
METHODS ARTICLE
published: 06 January 2015

doi: 10.3389/fninf.2014.00088

The Decoding Toolbox (TDT): a versatile software package
for multivariate analyses of functional imaging data
Martin N. Hebart1,2,3,4*†, Kai Görgen2,3,5*† and John-Dylan Haynes2,3,4

1 Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
2 Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Berlin, Germany
3 Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin, Berlin, Germany
4 Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
5 Fachgebiet Neurotechnologie, Technische Universität Berlin, Berlin, Germany

Edited by:

Arjen Van Ooyen, VU University
Amsterdam, Netherlands

Reviewed by:

Julien Dubois, California Institute of
Technology, USA
Qiyong Gong, West China Hospital
of Sichuan University, China

*Correspondence:

Martin N. Hebart, Department of
Systems Neuroscience, University
Medical Center
Hamburg-Eppendorf, W34,
Martinistraße 52, 20251 Hamburg,
Germany
e-mail: m.hebart@uke.de;
Kai Görgen, Bernstein Center for
Computational Neuroscience,
Charité Universitätsmedizin, Haus 6,
Philippstr. 13, 10115 Berlin, Germany
e-mail: kai.goergen@bccn-berlin.de

†These authors have contributed
equally to this work.

The multivariate analysis of brain signals has recently sparked a great amount of interest,
yet accessible and versatile tools to carry out decoding analyses are scarce. Here we
introduce The Decoding Toolbox (TDT) which represents a user-friendly, powerful and
flexible package for multivariate analysis of functional brain imaging data. TDT is written
in Matlab and equipped with an interface to the widely used brain data analysis package
SPM. The toolbox allows running fast whole-brain analyses, region-of-interest analyses
and searchlight analyses, using machine learning classifiers, pattern correlation analysis,
or representational similarity analysis. It offers automatic creation and visualization of
diverse cross-validation schemes, feature scaling, nested parameter selection, a variety
of feature selection methods, multiclass capabilities, and pattern reconstruction from
classifier weights. While basic users can implement a generic analysis in one line of
code, advanced users can extend the toolbox to their needs or exploit the structure to
combine it with external high-performance classification toolboxes. The toolbox comes
with an example data set which can be used to try out the various analysis methods. Taken
together, TDT offers a promising option for researchers who want to employ multivariate
analyses of brain activity patterns.

Keywords: multivariate pattern analysis, decoding, pattern classification, fMRI, representational similarity analysis,

searchlight

INTRODUCTION
Human neuroscientists are interested in understanding the func-
tion of the human brain and nervous system. For that purpose,
they have developed numerous methods that directly or indi-
rectly measure the activity of the nervous system at work. One of
these methods is functional magnetic resonance imaging (fMRI)
which measures brain activity indirectly through the blood oxy-
gen level dependent (BOLD) response (Logothetis et al., 2001).
Conventionally, the focus of fMRI has been to perform mass-
univariate analyses, i.e., to analyze the recorded data time courses
of each fMRI brain voxel (for MEG/EEG each sensor/electrode)
separately, for example with the general linear model (GLM, e.g.,
Friston et al., 1994).

More recently, these mass-univariate analysis methods have
been complemented by multivariate pattern analysis (MVPA)
which refers to a collection of multivariate methods of brain data
analysis that incorporate multiple dependent variables at the same
time (Haynes and Rees, 2006; Norman et al., 2006; Kriegeskorte,
2011). One of the most popular multivariate methods of brain
data analysis is generally referred to as multivariate decoding
which describes the mapping of multiple dependent variables to
one or multiple independent variables, and which contrasts with
multivariate encoding describing the opposite mapping (Naselaris

et al., 2011). The popularity of multivariate methods of brain data
analysis stems from three facts: First, multivariate methods offer
increased sensitivity in detecting statistical dependence between
cognitive variables and (patterns of) brain activity, because these
methods can combine information across multiple voxels and
exploit their covariance. Put simply, multivariate methods make it
easier to detect existing differences between brain signals. Second,
multivariate methods allow for greater specificity in finding a sta-
tistical dependence between measured brain data and multiple
categorical responses. Although a number of brain regions show
overall changes in activity selective for specific stimulus categories
(e.g., Kanwisher et al., 1997), stimuli can be encoded in a more
distributed manner (Averbeck et al., 2006). Multivariate meth-
ods can be used to target distributed representations of stimuli,
cognitive variables, or other variables of interest. This effectively
enables researchers to ask more specific questions regarding neu-
ronal representations, for example about the representation of
individual face exemplars (Kriegeskorte et al., 2007; Nestor et al.,
2011). Third, multivariate decoding methods allow functional
neuroimaging to be used for accurate prediction of cognitive and
mental states in the form of a “neuronal marker.” For example,
they might be used to support the diagnosis of neurological disor-
ders beyond regions typically detected by radiologists (Weygandt

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00088/abstract
http://community.frontiersin.org/people/u/38119
http://community.frontiersin.org/people/u/21975
http://community.frontiersin.org/people/u/6553
mailto:m.hebart@uke.de
mailto:kai.goergen@bccn-berlin.de
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

et al., 2011), predict the conversion from mild cognitive impair-
ment to Alzheimer’s disease (Cui et al., 2011), interrogate cog-
nitive states from people that cannot communicate (Horikawa
et al., 2013), or support non-invasive brain-computer interfaces
for motor control in paralyzed patients (Blankertz et al., 2007).

Although the number of publications using multivariate
decoding methods has been rising continuously, it still seems to
be common for researchers to program their own multivariate
data analysis pipeline from scratch1 . This is not only very time-
consuming and redundant, it is also very error-prone. Indeed, if
the same piece of code is adapted for different decoding analyses,
changes that were done for previous analyses might be overlooked
in later analyses or might affect other analysis steps which can
produce invalid results. Just as problematic—and not uncommon
even for experts—is the unintentional wrong use of decoding
methods, for example circular analyses (Kriegeskorte et al., 2009).
In addition, researchers might hesitate to conduct decoding anal-
yses, either because of their limited understanding of machine
learning methods for functional neuroimaging (covered in detail
by Formisano et al., 2008; Pereira et al., 2009; Lemm et al., 2011)
or because of the effort involved in learning to apply a new anal-
ysis method. For that reason, researchers getting started with
decoding would strongly benefit from an easy-to-use implemen-
tation of multivariate methods. At the same time, they would
ideally keep using the same software for simple analyses that they
would later use for more sophisticated approaches once they have
gained sufficient knowledge.

Here we present The Decoding Toolbox (TDT) that offers
a flexible yet easy to use framework for decoding analyses in
Matlab (Mathworks, Natick, MA). TDT offers an interface with
SPM (Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.
uk/spm/), the most common fMRI data analysis software, but
can also be extended to other fMRI data analysis packages. TDT
can be used by any researcher with basic knowledge in fMRI data
analysis and minimal programming skills, while at the same time
allowing a large amount of flexibility in the application of com-
plex decoding approaches for more experienced researchers. We
briefly summarize the key features of the toolbox that should
make its use attractive.

SIMPLICITY
Originally, we created TDT to simplify setting up decoding anal-
yses and prevent the unintentional introduction of programming
errors or unnoticed changes in settings that do not elicit error

1To support this observation numerically, we conducted a Google Scholar
search where we intended to limit our search to articles using multivari-
ate decoding methods and which explicitly mention the software package
they use for regular analyses. These articles should also mention the MVPA
toolbox used. For the search, we used the combination “fMRI AND (‘multi-
variate pattern analysis’ OR ‘multivoxel pattern analysis’) AND (FSL OR AFNI
OR Freesurfer OR SPM).” This yielded 659 hits between 2010 and 2013. Of
these, only 103 (15.6 %) contained the strings “PRoNTo,” “PyMVPA,” “MVPA
toolbox” or “3dsvm,” which refer to previous MVPA-related software pack-
ages (see Comparison to Existing Packages of Multivariate Data Analysis).
132 (20.0 %) contained the terms “in-house,” “custom-written,” “custom-
made,” “custom-built” or “custom Matlab.” Neither term was contained in
442 (67.0%) articles.

messages, but which may severely compromise results. For that
reason, we wanted to make TDT particularly easy to use, where
all important settings are made at the beginning. We believe that
minimal programming ability is necessary, with the only require-
ment being that a user is able to modify existing Matlab scripts
that define the settings for the decoding analysis. This simplicity
also allows users to see at a glance what decoding analysis they are
performing.

MODULAR STRUCTURE AND TRANSPARENCY
The modular structure and use of encapsulation for different sub-
routines make the toolbox relatively easy to understand. At the
same time, this structure is less error prone and reduces program-
ming effort from the side of developers. For users, the existence
of decoding design matrices (see below) and the possibility of
extensive logging make the internal processes of the toolbox more
transparent, which also reduces the probability of mistakes.

SPM INTERFACE
TDT has been developed from an SPM perspective and works
with current SPM versions (downwards compatible to SPM2),
but can also be used outside of SPM. TDT can directly read
all decoding-relevant information from SPM design matrices
and in that way simplifies the process of setting up standard
decoding analyses. For example, a complete leave-one-run-out
cross-validation decoding analysis can be executed using one line
of code, by providing the path to the analysis and the names of
the regressors that should be classified (see below).

MODULARITY, VERSATILITY, EXTENDIBILITY
TDT comes with a number of methods which allow for exe-
cuting most commonly used analysis pipelines “out of the box”
(Figure 1). These include feature scaling, feature transformation
(e.g., principal component analysis), parameter selection, and
feature selection as steps prior to decoding. The decoding anal-
ysis itself has two-class and multiclass classification implemented,
using a number of often-used classifiers including support vector
classifiers, logistic regression, and correlation classifiers (Haxby
et al., 2001). Additionally, support vector regression is part of the
toolbox. The toolbox has been tested and runs under Windows,
Linux, and Mac OS.

Due to the modular structure and the simplicity of the code,
users can extend TDT with little effort to incorporate other meth-
ods as well: Other software packages can be used instead of SPM,
new classifiers can be introduced, other means of feature selec-
tion can be applied, and even complete toolboxes—e.g., other
Matlab decoding toolboxes—can be interfaced to run in the TDT
framework.

We chose to implement our toolbox in Matlab because it is
a very popular high-level programming language in the neu-
roimaging community and offers an excellent programming envi-
ronment with a large and helpful community. We are aware that
part of the neuroimaging community is trying to move toward
completely non-commercial software instead. TDT does, how-
ever, not require any additional commercial Matlab toolboxes
such as the Statistics or Bioinformatics Toolbox. Many func-
tions were written specifically for TDT, for example calculation

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 2

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

FIGURE 1 | General structure of The Decoding Toolbox (TDT). (A) TDT in
the view of basic users. All that is required are brain images (ideally
preprocessed with SPM) and a configuration variable cfg that contains all
decoding-relevant information. TDT will then generate results, including.
mat-files with the results or if required brain maps displaying the decoded
information in space. (B) TDT view for intermediate users. Decoding design
creation, type of analysis, type of classifier and type of output can be
modified. All of these settings are necessary for any decoding analysis,
which will be set to default settings if not specified by the user. This level of
description already covers most scenarios that the typical user would
encounter. (C) All TDT options. For the optional functions including feature
selection, feature transformation, scaling, and parameter selection, TDT
offers a number of preconfigured settings which can be customized. Expert
users can extend the toolbox to include new methods (e.g., classifiers,
feature selection methods) or can even create an interface to external
machine learning packages.

of F-values, implementation of statistical distributions, and quick
1-D linear interpolation.

