	a	temporal	generalization	matrix,	a	dynamic	representation	470 
would	be	characterized	by	high	accuracies	around	the	diagonal	and	low	accuracies	everywhere	471 
else,	indicating	little	generalization	across	time.	In	contrast,	a	stable	neural	representation	would	472 
exhibit	high	decoding	around	the	diagonal	but	also	in	the	off-diagonal	time	points,	demonstrating	473 
a	similar	representation	across	time.	474 

Our	 results	 exhibited	 significant	 generalization	 from	~70	ms	onward,	demonstrating	a	475 
shared	 representational	 format	 across	 the	 entire	 trial.	 While	 this	 result	 reveals	 a	 persistent	476 
representation	across	time,	the	strength	of	generalization	varies.	Focusing	on	the	first	half	of	the	477 
stimulus	 presentation	 period,	 the	 results	 revealed	 a	 period	 of	 increased	 temporal	 dynamics	478 
between	 ~70-250	 ms,	 indicated	 by	 the	 high	 decoding	 accuracy	 on	 the	 diagonal	 and	 lower	479 
decoding	 accuracies	 away	 from	 the	 diagonal.	 This	 result	 suggests	 a	 relatively	 dynamic	480 
representational	format	in	this	phase	of	visual	processing.	After	~250	ms,	there	was	increased	481 
generalization	 away	 from	 the	diagonal,	 indicating	 a	more	persistent,	 shared	 representational	482 
format	 during	 this	 later	 phase	 of	 visual	 processing.	 Interestingly,	 there	 was	 a	 generalization	483 
period	 between	 time	 windows	 of	 ~70-100	 ms	 and	 ~250-550	 ms,	 suggesting	 an	 overlap	 of	484 
representations	 between	 early	 visual	 and	 later	 conceptual	 processing.	 The	 markedly	 lower	485 
information	 generalization	 between	 150-250	 ms	 and	 all	 other	 time	 points	 suggests	 the	486 
information	 dynamics	 at	 these	 points	 are	 computationally	 dissimilar	 from	 other	 stages	 of	487 
processing.		488 

Taken	together,	these	results	reveal	relatively	weak	but	significant	persistence	of	stable	489 
object	 information	 throughout	 the	 entire	 trial.	 On	 top	 of	 this,	 the	 results	 reveal	 a	 general	490 
broadening	of	 information	generalization	after	an	early	phase	of	 visual	processing.	While	 the	491 
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results	 of	 this	 temporal	 generalization	 analysis	 do	 not	 reveal	 multiple	 distinct	 stages	 of	492 
processing,	this	broadening	suggests	early	dynamic	neural	activity	followed	by	the	emergence	of	493 
more	stable	object	representations	around	250	ms.	494 

