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ABSTRACT

To study how mental object representations are related to behavior, we estimated
sparse, non-negative representations of objects using human behavioral judgments
on images representative of 1,854 object categories. These representations pre-
dicted a latent similarity structure between objects, which captured most of the
explainable variance in human behavioral judgments. Individual dimensions in
the low-dimensional embedding were found to be highly reproducible and in-
terpretable as conveying degrees of taxonomic membership, functionality, and
perceptual attributes. We further demonstrated the predictive power of the em-
beddings for explaining other forms of human behavior, including categorization,
typicality judgments, and feature ratings, suggesting that the dimensions reflect
human conceptual representations of objects beyond the specific task.

1 INTRODUCTION

A central goal in understanding the human mind is to determine how object concepts are represented
and how they relate to human behavior. Given the near-infinite number of tasks or contexts of usage,
this might appear to be an impossible prospect. Take the example of picking a tomato in a grocery
store. A person may recognize it by its color, shape, size, or texture; they may also know many of the
more conceptual dimensions of a tomato, such as it being a fruit, or functional ones such as being
a salad item. In most cases, however, only a few of these aspects might matter, depending on task
context (e.g. as a grocery item or as a projectile in an audience that is not pleased with a presentation).
Thus, to understand how we interact meaningfully with the objects around us, we need to tackle
three problems simultaneously: (1) determine the object concept, the cognitive representation of
behaviorally-relevant dimensions that distinguish an object from other objects. (2) determine which
object concept representations are integrated into our perceptual decisions. (3) characterize the
influence of the context – determined by the surrounding objects – on those decisions.

There have been many attempts to represent object concepts in terms of semantic features, a vector
of variables indicating the presence of different aspects of their meaning. These representations
have been used to model phenomena such as judgments of typicality or similarity between concepts,
or reaction times in various semantic tasks, with the goal of drawing conclusions about mental
representations of those concepts (see Murphy (2004) for an extensive review of this literature).
These features have usually been binary properties, postulated by researchers. A landmark study
McRae et al. (2005) departed from this approach by instead asking hundreds of subjects to name
binary properties of 541 objects, yielding 2,526 such semantic features. These corresponded to
different types of information, e.g. for the concept "hammer" subjects might list taxonomic ("is
a tool"), functional ("is used to hammer nails"), perceptual ("heavy"), among others. The results
revealed that concepts for objects in the same basic level category shared many features; at the same
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time, there were also features that distinguished even very similar concepts. This effort was later
replicated and extended by Devereux et al. (2014), generating 5,929 semantic features for 638 objects.

The main issues with features produced in either study are the lack of degree (they can only be present
or absent, albeit with varying naming frequencies), the extreme specificity of some features, and the
omission of many features shared by the majority of concepts. A separate concern is the fact that,
absent a specific context of use for each object, subjects will not likely think of many valid properties
(e.g. that a tomato can be thrown). A different approach is to postulate the existence of certain
semantic features and ask subjects to judge the degree to which features are salient for each concept,
instead of assuming binary features. Binder et al. (2016) did this for 65 features corresponding to
types of information for which there is evidence of brain representation (in their terminology: sensory,
motor, spatial, temporal, affective, social, cognitive, etc). This requires experts to specify the features
in advance, and not all features can be judged easily by salience. In all three approaches outlined
above, there is also no clear way of determining which features are critical to semantic behavior.

Here we introduce an approach that uses only information from behavioral judgments about the
grouping of object images in the context of other objects to estimate representations of object concepts.
We demonstrate that this approach can predict human behavior in face of new combinations of objects
and that it also allows prediction of results in other behavioral tasks. We show that individual
dimensions in the low-dimensional embedding represent complex combinations of the information
in the binary features in Devereux et al. (2014) and, furthermore, are interpretable as conveying
taxonomic, functional, or perceptual information. Finally, we will discuss the way in which this
representation suggests a simple, effective model of judgments of semantic similarity in context.

