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Abstract: Computational effort and convergence problems can pose serious challenges when employing
advanced thermodynamic models in process simulation and optimization. Data-based surrogate
modeling helps to overcome these problems at the cost of additional modeling effort. The present work
extends the range of methods for efficient data-based surrogate modeling of liquid–liquid equilibria.
A new model formulation is presented that enables smaller surrogates with box-constrained input
domains and reduced input dimensions. Sample data are generated efficiently by using numerical
continuation. The new methods are demonstrated for the surrogate modeling and optimization of a
process for the hydroformylation of 1-decene in a thermomorphic multiphase system.

Keywords: surrogate modeling; liquid–liquid equilibrium; parameterization; numerical continuation;
optimization; multistage extraction

1. Introduction

In chemical process design, advanced thermodynamic models offer increasing predictive accuracy
for physical properties of mixtures. However, this correlates with increasingly complex models,
which introduce serious challenges when used for process simulation and optimization. Problems
may arise from embedded iterative solution procedures for the thermodynamic models, which may
not converge to a valid solution or require a large number of iteration steps. The benefits of advanced
thermodynamic models can be used by replacing them with surrogates that are computationally easy
to handle [1].

The concept of surrogate modeling comprises a number of different approaches [2] that depend
on the type of the original model and the desired properties of the surrogate. In chemical process
engineering, data-driven surrogate modeling is usually employed [3]. This class of methods generally
treats the original model as a black box with input–output data. The surrogate that replaces the original
model is constructed such that it approximates the data and is easy to evaluate. These requirements
define major steps of data-driven surrogate modeling.

In a first step, inputs and outputs have to be selected from the original model. This determines
the properties of the input–output data and thereby affects both the accuracy and size of the surrogate
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model. A larger input dimension increases the size of the surrogate and necessitates more sample data.
A difficult input domain may require modeling with an additional surrogate [4]. In addition, output
multiplicities have to be treated with special methods [5].

Several data-driven surrogate models are available, e.g., polynomials, neural networks, and Gaussian
processes [2]. The choice for the surrogate model structure is usually not trivial and a number of different
models should be tried. Tools for automatically selecting a surrogate model structure are available
(e.g., [6]).

Parameter fitting for surrogate models requires sample data that fully characterize the input–output
behavior. The additional cost for sample generation is reduced by employing efficient sampling methods.
Adaptive sampling approaches that employ exploration and exploitation strategies are preferred over
one-shot methods in recent literature (see [3,4] for references).

Although various strategies are available for each aspect of surrogate modeling, there is
still significant potential for improvements, especially when problem-specific features are taken
into account.

The present contribution extends the methods of surrogate modeling for liquid–liquid phase
equilibria (LLE). This includes efficient sample generation by employing a numerical continuation
method and an efficient surrogate formulation that has a box-constrained input domain and a reduced
input dimension compared to established formulations. In Section 2, LLE modeling is introduced
briefly and a description of surrogate modeling of LLE is given that summarizes recent work on the
topic. Section 3 describes the methods of sample data generation and surrogate modeling proposed in
this work. A case study based on a process for the hydroformylation of 1-decene in a thermomorphic
multiphase system is used in Section 4 to demonstrate the proposed methods. A short conclusion is
given in Section 5.

2. Background

This section summarizes the required background for LLE modeling and recent work on surrogate
modeling of LLE.

2.1. Liquid–Liquid Equilibrium Modeling

The liquid–liquid equilibrium is described by a two-phase flash model comprising component
mass balance conditions

Nin
i = NI

i + NII
i , i = 1, . . . , Nc, (1)

and thermodynamic equilibrium conditions

TI = TII = T, (2)

pI = pII = p, (3)

µI
i = µII

i , i = 1, . . . , Nc. (4)

Here, N j
i is the mole amount, µ

j
i is the chemical potential, T j is the temperature and pj is the

pressure in phase j ∈ {I, II} for component i. The mole amounts of the feed mixture are denoted by
Nin

i and the total number of components in the mixture is Nc.
The conditions for equal chemical potential can be reformulated for liquid–liquid equilibria as the

isoactivity conditions

xI
i γI

i(xI, T, p) = xII
i γII

i (xII, T, p), i = 1, . . . , Nc, (5)

with mole fractions xj
i , vectors of mole fractions xj, and activity coefficients γ

j
i .
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Iterative procedures are usually utilized to find a solution of the implicit equilibrium model,
evaluating the activity coefficients provided by the thermodynamic model in each iteration. Therefore,
using advanced models such as the perturbed-chain statistical associating fluid theory (PC-SAFT) [7]
or universal quasichemical functional-group activity coefficients (UNIFAC) [8] directly for flowsheet
simulation and optimization is unfavorable in terms of convergence behavior and computational
effort. Furthermore, excluding undesired trivial solutions of the equation system given above requires
additional effort. The following section describes the technique of replacing such expensive calculations
by data-driven surrogate models that are computationally easier to handle.