SPEED
TDT has been profiled extensively to identify and remove pos-
sible bottlenecks that would otherwise reduce the speed of
decoding analyses. For example, TDT can achieve a three-fold
speed increase in cross-validation designs by computing a kernel
(Müller et al., 2001) only once and then passing the train-
ing and test part of that kernel to the classifier. The resulting
speed improvement becomes particularly apparent with large

classification problems or searchlight analyses. In addition, we
rewrote many built-in Matlab functions, for example for creat-
ing correlation matrices or finding unique values, considerably
speeding-up processing.

STRONG DEBUGGING AND ERROR CHECKING
We wanted to make sure that there are as few programming errors
as possible in the code, a goal that is particularly difficult given the
flexibility and diversity of possible decoding analyses. Although
in general it is never possible to guarantee that any software is
free from bugs, we regularly run a number of basic analyses as
benchmarks to check if these analyses still run and create the
same output as in previous analyses. TDT has been extensively
tested by many beta users and, importantly, several published
results used prior versions of the toolbox (Hesselmann et al., 2011;
Christophel et al., 2012, in press; Hebart et al., 2012, in press;
Reverberi et al., 2012; Christophel and Haynes, 2014; Ritter et al.,
2014; Van Kemenade et al., 2014a,b; Ludwig et al., 2015; Bilalić
et al., in press; Guggenmos et al., in press).

In addition, TDT contains many checks to prevent erroneous
analyses. In general, it is always possible that unwanted errors
occur, and of course researchers always have to double-check if
their analysis yields meaningful results. The implemented checks
facilitate the process of detecting and eliminating errors. Among
others, they ensure independence of training and test data, that
all data has the same realignment parameters, and more gen-
erally whether the selected options are incomplete or would
generate errors. Other initial checks help in saving time and
frustration of the user: Each decoding analysis creates a log-file
which can be used to recover possible sources of errors. These
features have been implemented based on the experience of the
authors as well as through user experience and will continuously
be improved.

READABILITY
TDT is open-source (see License Statement), with extensively
commented code, comprehensive variable names, and an execu-
tion structure that follows along a main function with several
auxiliary functions. We did not want to provide a black-box where
a user cannot follow the steps that are carried out in a decoding
analysis.

In the following we will describe TDT in more detail. We
will use the style of a tutorial which is intended to ease read-
ability of this section. We will introduce TDT at three different
levels of complexity, starting with a rough description of the
toolbox to provide an initial overview of the basic structure
of TDT. This section should be sufficient for users just getting
started with decoding, or those who would like to conduct a sim-
ple generic decoding analysis. Second, we give a more detailed
explanation of how to expand on this standard decoding anal-
ysis for users at an intermediate level who want to tailor the
analysis to their needs. Third, for advanced users we expand on
more detailed optional settings of the toolbox, including param-
eter selection or feature selection. After these three steps, we
will briefly demonstrate how users who want to exploit the full
capabilities of the toolbox can extend the toolbox to new classi-
fiers, new feature selection methods, or even complete machine
learning packages.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

We may use terminology unfamiliar to some readers.
Rather than explaining all terms in the text, we summa-
rize the most important ones in Table 1 (for a detailed
explanation of classification-related terms, please consult

Pereira et al., 2009). Although we provide examples written
for users who want to carry out within-subject classifica-
tion, most of these examples also hold for between-subject
classification.

Table 1 | Important terminology for multivariate decoding with The Decoding Toolbox.

Term Description

Beta maps After estimating the general linear model, each regressor in each voxel receives a parameter estimate beta which can be
used for classification and reflects the fit of the model to the data in form of a regression coefficient. Since each voxel is
analyzed separately, brain images of betas (i.e., beta maps) are created for each regressor

Chunk A unit that determines which data should remain together within a decoding step (often: cross-validation fold). Typically,
chunks are used to assign run numbers to data, which in cross-validation should ensure that data is independent and not
biased by temporal autocorrelation. For a typical leave-one-run-out cross-validation, there are as many chunks as there are
decoding steps. For methods where data samples are drawn repeatedly, the number of decoding steps is often a lot larger
than the number of chunks

Cross-classification Not to be confused with cross-validation. A method to test the stability of a classifier, which can be used (1) to demonstrate
the generality of a classifier, (2) for a representational association between two cognitive functions, or (3) simply to show
representational stability across time

Cross-validation Method to estimate of how well a classifier generalizes to novel data. In leave-one-run-out cross-validation, data is
partitioned in nruns chunks, and on each decoding step (also called fold or iteration) one chunk is used as test data to
evaluate a classifier trained on all other chunks. Typically, the average performance of all decoding steps in terms of
classification accuracy is then used to evaluate the classifier. Nested cross-validation is cross-validation that is done only on
training data to optimize the performance of the classifier (e.g., in feature or parameter selection)

Curse of dimensionality Within machine learning the fact that classifier performance, i.e., the predictive power of a classifier drops when the
number of features (e.g., voxels) becomes much larger than the number of samples (e.g., brain images)

Decoding step An iteration of a decoding analysis which is part of the cycle of evaluating the classifier. When cross-validation is used,
decoding step refers to a cross-validation fold

Feature selection Methods that reduce the number of features (e.g., voxels). In our terminology, selecting regions of interest or running a
searchlight analysis are not parts of feature selection. In addition, we treat methods separately that reduce the
dimensionality, but give up the voxel-to-voxel mapping (e.g., PCA). Within TDT, we refer to methods that change the
voxel-to-voxel mapping as feature transformation methods

General linear model
(GLM)

A statistical model that incorporates analysis of variance, linear regression, and related parametric tests into a common
framework. In brain imaging, the GLM is commonly used to explain each voxel’s time series separately with multiple linear
regressors each representing conditions of interest or nuisance variables (Friston et al., 1994). The term mass-univariate
refers to the fact that the GLM is calculated for each voxel individually

Hyperplane A plane in more than 3D. Typically, the term separating hyperplane is used which separates the space spanned by different
features (e.g., voxels) in two subspaces and defines the decision boundary of the classifier. Each part of the voxel space is
in this way assigned to one of two classes

L1/L2-norm A regularization method which influences the complexity of a classification model. In most cases, an L2-norm is used which
minimizes length of the weight vector. The L1-norm can be used to minimize the sum of the absolute weights, typically
resulting in a sparser model (i.e., less features will contribute to the classification)

Margin For support vector machines, the area of space between two classes, of which the center is typically the separating
hyperplane. SVMs have the goal of maximizing the margin between two classes

Searchlight analysis One of the three most common types of decoding analysis conducted, the two other being whole brain decoding and
region-of-interest decoding. Searchlight decoding typically creates a map of classification accuracies that can be interpreted
as the local information content around each voxel (Kriegeskorte et al., 2006; Haynes et al., 2007)

Support vector machine A type of classifier that maximizes the margin between two different classes (Cortes and Vapnik, 1995)

Weight vector Determines the contribution of each feature to the final classifier function. For most classifiers, the weight vector cannot be
directly interpreted as reflecting the classified variable, because it is a filter that extracts a class signal while at the same
time it suppresses correlated noise. Using the covariance of the data, the weight vector can be converted into an
interpretable pattern vector (Haufe et al., 2014) which in case of voxel features can be mapped back to a brain image

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

A SIMPLE DECODING ANALYSIS
For a general decoding analysis, let us for the moment treat TDT
as a black box (Figure 1A). The user feeds in a set of brain images
that he wants to classify and receives a single classification accu-
racy or an information map as output. What is needed in addition
is the configuration variable cfg which carries all information
necessary to conduct a specific decoding analysis. Most param-
eters in cfg are defaults that are set automatically; parameters are
only set manually when they should be changed. In addition, the
SPM-interface can automatically extract the decoding-relevant
information from the SPM.mat file which is generated as part
of a standard general linear model (GLM) in SPM. This infor-
mation is then automatically added to cfg. This interface can be
used if users classify not individual brain images, but use param-
eter estimates of single trials or runs generated by SPM (e.g., beta
maps, see Table 1). Assuming that a user created the SPM.mat
file with unique names for all regressors (e.g., “left” and “right”
for regressors related to button presses) and would like to carry
out a “standard” leave-one-run-out cross validation scheme with
two categories, a complete decoding analysis in TDT can be exe-
cuted in only one line of code (we will explain the meaning of this
below). In short, the example call

decoding_example(’searchlight’,’left’,
’right’,beta_dir,output_dir,4)

will perform a cross-validated leave-one-run-out searchlight
decoding analysis between the regressors “left” and “right,” where
beta_dir is the path where the SPM GLM results are stored, out-
put_dir is the folder where the decoding results will be saved,
and 4 is the radius of a spherical searchlight in voxels (see next
paragraph for a detailed explanation). This analysis will yield a
map of accuracies that can be inspected with SPM or other third-
party software and which should uncover brain regions involved
in encoding the motor response.

To allow a first look inside the “black box,” we will now
explain the inner functions of this example call (Figure 1). Prior
to running a decoding analysis, TDT assumes that data have been
preprocessed appropriately (Figure 2 top). Standard preprocess-
ing includes spatial realignment, possibly slice timing correction
and detrending, and in some cases also spatial normalization
and smoothing (although these latter steps are less common
for preprocessing of decoding analyses). As mentioned above,
rather than running a decoding analysis on individual images,
it has become quite common to use single trial estimates of
data (Mumford et al., 2012) or even estimates that combine
multiple trials within one run (Haynes et al., 2007). This pro-
cess can improve classifier performance (Mourão-Miranda et al.,
2006, 2007; Mumford et al., 2012), and combining multiple tri-
als can lead to higher classification accuracies (Ku et al., 2008)
and slightly improved power (Allefeld and Haynes, 2014). These
estimates would typically be generated in the common GLM
framework and are stored as so called beta images. For sim-
plicity, in the following we will assume that one beta image
per condition per run is generated (e.g., one for “left” for run
1, one for “right” for run 1, one for “left” for run 2, one for
“right” for run 2, etc.). In this case, the above example call sim-
ply gets the beta images from beta_dir representing the conditions

“left” and “right” and will extract the run numbers. The brain
mask which SPM automatically creates during model estima-
tion contained in beta_dir is automatically used to reduce the
analysis to voxels inside the brain. This information is suffi-
cient to carry out a decoding analysis with a leave-one-run-out
cross-validation scheme (see Table 1 for terminology), and in this
example, a so-called searchlight analysis is executed with a radius
of 4 voxels, using a support vector machine (SVM, Cortes and
Vapnik, 1995) as a classifier. On a Dell Precision M4600 Intel

@ 2.30 GHz, 64 bit Windows 7 with Matlab
(2011a), this analysis takes roughly 3 min for around 120,000
searchlights.