	495 

	496 
	497 
Figure	2.	a.	Time-resolved	multivariate	decoding	of	object	identity	across	the	trial.	After	onset	of	the	object	stimulus	498 
(Object	Stimulus	Period),	pairwise	object	decoding	accuracy	 increased	rapidly,	 followed	by	a	slow	decay	towards	499 
chance	over	 the	duration	of	 the	 trial.	 Error	 bars	 reflect	 SEM	across	 participants	 for	 each	 time	point	 separately.	500 
Significance	is	indicated	by	colored	lines	above	the	plot	(non-parametric	cluster-correction	at	p	<	0.05).	b.	Temporal	501 
generalization	matrix	for	object	identity.	The	y-axis	depicts	the	classifier	training	time	relative	to	stimulus	onset,	and	502 
the	x-axis	classifier	generalization	time	relative	to	stimulus	onset.	Dotted	lines	indicate	stimulus	onset	and	offset.	503 
Areas	bounded	by	a	grey	line	contain	significant	temporal	cross-decoding	accuracy	values	(p	<	0.05,	FDR	corrected).	504 
See	Supplemental	Figure	S2,	for	horizontal	cross-sections	across	the	temporal	generalization	plots.	505 
	506 
Criterion	I	for	conceptual	object	representation:	Generalization	between	object	exemplars		507 
Having	established	the	time	course	of	object	identity-specific	information,	we	investigated	508 
when	those	brain	responses	reflect	conceptual	object	representations.	One	prerequisite	of	a	509 
conceptual	object	representation	is	a	similar	representational	format	between	multiple	510 
exemplars	of	the	same	object,	since	a	conceptual	representation	is	expected	to	generalize	511 
beyond	each	individual	exemplar.	The	data	collected	from	Image	Set	1	and	2	allow	direct	512 
comparison	of	representational	similarity	across	exemplars	for	the	same	visual	object	concept	513 
(Figure	3).	We	expected	some	low-level	features	to	be	shared	across	object	exemplars,	but	that	514 
this	tendency	would	be	reduced	as	compared	to	the	same	exemplar.	Indeed,	when	comparing	515 
the	low-level	similarity	between	exemplars	of	image	sets,	the	similarity	was	higher	within	516 
object	concept	than	between	object	concepts	(mean	pixelwise	similarity	within:	r	=	0.15,	517 
between:	r	=	0.04;	mean	GIST	similarity	within:	r	=	0.58,	between:	r	=	0.41),	demonstrating	518 
some	preserved	similarity	between	object	exemplars.	However,	the	overall	similarity	was	519 
strongly	reduced,	and	the	maximal	similarity	across	image	sets	was	for	the	same	object	concept	520 
in	only	19%	of	the	cases	(based	on	the	GIST	similarity),	demonstrating	a	strongly	reduced	low-521 
level	similarity	between	image	sets.	522 
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Having	 demonstrated	 the	 reduction	 in	 low-level	 similarity	 between	 image	 sets,	 we	523 
measured	 this	 generalization	 of	 object	 concept-specific	 information	 by	 (1)	 calculating	 the	524 
correlation	of	within-exemplar	MEG	RSMs	 for	participants	who	were	 shown	 the	 same	object	525 
exemplar	and	(2)	calculating	the	generalization	of	between-exemplar	MEG	RSMs	for	participants	526 
who	 were	 shown	 different	 object	 exemplars.	 Then	 we	 compared	 the	 shape	 of	 these	 MEG	527 
correlation	time	courses.	528 

A	comparison	of	within-exemplar	and	between-exemplar	MEG	RSM	correlations	revealed	529 
a	generally	higher	correlation	within-exemplar	than	between-exemplar	(mean	difference	across	530 
time:	 Spearman’s	 r:	 0.18,	p	 <	0.001,	 randomization	 test),	 indicating	 that	differences	between	531 
exemplars	persisted	throughout	most	of	the	trial.	Reliable	structure	for	within-exemplar	MEG	532 
RSMs	emerged	rapidly,	peaking	at	93	ms	(mean	Spearman’s	r:	0.77).	This	was	followed	by	a	fast	533 
drop	in	correlation,	and	then	another	rise	beginning	around	160	ms	and	peaking	at	202	ms	(mean	534 
Spearman’s	 r:	 0.65),	 	 after	 which	 within-exemplar	 correlations	 decreased	 steadily	 for	 the	535 
duration	of	 the	 trial	while	 remaining	 significantly	 above	 chance.	 The	 correlation	of	 between-536 
exemplar	MEG	RSMs	also	initially	increased	rapidly,	but	then	reached	a	plateau	at	a	comparably	537 
low	 level	 of	 correlation	 between	~70	 and	~160	ms	 (mean	 Spearman’s	 r:	 0.21).	 Importantly,	538 
between-exemplar	 reliability	 then	 increased	 again	 after	 ~160	ms,	 peaking	 at	 227	ms	 (mean	539 
Spearman’s	r:	0.39).	Between-exemplar	correlation	then	slowly	decayed	back	to	0,	but	remained	540 
significantly	above	chance	until	960	ms	after	stimulus	presentation.	541 

These	 results	 reveal	 an	 important	 dissociation:	 While	 within-exemplar	 correlations	542 
reached	their	maximum	around	100	ms,	between-exemplar	generalization	was	maximal	around	543 
200	ms.	Thus,	this	analysis	reveals	an	early	processing	stage	during	which	generalization	is	limited	544 
by	the	variable	visual	features	of	each	individual	exemplar,	and	a	later	processing	stage	where	545 
the	 increased	 generalization	 likely	 reflects	 the	 development	 of	 a	 more	 conceptual	 object	546 
representation	that	is	consistent	across	exemplars.	547 