2.2. Surrogate Modeling of LLE

Surrogate modeling aims at replacing a function f ,

{(x, f (x)) : x ∈ X}, (6)

with a surrogate function f̂ that is similar to the original function f and exhibits favorable properties,
e.g., much lower computational effort. More specifically, data-driven surrogate modeling generally
uses samples (xk, f (xk)) to fit parameters of the surrogate f̂ such that some performance criterion is
satisfied. If an approximation of the original function f̂ ≈ f is desired, typical performance criteria
include minimizing the mean squared error or mean absolute error with respect to the samples.
Another performance criterion is the exact reproduction of the sample points f̂ (xk) = f (xk), which can
be used for instance in Kriging interpolation (e.g., [9]). In this sense, data-driven surrogate modeling
is another name for nonlinear regression and interpolation methods. Applications for surrogate
modeling include, but are not limited to, cases where the original function is expensive to evaluate,
e.g., computational fluid dynamics simulations, or where a functional form may not be available,
e.g., experimental results.

This section gives a summary of recent efforts [4,10] on using data-driven surrogate models for
phase equilibrium calculations, particularly for LLE, to improve computational performance while
preserving high model accuracy. For the sake of readability, some details of each approach are omitted
here and we refer to the original publications for comprehensive descriptions. A broader overview on
general surrogate modeling is available in the literature [2,3,11,12].

2.2.1. Selection of Inputs and Outputs

Distribution coefficients Ki := NI
i /Nin

i are introduced, which allows one to rewrite the equilibrium
model as

NI
i = Ki Nin

i , i = 1, . . . , Nc, (7)

Ki = fi(xin
1 , . . . , xin

Nc−1, T), i = 1, . . . , Nc, (8)

xin
i =

Nin
i

∑Nc
l=1 Nin

l

, i = 1, . . . , Nc−1, (9)

NII
i = Nin

i − NI
i , i = 1, . . . , Nc. (10)

In the model comprising Equations (7)–(10), fi is replaced by a surrogate f̂i ≈ fi. Kriging
interpolation is used for the surrogates f̂i in [4,10]. The inputs of the surrogate are Nc − 1 mole
fractions of the feed mixture and the temperature. The outputs comprise the Nc distribution coefficients.
The pressure does not appear as an input since its influence on the liquid–liquid equilibrium is assumed
to be negligible.

It should be emphasized that, given a feasible feed mixture and temperature, all quantities in
Equations (7)–(10) can be calculated in a sequential fashion.
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2.2.2. Description of the Input Domain X

A natural choice for the input domain, given molar fractions and the temperature as inputs,
would be

X̃={(xin
1 , . . . , xin

Nc−1, T) ∈ [0, 1]Nc−1×R+ : xin
1 + . . . + xin

Nc−1≤1}. (11)

However, the distribution coefficient model in Equations (7)–(10) is only valid within the
miscibility gap of the mixture. Therefore, box constraints are not suitable to accurately describe
the complete input domain X of the surrogate f̂i. Instead, the input domain can be defined by a
classifier g(xin

1 , . . . , xin
Nc−1, T), which is less than zero only within the miscibility gap:

X = {(xin
1 , . . . , xin

Nc−1, T) ∈ X̃ : g(xin
1 , . . . , xin

Nc−1, T) ≤ 0}. (12)

Possible choices for the classifier model include a set of linear expressions g = A (xin
1 , . . . , xin

Nc−1, T)>− b
as in [10] or a scalar function g(xin

1 , . . . , xin
Nc−1, T) as in [4]. Since the scalar classifier g in [4] is as difficult

to calculate as the equilibrium model, it is approximated by another surrogate model ĝ ≈ g, in this case a
support vector machine.

2.2.3. Sample Data and Surrogate Generation

The selection of sample locations for data generation can be categorized in one-shot space-filling
designs, which select locations according to pre-defined strategies, and adaptive sampling approaches,
which exploit information from available sampling data to select new sampling locations. In [10],
sample values are calculated by evaluating the equilibrium model at pre-defined sample locations
generated by a space-filling design. A major contribution of Nentwich and Engell [4] is a method of
adaptively choosing new sample locations based on available sample data to improve the quality of
the approximation compared to one-shot designs with the same number of samples. In principle, new
sample locations are chosen by maximizing a weighted sum of the minimum distance to existing sample
locations and the predicted variance, i.e., by exploration and exploitation strategies. The surrogate
model needs to be updated in each iteration of this method.

In both references, the sample generation takes a substantial amount of time. For a constant
sample density, the number of required samples scales exponentially with the dimension of the
input domain. In addition, the equilibrium model is solved at each sample location independently,
i.e., the solution algorithm needs to converge starting from an independent initial guess.