2 DATA AND METHODS

2.1 THE ODD-ONE-OUT DATASET

The collection of the Odd-one-out behavioral dataset is an ongoing project by the authors. The dataset
contains information about 1,854 different object concepts, which we will denote by c1, . . . , cm (e.g.
c1 = ‘aardvark’,. . . , c1854 = ‘zucchini’). A triplet consists of a set of three concepts {ci1 , ci2 , ci3},
for instance, {c2, c117, c136} = {‘abacus’, ‘beetle’, ‘bison’}, presented to Amazon Mechanical Turk
(AMT) workers as three photographs of exemplars, one for each of the three concepts. Impor-
tantly, these photographs were accompanied neither by labels or captions, meaning behavior was
based only on those pictures. Workers were asked to consider the three pairs within the triplet
{(ci1 , ci2), (ci1 , ci3), (ci2 , ci3)}, and to decide which item had the smallest similarity to the other two
(the "odd-one-out"). This is equivalent to choosing the pair with the greatest similarity. Let (y1, y2)
denote the indices in this pair, e.g. for ‘beetle’ and ‘bison’ they would be (y1, y2) = (117, 136).

The large number of objects in this dataset has two different motivations. The first is obtaining
behavioral data about objects from a wide range of semantic categories (tools, animals, insects,
weapons, food, body parts, etc), rather than the much smaller numbers in prior studies. We will
use the term "category" loosely, to refer to a taxonomic level above that of the individual object;
this is often, but not always, a basic level category (Murphy, 2004). The second is to have subjects
consider each object in as many different contexts as possible. We take the contexts instantiated by
comparing each object to the others in the triplet as a proxy of the many situations each object might
appear or be used in. For instance, "tomato" might be paired with "milk" if the third object in the
triplet were "table" ("tomato" and "milk" are food), but perhaps not if the third object was "wine"
("milk" and "wine" are a more specific kind of food). If "tomato" were presented with "lipstick"
and "rock", it could be paired with the former (because they are red) or the latter (because they can
both be projectiles). Finally, the presence of several objects sharing a given semantic category means
that there is redundancy. Hence, one should be able to predict behavior in face of an object in novel
contexts, if similar objects have already been observed in those contexts.

The dataset in this paper contains judgments on 1,450,119 randomly selected triplets, roughly 0.13%
out of all possible triplets using the 1,854 concepts. These were the triplets remaining after excluding
AMT participants that showed evidence of inappropriate subject behavior, namely if responses were
unusually fast, exhibited systematic response bias, or were empty (137,281 triplets or 8.65%). We
plan to collect additional triplets and release all data by the end of the study.
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2.2 SPARSE POSITIVE SIMILARITY EMBEDDING (SPOSE)

Semantic representation of concepts Our method, Sparse Positive Similarity Embedding (SPoSE)
is based on three assumptions. The first is that each object concept ci can be represented by semantic
features, quantified in a vector xi = (xi1, . . . , xip). These features represent aspects of meaning
of the concept known by subjects, and correspond to dimensions of a space where the geometrical
relationships between vectors encode the (dis)similarity of the corresponding concepts. We estimate
semantic features from behavioral data alone, using the probabilistic model described in the next
section. In our model, each feature/dimension xif in the vector xi is real and non-negative, so as
to make it interpretable as the degree to which the aspect of meaning it represents is present and
influences subject behavior (Murphy et al., 2012). Further, we expect features/dimensions to be
sparse McRae et al. (2005), which led us to add a sparsity parameter to our model.

Based on related work in sparse positive word embeddings of words from text corpora (Murphy et al.,
2012), we expect some of the dimensions to indicate membership of the semantic category the object
belongs to (e.g. tool, vegetable, vehicle, etc). If two objects in a triplet share a category and the third
does not, subjects will tend to group objects with a common category with very high probability.
However, categories alone cannot fully explain subject performance in this task, as there may be
triplets where either (a) all three objects belong to the same category or (b) no two objects share a
category. We expect our method to find non-taxonomic information similar to that in McRae et al.
(2005) and Devereux et al. (2014), if it allow us to explain semantic decision making behavior.

Probabilistic model Our second assumption is that the decision in a given trial is explained as a
function of the similarity between the embedding vectors of the three concepts presented. Given two
concepts ci and cj , the similarity Sij is the dot product of the corresponding vectors xi and xj:

Sij = 〈xi,xj〉 =
p∑

f=1

xifxjf . (1)

Our third assumption is that the outcome of the triplet task is stochastic. This assumption reflects
both trial-to-trial inconsistencies in how an individual subject makes the decision, as well as subject
differences in the decision-making process. Given that we pool data across many subjects, we do not
distinguish between these two sources of randomness. We model the probability that a subject will
choose a given pair out of the three possible pairs as proportional to the exponential of the similarity,

Pr[y1, y2] ∝ exp(Sy1,y2).