	548 

	549 
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Figure	3.		Within	and	between	exemplar	correlation	of	MEG	RSMs.	Within-exemplar	correlation	was	generally	higher	550 
than	between-exemplar	correlation.	Both	within	and	between-exemplar	correlations	revealed	an	early	peak	(93	ms)	551 
and	a	 late	peak	 (202	and	227	ms,	 respectively),	with	 the	early	peak	being	higher	 than	 the	 late	peak	 for	within-552 
exemplar	correlations,	and	the	late	peak	being	higher	than	the	early	peak	for	between-exemplar	correlations.	Error	553 
bars	 reflect	 SEM.	 Significance	 is	 indicated	 by	 colored	 lines	 above	 the	 accuracy	 plot	 (non-parametric	 cluster-554 
correction	at	p	<	0.05).	555 
	556 
Comparison	of	behavior	and	computational	models	of	low-level	and	high-level	processing	557 
To	quantify	how	the	RSMs	derived	from	behavior	(perceptual	judgments,	visualized	in	Figure	4b),	558 
GloVe	(lexical	semantics),	DNN	Layer	3	(low/mid-level	visual	information),	and	DNN	Layer	7	(high-559 
level	visual	information)	relate	to	one	another,	we	computed	the	correlation	between	each	pair	560 
of	 model	 RSMs	 (Figure	 4a).	 For	 visualization	 purposes,	 we	 applied	 hierarchical	 clustering	 to	561 
independent	pilot	data	of	the	behavioral	task	to	sort	objects	depicted	in	the	model	RSMs	(Figure	562 
4a).	 All	 model	 correlations	 were	 significant	 at	 a	 level	 of	 p	 <	 0.001	 (randomization	 test).	 An	563 
estimate	of	the	upper	noise	ceiling	for	possible	model	correlation	values	was	calculated	by	the	564 
correlation		between	behavior	RSMs	for	the	two	groups	of	participants	(Spearman’s	r	=	0.64).	The	565 
greatest	 similarity	 to	 behavior	 was	 shown	 by	 the	 GloVe	 model.	 There	 was	 low	 similarity	 of	566 
convolutional	 DNN	 Layer	 3	 with	 behavior	 and	 GloVe,	 but	 much	 greater	 similarity	 for	 fully-567 
connected	 DNN	 Layer	 7.	 These	 results	 suggest	 an	 increase	 of	 semantic,	 behaviorally-related	568 
information	contained	in	the	representational	structure	of	the	DNN	Layer	7	as	compared	to	Layer	569 
3.	 	Note	that	 the	 lowest	correlation	observed	was	between	DNN	Layer	3	and	behavior	RSMs,	570 
indicating	that	behavior	was	not	strongly	driven	by	low-	to	mid-level	responses.	As	a	post-hoc	571 
analysis,	 we	 added	 the	 comparison	 of	 behavior	 to	 the	 GIST	 RSM,	 which	 was	 even	 lower	572 
(Spearman’s	r	=	0.02),	highlighting	the	low	explanatory	power	of	low-level	features	in	behavioral	573 
judgments	in	the	present	study.	574 
	575 

	576 
	577 
Figure	 4:	a.	 Explicit	 comparison	 of	 computational	models	 and	 behavior	 using	 RSA.	Models	 compared	 are	 group	578 
average	behavior,	GloVe,	DNN	Layer	3	and	DNN	Layer	7.	RSAs	are	plotted	as	ranks	for	higher	visual	contrast.	Objects	579 
are	 sorted	 based	 on	 clustering	 generated	 from	 independent	 pilot	 data.	 	 b.	 Group	 average	 inverse	 MDS	 plot	580 
generated	from	behavioral	arrangement	task.		581 
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	582 
	583 
Criterion	II	for	conceptual	object	representation:	Behavioral	and	computational	modeling	of	MEG	584 
data	585 
To	determine	when	there	 is	a	 relationship	between	the	MEG	signal	and	high-level	behavioral	586 
judgments,	 satisfying	 Criterion	 II,	 we	 first	 evaluated	 the	 time	 course	 of	 similarity	 between	587 
behavioral	judgments	and	the	MEG	activity	patterns	(Figure	5).	Further,	to	establish	whether	this	588 
relationship	 was	 uniquely	 explained	 by	 behavior,	 we	 additionally	 compared	 MEG	 to	 the	589 
computational	models	 described	 above.	 Every	model	 tested	 exhibited	 significant	 correlations	590 
with	MEG	activity	patterns	within	the	first	200	ms	of	visual	processing.	DNN	Layer	3	showed	peak	591 
correlation	with	MEG	at	118	ms	after	stimulus	onset	(Spearman’s	r	=	0.33),	while	DNN	Layer	7	592 
showed	peak	correlation	with	MEG	at	151	ms	(Spearman’s	r	=	0.23).	Further,	the	GloVe	model	593 
was	most	strongly	correlated	with	MEG	at	151	ms	(Spearman’s	r	=	0.13),	and	behavior	at	160	ms	594 
(Spearman’s	 r	 =	 0.16).	 Additional	 within-subject	 analyses,	 i.e.	 comparing	 each	 individual’s	595 
behavioral	RSM	to	their	MEG	RSM,	revealed	a	very	similar	pattern	of	results	but	lower	overall	596 
correlations	(peak	Spearman’s	r	=	0.06)	and	no	significant	benefit	of	within-subject	over	between-597 
subject	analyses	matched	in	size	(all	p	>	0.12).	598 