3. Methods

The literature approaches to surrogate modeling of LLE rely on a regression model for the
distribution of components between phases and an additional classification model to determine
whether a given set of input values lies in the two-phase region. This section describes new
approaches aiming at extending the pool of methods for surrogate modeling of LLE. For this, a model
reformulation that enables smaller surrogate models and a method for efficiently calculating sample
data are presented.

3.1. Parameterization of Binodal Curves

The strategy for reducing the computational effort for surrogates in LLE modeling presented here
comprises two ideas. First, instead of modeling the entire miscibility gap, only the binodal curve is
described by a surrogate, which reduces the surrogate input dimension by one. As shown in Figure 1
for a ternary mixture, the binodal curve has one dimension fewer than the miscibility gap, i.e., it is
a line instead of an area. Note that for more than three components Nc > 3, the set of equilibrium
compositions is a (Nc − 2)-dimensional surface. For a constant sample density, the number of required
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sample points for a surrogate model depends exponentially on its input dimension. Reducing the
number of inputs therefore improves computational tractability of the surrogate.

Second, instead of using molar fractions as inputs of the surrogate, the position on the binodal
curve is introduced as a new coordinate, marked by t1 in Figure 1. Each value of this coordinate
corresponds to the endpoints of a tie line, i.e., the compositions of two phases in equilibrium.
The parameterization variable t1 can be defined from the border of the phase diagram to the critical
point, if the data are available, or just on a section of the binodal curve. This removes the need for a
complicated (surrogate) model of the input domain, since the parameterization of the binodal curve
can be chosen such that box constraints are sufficient, i.e., t1 ∈ [0, 1].
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Figure 1. Sample region for liquid-liquid equilibrium (LLE) calculations of a ternary mixture,
(left) when modeling the entire miscibility gap and (right) when modeling the binodal curve.
The parameterization variable t1 determines the position on the binodal curve, i.e., the pair of
equilibrium compositions on the endpoints of the tie line.

Using these ideas, the equilibrium model is reformulated as follows.

Nin
i = NI

i + NII
i , i = 1, . . . , Nc, (13)

N j
i

∑Nc
l=1 N j

l

= f j
i (t1, . . . , tNc−2, T), i = 1, . . . , Nc−1, j = I, II (14)

Here, the parameterization variables for the binodal curve are denoted by t1, . . . , tNc−2. In the
model comprising Equations (13) and (14), f j

i is replaced by a surrogate f̂ j
i ≈ f j

i . The inputs of the
surrogate are the temperature and Nc − 2 variables for the parameterization of the binodal curve.
The input domain for the surrogate functions f̂ j

i reads simply

X = [0, 1]Nc−2×R+. (15)

The outputs comprise 2(Nc − 1) independent mole fractions. We decided to include all 2Nc molar
fractions here, because eliminating one molar fraction by using the summation condition would make
it harder to have the same error scaling for all components during surrogate fitting and it would
increase the maximum error for the eliminated component in the final surrogate model.

In summary, the parameterization of binodal curves enables the generation of smaller surrogate
models due to the reduction of the input dimension and the definition of the input domain by
box constraints. The overall model is rendered implicit by this reformulation. Implicit models are
generally harder to solve than explicit models. However, the reduced model size, and thereby
the reduced number of nonlinear expressions that have to be evaluated, is favorable for the
computational performance.
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3.2. Numerical Continuation for Sample Calculation

Calculations of phase equilibria, especially for LLE, often require considerable computational
effort due to iterative solution procedures and in some cases good initial guesses to calculate valid
equilibrium compositions. Therefore, fast surrogates are employed for simulation and optimization.
The original equilibrium model is only used during sample generation. However, the samples need to
cover the entire miscibility gap to enable accurate surrogate modeling and their acquisition can take a
considerable amount of time.

The computational cost of sample generation can be reduced by exploiting existing sample data.
For instance, in [4], new sample locations are chosen such that they are most likely to improve the
surrogate model, thus reducing the overall number of required sample points.

The basic idea followed in the present work is using numerical continuation methods (e.g., [13]) to
improve convergence behavior of equilibrium calculations and thereby to reduce the computation time.
Continuation methods are used to find solutions of an equation system that depend on a parameter,
e.g., solutions of the equilibrium model depending on the feed composition. Varying this parameter,
a prediction for the new solution is calculated based on previous solutions and then the prediction
is corrected. Since initial guesses are improved using systematic predictions, the correction step
converges more quickly to an accurate solution.

In an earlier work [14], the phase stability of an arbitrary point in the phase diagram is tested
by tracking valid solutions of the equilibrium model from a known starting composition to the
desired location using homotopy continuation. This strategy is adapted here to track solutions of the
equilibrium model along the binodal curve by varying the feed composition.