For a group analysis, this procedure is repeated for every par-
ticipant, and the resulting accuracy maps can then be spatially
normalized and submitted to standard statistical analysis proce-
dures in SPM or any other preferred software package (Figure 2
bottom).

A CLOSER LOOK AT THE DECODING TOOLBOX—FOR
INTERMEDIATE LEVEL USERS AND ABOVE
Although the most basic one-line-of-code use of the toolbox
already allows running a multitude of analyses with practically
no programming skills, users may want to adjust a number of
settings. In this section, we explain the major steps that are
required in each decoding analysis (Figure 1B), and in the next
section optional steps are explained. For each of these required
steps there are default settings in TDT, but the user may wish to
adjust them. In general, each user creates a short script which
contains (1) all the settings of the cfg variable and (2) pos-
sibly the automatic extraction of data from an existing SPM
model.

Basic structure:

cfg = decoding_defaults(); % optional:
initializes cfg with default values
... % additional lines that modify cfg
might go here

results = decoding(cfg); % Performs
decoding

Concrete example call:

cfg = decoding_defaults();
regressor_names = design_from_spm

(beta_dir); % beta_dir is directory
of SPM model

cfg = decoding_describe_data
(cfg,{’left’,’right’},[1 -1],...
regressor_names,beta_dir);
% 1 -1 are arbitrary label numbers
for red & green

cfg.design = make_design_cv(cfg);
results = decoding(cfg);

This example automatically extracts regressor names from the
SPM model, then accumulates all relevant information from the
design related to the regressors of interest (“left” and “right”), cre-
ates a leave-one-run-out cross-validation design, and executes the
decoding analysis using default settings. Important basic settings
that otherwise use these default settings are explained in the next
four paragraphs.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 5

Core i7-2820QM

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

FIGURE 2 | General analysis stream of a typical searchlight decoding

analysis in The Decoding Toolbox (TDT). Top: Typical preprocessing of
data is done prior to running TDT, for example with the common
software SPM. Rather than submitting individual images to decoding
analyses, it has become quite common to use temporal compression or
statistical estimates of trials (trial-wise decoding) or of multiple trials
within one run (run-wise decoding) as data for classification. Middle: The
decoding stream of cross-validated searchlight decoding. After selecting
voxels from a searchlight and extracting data from the preprocessed
images, a leave-one-run-out cross-validation is performed. In this, data is

partitioned, where in successive folds data from one run is used for
testing and data from all other runs for training. In each fold, a classifier
is trained and its performance is validated on the left-out test set. Finally,
the performance of the whole cross-validation is evaluated, typically by
calculating the mean accuracy across all cross-validation iterations. The
accuracy is then stored at the center of the current searchlight. The
whole procedure is repeated for all voxels in the brain, yielding a
complete map of cross-validation accuracies. Bottom: Usually, these
searchlight maps are post-processed using standard random effects
analyses, for example using SPM’s second-level routine.

DESIGN CREATION
A powerful feature of TDT is the use of decoding design matrices
(Figure 3). A decoding design matrix determines the exact struc-
ture of a cross-validation design, i.e., which data belongs to which
class and which data is training and test data in each decoding
step (also called cross-validation fold or iteration). To determine
which samples should remain together (e.g., because they are in
one run and the analysis is a leave-one-run-out cross-validation),
data can be assigned to chunks which serve as categorical numer-
ical labels. Although in many cases, the number of chunks
determines the number of decoding steps, more complex designs

(e.g., bootstrapping designs, Figure 3C) can have more steps than
chunks. Finally, multiple decoding analyses can be carried out
in one design, a feature which might be particularly useful if
data needs to be analyzed separately and combined, or if cross-
classification is applied to a number of different data sets saving
repeated training on the same data. A number of existing func-
tions allow creating a multitude of different designs in advance,
and additional design functions can be created by more advanced
users (see Figure 3 for some example designs using different func-
tions). After creating the design, the design inspection can be used
to visualize if the analysis is carried out in the correct manner.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

FIGURE 3 | Decoding design matrices. (A) General structure of a
decoding design matrix. The vertical dimension represents different
samples that are used for decoding, typically brain images or data from
regions of interest. If multiple images are required to stay together
within one cross-validation fold (e.g., runs), this is indicated as a chunk.
The horizontal axis depicts different cross-validation steps or iterations.
If groups of iterations should be treated separately, these can be
denoted as different sets. The color of a square indicates whether in a
particular cross-validation step a particular brain image is used. (B)

Example design for the typical leave-one-run-out cross-validation (function
make_design_cv). (C) Example design for a leave-one-run-out

cross-validation design where there is an imbalance of data in each run.
To preserve balance, bootstrap samples from each run are drawn
(without replacement) to maintain balanced training data (function
make_design_boot_cv). (D) Example design for a cross-classification
design which does not maintain the leave-one-run-out structure (function
make_design_xclass). (E) Example design for a cross-classification
design, maintaining the leave-one-run-out structure (function
make_design_xclass_cv). (F) Example design for two leave-one-run-out
designs with two different sets, in the same decoding analysis. The
results are reported combined or separately for each set which can
speed-up decoding.

Example call (design created and visualized prior to a decoding
analysis as part of the script):

cfg.design = make_design_cv(cfg);
% creates the design prior to decoding

display_design(cfg)% visualizes the
design prior to decoding

Alternative example call (design created and visualized while the
decoding analysis is running):

cfg.design.function.name = ’make_design_cv’;
% creates a leave-one-chunk-out
cross-validation design

cfg.plot_design = 1;
% plots the design when decoding starts

ANALYSIS TYPE
Most decoding analyses can be categorized as one of three
different types of analysis, depending on the general voxel

selection criterion: Whole-brain analyses, region-of-interest
(ROI) analyses, and searchlight analyses. All of these approaches
are commonly used for decoding. In the machine learning
community, ROI and searchlight analyses might be considered
feature selection approaches, but this is not typically how they are
called in the brain imaging community. All of these approaches
have their respective advantages and disadvantages (discussed
e.g., in Etzel et al., 2009, 2013). Among others, one advantage of
whole-brain analyses is that all available information is fed into
the classifier, while major disadvantages of this method are the
difficulty to tell the origin of the information and the so-called
“curse of dimensionality” (see Table 1). These problems are less of
an issue in ROI analyses, but ROIs need to be specified and can in
that way be biased, variable ROI sizes make them difficult to com-
pare, and information encoded across different ROIs gets lost.
Searchlight analyses can be seen as a succession of spherical ROIs,
but require no prior selection of brain regions and are in that
respect unbiased to prior assumptions about where to expect an

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

effect (Friston et al., 2006); however, they suffer from the multiple
comparisons problem, the necessity to specify the searchlight size
as an additional parameter, and are—just like ROIs—insensitive
to information encoded across distant brain regions.

Example call:

cfg.analysis = ’wholebrain’;
% alternatives: ’ROI’, ’searchlight’

TRAIN AND TEST CLASSIFIER
The core of the toolbox is training and testing the classifier. A clas-
sifier is typically first built from data where class membership is
known (“train” classifier); then, the ability of the classifier to gen-
eralize to unseen data is evaluated (“test” or “validate” classifier).
This separation is important to limit the impact of overfitting
the classifier to the data and to have an unbiased estimate of the
classifier’s generalization performance. The training and test cycle
is hardcoded to make sure that training and test data are truly
kept separate in each cycle (unless users create their own exten-
sion to overcome this separation, if required). TDT is equipped
with a number of external classifiers which can be selected by
setting the cfg variable. These classifiers belong to the packages
LIBSVM (Chang and Lin, 2011) and LIBLINEAR (Fan et al.,
2008) and include L1- and L2-norm regularized support vector
machines and logistic regression. In addition, a correlation clas-
sifier (Haxby et al., 2001) has been implemented as part of the
toolbox. Multiple classifiers have been compared across different
data sets, with variable results (Cox and Savoy, 2003; Pereira et al.,
2009; Misaki et al., 2010). Typically, the L2-norm support vector
machine (SVM) performs quite well, which is why it is the default
classifier in TDT. The options of the classifiers can be set using
the cfg variable. TDT can also be used for purposes other than
classification, for example to conduct a simple correlation of two
data sets. Finally, at the stage of training and testing, advanced
users can create an interface to completely external toolboxes
that include other optimization methods (see How to Extend the
Toolbox). All input can be passed as part of the settings in the cfg
and all output can be stored for later processing.

Example call:

cfg.decoding.software = ’liblinear’;
cfg.decoding.method = ’classification’;
cfg.decoding.train.classification.
model_parameters = ’-s 0 -c 1 -q’;

cfg.decoding.test.classification.
model_parameters = ’-q’;

TRANSFORMATION OF RESULTS
Classifiers are essentially functions that describe a separation
boundary (i.e., hyperplane, see Table 1) of multiple classes in
voxel space. Newly predicted samples are mapped relative to this
function and typically receive an output larger or smaller than 0
that denotes the distance to the separating function, where pos-
itive values denote membership to one class and negative values
membership to the other class. For linear classifiers, so called deci-
sion values can be used to indicate the distance of a particular
sample to the separating hyperplane. Using the predicted labels,
the actual labels and the decision values, a number of metrics can
be calculated to evaluate the performance of a classifier.

The most typical output for a decoding analysis is the mean
cross-validated accuracy value. However, a number of other types
of output are quite common and potentially useful. For exam-
ple, it can be of interest to look at the classification accuracy for
each class separately to assess classifier bias. A classification accu-
racy of 75% should be interpreted very differently when either
class is decoded with 75% accuracy, or when one is decoded
with 100% accuracy and the other with 50% (leading to 75%
on average for a balanced number of samples in each class). In
case of differently sized classes, balanced accuracy or d-prime can
give indices of performance that take into account the different
size of the groups. Additionally, the area under the receiver-
operator-characteristic curve (AUC) which uses the distance of a
classification output to the decision boundary can provide results
about the information content using a graded rather than a binary
response.

Other measures have received interest as well. For instance,
weight maps are useful to provide information about the con-
tribution of each voxel to the classification and are often used
in whole-brain classification settings. Importantly, weight maps
cannot be interpreted as reflecting the neural substrate relating to
a task or another variable that is classified. Researchers interested
in interpreting weights beyond the classifier alone can convert
the weight maps to patterns which then show the contribution of
each voxel for the representation of the classes under study (Haufe
et al., 2014; Ritter et al., 2014). In addition, representational sim-
ilarity analysis which exploits the correlation similarity structure
of voxels and different distance metrics can be used to illustrate
the representational distance of different conditions (Kriegeskorte
et al., 2008; Nili et al., 2014). All approaches described above have
been implemented in TDT.