This	 sequence	 of	 peaks	 suggests	 an	 evolution	 from	 low-level	 visual	 to	 high-level	599 
conceptual	representations,	with	the	relationship	to	behavior	peaking	latest	in	time.	However,	600 
given	the	significant	correlations	of	all	models	with	MEG	throughout	most	of	the	trial	and	the	601 
presence	of	significant	correlation	between	the	models	themselves	(Figure	4a),	it	is	unclear	to	602 
what	extent	a	given	correlation	was	uniquely	explained	by	one	model,	or	whether	this	correlation	603 
could	equally	well	be	explained	by	other	models.	For	example,	the	correlation	of	both	DNN	Layer	604 
7	 and	 behavior	 with	 MEG	 signals	 after	 150	 ms	 raises	 the	 question	 whether	 the	 behavioral	605 
correlations	can	be	fully	explained	by	the	features	represented	in	the	DNN	models.	606 

	607 
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	608 
	609 
Figure	5.	Results	of	model-based	representational	similarity	analysis	with	MEG	data.	Comparison	includes	models	610 
based	on	DNN	Layer	3,	DNN	Layer	7,	GloVe	and	behavior.	The	results	exhibit	a	progression	of	peaks	from	DNN	Layer	611 
3	 to	behavior,	 suggesting	a	 temporal	evolution	of	 the	underlying	 representation	 from	more	 low-level	 to	higher-612 
level/conceptual.	Grey	shaded	area	depicts	the	noise	ceiling.	Significant	time	points	are	indicated	by	a	colored	line	613 
above	the	plots	(p	<	0.05,	FDR-corrected	permutation	test).	614 
	615 
Variance	Partitioning:	Shared	and	unique	model	contributions	616 
To	 provide	 a	 deeper	 understanding	 of	 the	 unique	 contributions	 of	 different	models	 to	MEG	617 
variance	and	how	much	explanatory	power	they	share	with	behavioral	judgments	in	explaining	618 
MEG	variance,	we	conducted	a	variance	partitioning	analysis	in	which	we	compared	the	results	619 
of	different	multiple	regression	analyses	applied	to	MEG	RSMs	(see	Methods;	Figure	6a).	We	first	620 
considered	the	total	percent	of	variance	in	the	MEG	RSMs	explained	when	all	three	predictors	621 
are	combined	in	a	single	regression	model	(‘full	model’)	in	comparison	to	the	percent	variance	622 
explained	 by	 each	 model	 separately	 (Figure	 6b).	 Since	 variance	 explained	 by	 each	 model	623 
separately	is	identical	to	the	square	of	the	model	correlation,	the	results	of	this	analysis	are	very	624 
similar	to	those	of	the	previous	section	presented	in	Figure	5,	with	the	only	difference	that	these	625 
results	were	collapsed	across	groups	before	conducting	variance	partitioning.	Explained	variance	626 
of	DNN	Layer	3	peaked	at	118	ms	(R2:	11.0	%),	DNN	Layer	7	at	151	ms	(R2:	7.0	%),	and	behavior	627 
at	160	ms	(R2:	4.8	%).		Importantly,	however,	the	dashed	line	indicates	how	these	contributions	628 
relate	to	the	total	variance	accounted	for	by	all	three	models	combined.	At	its	peak	at	118	ms,	629 
the	 full	 model	 explains	 11.6	 %	 of	 the	 variance,	 which	 is	 similar	 to	 the	 amount	 of	 variance	630 
explained	by	DNN	Layer	3	alone,	suggesting	that	all	variance	captured	at	this	time-point	can	be	631 
attributed	 uniquely	 to	 DNN	 Layer	 3,	 with	 limited	 additional	 contribution	 of	 DNN	 Layer	 7	 or	632 
behavior.	 At	 later	 time	 points,	 however,	 the	 full	 model	 always	 substantially	 explains	 more	633 
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variance	than	the	individual	predictors,	providing	a	first	clue	that	some	or	all	of	these	predictors	634 
contribute	unique	(i.e.,	additive)	variance.	635 