Since probabilities of the three possible outcomes add to one, this gives

Pr[y1, y2] =
exp(Sy1,y2)

exp(Si1,i2) + exp(Si1,i3) + exp(Si2,i3)
. (2)

The vectors xi in this model are not normalized, in that each dimension – and, therefore, vector
similarity – can be arbitrarily large. In addition to the reasons described in the previous section, this
allows us to model situations where the decision is close to being deterministic (e.g. two concepts
are so similar that they will always be grouped together, regardless of third concept). We also tried
modeling choice probabilities using Euclidean distances (rather than dot product) between embedding
vectors, but this resulted in similar (but overall slightly worse) results on our evaluations.

Parameter fitting We infer embedding vectors (x1, . . . ,xm) from data by fitting a regularized
maximum likelihood objective function. Let n be the total number of triplets available for building
the model. For the jth triplet in the dataset, let (i1,j , i2,j , i3,j) denote the indices of the concepts
in the triplet, and let (y1,j , y2,j) indicate the pair of concepts chosen, for triplet j = 1, . . . , n.
We randomly split the dataset into ntrain triplets for training and nval for choosing the sparsity
regularization parameter λ. We index the training set by j = 1, . . . , ntrain and the validation set by
j = ntrain + 1, . . . , n.

The objective function for SPoSE, given a specified number of dimensions p, is
ntrain∑
j=1

log

(
exp(xy1,j

Txy2,j
)

exp(xi1,j
Txi2,j

) + exp(xi1,j
Txi3,j

) + exp(xi2,j
Txi3,j

)

)
+ λ

m∑
i=1

||xi||1 (3)
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Here || · ||1 is the L1 norm, so ||x||1 =
∑p
f=1 |xf |, and xf ≥ 0 for f = 1, . . . , p.

We use the Adam algorithm (Kingma & Ba, 2015) with an initial learning rate of 0.001 to minimize
the objective function, using a fixed number of 1,000 epochs over the training set, which was sufficient
to ensure convergence. Since this objective function is non-convex, Adam is likely to find only a
local minimum. However, the combination of non-negativity and L1 penalty leads to very similar
solutions across random initializations; we discuss this further in Section 3.1.

We select the regularization parameter λ out of a grid of candidate values by choosing the one that
achieves the lowest cross-entropy CEv on the validation set, defined by

CEv =
n∑

j=ntrain+1

log

(
exp(xy1,j

Txy2,j
)

exp(xi1,j
Txi2,j

) + exp(xi1,j
Txi3,j

) + exp(xi2,j
Txi3,j

)

)
.

The dimensionality of the embedding, p, can be determined heuristically from the data. If p is set to
be larger than the number of dimensions supported by the data, the SPoSE algorithm will shrink entire
dimensions towards zero, where they can be easily thresholded. We believe this happens because
the L1 penalty objective encourages redundant similar dimensions to be merged, which would not
happen with an L2 penalty; we provide a more formal justification in the Supplementary Material.

2.3 RELATED WORK

There are several existing methods for estimating embeddings of items from behavioral judgments.
Agarwal et al. (2007) introduced the generalized non-metric multidimensional scaling (GNMMDS)
framework as a generalization of non-metric MDS. The behavioral task they study is a ‘quadruplet’
task, where a subject is shown two pairs of items, ci, cj and ck, c`. Then the subject is asked to decide
if the similarity between ci and cj is greater or less than the similarity between ck and c`. GNMMDS
learns embedding vectors for the concepts, so that the Euclidean distance between embedding vectors
approximates the dissimilarity between the respective items. In the two-alternative forced-choice
(2AFC) task of Xu et al. (2011), the subject is shown an anchor ci and two alternatives ci, cj . Xu et al.
(2011) study this task, under the assumption one already has parametric features zi for the concepts
ci. In the triplet task of Tamuz et al. (2011), the subject is shown an anchor ci and asked which of cj
or ck is more similar to ci. This is also a special case of the quadruplet task, with pairs (ci, cj) and

(ci, ck). Tamuz et al. (2011) use a model where Pr[(ci, cj) more similar than (ci, ck)] =
µ+d2ik

2µ+d2ij+d
2
ik

,

where di,j = ||xi − xj ||2 and where µ is some constant to be determined empirically.