We apply a dynamic method for minimization problems (e.g., [15]) to solve the equilibrium model
for a given feed composition. The following ordinary differential equation system

(NI
i )
′ = −ks (xI

i γI
i − xII

i γII
i ), i = 1, . . . , Nc, (16)

(NII
i )
′ = +ks (xI

i γI
i − xII

i γII
i ), i = 1, . . . , Nc, (17)

converges to a valid solution if the initial guess of the phase compositions xj
i is sufficiently close to that

solution. Mole fractions are calculated by xj
i =

N j
i

∑Nc
l=1 N j

l

and the activity coefficients γ
j
i = γ

j
i(xj, T) are

functions of composition and temperature. The scaling factor ks := 1 mol ensures consistent units on
both sides of the equations.

In an effort to track solutions along the binodal curve, the feed composition is varied along a line
with a constant phase ratio. This trajectory, depicted in Figure 2, starts from a point on the border of
the phase diagram and covers the entire miscibility gap of a ternary mixture. For all feed compositions
along the trajectory, corresponding points on the binodal curve are obtained by solving the equilibrium
model using Equations (16) and (17). In comparison to the previous approaches in [4,10], this strategy
only requires sampling on a line in the miscibility gap instead of sampling in the whole area. If the
starting point does not lie on the border of the phase diagram, the line has to be tracked in both
directions from the starting point.

An efficient approach to characterize the overall phase behavior of a mixture by evaluating the
convex envelope of the Gibbs energy, and thus to identify viable starting points within a miscibility
gap, is given in [16].

The continuation method is implemented here by augmenting Equations (16) and (17) with
additional expressions that offer convergence to the selected phase ratio and movement of the feed
composition perpendicular to the current tie line. Each additional expression is chosen such that
the dynamic it introduces is orders of magnitude slower than that of the equilibrium conditions.
The resulting stiff ordinary differential equation system is solved using the MATLAB function
ode15s [17].
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C

BA starting point

Figure 2. Sampling of the binodal curve: Trajectory of the feed composition at a constant phase ratio of
0.5 and corresponding equilibrium compositions on the binodal curve.

In the case of mixtures with more than three components, the equilibrium compositions form a
(Nc − 2)-dimensional surface instead of a one-dimensional curve. In the present work, the continuation
method is adapted to this case by fixing the molar fractions of additional components to constant
values and repeat the calculations for all sets of fixed values.

In an alternative approach, instead of varying the feed composition, the compositions of both
equilibrium phases could be directly tracked along the binodal curve using continuation methods [18]
with Equations (16) and (17) as a possible choice for a robust corrector.

4. Results

This section demonstrates the application of the methods presented in the previous section to the
modeling and optimization of a liquid–liquid extraction process.

4.1. Description of the Case Study

A multistage liquid–liquid extraction process adapted from [10] is used here as a case study for
the methods presented above. In [10], the optimization of a process for the homogeneously catalyzed
hydroformylation of 1-dodecene in a thermomorphic multiphase system is considered. The mixture
is homogeneous at reaction conditions and biphasic at lower temperatures. This is used to separate
the catalyst from the product in an extraction cascade and to recycle the catalyst back to the reactor.
The extraction cascade considered here is highlighted in Figure 3, which shows a modified flowsheet
of the overall process from [10].

. . .

extraction cascade

reactor

feed stream

recycle 1: 
catalyst, polar solvent

recycle 2: nonpolar solvent, substrate

product

distillation
column 1

distillation
column 2decanter Nsdecanter 1

Figure 3. Modified hydroformylation process adapted from [10]. The highlighted area marks the
extraction cascade with extraction solvent recycle considered in the present work.

In the present work, the mixture consists of the polar solvent dimethylformamide, the nonpolar
solvent dodecane, the product n-undecanal and the substrate 1-decene. As in [10], the mixture includes



Processes 2019, 7, 753 8 of 16

a catalyst, which is distributed between the two phases depending on their equilibrium composition.
The catalyst concentration is higher in the more polar phase than in the less polar phase. Moreover,
it is assumed that the catalyst has no influence on the phase equilibrium due to it having a very low
concentration. Thus, the catalyst partition coefficient is modeled at infinite dilution and therefore it is
added to the set of surrogate outputs, but not to the inputs. All extraction stages are operated at the
same constant temperature T = 298.15 K, as suggested by the results in [10].