To	directly	quantify	 the	unique	and	shared	variance	of	each	model,	we	compared	 the	636 
regression	outcomes	with	different	model	variables	included	(Figures	6c,	6d).	The	unique	MEG	637 
variance	explained	by	DNN	Layer	3	peaked	very	early	in	time,	at	109	ms	(R2:	8.3%).	DNN	Layer	7	638 
peaked	next	at	151	ms	(R2:	2.0	%),	 followed	closely	by	behavior	at	160	ms	(R2:	2.6	%),	with	a	639 
second	peak	at	277	ms	(R2:	3.2	%).	Importantly,	DNN	Layer	3	explained	the	most	unique	variance	640 
until	143	ms,	after	which	behavior	predicted	the	most	unique	variance	until	~400	ms.	Thus,	while	641 
all	 three	models	 (DNN	Layer	3,	DNN	Layer	7	and	behavior)	captured	some	unique	variance	 in	642 
MEG	activity	throughout	the	trial,	behavior	dominated	after	around	150	ms.	643 

Finally,	 to	complete	the	picture,	we	partitioned	the	variance	 into	shared	contributions	644 
from	 combinations	 of	 the	 different	 models.	 Both	 DNN	 Layers	 contributed	 the	 most	 shared	645 
variance	across	all	time	points	after	stimulus	onset,	which	is	perhaps	not	surprising	considering	646 
that	both	layers	are	derived	from	the	same	computational	model.	This	shared	variance	between	647 
DNN	Layer	3	and	Layer	7	peaked	at	126	ms	(R2:	3.5	%).	Interestingly,	the	shared	variance	between	648 
behavior	and	DNN	Layer	7	demonstrated	a	clear	peak	at	151	ms	(R2:	1.7	%),	suggesting	that	it	is	649 
around	this	time-point	that	DNN	Layer	7	best	captures	neural	information	that	is	also	reflected	650 
in	behavior.	 	The	shared	variance	between	DNN	Layer	3	and	behavior	was	slightly	negative,	a	651 
result	 that	 is	 not	 untypical	 for	 variance	 partitioning,	 indicative	 of	 small	 suppression	 effects	652 
(Pedhazur,	1997)	and	suggesting	that	DNN	Layer	3	does	not	capture	information	that	is	relevant	653 
for	behavioral	judgments.	654 

It	is	possible	that	DNN	Layer	3	did	not	accurately	capture	the	low-level	responses.	For	this	655 
reason,	we	ran	additional	variance	partitioning	analyses,	replacing	DNN	Layer	3	with	the	GIST	656 
model.	The	GIST	RSM	exhibited	a	strong	correlation	with	the	DNN	Layer	3	RSM	(Spearman’s	r:	657 
0.65).	As	expected	from	this	correlation,	the	variance	partitioning	results	were	qualitatively	very	658 
similar	(Supplemental	Figure	S3),	demonstrating	that	DNN	Layer	3	likely	captured	relevant	low-659 
level	responses.	660 