Example call:

cfg.results.output = {’accuracy_minus_
chance’, ’AUC_minus_chance’,
’SVM_weights’};

cfg.decoding.method = ’classification’;
% weights cannot be extracted when
precomputed kernels are used, i.e.,
we need to use the slower method of
classification without kernels

STATISTICAL ANALYSIS
For a neuroscientist, it is important to statistically evaluate the
results generated by a classification analysis: Is the observed result
statistically significantly different from chance? Although at a first
glance a decoding accuracy close to chance may seem disappoint-
ing, it is indeed quite commonly observed and not necessarily a
problem. In neuroscience, typically the goal is not to maximize
classification performance, but to demonstrate that information
is present in the brain signals used for classification. This contrasts
with the use in machine learning where the primary goal is to
maximize classification performance and accuracies only slightly
above chance would not be considered very useful. For that rea-
son, there is not much work investigating the combination of
multivariate decoding with classical statistics.

Importantly, it can be shown that combining results based on
cross-validation and classical statistics can lead to overly liberal
results. For example, cross-validated decoding accuracies are not

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

binomially distributed, which is why binomial tests should not
be used to statistically evaluate cross-validation results (Schreiber
and Krekelberg, 2013; Noirhomme et al., 2014). As an alternative,
permutation testing can be used. However, for searchlight analy-
ses this can become very time consuming. In addition, caution is
warranted when using permutation approaches to make sure that
these tests are not overly liberal (Stelzer et al., 2013), for example
because they break up statistical dependencies at the wrong level
(i.e., they violate the assumption of exchangeability, Nichols and
Holmes, 2002).

These problems relate only to statistical analyses at the
“decoding-level.” An alternative and common approach is to
combine multiple decoding results and conduct a “second-level”
statistical analysis. This is the case when evaluating whether the
mean accuracy across a group of subjects is different from chance.
For these purposes, classical parametric tests such as the Student’s
T-test can be used.

In TDT, at the decoding-level both binomial testing and per-
mutation testing have been implemented. However, binomial
testing should only be used when training and test data are not
reused, i.e., when no cross-validation and no bootstrapping is
performed. A permutation test is conducted in three steps: First,
the same decoding design is set up using a permutation scheme
where data from different chunks is kept separate. Second, the
permutations are conducted which can be run in parallel to
speed-up processing. Third, the permutation test is conducted.
Results can be reported in Matlab or written to brain images. For
the second-level, users are advised to use dedicated third-party
software such as SPSS, R, or Matlab which is specialized for sta-
tistical analyses and allows testing for basic assumptions of the
tests. For users who do not want to export their results to other
packages and are confident that the assumptions of their tests are
met, TDT offers a set of basic functions that can conduct classical
T-tests and F-tests.

Example call:

[results,cfg] = decoding(cfg);
% run previously prepared decoding

cfg.design = make_design_permutation
(cfg,1000,1); % creates one design
with 1000 permutations

[reference,cfg] = decoding(cfg);
% run permutations

cfg.stats.test = ’permutation’; % set test
cfg.stats.tail = ’right’;

% set tail of statistical correction
cfg.stats.output = ’accuracy_minus_chance’;

% choose from all original outputs
p = decoding_statistics

(cfg,results,reference);

A DESCRIPTION OF OPTIONAL WORKFLOW STEPS—FOR
ADVANCED LEVEL USERS
This section describes all remaining classification-related meth-
ods that can be carried out using a decoding analysis in TDT
(Figure 1C). These include feature scaling, selection of model
parameters in nested cross-validation, transformations of feature
space, and feature selection. None of these steps are strictly nec-
essary for a decoding analysis, but they can in principle help
improving the results of a decoding analysis.

SCALING
Scaling is the process of adjusting the range of data which enters
the classifier. This can be done to bring data to a range which
improves the computational efficiency of the classifier (for exam-
ple LIBSVM recommends scaling all data to be between 0 and
1). It can, however, also be used to change the relative contri-
bution of individual features or individual samples or to remove
the influence of the mean spatial pattern (Misaki et al., 2010; but
see Garrido et al., 2013) which might affect classification perfor-
mance. Scaling is also known as normalization, but we prefer the
term scaling to distinguish it from another meaning of the term
“normalization” which is commonly used in the MRI community
to refer to spatial warping of images.

Typically, row scaling is used, i.e., scaling across samples within
a given feature. Although scaling can theoretically improve decod-
ing performance, for some data sets it may not have any influence
(Misaki et al., 2010). Practically, scaling often has little or no
influence on decoding performance when beta images or z-
transformed data are passed, because this data already represents
a scaled form of the raw images which is scaled relative to each
run, rather than to all training data. However, scaling may still
speed-up classification.

TDT allows a number of different settings: Either all data are
scaled in advance (in TDT: “all”), which is only valid when scaling
carries no information about class membership that influences
test data, or scaling is carried out on training data only and these
estimated scaling parameters are then applied to the test data
(in TDT: “across”). The typically used scaling methods which
have also been implemented in TDT are min0-max1 scaling or
z-transformation. Min-max scaling scales all data to a range of 0
and 1, while z-transformation transforms data by removing the
mean and dividing by the standard deviation. In addition to scal-
ing data to a specified range, cut-off values can be provided for
outlier reduction (Seymour et al., 2009). With this setting, all val-
ues larger than the upper cut-off are reduced to this limit, and all
values smaller than the lower cut-off are set to this value. In TDT,
these approaches can be combined with outlier reduction.

Example call:

cfg.scale.method = ’across’;
% scaling estimated on training data and
applied to test data

cfg.scale.estimation = ’z’;
% z-transformation as scaling approach

cfg.scale.cutoff = [-3 3]; % all values
> 3 are set = 3 (here: 3 standard
deviations, because data is
z-transformed)

PARAMETER SELECTION
Most multivariate classification and regression approaches use
algorithms that contain parameters that need to be set by the user.
For example, linear support vector machines have the regulariza-
tion parameter C that determines the degree to which data points
can cross the so-called margin (Table 1) which can even lead
to misclassification during training (Cortes and Vapnik, 1995).
Large values of C strongly penalize misclassification in training
while small values of C allow for larger margins. This variable
influences the bias-variance tradeoff, i.e., the tradeoff between

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

fitting a classifier too close to the training data (overfitting), or
fitting it too little (underfitting, i.e., “ignoring” the structure of
the training data too much), which directly affects the ability to
generalize to the test data (Müller et al., 2001). Another example
is the parameter gamma that needs to be set for non-linear radial
basis function (RBF) SVMs which determines the width of the
RBF kernel (Schölkopf et al., 1995). Since the optimal values for
C and gamma are not known in advance, they are often estimated
on the training data using nested cross-validation, a method where
a cross-validation scheme is used only within training data to find
good parameters. Typically, all parameter combinations across a
range of target values are tried, a process known as grid search.
The parameter combination that leads to best classification per-
formance within training data is then applied to all training data
and validated on the left-out test data. This has the consequence
that for each real cross-validation fold a different set of optimal
parameters might be chosen.

To avoid nested cross-validation, many researchers simply
choose to set C to a fixed value of 1. In the typical scenario
of an SVM where the number of features (e.g., voxels) is much
larger than the number of samples (e.g., trials or beta images),
in our experience only C-values much smaller than 1 have any
influence on classification. This is probably because all samples
within training data can easily be linearly separated, and for
larger values of C the classifier yields stable solutions. Another
problem is that with a small number of samples—even with
nested cross-validation—the estimated parameters become quite
variable, because they fit to the specifics of the training data
and might not generalize well to test data. In particular cases,
this might improve decoding performance slightly. Importantly,
researchers should bear in mind that they must not escape the
idea of cross-validation by trying out multiple parameter com-
binations and picking the one that yields the “best” results in
the final cross-validated classification accuracy maps. Rather, they
should use nested cross-validation for picking the optimal param-
eter and testing whether this choice generalizes to independent
test data in the outer cross-validation loop. Alternatively, they
could use parameters based on (previous) independent data sets
or independent contrasts. Finally, the disadvantage of parameter
selection is that it is quite time consuming, in particular when
multiple parameters are selected concurrently. Parameter selec-
tion might make more sense in other circumstances or when other
parameters are selected, for example the degree of a polynomial
kernel.

In TDT, parameter selection is currently implemented as
grid search, where all parameter combinations are combined.
Depending on the problem, there might be smarter optimization
approaches, but in our experience grid search works well for opti-
mizing few parameters, in particular when only few samples are
available. More advanced users can also create their own functions
to tailor parameter selection to their specific problem.

Example call:

cfg.parameter_selection.method = ’grid’;
% grid search (currently the only
implemented method)

cfg.parameter_selection.parameters
= {’-c’,’-g’};

cfg.parameter_selection.parameter_range =
{[0.0001 0.001 0.01 0.1 1 10 100 1000];
[0.5 1 2]};

% The following parameters are set as
defaults, i.e., they don’t need to be
called explicitly

cfg.parameter_selection.format.name =
’string_number’;

cfg.parameter_selection.format.
separator = ’ ’;

cfg.parameter_selection.optimization_
criterion = ’max’; % pick value with
maximal accuracy

FEATURE TRANSFORMATION
The term feature transformation is not commonly used in the
brain decoding community, but it is known in the machine
learning community as a set of methods that change the mean-
ing of each individual feature (Liu and Motoda, 1998). We use
this term to refer to a collection of methods that is used to
change the space of data and possibly reduce the dimensional-
ity of this changed space, as well. Principal component analysis
(PCA) is one example. We prefer to treat such methods sepa-
rately from feature selection (see below), because they lead to a
change in the mapping of features. Methods that we refer to as
feature selection (below) select a subset of features (e.g., voxels)
of the input. In contrast, in feature transformation a data point
refers to a non-linear transformation applied to the input, which
essentially creates new features. For example, the outcome of a
principle component analysis (PCA) is no longer separate single
voxel data, but a linear combination of the original voxel data.
This strict semantic separation helps to avoid confusion, makes
the results of feature selection easier to interpret, facilitates the
addition of new methods, and facilitates the use of multi-step fea-
ture selection (e.g., first running PCA and transforming voxels to
principle component space, and then running feature selection
on a subset of principal components). Other examples of feature
transformation would encompass independent component anal-
ysis (ICA), Fourier transformation, or pre-calculated mappings
that can for example be used to align data spaces between sub-
jects, known as hyperalignment (Haxby et al., 2011). Currently,
only PCA is implemented in TDT, but other methods can eas-
ily be added. The transformation can be estimated on training
data only and applied to test data in each cross-validation step
(“across”). Alternatively, it can be estimated on both training and
test data (“all”) when it is ensured that this does not lead to non-
independence (Kriegeskorte et al., 2009). This should not be the
case as long as no label information is used for transformations
(which is not done in PCA). If feature transformation is also used
for dimensionality reduction, the user can specify either the num-
ber of to be selected features or can specify a critical value in
the score of the method that needs to be exceeded for a trans-
formed feature to be of interest (e.g., for PCA the percent variance
explained).