The resulting equation system for a single extraction stage reads

ṅin
i = ṅI

i + ṅII
i , i = 1, . . . , Nc, (18)

ṅin
cat = ṅI

cat + ṅII
cat, (19)

ṅj
i

∑Nc
l=1 ṅj

l

= f j
i (t1, . . . , tNc−2), i = 1, . . . , Nc, j = I, II, (20)

log10

(
ṅI

cat ∑Nc
l=1 ṅII

l

ṅII
cat ∑Nc

l=1 ṅI
l

)
= fcat(t1, . . . , tNc−2), (21)

with ṅj
i denoting molar flows of component i in phase j and fcat calculating the logarithmic partition

coefficient log10 P12 for the catalyst between the less polar phase I and the more polar phase II. Table 1
lists the names of the components corresponding to the index i.

Table 1. Component labels.

Index i Name Description

1 dimethylformamide polar solvent
2 dodecane nonpolar solvent
3 n-undecanal product
4 1-decene substrate

In the model consisting of Equations (18)–(21), f j
i and fcat are replaced by a surrogate that

comprises both the mole fractions f̂ j
i ≈ f j

i and the logarithmic partition coefficient f̂cat ≈ fcat.
With Nc = 4, the inputs of the surrogate are two parameterization variables t1 and t2. The outputs
are eight mole fractions for the equilibrium compositions in both phases as well as the catalyst
partition coefficient.

The extraction cascade consists of k = 1, .., Ns stages, numbered from k = 1 for the output stage of
the more polar phase II to k = Ns for the output stage of the less polar phase I. The stage k = 1 is also
the feed stage. Some of the polar solvent is separated using distillation column 1 and recycled to the
extraction cascade at stage k = Ns. The mass balances that describe the extraction cascade read

ṅin
i,1 = ṅII

i,2 + ṅfeed
i , i = 1, . . . , Nc, (22)

ṅin
cat,1 = ṅII

cat,2 + ṅfeed
cat , (23)

ṅin
i,k = ṅI

i,k−1 + ṅII
i,k+1, i = 1, . . . , Nc, k = 2, . . . , Ns−1, (24)

ṅin
cat,k = ṅI

cat,k−1 + ṅII
cat,k+1, k = 2, . . . , Ns−1, (25)

ṅin
i,Ns

= ṅI
i,Ns−1

+ ṅcol1
i , i = 1, . . . , Nc, (26)

ṅin
cat,Ns

= ṅI
cat,Ns−1

, (27)

where ṅcol
i is the distillate molar flow of distillation column 1 that recycles the extraction solvent and

ṅfeed
i is the feed flow of the extraction cascade for component i.

The mass balances of the distillation column are replaced by the approximation that the distillate
of column 1 contains only the polar solvent ṅcol = ṅcol

1 . The distillate flow is a degree of freedom for
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this process. A larger distillate flow is able to extract more catalyst, but requires, e.g., more heat for
vaporization, a larger distillation column, and larger extraction stages.

The costs considered for this process comprise the catalyst that is retained in the nonpolar product
stream, the investment for the decanter vessels, and the operation and investment for distillation
column 1. The catalyst costs are proportional to the amount of catalyst that is lost. The investment
costs for the distillation column and the decanter vessels are calculated based on [19]. The sizing of
the column utilizes the Fenske–Underwood–Gilliland correlations [20–23] with mean mixture and
component properties. A simplified cost function is generated by fitting a polynomial function to
data obtained by evaluating the cost calculation for a set of different compositions of the column feed
and different values of the distillate flow rate at a distillate purity of 99 % (see [24] for more details).
The overall cost J in $ year−1 for this process reads

J = κ1

Ns

∑
k=1

Nc

∑
i=1

(λi ṅin
i,k)

κ2 + κ3 (ṅcol1
1 )2 + κ4 ṅcol1

1 + κ5 + κ6 ṅI
cat,1, (28)

with parameters given in Table 2.

Table 2. Cost function parameters.

Parameter Value Unit Parameter Value Unit

λ1 0.0791506 × 10−3 mol−1 s κ1 504155 $ year−1

λ2 0.233642 × 10−3 mol−1 s κ2 0.586667 1
λ3 0.210410 × 10−3 mol−1 s κ3 −328.230 mol−2 s2 $ year−1

λ4 0.195184 × 10−3 mol−1 s κ4 27175.9 mol−1 s $ year−1

κ5 10439.2 $ year−1

κ6 4.44896 × 1012 mol−1 s $ year−1

4.2. Data Generation

The method presented in Section 3.2 is used to generate sample data for f j
i . The activity coefficients

are calculated utilizing a modified UNIFAC (Dortmund) model [8] with some parameters fit to
experimental data as in [10]. Recall that, for four components, one molar fraction is required to be
fixed to a constant value for each continuation run. Therefore, a set of binodal curves is calculated for
different fixed values of the molar fraction of 1-dodecene in the less polar phase xI

4 ∈ {0, 0.01, . . . , 0.25}.
Each continuation run is initialized at the boundary of the phase diagram with zero n-undecanal,
i.e., xI

3 = xII
3 = 0. The starting point is calculated by solving the dynamic equation system using

ode15s in MATLAB with an arbitrary initial guess for the molar fractions of the polar solvent and the
nonpolar solvent. Beginning at the calculated starting point, the feed composition is continued along
the line of a constant phase ratio of 0.5. The continuation is stopped when the condition xI

1 = xI
2 is met,

i.e., when the amount of polar solvent in the less polar phase is equal to that of the nonpolar solvent.
This stopping criterion is chosen here because the extraction of catalyst is ineffective beyond that point
due to low values of the partition coefficient. An example of the resulting binodal curves is shown in
Figure 4.