Collectively,	 the	 variance	 partitioning	 results	 indicate	 that	 behavioral	 judgments	 are	661 
reflected	in	the	MEG	response	above	and	beyond	what	is	captured	by	the	DNN,	with	behavioral	662 
judgments	explaining	the	most	unique	variance	between	200	and	400	ms	after	stimulus	onset.	663 
Further,	before	150	ms,	DNN	Layer	3	explains	the	most	variance,	suggesting	that	representations	664 
prior	to	this	point	are	unlikely	to	be	conceptual	in	nature.		665 
	666 
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	667 
	668 
Figure	6.	Time-resolved	variance	partitioning:	Total,	shared,	and	unique	MEG	variance	explained	by	models:	DNN	669 
Layer	3,	DNN	Layer	7,	and	behavior.	a.	Schematic	of	unique	and	shared	variance	components	using	a	Venn	diagram.	670 
b.	Percent	MEG	variance	explained	by	each	model	independently	(colored	lines),	and	total	MEG	variance	explained	671 
at	all	time	points	(dotted	line).	c.	Unique	variance	explained	by	each	model.	d.	Shared	variance	between	different	672 
model	combinations.	Significant	time	points	are	indicated	by	a	colored	line	above	the	plots	(p	<	0.05,	FDR-corrected	673 
permutation	test).	674 
 675 
Discussion	676 
	677 
In	 this	 study,	 we	 investigated	 the	 temporal	 evolution	 of	 visual	 object	 representations.	 In	678 
particular	 we	 focused	 on	 determining	 a	 lower	 bound	 for	 the	 emergence	 of	 conceptual	679 
representations	 of	 objects.	 We	 proposed	 two	 criteria	 that	 would	 reflect	 conceptual	680 
representations:	1)	generalization	of	representations	between	different	exemplars	of	the	same	681 
object,	 and	2)	 relationship	 to	high-level	behavioral	 judgments.	We	 find	qualitatively	different	682 
processing	of	objects	over	time:	Early	responses	(<	150	ms)	were	characterized	by	exemplar-level	683 
representations	and	similarity	with	computational	visual	models,	whereas	later	responses	(>	150	684 
ms)	showed	increasing	generalization	across	exemplars	and	similarity	with	behavioral	judgments,	685 
with	greater	stability	of	representations	over	time.	686 
												 To	 evaluate	 generalization	 of	 representations	 reflecting	 conceptual	 processing,	 we	687 
compared	the	representational	structure	of	MEG	responses,	both	within	exemplar	and	between	688 
sets	 of	 exemplars.	 This	 analysis	 revealed	 two	 interesting	 features.	 First,	 between-exemplar	689 
generalization	 was	 found	 to	 be	 consistently	 lower	 than	 within-exemplar	 generalization,	690 
demonstrating	the	persistence	of	exemplar-specific	responses.	This	reduced	between-exemplar	691 
generalization	 likely	 reflects	 the	 impact	 of	 low-level	 features	 varying	 between	 different	692 
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exemplars.	 The	 fact	 that	 this	 advantage	 is	 maintained	 throughout	 the	 trial,	 suggests	 some	693 
persistence	of	low-level	feature	representation.	This	interpretation	is	supported	by	the	temporal	694 
generalization	even	for	very	early	time	points	and	the	variance	explained	by	DNN	Layer	3	(which	695 
likely	corresponds	to	early	to	mid-level	visual	processing,	Cichy	et	al.,	2016a;	Güçlü	&	van	Gerven,	696 
2015;	 Wen	 et	 al.,	 2017),	 throughout	 the	 trial.	 Second,	 both	 within	 and	 between-exemplar	697 
generalization	showed	two	distinct	peaks,	one	early	around	100	ms,	and	another	late	around	200	698 
ms.	However,	their	relative	amplitude	was	reversed:	While	the	early	peak	was	stronger	than	the	699 
second	within-exemplar,	this	pattern	was	reversed	between-exemplar.	This	striking	increase	in	700 
generalization	between	exemplars	that	occurs	for	the	later	peak	suggests	the	emergence	of	a	701 
common	 representation	 across	 exemplars,	 a	 key	 marker	 for	 conceptual	 representations.	702 
Together	 these	 results	 suggest	 that	 the	 earliest	 time	 point	 for	 the	 emergence	 of	 conceptual	703 
representations	is	around	150	ms,	but	also	suggest	a	prolonged	representation	of	low-level	visual	704 
features.	705 
												 To	evaluate	 the	 relationship	 to	high-level	behavioral	 judgments,	we	 compared	models	706 
derived	 from	 behavior,	 semantics	 (GloVe),	 and	 computational	 vision	 (DNN)	 with	 the	 MEG	707 
response	 to	 objects.	 We	 found	 that	 all	 models	 show	 significant	 correlation	 with	 the	 MEG	708 
response	throughout	most	of	the	trial.	The	early	DNN	layer	showed	the	strongest	and	earliest	709 
correlation,	while	the	GloVe	model	showed	the	weakest	correlation.	This	result	highlights	the	710 
importance	 of	 testing	multiple	models	 rather	 than	 relying	 on	 a	 significant	 effect	 for	 a	 single	711 
model.	 Since	 the	models	 themselves	are	correlated	 (Figure	4),	 this	demonstrates	 that	 testing	712 
multiple	models	is	also	not	sufficient;	it	is	important	to	determine	the	unique	and	shared	variance	713 
explained	by	the	different	models	(Lescroart	et	al.,	2015;	Groen	et	al.,	2012;	Greene	et	al.,	2016;	714 
Hebart	et	al.,	2018;	Groen	et	al.,	2018),	motivating	our	variance	partitioning	analysis.	Given	the	715 
complexities	of	describing	the	unique	and	shared	variance	partitions	of	more	than	three	model	716 
variables,	we	decided	to	exclude	one	of	the	four.	Since	the	GloVe	model	showed	the	weakest	717 
correlation	with	MEG	and	was	mostly	subsumed	by	the	behavioral	model,	we	focused	on	the	718 
DNN	and	behavioral	model	variables.	719 
												 The	 variance	partitioning	 revealed	 several	 important	 features.	 Focusing	on	 the	unique	720 
contribution	of	each	model	variable,	 it	becomes	clear	that	DNN	Layer	3	dominates	early	MEG	721 
responses	peaking	at	100	ms,	whereas	behavior	explains	the	most	variance	after	150	ms,	peaking	722 
at	 270	 ms.	 This	 result	 fulfills	 our	 second	 criterion	 –	 relationship	 with	 high-level	 behavioral	723 
judgments	–	converging	with	the	results	of	both	the	temporal	generalization	analysis	and	the	724 
representational	generalization	across	exemplars	in	identifying	the	time	period	after	around	150	725 
ms	as	reflecting	a	lower	bound	for	the	emergence	of	conceptual	representations.	Focusing	on	726 
the	shared	contribution	of	model	variables,	the	results	largely	reflect	the	correlations	between	727 
model	 variables	 (Figure	4),	 e.g.	 no	 shared	variance	between	DNN	Layer	3	 and	behavior,	 high	728 
shared	variance	between	Layers	3	and	7	of	the	DNN	model.	However,	they	provide	important	729 
information	about	the	timing	of	the	shared	variances.	In	particular,	the	shared	variance	between	730 
DNN	Layers	3	and	7	persisted	even	late	in	time,	again	suggesting	a	sustained	representation	of	731 
low-level	visual	information.	732 

