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Recently more generalized four-fermion interactions of neutrinos such as tensor and scalar inter-
actions (TSIs) have been extensively studied in response to forthcoming precision measurements
of neutrino interactions. In this letter, we show that due to the chirality-flipping nature, at the
1-loop level TSIs typically generate much larger (107 ∼ 1010) neutrino magnetic moments (νMMs)
than the vector case. For some cases, the large νMMs generated by TSIs may reach or exceed the
known bounds, which implies potentially important interplay between probing TSIs and searching
for νMMs in current and future neutrino experiments.

I. INTRODUCTION

As neutrino experiments are entering the precision era,
searching for new neutrino interactions beyond the Stan-
dard Model (BSM) is of increasing importance. In the
near future, experiments of coherent neutrino-nucleus
scattering1 and other types of neutrino scattering2, will
reach unprecedented sensitivity to various types of BSM
neutrino interactions.

Among various BSM interactions considered for neu-
trinos, the so-called Non-Standard Interactions (NSIs,
see reviews [17–20]), which couple neutrinos (ν) to other
fermions (ψ) by the flavor-changing effective operators
ναγµνβψγ

µψ, have been extensively studied due to their
rich phenomenology in neutrino oscillation. In addition
to NSIs which are of the vector form (i.e. containing γµ
between ν and ν), recently there has been rising interest
in more general interactions [10, 21–32] of scalar or ten-
sor forms with the γµ replaced by 1 or σµν respectively3.
From the theoretical point of view, the scalar or tensor
interactions are as well motivated as the NSI, since they
can all originate from integrating out some BSM bosons4.

In this letter, we would like to point out that the
scalar or tensor interactions of neutrinos may lead to
much larger neutrino magnetic moments (νMMs) than
the vector interactions. For the vector case, the loop-
generated νMM is proportional to the neutrino mass and
thus highly suppressed [33–38]. However, for scalar or
tensor interactions, due to their chirality-flipping feature
as will be explained later, it is proportional to the mass

1 First observed by the recent COHERENT experiment [1]. The
future experiments include CONUS [2], ν-cleus [3], CONNIE [4],
MINER [5], etc.

2 E.g., neutrino scattering at the near detectors [6–12] of long base-
line experiments, or at IsoDAR [13, 14], LZ [15, 16], etc.

3 More generally, one can have additional γ5’s attached, which
would form pseudoscalar, axial vector and CP-violating tensor
interactions. Hereafter, as a simplified terminology, we will refer
to them as scalar, vector and tensor interactions likewise.

4 Integrating out a vector boson may give rise to NSI while inte-
grating out a charged scalar boson may lead to both scalar and
tensor interactions—exemplified later in Sec. III.

of ψ 5, which is about 107 to 1010 times larger than the
neutrino masses. If neutrinos have sizable scalar/tensor
interactions at the magnitude that concerns the current
neutrino scattering experiments, the large νMMs may
reach or exceed the known bounds. The connection be-
tween scalar/tensor interactions and large νMMs has im-
portant implications for future neutrino experiments— if
sizable scalar/tensor interactions could be found within
the sensitivity of future experiments, then it might im-
ply large, detectable νMMs which would motivate more
elaborate experimental searches, and vice versa.

II. νMM FROM EFFECTIVE INTERACTIONS

In what follows, through an explicit but short calcula-
tion (depicted in Fig. 1), we will show that νMMs gen-
erated by scalar/tensor interactions are in general pro-
portional to charged fermion masses instead of neutrino
masses. The calculation per se will technically explain
the reason. To get a deeper insight into it, after the cal-
culation we will provide an alternative explanation based
on fermion chiralities.

We start by considering the following general effective
interactions of neutrinos6 (ν) and other fermions (ψ):

L ⊃ GX (νΓν)
(
ψΓ′ψ

)
, (1)

where Γ and Γ′ can be any Dirac matrices that keep
Eq. (1) Lorentz invariant, including

1, γ5, γµ, γµγ5, σµν ≡
i

2
[γµ, γν ], (2)

and their linear combinations (e.g., γµ − γµγ5).

5 The idea of obtaining large νMMs by avoiding it from being pro-
portional to a neutrino mass is not new and has been discussed
widely in the literature, see the review [39] and references therein.
For further discussions, see Sec. IV.