Example call:

cfg.feature_transformation.method = ’PCA’;
cfg.feature_transformation.

estimation = ’all’;
cfg.feature_transformation.critical_value =

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

0.1; % only keep components that
explain at least 10 percent variance

FEATURE SELECTION
Books have been written about feature selection (Guyon et al.,
2006) which is a method in machine learning that refers to the
reduction of the dimensionality of data, with the aim of find-
ing the most relevant features and for improving classification
performance. Feature selection has been classified into three gen-
eral categories: filters, wrappers, and embedded methods (Guyon
and Elisseeff, 2003). Filters are methods that use univariate or
multivariate statistics based on the data to rank features and
select them based on their rank. Examples are the F-statistic, the
weights of a classifier, or in brain imaging external masks that
provide a ranking, such as external functional localizer images.
Wrappers are methods that iteratively include or exclude fea-
tures, based on some optimization criterion specific to the feature
selection method. Examples are sequential forward selection or
sequential backward elimination. Finally, embedded methods are
methods where the selection of features becomes part of the clas-
sification problem. Examples are LASSO (Tibshirani, 1996) or
L1-regularized support vector machines (Fan et al., 2008) where
unimportant voxels receive a weight of zero, which eliminates
their contribution. Recursive feature elimination is another pop-
ular method (De Martino et al., 2008) and is sometimes referred
to as a wrapper method, although the final feature set and classifi-
cation can depend on the previous steps. For that reason—and to
better distinguish it from other sequential methods—it can also
be referred to as an embedded method.

In TDT, feature selection has been implemented with a num-
ber of filter methods and with the embedded method of recur-
sive feature elimination. Implemented filter methods are the
F-statistic, the Mann-Whitney U-statistic, classifier weights, and
external masks, with the additional option of supplying a separate
mask for each cross-validation fold. For determining the optimal
feature set, nested cross-validation can be performed. It should be
noted, however, that similar to parameter selection the utility of
feature selection is limited when the number of samples is very
small. In that case, nested cross-validation can optimize the num-
ber of features to the idiosyncrasies of the data, and it might be
better not to perform feature selection at all. In addition, feature
selection can be computationally highly expensive and can thus
dramatically slow down classification, in particular when recur-
sive feature elimination is used with nested cross-validation and
a large number of steps. As has been mentioned for parameter
selection, researchers should be cautious not to try out a number
of different feature selection methods and choose one that pro-
duces the “best” final result. Often researchers might be interested
in implementing multiple feature selection steps. In the current
version of TDT, up to two feature selection steps are possible.
More sophisticated feature selection methods can be added to
TDT, e.g., by including them directly into custom classification
routines.

Example call:

cfg.feature_selection.method = ’filter’;
cfg.feature_selection.filter = ’F’;

cfg.feature_selection.n_vox = ’automatic’;
% nested CV to determine optimal number
of features

More sophisticated example call:

% First, run feature selection using
external ranking mask

cfg.feature_selection.feature_selection.
method = ’filter’;

cfg.feature_selection.feature_selection.
filter = ’external’;

cfg.feature_selection.feature_selection.
external_fname = ’mylocalizer.img’;

cfg.feature_selection.feature_selection.
n_vox = 0.5; % select 50% of all voxels

% Then run Recursive Feature Elimination on
the remaining voxels

cfg.feature_selection.method = ’embedded’;
cfg.feature_selection.embedded = ’RFE’;

% Recursive Feature Elimination
cfg.feature_selection.n_vox =

[5 10 20 40 80 160]; % possible target
values for number of voxels in RFE
(i.e., where RFE may stop in the end)

cfg.feature_selection.nested_n_vox =
[5:5:200]; % eliminate 5 voxels per
step in nested CV

HOW TO EXTEND THE TOOLBOX
TDT comes with a number of processing approaches, but of
course not all methods have been implemented. Researchers
might want to use their preferred machine learning algorithm or
feature selection method for their decoding analysis. Other users
might wish to use TDT only as a wrapper tool for their own
machine learning package. Data can also be passed to TDT, which
in principle extends TDT to other modalities such as EEG or MEG
decoding. In this section, we will use three examples to illustrate
how TDT can be extended.

EXAMPLE 1: INTRODUCE A NEW CLASSIFIER
To add new classifiers, two functions need to be provided, one
for training and one for testing the classifier. If the new classifier
should be called “newclassifier,” the training method needs to be
saved as newclassifier_train.m and is called by

model = newclassifier_train
(labels_train,data_train,cfg)

where model is any information that is needed to evaluate the
classifier. Within the function, the cfg is needed to distinguish
whether a classification or regression should be performed, or
whether a precomputed kernel is passed. In addition, the param-
eters for classification can be passed in this variable. In the
following, we show pseudocode for the function to implement a
new classifier.

function model = newclassifier_train
(labels_train,data_train,cfg)

switch lower(cfg.decoding.method)
case ’classification’
model = your_train_algorithm(labels_train,

data_train,cfg.decoding.train.
classification.model_parameters)

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

case ’classification_kernel’
...

case ’regression’
...

otherwise
error(’...’)

end

If the external function creates several outputs, these can be
grouped within the variable model. The structure for the second
function parallels the first and looks as follows:

function decoding_out = newclassifier_test
(labels_test,data_test,cfg,model)

switch lower(cfg.decoding.method)
case ’classification’
[predicted_labels decision_values

other_output] = your_test_algorithm
(labels_test,data_test,model,
cfg.decoding.test.classification.
model_parameters);

decoding_out.predicted_labels =
predicted_labels;

decoding_out.true_labels = labels_test;
decoding_out.decision_values =

decision_values;
decoding_out.model = model;
decoding_out.opt = other_output;

% optional other output which we added
just as an example

(...)
end

It is important that decoding_out returns a struct variable
(i.e., structure array) with the subfields above (predicted_labels,
true_labels, decisions_values, model, opt). If some of these are
not provided by a classifier, empty arrays can be passed. These
new classifier functions can then be called in any decoding analy-
sis by setting

cfg.decoding.software = ’newclassifier’;

EXAMPLE 2: INTRODUCE A NEW RESULT MEASURE
New, more sophisticated means of transforming results can also
be introduced to TDT. For example, consider a user who wants to
weight classification accuracies by decision values before averag-
ing. The function would be written as follows:

function output = transres_dvtimesacc
(decoding_out,chancelevel,cfg,data)

predicted_labels = vertcat
(decoding_out.predicted_labels);

true_labels = vertcat
(decoding_out.true_labels);

accuracy = predicted_labels==true_labels;
decision_values = vertcat

(decoding_out.decision_values);
dv_norm = abs(decision_values)/

max(abs(decision_values));
output = 100 * accuracy.* dv_norm;

The function should be saved as transres_dvtimesacc.m
and can then be used by setting

cfg.results.output = ’dvtimesacc’;

EXAMPLE 3: EXTEND TOOLBOX TO EXTERNAL MACHINE LEARNING
PACKAGE OR MORE COMPLEX PROCESSING STREAMS
The toolbox can be interfaced with complete external machine
learning packages, for example, the powerful Shogun toolbox
(Sonnenburg et al., 2010). This might be useful for users who
want to use the general workflow of TDT, e.g., the data han-
dling, cross-validation facilities and searchlight routines, but do
not wish to implement a large number of external algorithms
for use in TDT. The same general procedure can be applied to
use highly sophisticated processing streams that do not directly
fit into the TDT framework. There are two approaches for cre-
ating an interface to an external toolbox. The first takes place at
the level of the classifier. Essentially, an interface is created where
all steps of the decoding analysis—if requested, even including
cross-validation—are carried out outside of TDT. The training
function of a classifier acts as a placeholder to pass data to the
testing function.

function model = external_toolbox_train
(labels_train,data_train,cfg)

model.data_train = data_train;
model.labels_train = labels_train;

The interface function would look as follows:

function decoding_out =
external_toolbox_test
(labels_test,data_test,cfg,model)

[predicted_labels accuracy decision_values]
= externalpackagewrapper(data_train,
labels_train, data_test,
labels_test,cfg)

The function externalpackagewrapper would then con-
tain the script which is normally executed using the
external software package. This can be made gen-
eral purpose by passing parameters using the setting
cfg.decoding.train.classification.model_parameters of TDT.

The second approach for creating an interface to external tool-
boxes takes place at the level of the transformation of outputs.
This might be useful if a user would like to complete the entire
decoding analysis including the generation of output in an exter-
nal toolbox. In this case, the user creates a placeholder for the clas-
sifier which merely passes all data and classification parameters
inside the model variable as the optional output decoding_out.opt
(e.g., using the toolbox function “passdata” as a classifier). Then,
the interface to the external package is created as follows:

function output = transres_packageinterface
(decoding_out,chancelevel,cfg,data)

output = externalpackagewrapper
(decoding_out.opt,data)

where output contains all desired output of the external package.

TOOLBOX VALIDATION: SIMULATIONS AND APPLICATIONS
TO fMRI DATA
To demonstrate that TDT works correctly, we validated the tool-
box by running a number of analyses on simulated and real data.
These analyses are not supposed to provide an overview over all

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 12

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

capabilities of the toolbox. Rather, they are used to illustrate some
of the functionalities of TDT.

SIMULATIONS: SEARCHLIGHT ANALYSIS, WHOLE-BRAIN ANALYSIS,
REGION-OF-INTEREST ANALYSIS
Simulated data consisted of 48 ellipsoid volumes (31,016 voxels),
centered in volumes of 64 × 64 × 16 voxels (Figure 4). Each voxel
was assigned independent Gaussian random noise (mean = 0,
standard deviation = 1). Half of the volumes were assigned to
the “noise” category and remained unchanged. The other half was
assigned to the “signal” category where a pattern was added to
axial slice 8. This pattern consisted of Gaussian random noise
(mean = 0, standard deviation = 0.8). The same pattern was
added to all signal volumes. Data was then split in 8 runs of 6
volumes each, providing three samples per category in each run.
Please note that noise is spatially and temporally independent,
which is a strong simplification but is sufficient for the purpose of
this simulation. Additionally, univariate effects are present which
is not necessary for classification to work. The difference of the
mean results is shown in Figure 4A (left panel).

For Simulation 1, we ran a searchlight analysis with a leave-
one-run-out cross-validation scheme. The searchlight had a
radius of 2 voxels, encompassing 27 voxels. The classifier was a lin-
ear L2-norm SVM with C = 1, in the implementation of LIBSVM
(Chang and Lin, 2011). As output, the mean classification accu-
racy was returned. The results are shown in Figure 4A (right
panel). As expected, the accuracies around the signal regions are
highly above chance while in other regions they fluctuate around
chance-level. In addition, Figure 4A (right panel) illustrates the
slight smoothing imposed by the searchlight, where the high SNR
spreads the word “TDT” to the neighboring axial slices (Etzel
et al., 2013).