Our	results	are	generally	consistent	with	prior	work	investigating	how	visual	processing	733 
of	 objects	 evolves	 over	 time,	 showing	 the	 gradual	 emergence	 of	 high-level	 representations	734 
(Contini	et	al.,	2017).	While	early	signals	reflect	low-level	visual	features	(e.g.	Groen	et	al.,	2013;	735 
Cichy	et	al.,	2014;	Coggan	et	al.,	2016),	later	signals	reflect	perceptual	similarity	(Wardle	et	al.,	736 
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2016),	some	tolerance	for	changes	in	size	and	position	(Isik	et	al.,	2014),	categorical	processing	737 
(Carlson	et	al.,	2013;	Cichy	et	al.,	2014),	and	correlate	with	task	performance	and	reaction	times	738 
(Van	Rullen	and	Thorpe,	2001;	Philiastides	and	Sajda,	2006;	Martinovic	et	al.,	2008;	Ritchie	et	al.,	739 
2015).	Further,	comparisons	of	deep	neural	networks	with	MEG	have	revealed	a	correspondence	740 
of	early	 layers	with	earlier	MEG	responses,	 likely	reflecting	initial	stages	of	processing	in	early	741 
visual	 cortex,	while	higher	 layers	 reflect	 later	 stages	of	processing	 in	occipitotemporal	 cortex	742 
(Cichy	 et	 al.,	 2016b;	 Seeliger	 et	 al.,	 2017).	 Our	 results	 significantly	 extend	 these	 results	 by	743 
establishing	a	lower	bound	for	the	development	of	conceptual	representations.	744 