6 Here we consider neutrinos in the mass basis and for simplicity,
we focus on one of the three generations. We will discuss the full
three-generation framework in the flavor basis in Sec. IV.
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Figure 1. Feynman diagrams showing the connection between
the effective interactions in Eq. (1) and νMMs.

In terms of Feynman diagrams, Eq. (1) is an effective
vertex of four fermion lines shown in Fig. 1 (a), rele-
vant to elastic neutrino scattering processes that are cur-
rently undergoing precision measurement. Given such a
diagram, one can close the ψ and ψ lines and attach an
external photon line to it, which forms a 1-loop diagram
responsible for νMM generation. The 1-loop diagram can
be evaluated as follows:

Fig. 1 (b) =

ˆ
d4k

(2π)4
eGXu2(p2)Γu1(p1)εµ(q) trloop, (3)

where most notations take the standard convention (e.g.,
e is the coupling constant of ψ to the photon, εµ is the
photon polarization vector, etc.), all the momenta have
been defined in Fig. 1 with k ≡ p1 − k1 = p2 − k2, and
trloop stands for the trace of the loop:

trloop = tr

[
1

/k2 −mψ
γµ

1

/k1 −mψ
Γ′
]

(4)

=
tr [(/k2 +mψ)γµ(/k1 +mψ)Γ′]

(k2
2 −m2

ψ)(k2
1 −m2

ψ)
. (5)

Throughout the calculation, we assume neutrinos are
Dirac particles and leave the case of Majorana neutri-
nos in later discussion.

The trace in Eq. (5) is crucial to understanding when
the generated νMM is proportional tomψ. For simplicity,
let us first focus on the scalar interaction (Γ = Γ′ = 1),
for which the trace can be easily worked out:

trloop = mψ

4 (k1 + k2)µ
(k2

2 −m2
ψ)(k2

1 −m2
ψ)
. (6)

This result can be obtained by noticing that in the nu-
merator of Eq. (5) only the cross terms tr[mψγµ/k1 +
/k2γµmψ] are nonzero. This is because the trace of any
product containing an odd number of γ matrices, such as
tr [/k2γµ/k1] and tr [mψγµmψ], must be zero [40].

Plugging Eq. (6) back into Eq. (3) and integrating out
k, we should have

Eq. (3) = mψeGXu2(p2) [c1p
µ
1 + c2p

µ
2 ]u1(p1)εµ(q), (7)

simply by using the Lorentz invariance. Since the quan-
tity between u2 and u1 should be both a Dirac scalar and
a Lorentz vector, we must be able to write it as a linear

combination of pµ1 and pµ2 —here as c1p
µ
1 +c2p

µ
2 . Further-

more, since Eq. (6) is symmetric under p1 ↔ p2, the inte-
gral
´

trloopd
4k should lead to a symmetric result, which

implies c1 = c2. Indeed, this can be verified by computing
the integral manually or using Package-X [41]. Assuming
the effective vertex has the similar UV behavior as the
Fermi effective interaction7 and G−1/2

X � mψ � mν , the
integral gives

c1 = c2 ≈
i

8π2
≡ c, (8)

where “≈” means that higher-order terms suppressed by
mψ and mν are not included.

Using the Gordon identity8 and Eq. (8), we can convert
Eq. (7) to the magnetic moment form

Fig. 1 (b) ≈ cmψeGXu2(p2)iσµνu1(p1)qνεµ(q), (9)

which implies the following νMM:

µν ≈
eGXmψ

8π2
, (for scalar). (10)

As one can see, to get µν ∝ mψ, the crucial step in the
above calculation is that the trace in Eq. (5) has non-
vanishing cross terms (proportional to mψ) while all the
other terms are zero. This is true for Γ = Γ′ = 1. If
(Γ, Γ′) = (γν , γ

ν), we would be in the opposite situa-
tion—the cross terms become zero while the other terms
are nonzero. A straightforward calculation can confirm
that the νMM in this case is approximately proportional
to mν instead of mψ.