Similarly, Wah et al. (2014) show a series of adaptive displays for an anchor ci, where the subject
must partition the queries cj , c`, . . . into a set of similar and a set of dissimilar queries. In contrast
to our work, the aforementioned studies did not use sparsity or positivity constraints, nor did they
intend to evaluate the interpretability of the embedding.

Our requirements of having a sparse, positive vector representing each concept, and a three-choice
probabilistic model, led us to develop a new method. It is not straightforward to extend the prob-
abilistic model of Xu et al. (2011) to a task with more than 2 choices; it also requires an a priori
feature matrix for the concepts, which is not available for our dataset. GNMMDS could potentially
be applied to our data with added sparsity and positivity constraints, but does not produce probability
estimates for the task. Finally, the model in Tamuz et al. (2011) could be extended to the three-choice
triplet task with sparsity and positivity constraints, but it would require an extra tuning parameter µ,
in addition to the L1 sparsity penalty λ which is needed to obtain sparse embeddings.

An alternative approach for representing concepts is the use of word vector embeddings, derived
from information about co-occurrence of words in very large text corpora, instead of behavior.
Pilehvar & Collier (2016) introduced a method for estimating vectors for each of the different concept
senses (synsets) of a particular word, from its word2vec (Mikolov et al., 2013) embedding vector
and the synset relationships in the WordNet ontology (Miller, 1995). Each of our concepts has a
corresponding synset and, therefore, can be represented by a synset vector. However, the latter are
real-valued and dense, and hence do not satisfy any of our requirements. There is an embedding
method that enforces positive, sparse values for each dimension (NNSE, Murphy et al. (2012)), but it
produces one vector per word rather than synset. Both methods have been used to generate behavioral
predictions. Hence, we will use them as an alternative concept representation in our experiments.
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3 EXPERIMENTS

3.1 DATA AND EXPERIMENTAL SETUP

We used Tensorflow (Abadi et al., 2015) to fit the model (3) to the 1,450,119 triplets collected, using
a 90-10 train-validation split to pick the regularization parameter λ. Searching over parameters
{0.0070, 0.0072, . . . , 0.0100} we identified the parameter λ = 0.008 with the lowest loss on the
validation set. We initialized the model with 90 dimensions. After convergence, many of the
dimensions were very small and very sparse, with an average value of less than 0.02 per item; the
most dense dimension had maximum value of 2.3 and average value of 0.64. We discarded the small
dimensions, yielding the 49-dimensional embedding used in all experiments. The number of non-zero
dimensions varied across object categories, with a median of 14 (minimum: 3, maximum: 29).

Due to random initialization and batch ordering, the solution will vary randomly corresponding to
different local minima. To check the reproducibility of the embedding we found, we ran the model
11 additional times with the same parameters but different random seeds. The number of resulting
dimensions varied from 47 to 50, and between any two model fits, an average of 38.75 dimensions
could be matched between the two models with a correlation of 0.8 or higher.

For comparison with vectors derived from text information, we used synset Pilehvar & Collier
(2016) and NNSE Murphy et al. (2012)) vectors. We used 50-D vectors, corresponding to the
dimensionality of our embedding, as well as 300-D (synset) and 2500-D (NNSE), corresponding to
the best performing embeddings according to the original publications.

3.2 GENERALIZATION ON THE SAME TASK AND SIMILARITY PREDICTION

Accuracy at predicting triplet decisions In order to test our model, we collected an independent
test set of 25,000 triplets, with 25 repeats for each of 1,000 randomly selected triplets; none of these
were present in the data used to build the model. After applying the same quality control, there
remained 614 unique triplets with at least 20 repeats. Having this many repeats allows us to be
confident of the probability of response for each triplet. Furthermore, it allows us to establish a
model-free estimate of the Bayes accuracy, the best possible accuracy achievable by any model. Since
the optimal classifier predicts the population majority outcome for any triplet, this accuracy ceiling
is therefore the average probability of the majority outcome over the set of all triplets (ties broken
randomly). The ceiling estimated in this fashion was 0.673. The accuracy of our model was 0.637,
above all baselines (see Table 1). Note that, as only 1,097 of our 1,854 objects are in the NNSE
lexicon, the evaluation set for NNSE results was reduced to 129 unique triplets.