The total number of 26 continuation runs produce more than 4 × 104 samples with an accuracy
of maxi(|xI

i γI
i − xII

i γII
i |)≤1 × 10−9. The calculations require fewer than 2 × 105 calls to the UNIFAC

implementation of the activity coefficient model (γj
1, . . . , γ

j
Nc
)= f UNIFAC(xj, T, p) and a computation

time of less than 1 min on a standard desktop computer without utilizing parallelization. For each
binodal curve with a fixed value of xI

4, this corresponds to more than 1500 samples and less than 2 s
of computation time. Calculating each starting point requires approximately 1000 function calls to
the activity coefficient model and each binodal curve requires fewer than 5000 function calls. In other
words, the continuation method required fewer than four function calls per sample point. Note that
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each evaluation of the right-hand-side of Equations (16) and (17) requires two function calls to the
activity coefficient model, one for each phase.
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Figure 4. Results of sample data generation and surrogate fitting. The binodal curve is shown for xI
4 = 0,

i.e., for a mixture without 1-dodecene. The surrogate used for this figure has Nneurons = 10 neurons in the
hidden layer of the artificial neural network (ANN) (see Table 3).

The results from f j
i are used in COSMOtherm [25] to calculate the logarithmic partition coefficient

of the catalyst fcat using the same parameterization and catalyst COSMO input file as in [10].
Continuation is not available for COSMOtherm. Therefore, the logarithmic partition coefficient
needs to be calculated separately for each phase composition, which takes a few seconds per sample
point. To limit the computational effort, only 51 equally spaced sample points are used for each
binodal curve.

The overall dataset used for the surrogate generation comprises 51× 26 = 1326 sample locations
on a regular grid for the input variables (t1, t2) ∈ [0, 1]2. The variables (t1, t2) determine the equilibrium
compositions of the two phases, i.e., the position on the two-dimensional binodal “curve”. The value
of the molar fraction of 1-dodecene in the less polar phase is defined as xI

4 := 0.25 t2. At each sample
location, the output vector contains nine values, namely the phase compositions and the logarithmic
catalyst partition coefficient:

(xI, xII, log10 P12)
> = f (t1, t2), (29)

with f = ( f I
1, . . . , f I

Nc
, f II

1 , . . . , f II
Nc

, fcat)>. Because the definition for t2 makes interpolating xI
4

redundant, only eight outputs are used for the surrogate model generation, which corresponds
to 1326 × 8 = 10,608 sample values.

4.3. Surrogate Fitting

In the present work, the surrogate model is constructed as a sum of a second order polynomial
function and a shallow artificial neural network (ANN) [26], i.e., an ANN with one hidden layer:

f̂ (t1, t2) = f̂ poly(t1, t2) + f̂ ANN(t1, t2). (30)

The polynomial function captures most of the information contained in the data using only simple
expressions. The ANN is employed to further reduce the interpolation error of the surrogate model.
The second-order polynomial function

f̂ poly(t1, t2) = a00 + a10 t1 + a01 t2 + a11 t1 t2 + a20 t2
1 + a02 t2

2 (31)
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is fitted to the original data in three steps. First, for each output fi, all parameters aij of Equation (31) are
determined by minimizing the sum of squared errors. Second, all terms with a low contribution to an
output value are set to zero for that output value to reduce the number of nonlinear expressions, i.e.,

if aij 6=00 ≤ 0.05 max
kl 6=00

|akl |, then aij := 0. (32)

Third, the remaining parameter values are recalculated by minimizing the sum of squared errors.
The polynomial function has a maximum of 6× 8 = 48 nonzero parameters.

Afterwards, the shallow ANN f̂ ANN is fitted to the residual of the data f (t1,k, t2,k)− f̂ poly(t1,k, t2,k).
The model is fitted using the train command of MATLABs deep learning toolbox with the
following options: the hyperbolic tangent as the activation function, the mean squared error as the
performance function, data division using interleaved indices, Levenberg–Marquardt backpropagation,
the regularization parameter equal to 1 × 10−11, and a minimum gradient equal to 1 × 10−16.
The error weights we,l for the outputs l are chosen proportionally to the inverse squared data range
over all samples k ∈ {1, . . . , Nsamples}

we,l ∝ range( fl)
−2, l = 1, ..., Noutputs, (33)

with

Noutputs

∑
l=1

we,l = Noutputs, (34)

range( fl) = max
k

fl(t1,k, t2,k)−min
k

fl(t1,k, t2,k), l = 1, ..., Noutputs. (35)

The remaining options are at default values. The number of neurons in the hidden layer Nneurons

is varied from 5 to 15 to show the trade-off between the model accuracy and the number of parameters
and nonlinear expressions.