Other	studies	have	also	investigated	high-level	conceptual	processing	over	time	using	745 
explicit	 semantic	 feature	models	 (Clarke	&	Tyler,	2015)	or	behavioral	 judgments	 (Cichy	et	al.,	746 
2017).	 For	 example,	 Clarke	 and	 colleagues	 showed	 semantic	 feature	 effects	 before	 120	ms,	747 
although	 including	basic	visual	 features	based	on	the	HMAX	model	 revealed	unique	semantic	748 
contributions	 to	MEG	 signals	 only	 after	~200	ms	 (Clarke	 et	 al.,	 2013;	 Clarke	 et	 al.,	 2014).	 In	749 
contrast	to	these	studies,	we	used	more	recent	deep	convolutional	neural	networks	which	have	750 
been	shown	to	be	more	closely	tied	to	neural	and	behavioral	data	(Khaligh-Razavi	et	al.,	2016;	751 
Jozwik	 et	 al.,	 2017;	 Cichy	 et	 al.,	 2016a).	 Further,	 we	 operationalized	 high-level	 conceptual	752 
processing,	 using	 both	 a	 computational	 semantic	 model	 based	 on	 semantic	 co-occurrence	753 
statistics	(GloVe	model),	as	well	as	behavioral	judgments	of	object	similarity	that	we	take	to	more	754 
broadly	reflect	conceptual	processing.	Indeed,	our	results	suggest	that	MEG	variance	explained	755 
by	 the	 GloVe	 model	 was	 comparably	 low	 and	 mostly	 covaried	 with	 behavioral	 judgments,	756 
suggesting	that	conceptual	representations	extend	beyond	those	relationships	captured	by	the	757 
GloVe	model.	Despite	these	differences,	our	results	are	generally	consistent	with	the	results	of	758 
Clarke	and	colleagues,	but	suggest	a	lower	bound	for	conceptual	processing	around	~150	ms	(see	759 
also	Cichy	et	al.,	2017).	Further,	we	show	that	the	computational	visual	model	and	behavioral	760 
judgments	explain	shared	variance	even	prior	to	150	ms.	This	shared	variance	indicates	that	the	761 
neural	 activity	 captured	by	 compational	models	 is	 behaviorally	 relevant	 and	argues	 against	 a	762 
strong	distinction	between	(low-level)	visual	features	on	the	one	hand,	and	high-level	conceptual	763 
processing	on	the	other.	At	the	same	time,	the	presence	of	significant	unique	variance	explained	764 
by	 behavior	 after	 150	ms	 suggests	 that	 not	all	 aspects	 of	 conceptual	 object	 representations	765 
reflected	in	MEG	activity	are	explained	by	current	generations	of	computational	visual	models.	766 

While	our	study	provides	insight	into	the	development	of	conceptual	representations,	767 
there	are	some	important	considerations.	First,	we	used	behavioral	similarity	judgments	using	768 
the	 multi-arrangement	 task	 (Kriegeskorte	 &	 Mur,	 2012)	 to	 index	 conceptual	 processing.	769 
However,	 this	 choice	 of	 method	 might	 constrain	 the	 ability	 to	 capture	 conceptual	770 
representations.	While	the	behavioral	judgments	explain	more	variance	in	the	MEG	signal	than	771 
the	semantic	GloVe	model	we	tested,	we	do	not	know	what	aspects	of	conceptual	processing	are	772 
reflected	in	those	judgments.	Further,	it	is	unclear	how	sensitive	those	behavioral	judgments	are	773 
to	the	context	imposed	by	the	stimuli	and	instructions.	Second,	we	only	employed	two	exemplars	774 
per	object	concept	to	test	generalization	of	representations,	and	this	may	not	have	contained	775 
sufficient	variability	 to	 fully	disentangle	 low-level	and	high-level	processing.	 In	 future	work,	 it	776 
would	 be	 useful	 to	 carry	 out	 similar	 analyses	 while	 presenting	 multiple	 image	 sets	 to	 each	777 
participant,	 which	 would	 allow	 within-subject	 exploration	 of	 differences	 in	 temporal	778 
generalization	 across	 exemplars.	 Finally,	 in	 the	 future	 alternative	 similarity	metrics	 for	MEG-779 
based	RSA,	such	as	the	cross-validated	Mahalanobis	distance	could	be	applied	that	may	increase	780 
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the	 robustness	 over	 the	 current	 approach	 (Guggenmos	 et	 al.,	 2018).	 Future	 studies	 should	781 
consider	 broader	 sets	 of	 stimuli,	 different	 behavioral	 tasks,	 and	 alternative	 computational	782 
models	that	may	better	match	the	MEG	signal.	783 

In	 conclusion,	 by	 focusing	on	 two	 criteria	 for	 conceptual	 object	 representations	we	784 
provide	an	estimate	for	a	lower	bound	for	the	emergence	of	conceptual	object	representations	785 
of	around	150	ms.	Prior	to	this	time,	our	results	demonstrate	limited	generalization	across	object	786 
exemplars	and	time,	and	importantly	little	unique	contributions	of	behavioral	judgments	to	the	787 
MEG	response.		The	multifaceted	nature	of	our	findings	here	show	that	the	combination	of	neural	788 
data,	 behavior,	 and	models	 are	 a	 viable	 method	 to	 probe	 the	 temporal	 dynamics	 of	 object	789 
recognition	and	allow	us	to	establish	a	novel	profile	of	emergent	conceptual	representations	in	790 
time. 	791 
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