Table 1: Key results on prediction tasks, using SPoSE, synset, and NNSE embedding vectors.

SPoSE49 Synset50 Synset300 NNSE50 NNSE2500

Accuracy on 1,854 object test set 0.637 0.486 0.493 0.397 0.491
Accuracy on 48 object test set 0.592 0.400 0.425 0.331 0.412
Similarity on 48 objects (R) 0.899 0.295 0.389 0.005 0.256

CSLB prediction (median AUC) 0.897 0.873 0.897 0.718 0.569
Typicality (median R) 0.545 0.418 0.520 -0.254 0.555
Category prediction 0.846 0.713 0.846 0.336 0.786(23-way accuracy)

Prediction of similarities In addition to prediction accuracy, we wanted to test ability of the model
to capture fine semantic distinctions, even though it was trained on extremely sparse, noisy data. To
this effect, we collected an independent test set containing every possible triplet for 48 objects chosen
out of the 1,854, one representative of each of 48 common categories (see list in Supplementary
Material). This dataset contained 43,200 triplets after quality control; there were 17, 296 =

(
48
3

)
unique triplets, with two or three subject answers for each. For this particular evaluation we re-trained
our model on a dataset excluding all the triplets containing any 2 of the 48 objects. We then used
the probability model (2) to predict the choice with the highest probability for each triplet in the
48-object dataset. This experimental setup ensured that any generalization had to rely on the observed
relationships between objects outside the 48. It was also significantly harder than a random set of
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triplets, given that no two concepts in any triplet were in similar semantic categories. We obtained an
accuracy of 0.592, above all the baseline methods (see Table 1).

A different way of examining prediction quality is to pool data across many triplets, by considering
similarities between pairs of objects. The pairwise similarity for objects A and B, SAB , is obtained
by dividing the number of triplets where subjects group A and B by the total number of triplets
where A and B both appear. We calculated this similarity matrix S for the 48-object dataset, as
displayed in Figure 1 left. We then computed the expected similarity matrix according to our model.
The Pearson correlation coefficient between off-diagonal entries of our prediction and the pairwise
similarity derived from the 48-concept dataset was 0.899, above all the baseline methods (see Table
1). This is particularly important because it demonstrates that sparse sampling of triplet data still
allows accurate prediction of similarity relations between objects.

Figure 1: Left: the 48× 48 matrix of similarities from the 48-concept dataset, defined as the pairwise
probability of A, B being matched in a triplet with a random third concept from the 46 remaining.
Center: predicted similarity matrix using SPoSE vectors. Right: same, with synset vectors.

3.3 PREDICTION OF HUMAN-GENERATED SEMANTIC FEATURES

The second evaluation of our semantic vector representation was to test whether it could be used
to predict the features in human-generated semantic feature sets: McRae (McRae et al., 2005) and
CSLB (Devereux et al., 2014). CSLB is more extensive than McRae, both in the number of features
(5,929) and objects (638), and shares 413 objects in common with the intersection of the objects
from our 1,854 object set and the NNSE lexicon; therefore, we limited our evaluation to CSLB.
Since many features are specific to only a few objects, they are sparse or blank when restricted to the
413 objects. Hence, we selected the 100 features with the highest density as prediction targets; the
lowest density feature appeared in 23 of the 413 objects. We fit a separate L2-regularized logistic
regression to predict each of the 100 features from SPoSE or baseline vectors. The prediction was
done using 10-fold cross-validation, with a nested 10-fold cross-validation within each training set to
pick the value of the regularization parameter. We evaluated the prediction of each CSLB feature by
computing the area under the curve (AUC) as the bias term was varied, reported on Table 1.

These results demonstrate that SPoSE dimensions contain the information present in the main CSLB
features for the 413 objects considered. This is also the case for 300-D synset vectors, but using
almost 10 times as many dimensions as SPoSE. Although correlation between SPoSE and synset
vector AUCs was 0.953, SPoSE AUC was significantly higher in a few dimensions. These are related
to shapes and other perceptual aspects (“is pink”, “is small”, “is flat”,"is white"); we hypothesize that
this is due to their having a strong effect on subject behavior, but being less salient in text corpora.