Simulation 2 consisted of two whole-brain analyses that were
run on the same simulated data set used for Simulation 1. In
Simulation 2A, we used all data to generate a weight map, i.e.,
we did not separate data in training and test sets. A weight map
indicates the contribution of each voxel to the classification which
reflects a combination of signal enhancement and noise suppres-
sion. As can be seen in Figure 4B (left panel), the results are
similar to the difference in means of the original data, because
noise was spatially uncorrelated. Simulation 2B used the same
leave-one-run-out cross-validation scheme as in the searchlight
analysis to achieve one classification accuracy for the entire brain.
The analysis consisted of an additional nested cross-validation
where we conducted recursive feature elimination to identify the
set of voxels that is optimally suited for carrying out the clas-
sification task. Classification performance was at ceiling (100 %
accuracy). Figure 4B (right panel) shows how often each voxel is
chosen in any of the six cross-validation steps for recursive feature
elimination, again clearly favoring signal voxels over noise voxels.

In Simulation 3, we ran a region-of-interest (ROI) analysis
with two ROIs, where one ROI covered one third of the sig-
nal region while the other covered the remaining two thirds
(Figure 4C, left panel). Again, we used a leave-one-run out cross-
validation scheme. We then continuously varied the amount of
signal that was added to the noise. As can be seen in Figure 4C
(right panel), the decoding accuracy gradually decreased with

FIGURE 4 | Results of simulations. (A) On the left, the difference of the
mean of images belonging to both classes is shown. On the right, the
results from Simulation 1 (searchlight analysis) are plotted. (B) Results from
Simulations 2A and 2B. The left panel shows the weights of the SVM
trained on data in (A). On the right, the results from a recursive feature
elimination are plotted. (C) Results from Simulation 3. The left panel shows
the ROIs that were selected. The right panel shows decoding accuracies in
the two ROIs depending on the SNR.

decreasing SNR until it reached chance-level when no signal is
present. In addition, the accuracy in the smaller ROI was generally
lower than that in the larger ROI, reflecting the reduced amount
of signal present in that region.

VALIDATION ON EMPIRICAL DATA: THE Haxby 2001 DATASET
To validate the toolbox on real imaging data, we used data from
a study by Haxby et al. (2001) which is publicly available (http://
data.pymvpa.org/datasets/haxby2001/). Because of space limita-
tions, we do not use the dataset provided with the toolbox for this
article, because it would require more detailed explanation of the
experimental paradigm. Haxby et al. (2001) investigated process-
ing of images belonging to 8 different object categories in ventral
visual cortex. Data from six subjects were made available. For a
complete description of the experimental paradigm and imaging
parameters, see the original publication.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 13

http://data.pymvpa.org/datasets/haxby2001/
http://data.pymvpa.org/datasets/haxby2001/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

The experiment consisted of 12 runs where each category
was shown once in each run in a 24 s block. Data were motion
corrected and detrended using SPM12 (http://www.fil.ion.ucl.ac.
uk/spm/software/spm12/). We fitted each block with a canoni-
cal hemodynamic response function, yielding one beta image per
condition per run and a total of 96 beta images per subject.

For the first empirical analysis, we ran a ROI decoding in ven-
tral temporal cortex. Our goal was to investigate the classification
accuracy and the confusion of the different categories. For that
purpose, we used the masks provided with the Haxby data set to
focus our analysis on ventral temporal cortex. The beta images
were then submitted to a leave-one-run-out cross-validation
scheme, using a one-vs.-one multiclass SVM classification
approach2. The output was specified to reveal a confusion matrix
comparing the frequency of the predicted label with the true label.
This approach was repeated for all six subjects and the result-
ing confusion matrices were averaged. The result is shown in
Figure 5A. As can be seen, each class could be classified very well,
with only little confusion between the classes. The results indi-
cate two clusters with larger confusion: Images of faces and cats
were confused more often than other categories, and images of
inanimate objects were confused more often. This could indicate
that in ventral visual cortex, faces and cats as well as different
inanimate objects are processed more similarly to each other.

For the second empirical analysis, we ran a multiclass search-
light analysis on subject 1 from the data set, with a leave-one-run
out cross-validation scheme and a searchlight radius of 4 voxels.

2Please note that one-vs.-one multiclass SVM classification usually follows
a “winner-takes-all” voting scheme. In case of ties, LIBSVM automatically
assigns the first class to the tied output. To circumvent this bias, TDT resolves
ties by choosing the class with the maximum decision value over all pairs of
comparisons.

To assess statistical significance, we ran a permutation test, yield-
ing a critical cut-off of 25 % accuracy (chance-level: 12.5 %) and
a cluster size of k = 24 voxels (cluster-level corrected p < 0.001).
The resulting accuracy maps were masked by the cut-off and
are shown in Figure 5B. Large portions of the dorsal and ven-
tral visual cortex carry information about the different categories,
with decoding accuracies reaching 62.5 % ventral temporal cor-
tex of subject 1. Taken together, these results fit nicely with the
known architecture of the visual cortex and reflect the feasibil-
ity of the toolbox to reveal information about the content of
representations in the human brain.

DISCUSSION
We hope that the above illustration of TDT demonstrated the
simplicity and general utility of this toolbox for multivariate
analysis of functional MRI data. In addition, the extensive error
checking helps prevent many programming errors and should
guide users in how to quickly resolve them. We did not go into
detail about an additional important feature of TDT that proved
helpful to prevent errors: the visualization of the decoding design.
It shows users at a glance if the cross-validation design they
intended to set-up is indeed the one that is computed and if the
input data is indeed the data they wanted to use. This further
facilitates the prevention of unwanted or erroneous analyses. To
help in getting started, TDT comes with an example dataset an
example analysis scripts.

FEATURES NOT CONTAINED IN TDT: PREPROCESSING AND RESULTS
VISUALIZATION
When we developed TDT, we initially used it as a tool for conduct-
ing searchlight analyses on preprocessed data in order to create
individual searchlight accuracy maps that could then be used as
input to group-level analyses. Later, the toolbox was extended

FIGURE 5 | Results of analyses on Haxby 2001 data set. (A) Confusion matrix reflecting the confusion of all eight classes in ventral temporal cortex,
averaged across all 6 subjects. (B) Searchlight multiclass classification results of subject 1 (permutation p < 0.001, cluster-corrected).

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 14

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

to become more general purpose, adding whole-brain and ROI
analyses and more and more machine-learning related utilities.
Our focus for TDT was on specifically creating a tool that pro-
vides users with the means to conduct multivariate decoding.
Most decoding analyses are carried out on preprocessed data (e.g.,
spatially realigned or temporally detrended data), but preprocess-
ing is not a part of TDT, as numerous software packages exist
that have been created for that purpose, each with their own
benefits and drawbacks. For example, detrending data or scal-
ing time-series are important steps for single image decoding,
but this can be done with popular software packages including
SPM, FSL, or AFNI or directly in Matlab with specialized tool-
boxes. The same applies to visualization of results: third-party
software can be used for that purpose, for example MRIcron
(Rorden, 2007) to visualize searchlight accuracy maps or
weight maps.

COMPARISON TO EXISTING PACKAGES OF MULTIVARIATE DATA
ANALYSIS
A few other toolboxes have been created that can be used to carry
out multivariate decoding analyses on fMRI data. The key advan-
tages of TDT have been listed in the introduction. In general,
it is difficult to tell to which degree other toolboxes offer sim-
ilar advantages, for example where they might be comparably
transparent, fast, easy to use, or versatile. More objective mea-
sures that have been used for comparison purposes have partly
underestimated the ability of other toolboxes (Schrouff et al.,
2013; Grotegerd et al., 2014) because the toolboxes might be
more elaborate than described on the toolbox websites. Rather
than thoroughly describing the advantages and disadvantages of
all existing toolboxes, we will mention the most widely used
and in our view most promising alternative toolboxes and try to
elucidate some degree of comparison to TDT.

The Princeton MVPA toolbox (http://code.google.com/p/
princeton-mvpa-toolbox/) is a rather versatile tool with a num-
ber of classifiers, basic feature selection capabilities and scaling
and the possibility to run searchlight analyses, but it requires a
more advanced level of programming skills and to our knowledge
is not further developed. Another advantage of this toolbox is an
active user community. TDT on the other hand offers more anal-
ysis methods, can be easily extended and due to the multilevel
approach is probably easier for getting started. The SPM interface
of TDT is particularly well suited for users of SPM.

The developers of the Princeton MVPA toolbox seem to have
shifted their focus to PyMVPA (Hanke et al., 2009a,b), a highly
versatile programming environment that allows for a large vari-
ety of decoding analyses. The key advantages of this toolbox are
the high level of sophistication, the active user community and
the fact that the toolbox does not require third-party software.
While TDT requires the third-party software Matlab and might
not be as versatile in its core functions, PyMVPA also requires
more advanced programming skills and for searchlight analyses
is much slower than TDT. In addition, Matlab is still widespread
in the neuroimaging community, and running decoding analyses
on SPM results from Python is not straightforward. Finally, TDT
can also be easily extended if users need additional functionality,
which also requires only little programming skills (see Example 3:

Extend Toolbox to External Machine Learning Package or More
Complex Processing Streams).

A more recent development is PRoNTo (Pattern Recognition
of Neuroimaging Toolbox, Schrouff et al., 2013) which has
the benefit of a graphical user interface and which also comes
with an SPM interface. However, the structure of the toolbox
is not optimized for searchlight analyses, and parameter selec-
tion or feature selection have not been implemented. Although
TDT does not offer a graphical user interface, we are cur-
rently working on an interface through the SPM batch system
which should become available with the next release of the
toolbox and which obviates any command line programming
knowledge.

We would also like to mention a toolbox specifically created
for carrying out representational similarity analysis (RSA tool-
box, Nili et al., 2014) which can serve as a standard for this type
of analysis. The capabilities of TDT for representational similarity
analysis at the current stage are still much more basic than those
of the RSA toolbox. However, TDT is in our experience faster
than the RSA toolbox, both for searchlight analyses and for cre-
ating correlation matrices. Users who would like to benefit from
the speed of TDT, but use all functionalities of the RSA toolbox
might consider using both toolboxes. Alternatively, appropriate
extensions can be made (see How to Extend the Toolbox) to
include many functionalities of the RSA toolbox. We are planning
to include more representational similarity analysis methods in
future versions of TDT.

A very recent development under Matlab is CosmoMVPA
(http://cosmomvpa.org/) which is still in its very early stage. The
general structure of the toolbox is quite similar to TDT. Rather
than creating a cfg in the beginning as is the case for TDT, each
option is passed along with the multiple subfunctions that are
called. The toolbox offers a range of classifiers, allows volumet-
ric and surface-based searchlight analysis and has a basic interface
to SPM and other brain analysis software packages. The toolbox
is easy to use with some intermediate level programming knowl-
edge in Matlab. However, CosmoMVPA currently does not offer
decoding designs, potentially leading to overlooked mistakes in
decoding analyses. Due to its novelty, the error management of
the toolbox and additional methods such as feature selection and
parameter selection are still quite basic. Passing parameters along
the use of subfunctions also invites mistakes on the side of the
user. However, it is possible that these current limitations will be
changed in future versions of the toolbox.