To summarize, whether tr[(mψγµ/k1 +/k2γµmψ)Γ′] van-
ishes or not depends on whether Γ′ consists of an odd or
even number of γ matrices. Therefore for the tensor in-
teraction, we can infer that the result should be propor-
tional to mψ. Indeed, repeating the previous calculation
for (Γ, Γ′) = (σνλ, σ

νλ) with the same assumptions gives

µν ≈
eGXmψ

2π2

[
1 + log

(
m2
ψGX

)]
, (for tensor). (11)

So far we have technically explained why tensor and
scalar interactions could lead to large νMMs proportional
to mψ. The above argument based on even/odd numbers
of γ matrices can be more physically interpreted using the
concept of chirality flipping.

First let us examine the chirality of νMM,

LνMM = µνν [iσµνqν ] νAµ, (12)
= µνν [iσµνqν ] (PL + PR)νAµ, (13)
= µν [νRσ

µννL + νLσ
µννR] iAµqν , (14)

7 If GX is a constant at arbitrarily high energies, the integral is
divergent. We assume that at low energies GX approximately
remains constant while for k →∞, GX decreases as k−2. More
specifically, we adopt GX ∝ 1

k2−m2 with m2 ∼ G−1
X standing

for the energy scale of this transition.
8 See, e.g., Appendix A of Ref. [42].
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Figure 2. Feynman diagrams explaining when µν are sup-
pressed by the neutrino mass (left) and when by the charged
lepton mass (right).

where PL/R ≡ 1
2 (1∓ γ5) and νL/R ≡ PL/Rν. Eq. (14)

implies that a νMM itself has to be chirality flipping,
i.e., a left-handed neutrino, after participating the inter-
action, will turn into a right-handed neutrino, and vice
versa.

On the other hand, all vector interactions preserve chi-
rality because

νγµν = νLγ
µνL + νRγ

µνR. (15)

So to obtain a nonzero νMM, we need chirality-flipping
sources. One of such sources is a Dirac neutrino mass
term,

mννν = mν (νLνR + νRνL) , (16)

which explicitly shows chirality flipping. In addition, as
can be checked, tensor or scalar interactions all have the
chirality-flipping property.

Now let us scrutinize the chirality in the loop diagram.
If the 4-fermion vertex does not flip chirality (e.g., Γ = γν
and Γ′ = γν), then chirality flipping can only be achieved
by mννν, as presented in Fig. 2 (a). It is interpreted as
follows. First, if the left leg is νL, then the right leg ini-
tially has to be νL since the 4-fermion vertex cannot flip
chirality. However, as required by the chirality-flipping
property of νMM, the right leg eventually should be νR.
So a mass insertion necessarily appears on the right leg
to achieve the flipping. In this case, the diagram must
be proportional to mν .

If the 4-fermion vertex is of tensor or scalar forms [see
Fig. 2 (b)], then the right leg has the opposite chirality to
the left, simply due to the chirality-flipping property of
the vertex. So we do not need the mass insertion of mν .
But we should notice that the charged fermion also flips
its chirality when passing this vertex, while the photon
vertex is not chirality-flipping. To accommodate both
vertices in one loop, a mass insertion of mψ is necessary,
as marked in Fig. 2 (b). In this case, the diagram must
be proportional to mψ.

Therefore, we can conclude that if the 4-fermion vertex
is chirality-flipping per se, then it generates µν ∝mψ;

otherwise it leads to µν ∝mν . This explains why in our
previous calculation µν ∝mψ is obtained for tensor and
scalar interactions.

III. A UV COMPLETE EXAMPLE

The chirality analysis explicates when µν is propor-
tional to mψ and when to mν . The specific values of µν ,
however, depend on the UV completion of the effective
vertex. Below we would like to study a UV complete
example which introduces a charged scalar φ± interact-
ing with both left-/right-handed neutrinos (νL/νR) and
charged leptons (`L/`R):

L ⊃ ycνLφ+`R + ys`Lφ
−νR + h.c. (17)

The above terms could originate from left-right symmet-
ric models (LRSM) [43–45]9 containing the Yukawa in-
teraction (νL, `L)Φ(νR, `R)T where Φ is a bi-doublet,
provided that the charged components in Φ have generic
mass mixing.

Eq. (17) can give rise to the 4-fermion effective interac-
tions of both scalar and tensor forms, if φ± is integrated
out:

Leff =
ycys
m2
φ

(νL`R)
(
`LνR

)
+ h.c., (18)

which after the Fierz transformation10 becomes

Leff = − ycys
8m2

φ

(
4`L`RνLνR + `Lσ

µν`RνLσµννR
)

+ h.c.