3.4 INTERPRETABILITY OF LEARNED SEMANTIC DIMENSIONS

The goal of this analysis was to show that SPoSE dimensions can be "explained" in terms of the
elementary CSLB features, by testing how well the former predicted the latter. We fit a L1-regularized
non-negative regression model (NNLS) to predict each of the 49 SPoSE features from the 5,929
CSLB features, for all 496 concepts present in both datasets. We used a 10-fold cross-validation,
with a nested 10-fold cross-validation within each training set to pick the value of the regularization
parameter. The median correlation between each feature and its prediction was 0.58, indicating that
most SPoSE features can be predicted well. We then fit a model to the entire dataset, in order to
use the NNLS regression weights to determine which CSLB features most influenced the prediction
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of each SPoSE dimension. Figure 2 displays the most influential CSLB features for four different
SPoSE features, selected to highlight the different types of information extracted.

Consider first Dimension A. The corresponding panel shows pictures of the 4 objects with the highest
weights for this SPoSE dimension. To the right of the pictures, we list the 12 most important CSLB
features for predicting the dimension. Their respective NNLS weights are shown by the size of the
corresponding bars, and the CSLB feature type by the color (e.g. green is taxonomic). Dimension
A appears to indicate the degree to which an object belongs to the “animal” semantic category.
There appear to be multiple such category indicator dimensions, e.g. “food”, “clothes”, “furniture”
(shown in the Supplementary Material). Consider now Dimensions B and C. These are examples of
dimensions that correspond strongly to the type of material in objects, and that are well explained
by CSLB features such as “made of metal” or “made of wood”. These can also reflect category
membership, if they are common characteristics of members of a given category. Finally, consider
Dimension D. This is an example of a dimension that captures purely visual aspects, e.g. it is very
strongly explained by the “is red” CSLB feature, together with other visual/perceptual ones. See
Supplementary Material for a similar visualization for all 49 SPoSE dimensions.

A B

C D

Figure 2: SPoSE dimensions explained by CSLB labels. The top 4 objects for each SPoSE dimension
are shown with the 12 CSLB features with the largest weights in the NNLS model for predicting that
feature. Bar length indicates relative weight, while color indicates feature type: green (taxonomic),
blue (functional), yellow (encyclopedic), red (visual perceptual), violet (non-visual perceptual).

3.5 PREDICTION OF OTHER BEHAVIORAL OR HUMAN-ANNOTATED DATA

Prediction of typicality ratings The typicality of an object with respect to its semantic category
is a graded notion of category membership (e.g. "robin" is a more typical bird than "chicken"). As
we saw earlier, concepts for objects in the same semantic category tend to share SPoSE dimensions.
Hence, a natural test is to assess the degree to which distances between semantic vectors for objects
within a category reflect their typicality. To this effect, we collated a variety of pre-existing norms
of typicality or naming frequency (Rosch (1975),McCloskey & Glucksberg (1978),Gruenenfelder
(1984),Van Overschelde et al. (2004)) and used a collaborative filtering method (Koren, 2008) to
extract a single aggregate norm from these for as many objects as possible. After this, we matched
objects from the aggregate typicality norms to our 1,854 items and NNSE lexicon. Given that
correlation estimates can be noisy for small samples, we restricted the analysis to the 9 categories
with 25 or more objects in our set. For a given category, we computed a SPoSE vector for each
category centroid, the mean of the vectors for all objects within that category. Next, we computed
a proxy for the typicality of each object by calculating the dot product between its vector and the
centroid vector. Finally, we calculated the correlation between the proxy typicality scores and the
typicality scores from the norms. The median correlation with typicality across categories was 0.55.
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After correcting for multiple comparisons, 5 of these results were statistically significant (weapon,
vehicle, clothing, vegetable, fruit, respectively, 0.69, 0.67, 0.66, 0.62, 0.55), whereas the other 4 were
not (furniture, body part, tool, animal, respectively 0.43, 0.42, 0.34, -0.14). Results are comparable
for 300-D synset vectors and 2500-D NNSE vectors, and above the other baselines (see Table 1).
These results suggest that SPoSE vectors for more typical objects are more similar to each other
than for atypical ones. In combination with the fact that vectors are sparse, this suggests that more
categorical SPoSE features also reflect its degree.