Finally, for completeness we would like to mention addi-
tional MVPA software packages for fMRI data: Searchmight
(http://www.princeton.edu/∼fpereira/searchmight/) which is
a dedicated and fast software package for simple searchlight
analyses with different classifiers3 , 3dsvm (http://afni.nimh.
nih.gov/pub/dist/doc/program_help/3dsvm.html) which is part

3It is difficult to compare the Searchmight and TDT in terms of speed. Since
the major bottleneck in processing speed is the classifier, this will depend
crucially on the implementation. For example, Searchmight comes with very
fast and dedicated Gaussian Naïve Bayes searchlight capabilities, but at the
same time does not pass kernel matrices to LIBSVM which can slow down
processing.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 15

http://code.google.com/p/princeton-mvpa-toolbox/
http://code.google.com/p/princeton-mvpa-toolbox/
http://cosmomvpa.org/
http://www.princeton.edu/~fpereira/searchmight/
http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dsvm.html
http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dsvm.html
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

of the software package AFNI; PROBID (http://www.kcl.ac.
uk/iop/depts/neuroimaging/research/imaginganalysis/Software/
PROBID.aspx) which is specialized for group comparisons,
MANIA (Grotegerd et al., 2014), and the brain decoder toolbox
(http://www.cns.atr.jp/dni/download/brain-decoder-toolbox/).

CONCLUSIONS
TDT offers a user-friendly, yet powerful and flexible framework
for the multivariate analysis of brain imaging data. The toolbox
has many advantages in terms of structure, transparency, speed
and error management. It comes with an interface to the com-
mon brain data analysis software SPM which should make it
particularly easy to apply to existing data. Beginners can start
using the toolbox with one single line of code, which increas-
ingly can be extended to exploit the full functionality of TDT.
In addition, the toolbox can easily be extended for more general
purpose use which allows adding new classifiers, feature selection
methods, or even complete external software packages for multi-
variate data analysis. We hope that TDT—through its simplicity
and flexibility—will encourage a much broader application of
machine learning methods in the analysis of functional imaging
data.

LICENSE STATEMENT
TDT can be downloaded from http://www.bccn-berlin.de/tdt.
The toolbox code is open source, but is licensed as copyright soft-
ware under the terms of the GNU General Public License (Free
Software Foundation). In addition, the toolbox comes with third-
party software (LIBSVM, LIBLINEAR, Newton-SVM, http://
research.cs.wisc.edu/dmi/svm/nsvm/), each with their respective
copyright. TDT has been tested under Windows, Linux, and OS X
and works both on 32 and 64 bit systems. The toolbox is com-
patible with Matlab versions R2006b or above and requires no
additional Matlab toolboxes. It works “out-of-the-box” with an
installed version of SPM2, SPM5, SPM8, or SPM12b. In addition,
we provide an example data set that can be downloaded from the
toolbox website.

ACKNOWLEDGMENTS
The authors declare no conflict of interest. We thank Carsten
Bogler, Thomas Christophel, Stephan Geuter, Elliott Wimmer
and both reviewers for helpful comments on earlier versions
of the manuscript. We thank the members of the Haynes lab
and many volunteers from around the world for trying pre-
publication releases of the toolbox. This work was supported
by the “Bernstein Award for Computational Neuroscience” by
the German Ministry of Education and Research (BMBF Grant
No. 01GQ1006) and by the German Research Foundation (DFG
Grant GRK1589/1).

REFERENCES
Allefeld, C., and Haynes, J.-D. (2014). Searchlight-based multi-voxel pattern anal-

ysis of fMRI by cross-validated MANOVA. Neuroimage 89, 345–357. doi:
10.1016/j.neuroimage.2013.11.043

Averbeck, B. B., Latham, P. E., and Pouget, A. (2006). Neural correlations,
population coding and computation. Nat. Rev. Neurosci. 7, 358–366. doi:
10.1038/nrn1888

Bilalić, M., Grottenthaler, T., Nägele, T., and Lindig, T. (in press). The faces in radio-
logical images: fusiform face area supports radiological expertise. Cereb. Cortex.
doi: 10.1093/cercor/bhu272

Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.-R., and Curio, G.
(2007). The non-invasive Berlin brain–computer interface: fast acquisition of
effective performance in untrained subjects. Neuroimage 37, 539–550. doi:
10.1016/j.neuroimage.2007.01.051

Chang, C. C., and Lin, C. J. (2011). LIBSVM: a library for support vector machines.
ACM Trans. Intell. Syst. Technol. 2, 1–27. doi: 10.1145/1961189.1961199

Christophel, T. B., Cichy, R. M., Hebart, M. N., and Haynes, J.-D. (in press).
Parietal and early visual cortices encode working memory content across mental
transformations. Neuroimage. doi: 10.1016/j.neuroimage.2014.11.018

Christophel, T. B., and Haynes, J.-D. (2014). Decoding complex flow-
field patterns in visual working memory. Neuroimage 91, 43–51. doi:
10.1016/j.neuroimage.2014.01.025

Christophel, T. B., Hebart, M. N., and Haynes, J.-D. (2012). Decoding the contents
of visual short-term memory from human visual and parietal cortex. J. Neurosci.
32, 12983–12989. doi: 10.1523/JNEUROSCI.0184-12.2012

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,
273–297. doi: 10.1007/BF00994018

Cox, D. D., and Savoy, R. L. (2003). Functional magnetic resonance imaging
(fMRI)“brain reading”: detecting and classifying distributed patterns of fMRI
activity in human visual cortex. Neuroimage 19, 261–270. doi: 10.1016/S1053-
8119(03)00049-1

Cui, Y., Liu, B., Luo, S., Zhen, X., Fan, M., Liu, T., et al. (2011). Identification of
conversion from mild cognitive impairment to Alzheimer’s disease using multi-
variate predictors. PLoS ONE 6:e21896. doi: 10.1371/journal.pone.0021896

De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., and Formisano,
E. (2008). Combining multivariate voxel selection and support vector machines
for mapping and classification of fMRI spatial patterns. Neuroimage 43, 44–58.
doi: 10.1016/j.neuroimage.2008.06.037

Etzel, J. A., Gazzola, V., and Keysers, C. (2009). An introduction to anatom-
ical ROI-based fMRI classification analysis. Brain Res. 1282, 114–125. doi:
10.1016/j.brainres.2009.05.090

Etzel, J. A., Zacks, J. M., and Braver, T. S. (2013). Searchlight analy-
sis: promise, pitfalls, and potential. Neuroimage 78, 261–269. doi:
10.1016/j.neuroimage.2013.03.041

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008).
LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9,
1871–1874. Available online at: http://dl.acm.org/citation.cfm?id=1442794

Formisano, E., De Martino, F., and Valente, G. (2008). Multivariate analysis of
fMRI time series: classification and regression of brain responses using machine
learning. Magn. Reson. Imaging 26, 921–934. doi: 10.1016/j.mri.2008.01.052

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., and
Frackowiak, R. S. (1994). Statistical parametric maps in functional imaging: a
general linear approach. Hum. Brain Mapp. 2, 189–210. doi: 10.1002/hbm.4600
20402

Friston, K. J., Rotshtein, P., Geng, J. J., Sterzer, P., and Henson, R. N.
(2006). A critique of functional localisers. Neuroimage 30, 1077–1087. doi:
10.1016/j.neuroimage.2005.08.012

Garrido, L., Vaziri-Pashkam, M., Nakayama, K., and Wilmer, J. (2013). The con-
sequences of subtracting the mean pattern in fMRI multivariate correlation
analyses. Front. Neurosci. 7:174. doi: 10.3389/fnins.2013.00174

Grotegerd, D., Redlich, R., Almeida, J. R., Riemenschneider, M., Kugel, H., Arolt, V.,
et al. (2014). MANIA—A pattern classification toolbox for neuroimaging data.
Neuroinformatics 12, 471–486. doi: 10.1007/s12021-014-9223-8

Guggenmos, M., Thoma, V., Cichy, R. M., Haynes, J.-D., Sterzer, P., Richardson-
Klavehn, A. (in press). Non-holistic coding of objects in lateral occipital com-
plex with and without attention. Neuroimage. doi: 10.1016/j.neuroimage.2014.
12.013

Guyon, I., and Elisseeff, A. (2003). An introduction to variable and feature selec-
tion. J. Mach. Learn. Res. 3, 1157–1182. Available online at: http://dl.acm.org/
citation.cfm?id=944968

Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L. (2006). Feature Extraction:
Foundations and Applications. Berlin: Springer.

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., and
Pollmann, S. (2009a). PyMVPA: a python toolbox for multivariate pattern
analysis of fMRI data. Neuroinformatics 7, 37–53. doi: 10.1007/s12021-008-
9041-y

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 16

http://www.kcl.ac.uk/iop/depts/neuroimaging/research/imaginganalysis/Software/PROBID.aspx
http://www.kcl.ac.uk/iop/depts/neuroimaging/research/imaginganalysis/Software/PROBID.aspx
http://www.kcl.ac.uk/iop/depts/neuroimaging/research/imaginganalysis/Software/PROBID.aspx
http://www.cns.atr.jp/dni/download/brain-decoder-toolbox/
http://www.bccn-berlin.de/tdt
http://research.cs.wisc.edu/dmi/svm/nsvm/
http://research.cs.wisc.edu/dmi/svm/nsvm/
http://dl.acm.org/citation.cfm?id=1442794
http://dl.acm.org/citation.cfm?id=944968
http://dl.acm.org/citation.cfm?id=944968
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ, I., Rieger, J. W.,
et al. (2009b). PyMVPA: a unifying approach to the analysis of neuroscientific
data. Front. Neuroinform. 3:3. doi: 10.3389/neuro.11.003.2009

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., et al.
(2014). On the interpretation of weight vectors of linear models in mul-
tivariate neuroimaging. Neuroimage 87, 96–110. doi: 10.1016/j.neuroimage.
2013.10.067

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini,
P. (2001). Distributed and overlapping representations of faces and objects
in ventral temporal cortex. Science 293, 2425–2430. doi: 10.1126/science.
1063736

Haxby, J. V., Guntupalli, J. S., Connolly, A. C., Halchenko, Y. O., Conroy, B. R.,
Gobbini, M. I., et al. (2011). A common, high-dimensional model of the repre-
sentational space in human ventral temporal cortex. Neuron 72, 404–416. doi:
10.1016/j.neuron.2011.08.026

Haynes, J.-D., and Rees, G. (2006). Decoding mental states from brain activity in
humans. Nat. Rev. Neurosci. 7, 523–534. doi: 10.1038/nrn1931

Haynes, J.-D., Sakai, K., Rees, G., Gilbert, S., Frith, C., and Passingham, R. E. (2007).
Reading hidden intentions in the human brain. Curr. Biol. 17, 323–328. doi:
10.1016/j.cub.2006.11.072

Hebart, M. N., Donner, T. H., and Haynes, J.-D. (2012). Human visual and pari-
etal cortex encode visual choices independent of motor plans. Neuroimage 63,
1393–1403. doi: 10.1016/j.neuroimage.2012.08.027

Hebart, M. N., Schriever, Y., Donner, T. H., and Haynes, J.-D. (in press). The rela-
tionship between perceptual decision variables and confidence in the human
brain. Cereb. Cortex bhu181. doi: 10.1093/cercor/bhu181

Hesselmann, G., Hebart, M., and Malach, R. (2011). Differential BOLD activity
associated with subjective and objective reports during “blindsight” in nor-
mal observers. J. Neurosci. 31, 12936–12944. doi: 10.1523/JNEUROSCI.1556-
11.2011

Horikawa, T., Tamaki, M., Miyawaki, Y., and Kamitani, Y. (2013). Neural decod-
ing of visual imagery during sleep. Science 340, 639–642. doi: 10.1126/sci-
ence.1234330

Kanwisher, N., McDermott, J., and Chun, M. M. (1997). The fusiform face area: a
module in human extrastriate cortex specialized for face perception. J. Neurosci.
17, 4302–4311.