The results of the parameter fitting are shown in Table 3 with the error metrics defined below.
A part of the training algorithm relies on random number generation. The variations in model
performance caused by this are not accounted for. The ANN training was executed once for each
number of neurons Nneurons in the hidden layer.

Table 3. Performance metrics for the surrogate model. The sum of squared parameter values of the
ANN is denoted by sumParANN2.

Nneurons # of Parameters emean
norm emax

norm emax
norm,poly sumParANN2

5 103 0.00202 0.0163 0.1002 644.7
6 114 0.00227 0.0195 0.1002 2311
7 125 0.00127 0.0080 0.1002 667.7
8 136 0.00070 0.0083 0.1002 618.1
9 147 0.00058 0.0087 0.1002 311.6

10 158 0.00039 0.0038 0.1002 369.8
11 169 0.00054 0.0044 0.1002 291.9
12 180 0.00033 0.0034 0.1002 391.5
13 191 0.00030 0.0035 0.1002 357.7
14 202 0.00035 0.0064 0.1002 246.3
15 213 0.00022 0.0020 0.1002 254.9
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The mean normalized error emean
norm is the algebraic mean, over all outputs l ∈ {1, ..., Noutputs} and

samples k ∈ {1, . . . , Nsamples}, of the absolute error of an output value divided by the range of values
for that output, i.e.,

emean
norm =

1
Nsamples Noutputs

∑
k

∑
l

| f̂l(t1,k, t2,k)− fl(t1,k, t2,k)|
range( fl)

. (36)

The maximum normalized error emax
norm is the maximum error of any output l over all samples k

divided by the range of values for that output, i.e.,

emax
norm = max

l

max
k
| f̂l(t1,k, t2,k)− fl(t1,k, t2,k)|

range( fl)

 . (37)

The maximum normalized error offers a data-independent estimate of the surrogate quality, e.g., a
surrogate with emax

norm ≥ 0.5 is not better than a constant function.
The error metric emax

norm,poly is the same as emax
norm, but with the surrogate comprising only the

polynomial function f̂ = f̂ poly.
The surrogate fitting includes all molar fractions of a phase, although one of the molar fractions

could be replaced by the summation condition. However, if the summation condition is used to replace
one molar fraction, the worst case error for this quantity is the sum of absolute errors for all other
molar fractions. This is increasingly relevant for a larger number of components. Including all molar
fractions allows one to define suitable error weights for all quantities.

The results in Table 3 show that the surrogate can reproduce the data to a high degree of
accuracy with a relatively low number of parameters. Based on the results for different numbers of
neurons in the hidden layer, a surrogate model with Nneurons = 10 is used for the following surrogate
based optimization. The mean error over all sample data and surrogate outputs normalized by
the data range for this surrogate model is 0.00039 and the maximum normalized error is 0.0038.
For 10608 sample values, this is achieved using 158 nonzero parameter values. There is no meaningful
distinction between training set and validation set for this ratio of data points to number of parameters.
The difference between surrogate model and sample data is also illustrated in Figure 4.

If only a second-order polynomial function is used as a surrogate, the maximum normalized error
is 0.1002.

4.4. Optimization

In this section, the surrogate model is tested for its suitability to be used in process optimization
problems. The process model introduced in Section 4.1 is used as a case study. A mixture containing
four components plus a catalyst is considered for the liquid–liquid extraction at a fixed temperature and
pressure. The aim is to find the optimal extraction solvent recycle such that the costs, comprising energy,
investment, and catalyst loss, are minimized. Surrogate models are employed for the liquid–liquid
equilibrium in each extraction stage to keep the computational burden of the optimization problem low.

The original phase equilibrium model is replaced by the surrogate model and slack variables δ

that account for regression errors

f j
i (t1, t2) := f̂ j

i (t1, t2) + δ
j
i , i = 1, . . . , Nc, j = I, II, (38)

fcat(t1, t2) := f̂cat(t1, t2) + δcat, (39)
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with the values of the slack variables lying between lower bounds δ
¯

j
i and upper bounds δ̄

j
i

δ
j
i ∈ [δ

¯
j
i , δ̄

j
i ], i = 1, . . . , Nc, j = I, II, (40)

δcat ∈ [δ
¯cat, δ̄cat]. (41)

The values of the upper and lower bounds are estimated by the maximum error of the surrogate
model at the sample points k ∈ {1, . . . , Nsamples}.