(19)
Given the Yukawa interactions in Eq. (17), we know

the specific UV behavior of the effective interactions at
high energies. So µν can be computed without uncertain-
ties caused by UV divergences. There are two diagrams
responsible for µν :

• (i) Fig. 1 (b) with the 4-fermion vertex replaced by
a φ± mediator;

• (ii) A similar diagram to (i) but the photon is cou-
pled to the φ± mediator.

After straightforward loop calculations, the results are:

µ(i)
ν =

em`ycys
64π2m2

φ

(
3 + 2 log

m2
`

m2
φ

)
, (20)

µ(ii)
ν = −em`ycys

64π2m2
φ

, (21)

9 Since νR appears as an external fermion line in Fig. 2, the canon-
ical LRSM in which right-handed neutrinos are heavy states can-
not be applied here.

10 To use the chiral form, see Eqs. (2.6 - 2.7) of Ref. [46].
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Figure 3. µν predicted by tensor and scalar interactions (red
lines) compared with experimental bounds (blue). Here the
GEMMA, TEXONO and LZ-51Cr bounds are only for the ef-
fective magnetic moment µνe defined in Eq. (24); the Borex-
ino bound is based on solar neutrinos which should be applied
to µS given in Eq. (25); and the astrophysical (Astro) bound
should be applied to µγ in Eq. (26).

corresponding to the contributions of (i) and (ii) respec-
tively. So in this model the total contribution to the
νMM is

µν = µ(i)
ν + µ(ii)

ν =
em`ycys
32π2m2

φ

(
1 + log

m2
`

m2
φ

)
. (22)

This is consistent with our previous discussions based on
the effective operators [cf. Eqs. (10) and (11)]. Taking
GX ∼ ycys/(8m

2
φ), we can see that the effective and the

UV complete results agree at the same order of magni-
tude while the difference is understandable due to differ-
ent UV details.

IV. DISCUSSION AND CONCLUSION

Throughout the paper we have only considered the case
of Dirac neutrinos. For Majorana neutrinos, our conclu-
sions would be similar but need slight modification. As
is well known, Majorana neutrinos can only have transi-
tion magnetic moments, meaning that the corresponding
term νiσ

µννjqνAµ may exist only if i 6= j (i, j = 1, 2, 3
denote the mass eigenstates of neutrinos; ν ≡ νL+νcL is a
Majorana spinor so that ν = νc). Viewed from fermionic
degrees of freedom, the transition from νi → νj is essen-
tially equivalent to the aforementioned chirality flipping
as the initial and final neutrinos are two different Weyl
spinors. Therefore, for Majorana neutrinos we simply
need the replacement (νR, νL)→ (νcLi, νLj) in the above
analyses.

The analyses in this paper can be readily extended to
include three flavors. First, Eq. (1) can be modified to
the flavor-dependent form:

L ⊃ GαβX (ναΓνβ)
(
ψΓ′ψ

)
, (23)

where α, β = e, µ, τ are flavor indices. Then since
we know that for tensor and scalar interactions neutrino
masses make negligible contributions to νMMs, neutrinos
can be treated as massless particles in the calculation,
which would lead to flavor-dependent µαβν in Eqs. (10)
and (11) with only GX replaced by GαβX . Note that many
experimental measurements actually produce constraints
on combinations of some µαβν . For example, νe-e scatter-
ing experiments with negligible baselines are sensitive to
the effective magnetic moment of νe below [47]:

µ2
νe =

∑
β

∣∣µeβν ∣∣2 . (24)

For solar neutrino experiments, the effective magnetic
moment being constrained is [39]

µ2
S =

3∑
j,k=1

∣∣UMek ∣∣2 ∣∣µjkν ∣∣2 , (25)

where UMek is the effective neutrino mixing with the mat-
ter effect included, and µjkν is the mass-basis form of µαβν .
In addition, for plasmon decay (γ∗ → νν) [48], one can
define the following effective magnetic moment,

µ2
γ =

3∑
j,k=1

∣∣µjkν ∣∣2 =
∑
α,β

∣∣µαβν ∣∣2 , (26)

which is useful in interpreting the astrophysical bounds.
The values of µν given by Eqs. (10) and (11) depend

on the UV completion of the effective vertices. Being
model dependent implies that µν could be much smaller
or larger than Eqs. (10) and (11) in particular models.
For example, if it is UV completed by a neutral scalar
φ with Yukawa interactions ννφ and ψψφ, then the loop
diagram naively gives zero µν . However, since it breaks
SU(2)L, usually this model is a fragment of some more
complete gauge invariant models, in which φ would be the
neutral component of a Higgs multiplet and be accom-
panied with charged scalar bosons. The full calculation,
including contributions from charged bosons, may again
lead to large nonzero µν .