Semantic category clustering Our final evaluation focused on determining the degree to which
objects in the same semantic category cluster compactly in the embedding space. We ran a classifi-
cation task for assigning 318 objects to one of 23 categories with ≥ 5 items, as defined in Battig &
Montague (1969). Leaving out each object in turn, we assign it the category of its nearest neighbor by
cosine similarity; this is close to the task in Murphy et al. (2012), but using 23-way accuracy rather
than cluster purity. The resulting accuracies were 0.846 for both SPoSE and 300-dimensional synset,
and above all other baselines (see Table 1).

4 DISCUSSION AND CONCLUSIONS

In this paper, we show that human behavioral judgments are well-explained by a strikingly low-
dimensional semantic representation of concrete concepts. This representation, which embeds each
object in a 49-dimensional vector, allows prediction of subject behavior in face of new combinations
of concepts not encountered before, as well as prediction of other behavioral or human-annotated
data, such as typicality ratings or similarity judgments. Moreover, the representation is readily
interpretable, as positive, sparse dimensions make it easy to identify which concepts load on each
dimension. Further, we demonstrate that the value of each dimension in this space can be explained
in terms of elementary features elicited directly from human subjects in publicly available norms.
Given this converging evidence, we conclude that dimensions represent distinct types of information,
from taxonomic (indicators of category membership) to functional or perceptual.

As the representations were estimated solely from behavioral data, this suggests a simple model
of decision making in the triplet task. This can be viewed in terms of the distinction discussed in
Navarro & Lee (2004) for judging concept similarity from semantic feature vectors. They distinguish
a dimensional approach for representing stimuli (each feature is a continuous value, each concept
is a point in a high-dimensional space, and similarity corresponds to proximity in the space), and
a featural approach (each feature is binary, or discrete, and similarity is a function of the number
of features that are common to both concepts, or that distinguish them). More refined schemes use
modified distance metrics (dimensional) or combine commonality and distinctiveness (featural).

The use of sparsity and positivity in the SPoSE representation, and the vector dot product for
computing concept similarity, blends the featural and dimensional approaches when making decisions
about a triplet of concepts. First, if any two concepts share a semantic category, and the other one does
not, the two concepts will likely be grouped together. Because of sparsity, the dot product between
concepts will be driven primarily by the number of features are shared between the two concepts in
the same category, versus the different one. Second, if any three concepts share a semantic category,
they also share most, if not all of their non-zero features. The decision becomes a function of the
values of the features shared between them, and hence dimensional rather than featural. Third, if
all concepts belong to different categories, there may be very few features in common between any
two of them. The results will likely be determined by which of those few features takes a higher
value. Results might be idiosyncratic, e.g. two objects grouped because their pictures are both very
red, while the alternative grouping would be because they are both string-like, and the former feature
is more salient. This is another reason why our features are unbounded: their scale can reflect their
importance in decision making. This is akin to learning a distance metric in dimensional approaches.

Our object representations capture the information that is necessary to explain subject behavior in the
triplet task. Obviously, subjects have a lot more information about each concept that is not necessary
or relevant for task performance. A promising direction for further work is to sample additional
triplets so as to obtain more fine-grained, within-category distinctions. Beyond this, we have also
considered the possibility of there being information influencing behavior that might be too infrequent
to be estimated from this type of data, or elicited from human subjects. Yet another possible extension

8



Published as a conference paper at ICLR 2019

is to consider different types of similarity judgments (Veit et al., 2017), e.g. resulting from asking
subjects to group objects based on a specific attribute (size, color, etc.). One avenue for trying to
identify this type of information is to predict synset vectors from SPoSE vectors and/or semantic
features elicited from subjects, and represent the residuals in terms of a dictionary of new sparse,
positive concept features. These could then be used as a complement to SPoSE dimensions.
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APPENDIX

Word Synset
pizza pizza.n.1

beaver beaver.n.6
macadamia macadamia_nut.n.2

tarantula tarantula.n.2
clothes clothes.n.1

doormat doormat.n.2
hammer hammer.n.2
mistletoe mistletoe.n.2
washcloth washcloth.n.1

drain drain.n.3
furnace furnace.n.1

tea tea.n.1
chariot chariot.n.2
coaster coaster.n.3

music box music_box.n.1
rolling pin rolling_pin.n.1

knob knob.n.2
bookshelf bookshelf.n.1
candelabra candelabra.n.1

table table.n.2
metal detector metal_detector.n.1

bumper bumper.n.2
turban turban.n.1

flagpole flagpole.n.2
plaster cast plaster_cast.n.1

tuba tuba.n.1
camera camera.n.1
rudder rudder.n.2
canvas canvas.n.2
dice dice.n.1