Kriegeskorte, N. (2011). Pattern-information analysis: from stimulus decod-
ing to computational-model testing. Neuroimage 56, 411–421. doi:
10.1016/j.neuroimage.2011.01.061

Kriegeskorte, N., Formisano, E., Sorger, B., and Goebel, R. (2007). Individual faces
elicit distinct response patterns in human anterior temporal cortex. Proc. Natl.
Acad. Sci. U.S.A. 104, 20600–20605. doi: 10.1073/pnas.0705654104

Kriegeskorte, N., Goebel, R., and Bandettini, P. (2006). Information-based func-
tional brain mapping. Proc. Natl. Acad. Sci. U.S.A. 103, 3863–3868. doi:
10.1073/pnas.0600244103

Kriegeskorte, N., Mur, M., and Bandettini, P. (2008). Representational similar-
ity analysis—Connecting the branches of systems neuroscience. Front. Syst.
Neurosci. 2:4. doi: 10.3389/neuro.06.004.2008

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., and Baker, C. I. (2009). Circular
analysis in systems neuroscience: the dangers of double dipping. Nat. Neurosci.
12, 535–540. doi: 10.1038/nn.2303

Ku, S., Gretton, A., Macke, J., and Logothetis, N. K. (2008). Comparison of pat-
tern recognition methods in classifying high-resolution BOLD signals obtained
at high magnetic field in monkeys. Magn. Reson. Imaging 26, 1007–1014. doi:
10.1016/j.mri.2008.02.016

Lemm, S., Blankertz, B., Dickhaus, T., and Müller, K.-R. (2011). Introduction
to machine learning for brain imaging. Neuroimage 56, 387–399. doi:
10.1016/j.neuroimage.2010.11.004

Liu, H., and Motoda, H. (1998). Feature Extraction, Construction and Selection: A
Data Mining Perspective. Boston, MA: Kluwer Academic.

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001).
Neurophysiological investigation of the basis of the fMRI signal. Nature 412,
150–157. doi: 10.1038/35084005

Ludwig, K., Kathmann, N., Sterzer, P., and Hesselmann, G. (2015). Investigating
category-and shape-selective neural processing in ventral and dorsal visual
stream under interocular suppression. Hum. Brain Mapp. 36, 137–149. doi:
10.1002/hbm.22618

Misaki, M., Kim, Y., Bandettini, P. A., and Kriegeskorte, N. (2010). Comparison
of multivariate classifiers and response normalizations for pattern-information

fMRI. Neuroimage 53, 103–118. doi: 10.1016/j.neuroimage.2010.
05.051

Mourão-Miranda, J., Friston, K. J., and Brammer, M. (2007). Dynamic dis-
crimination analysis: a spatial–temporal SVM. Neuroimage 36, 88–99. doi:
10.1016/j.neuroimage.2007.02.020

Mourão-Miranda, J., Reynaud, E., McGlone, F., Calvert, G., and Brammer, M.
(2006). The impact of temporal compression and space selection on SVM anal-
ysis of single-subject and multi-subject fMRI data. Neuroimage 33, 1055–1065.
doi: 10.1016/j.neuroimage.2006.08.016

Müller, K.-R., Mika, S., Ratsch, G., Tsuda, K., and Scholkopf, B. (2001). An intro-
duction to kernel-based learning algorithms. Neural Netw. IEEE Trans. 12,
181–201. doi: 10.1109/72.914517

Mumford, J. A., Turner, B. O., Ashby, F. G., and Poldrack, R. A. (2012).
Deconvolving BOLD activation in event-related designs for multivoxel pattern
classification analyses. Neuroimage 59, 2636–2643. doi: 10.1016/j.neuroimage.
2011.08.076

Naselaris, T., Kay, K. N., Nishimoto, S., and Gallant, J. L. (2011). Encoding and
decoding in fMRI. Neuroimage 56, 400–410. doi: 10.1016/j.neuroimage.2010.
07.073

Nestor, A., Plaut, D. C., and Behrmann, M. (2011). Unraveling the dis-
tributed neural code of facial identity through spatiotemporal pattern anal-
ysis. Proc. Natl. Acad. Sci. U.S.A. 108, 9998–10003. doi: 10.1073/pnas.11024
33108

Nichols, T. E., and Holmes, A. P. (2002). Nonparametric permutation tests for func-
tional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25. doi:
10.1002/hbm.1058

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., and Kriegeskorte,
N. (2014). A toolbox for representational similarity analysis. PLOS Comput. Biol.
10:e1003553. doi: 10.1371/journal.pcbi.1003553

Noirhomme, Q., Lesenfants, D., Gomez, F., Soddu, A., Schrouff, J., Garraux, G.,
et al. (2014). Biased binomial assessment of cross-validated estimation of clas-
sification accuracies illustrated in diagnosis predictions. Neuroimage Clin. 4,
687–694. doi: 10.1016/j.nicl.2014.04.004

Norman, K. A., Polyn, S. M., Detre, G. J., and Haxby, J. V. (2006). Beyond
mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10,
424–430. doi: 10.1016/j.tics.2006.07.005

Pereira, F., Mitchell, T., and Botvinick, M. (2009). Machine learning clas-
sifiers and fMRI: a tutorial overview. Neuroimage 45, S199–S209. doi:
10.1016/j.neuroimage.2008.11.007

Reverberi, C., Görgen, K., and Haynes, J.-D. (2012). Distributed representations of
rule identity and rule order in human frontal cortex and striatum. J. Neurosci.
32, 17420–17430. doi: 10.1523/JNEUROSCI.2344-12.2012

Ritter, C., Hebart, M. N., Wolbers, T., and Bingel, U. (2014). Representation
of spatial information in key areas of the descending pain modula-
tory system. J. Neurosci. 34, 4634–4639. doi: 10.1523/JNEUROSCI.4342-
13.2014

Rorden, C. (2007). MRIcron. Available online at: http://www.mccauslandcenter.sc.
edu/mricro/mricron/

Schölkopf, B., Burgess, C., and Vapnik, V. (1995). “Extracting support data for a
given task,” in Proceedings, First International Conference on Knowledge Discovery
& Data Mining. Menlo Park, CA: AAAI Press.

Schreiber, K., and Krekelberg, B. (2013). The Statistical Analysis of Multi-Voxel
Patterns in Functional Imaging. PLoS ONE 8:e69328. doi: 10.1371/jour-
nal.pone.0069328

Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner,
J., et al. (2013). PRoNTo: pattern recognition for neuroimaging toolbox.
Neuroinformatics 11, 319–337. doi: 10.1007/s12021-013-9178-1

Seymour, K., Clifford, C. W., Logothetis, N. K., and Bartels, A. (2009). The coding
of color, motion, and their conjunction in the human visual cortex. Curr. Biol.
19, 177–183. doi: 10.1016/j.cub.2008.12.050

Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., et al. (2010).
The SHOGUN machine learning toolbox. J. Mach. Learn. Res. 11, 1799–1802.
Available online at: http://dl.acm.org/citation.cfm?id=1859911

Stelzer, J., Chen, Y., and Turner, R. (2013). Statistical inference and multiple test-
ing correction in classification-based multi-voxel pattern analysis (MVPA):
random permutations and cluster size control. Neuroimage 65, 69–82. doi:
10.1016/j.neuroimage.2012.09.063

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat.
Soc. Ser. B Methodol. 58, 267–288.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 17

http://www.mccauslandcenter.sc.edu/mricro/mricron/
http://www.mccauslandcenter.sc.edu/mricro/mricron/
http://dl.acm.org/citation.cfm?id=1859911
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hebart et al. The Decoding Toolbox (TDT)

Van Kemenade, B. M., Seymour, K., Christophel, T. B., Rothkirch, M., and Sterzer,
P. (2014a). Decoding pattern motion information in V1. Cortex 57, 177–187.
doi: 10.1016/j.cortex.2014.04.014

Van Kemenade, B. M., Seymour, K., Wacker, E., Spitzer, B., Blankenburg, F., and
Sterzer, P. (2014b). Tactile and visual motion direction processing in hMT+/V5.
Neuroimage 84, 420–427. doi: 10.1016/j.neuroimage.2013.09.004

Weygandt, M., Hackmack, K., Pfüller, C., Bellmann–Strobl, J., Paul, F., Zipp, F.,
et al. (2011). MRI pattern recognition in multiple sclerosis normal-appearing
brain areas. PLoS ONE 6:e21138. doi: 10.1371/journal.pone.0021138

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 July 2014; accepted: 10 December 2014; published online: 06 January
2015.
Citation: Hebart MN, Görgen K and Haynes J-D (2015) The Decoding Toolbox
(TDT): a versatile software package for multivariate analyses of functional imaging
data. Front. Neuroinform. 8:88. doi: 10.3389/fninf.2014.00088
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2015 Hebart, Görgen and Haynes. This is an open-access arti-
cle distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, pro-
vided the original author(s) or licensor are credited and that the original publi-
cation in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 88 | 18

http://dx.doi.org/10.3389/fninf.2014.00088
http://dx.doi.org/10.3389/fninf.2014.00088
http://dx.doi.org/10.3389/fninf.2014.00088
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data
	Introduction
	Simplicity
	Modular Structure and Transparency
	SPM Interface
	Modularity, Versatility, Extendibility
	Speed
	Strong Debugging and Error Checking
	Readability

	A Simple Decoding Analysis
	A Closer Look at the Decoding Toolbox—for Intermediate Level Users and Above
	Design Creation
	Analysis Type
	Train and Test Classifier
	Transformation of Results
	Statistical Analysis

	A description of Optional Workflow Steps—for Advanced Level Users
	Scaling
	Parameter Selection
	Feature Transformation
	Feature Selection

	How to Extend the Toolbox
	Example 1: Introduce a New Classifier
	Example 2: Introduce a new result measure
	Example 3: Extend Toolbox to External Machine Learning Package or More Complex Processing Streams

	Toolbox Validation: Simulations and Applications to fMRI Data
	Simulations: Searchlight Analysis, Whole-Brain Analysis, Region-of-Interest Analysis
	Validation on Empirical Data: The Haxby 2001 Dataset

	Discussion
	Features not Contained in TDT: Preprocessing and Results Visualization
	Comparison to Existing Packages of Multivariate Data Analysis

	Conclusions
	License Statement
	Acknowledgments
	References