δ̄
j
i = max

k
f j
i (t1,k, t2,k)− f̂ j

i (t1,k, t2,k), i = 1, . . . , Nc, j = I, II, (42)

δ
¯

j
i = min

k
f j
i (t1,k, t2,k)− f̂ j

i (t1,k, t2,k), i = 1, . . . , Nc, j = I, II, (43)

δ̄cat = max
k

fcat(t1,k, t2,k)− f̂cat(t1,k, t2,k), (44)

δ
¯cat = min

k
fcat(t1,k, t2,k)− f̂cat(t1,k, t2,k). (45)

The optimization problem reads

minimize J (46)

s.t. Equations (18)–(28), (47)

Equations (38)–(39), (48)

with domains for all variables set to appropriate values and additional redundant constraints that
enable tighter bounds for deterministic global optimization. The hyperbolic tangent is formulated as
tanh(x) = 1− 2

1+exp(2 x) as suggested in [26]. The feed stream ṅfeed
i is given in Table 4. The number of

stages is fixed to values between Ns = 1 and Ns = 6.

Table 4. Feed stream parameters.

Parameter Value Unit

ṅfeed
1 18.8 mol s−1

ṅfeed
2 16.5 mol s−1

ṅfeed
3 0.563 mol s−1

ṅfeed
4 2.25 mol s−1

ṅfeed
cat 1 × 10−6 mol s−1

The nonlinear programming (NLP) problem is implemented in GAMS 26.1.0 [27] using the
deterministic global solver BARON 18.11.12 [28] with CONOPT 4.09 [29,30] as the nonlinear
programming subsolver and CPLEX 12.8.0 [31] as the mixed-integer programming subsolver, and it is
solved on the same standard desktop computer as used in Section 4.2. All options are at default values
except for the relative optimality criterion, which is set to 1 × 10−3. The optimization is repeated for
different numbers of stages Ns. The computation time for global optimization is the total CPU time used
as reported by BARON. Performance variability [32] is not accounted for: Each optimization problem
is solved once. The time and the iterations required to find a local solution are determined by solving
each problem with CONOPT and using the total time elapsed as reported by GAMS. Default values
chosen by GAMS are used as initial guesses for all variables. Although this initial point is always
infeasible, the selected solvers found feasible solutions in all observed cases.

The results in Table 5 show that the cost of the process falls steeply until a minimum is reached
at Ns = 4. The cost increases slightly for Ns > 4. This behavior is due to large solvent recycles being
required for good catalyst retention at low numbers of stages and the relatively small costs of increasing
the number of stages. The overall optimum at Ns = 4 resembles a trade-off between the cost for catalyst
loss and solvent recycle on one hand and the investment cost for additional stages on the other hand.
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The solvent recycle for Ns = 1 is an exception. The feed of the single stage already contains a large
amount of the extraction solvent. Increasing the solvent amount further has only a marginal effect on
catalyst retention, which does not compensate for the additional cost of solvent recycle at some point.

Table 5. Optimization results.

Objective Solvent Recycle Catalyst Retention Iterations Solve Time Solve Time
Ns J in $ year−1 ṅcol

1 in mol s−1 ṅII
cat,1/ṅfeed

cat (CONOPT) (CONOPT) (BARON)

1 541,760 2.3524 0.9002 89 0.035 s 0.38 s
2 305,686 4.8854 0.9725 191 0.066 s 3.74 s
3 249,418 4.1435 0.9859 330 0.122 s 8.39 s
4 236,250 3.6599 0.9910 398 0.175 s 28.71 s
5 238,577 3.3459 0.9936 464 0.285 s 56.33 s
6 248,022 3.1299 0.9950 608 0.405 s 664.44 s

The surrogate model implementation is significantly faster than the original model considering
that we observed computation times of a few seconds for a single COSMOtherm evaluation.
The computation times using BARON show that the surrogate model formulation is also suitable for
small to medium sized deterministic global optimization problems. CONOPT was able to find a global
solution for each of the considered cases. BARON requires the computation time to prove globality by
converging the lower bound.

5. Conclusions

In this work, we introduce a new surrogate formulation that uses a parameterization of the
binodal curve to reduce the input dimension and simplify the input domain. We also propose using
numerical continuation methods for sampling of LLE data based on advanced thermodynamic models.
The presented methods reduce the time required for sample data generation and allow for highly
accurate reproduction of the data using smaller surrogate models.

Parameterization of complex input domains and sampling by numerical continuation are general
strategies that may be extended to other applications in future work. Another possible improvement
is replacing the activity coefficient model currently used for LLE calculations with more predictive
equation of state models. The computation time of global optimization may be further reduced by
employing reduced-space formulations of the optimization problem as in [26,33,34].
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