toolbox toolbox.n.1
trigger trigger.n.1

bowler hat bowler.n.3
headphones headphone.n.1

file file.n.4
bench bench.n.1
navel navel.n.1

canister canister.n.2
tiara tiara.n.1

hopscotch hopscotch.n.1
trophy trophy.n.2

punching bag punching_bag.n.2
jet jet.n.1

telegraph telegraph.n.1
bag bag.n.1

laptop laptop.n.1
tape measure tape.n.4

bucket bucket.n.1

Figure 3: The 48 concepts used to create the densely sampled test dataset.
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SPARSITY PROPERTIES

Empirically, we find that when the model is initialized with too many dimensions, SPoSE does not use all of the
dimensions: it leaves many of them to be close to zero. (The reason they are not exactly zero is due to noise
from stochastic optimization.)

Our explanation of this property is that the SPoSE objective encourages multiple similar dimensions to be
merged. Let X be the p×m embedding matrix, and write Xi for ith row of X . Suppose that the SPoSE model
is well-specified and that there exist two highly similar dimensions in the true object space, X1 and X2, in the
sense that ∆ = X1 −X2 is very small. Since the true similarity S is defined as

S = X1X
T
1 + · · ·+XpX

T
p ,

the contribution of these two dimensions to the true similarity matrix is X1X
T
1 +X2X

T
2 .

Rather than find these two dimensions from the data, SPoSE may find a single dimension

X̂1 ≈
√

2

2
(X1 +X2).

This is because X̂1 closely approximates the contribution of X1 and X2 to the true similarity matrix S,

X̂1X̂
T
1 = X1X

T
1 +X2X

T
2 −

1

2
∆∆T ≈ X1X

T
1 +X2X

T
2 .

But the L1 norm of X̂1 is a smaller by the factor
√

2/2 than the combined L1 norms of X1 and X2. Therefore,
if the approximation error to the empirical log-likelihood from using X̂1 is small relative to the L1 penalty
λ(||X1||1 + ||X2||1), SPoSE will combine the two dimensions into one dimension. Note that the choice of L1
regularization is critical for this property: under the squared L2 norm, X̂1 incurs approximately the same penalty
as X1 and X2 combined so that there is no incentive to merge.

This property has disadvantages and practical advantages. A possible disadvantage is that multiple dimensions
in the data may be agglomerated if they are too similar. However, depending on the application, this may be
an advantage rather than a disadvantage since a few agglomerated dimensions may be more easy to interpret
than many seemingly redundant dimensions. The disadvantage is also not as much of a disadvantage when one
considers that dimensions that are too similar may be impossible to disentangle based on empirical data anyways,
so SPoSE does not fare worse in this regard than other methods.

This property of SPoSE allows for automatic dimensionality selection and also increases the reproducibility of
the embedding.
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Figure 4: SPoSE features 1-21 (out of 49) explained by CSLB labels via NNLS. Top 4 concepts for
each of four selected SPoSE feature are shown beside 12 CSLB features with the largest weights for
predicting that SPoSE feature. Size of bars indicates relative weight, while color indicates feature
type. Green: taxonomic; Blue: functional; Yellow: encyclopedic; Red: visual perceptual; Violet:
non-visual perceptual.
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Figure 5: SPoSE features 22-42 (out of 49) explained by CSLB labels via NNLS. Top 4 concepts for
each of four selected SPoSE feature are shown beside 12 CSLB features with the largest weights for
predicting that SPoSE feature. Size of bars indicates relative weight, while color indicates feature
type. Green: taxonomic; Blue: functional; Yellow: encyclopedic; Red: visual perceptual; Violet:
non-visual perceptual.
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Figure 6: SPoSE features 43-49 (out of 49) explained by CSLB labels via NNLS. Top 4 concepts for
each of four selected SPoSE feature are shown beside 12 CSLB features with the largest weights for
predicting that SPoSE feature. Size of bars indicates relative weight, while color indicates feature
type. Green: taxonomic; Blue: functional; Yellow: encyclopedic; Red: visual perceptual; Violet:
non-visual perceptual.
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