Taking Eqs. (10) and (11) as the typical values of µν
generated by the effective tensor and scalar interactions,
we plot them in Fig. 3 together with terrestrial (TEX-
ONO [49], Borexino [50], GEMMA [51], and LZ equipped
with an intensive 51Cr radiative source [15]) and astro-
physical [48] bounds. Currently the effective couplingGX
can be constrained by various elastic neutrino scatter-
ing data from CHARM II, LSND, TEXONO, Borexino,
COHERENT, etc. In general, these experiments have
GX sensitivity ranging from 0.1 to 1GF [22, 25, 30, 52],
depending on the neutrino flavors, the charged fermion
ψ, the specific forms of new interactions, etc. With
these details involved and the uncertainties of theoret-
ical predictions due to the UV incompleteness, here we
refrain from more specific discussions and show merely
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two bands (red) of GX = 0.1 ∼ 1GF in Fig. 3. In the fu-
ture, the DUNE near detector and some reactor-based co-
herent neutrino scattering experiments may significantly
improve the sensitivity by one or two orders of magnitude
[10, 23].

The significance of Fig. 3 showing the red bands and
the blue limits in the same windows is manifold. If, e.g.,
GX = 0.1GF for tensor interactions had been probed in
neutrino-electron scattering experiments, it would imply
a large νMM (µν ∼ 10−12µB) that could be observed
by improving νMM experiments by one order of magni-
tude. In addition, since the same coupling strength for
ψ = µ and τ would lead to too large µν , it would imply
that in model building, GX for these two flavors must be
suppressed, which is of theoretical importance. On the
other hand, if in the future we reach much more solid
and stringent bounds on µν (currently LZ-51Cr is only a
proposal and the astrophysical bound could be altered in
non-standard scenarios), it will disprove the presence of
sizable tensor and scalar interactions, which is still of im-
portance for both experimental searches and theoretical
model building.

The last comment concerns neutrino masses. It has
been commonly discussed in the literature (reviewed in
Ref. [39]) that the new physics leading to large νMMs
usually generates too large neutrino masses. This can
be understood by simply noticing that in the absence of
chirality-flipping interactions the generated νMM is pro-
portional to mν . There have been various approaches,
however, to get a large νMM while keeping mν small.
One possibility is to avoid it from being proportional
to mν , which has been discussed in Refs. [34, 38, 53–
61]. For example, in the left-right symmetric model
with Dirac neutrinos, µν ∝ m` can be obtained (see,
e.g., Eq. (2.29) in [38]) via the charged current (CC)
interaction `Lγ

µνLW
−
Lµ and its right-handed partner

`Rγ
µνRW

−
Rµ where W±L and W±R are the charged gauge

bosons of SU(2)L and SU(2)R with small mass mix-
ing. From the point of view of effective interactions
adopted in this paper, it is straightforward to under-
stand the result. The left- and right-handed CC inter-
actions with mixing can give rise to the effective inter-
action (`Lγ

µνL)(νRγ
µ`R), which after the Fierz trans-

formations becomes a chirality-flipping scalar interaction
2(νRνL)(`L`R). This should lead to µν ∝ m` accord-
ing to our conclusion on such scalar interactions. There-
fore, the calculation in the previous studies confirms our
conclusion on the effective interactions. In addition to
this model, there are various other models proposed for
large νMMs [62–71]. Although building models for large
νMMs is not the focus of this paper, our conclusion indi-
cates that one may preferably introduce chirality-flipping
interactions to obtain large νMMs because in this situ-
ation, µν is proportional to mψ instead of mν , and the
generation of νMMs can be detached from the generation
of neutrino masses.

In conclusion, our analysis reveals that large νMMs
may be potentially related to sizable tensor and scalar
interactions, and vice versa. The experimental and the-
oretical significance of the interplay will be explored in
further studies.
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