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The left-right symmetric model (LRSM), originally proposed to explain parity violation in low energy
processes, has since emerged as an attractive framework for light neutrino masses via the seesaw
mechanism. The scalar sector of the minimal LRSM consists of an SU(2) bi-doublet, as well as left-
and right-handed weak isospin triplets, thus making the corresponding vacuum structure much more
complicated than that of the Standard Model. In particular, the desired ground state of the Higgs
potential should be a charge conserving, and preferably global, minimum with parity violation at
low scales. We show that this is not a generic feature of the LRSM potential and happens only for
a small fraction of the parameter space of the potential. We also analytically study the potential
for some simplified cases and obtain useful conditions (though not necessary) to achieve successful
symmetry breaking. We then carry out a detailed statistical analysis of the minima of the Higgs
potential using numerical minimization and find that for a large fraction of the parameter space,
the potential does not have a good vacuum. Imposing the analytically obtained conditions, we can
readily find a small part of the parameter space with good vacua. Consequences for some scalar
masses are also discussed.

I. INTRODUCTION

The discovery of neutrino masses is a sure sign of new physics beyond the Standard Model (SM). A simple paradigm for
neutrino masses is the seesaw mechanism [1–5] which introduces right-handed neutrinos (RHN) with heavy Majorana
masses. Two questions then arise: (i) what is the seesaw scale or the mass of the RHNs? and (ii) what is the ultraviolet
(UV)-complete theory that leads naturally to the basic ingredients inherent in the seesaw mechanism i.e. RHNs and a
B −L symmetry whose breaking gives rise to their Majorana masses? Two classes of theories with this property are:
(i) the SO(10) model whose basic spinor representation contains the RHN and which contains a group generator that
is the B−L local symmetry [6], and (ii) the left-right symmetric model (LRSM) [7–9], which is the simplest extension
of the SM that contains three RHNs to cancel the gauge anomalies and B −L symmetry as a natural symmetry [10].

In this paper, we focus on symmetry breaking aspects of the minimal LRSM and carry out an analysis of its
vacuum structure. The general procedure to investigate this is to write down the Higgs potential involving the various
scalar multiplets of the LR gauge group SU(2)L × SU(2)R × U(1)B−L and look for the minimum of the potential
that breaks the gauge symmetry down to U(1)em. Morever, the theory should be parity violating at low scale and
generate naturally small neutrino masses. The detailed analysis of the non-supersymmetric LRSM Higgs potential
and its minima have been discussed in many works [11–26] (supersymmetric LRSM Higgs sectors have been studied
in Refs. [27, 28]). It is known that for certain ranges of the parameters (e.g. negative scalar mass squares and positive
values for scalar couplings), a desired (good) vacuum is obtained. However, if all the couplings are chosen randomly
to start with, it is not clear how often one gets a good vacuum. Secondly, it is not known whether those minima
obtained above are global minima of the potential or are simply the local ones. Third, the boundedness-from-below
of the potential has been used as the necessary and sufficient condition for vacuum stability [17, 18], but as we show
in this paper, a bounded-from-below potential is necessary for a good vacuum, but not sufficient.

We use the gauge freedom of the theory to give simple criteria that are to be fulfilled in order to end up in a good
vacuum (i.e. charge conserving and parity violating at low scales). Keeping arbitrary values for the parameters of
the Higgs potential we furthermore check for what fraction of the parameter space a global minimum with desired
properties is obtained. Once a range of the parameters is determined where a global minimum occurs, one can then
use them to find the scalar spectrum corresponding to that choice, which is a potential test of the model. We do not
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carry out an exhaustive analysis of the scalar masses but rather give some simple examples at viable minima of the
model.

The paper is organized as follows. In Sec. II, we review the details of the model and its scalar sector. In Sec. III, we
write down the full scalar potential and give criteria for obtaining the good vacua of the model. In Sec. IV we present
analytical studies focused on some simplified cases, followed by numerical studies to scan the whole parameter space
in Sec. V. Finally we summarize and conclude in Sec. VI. Some technical details are delegated to the appendix.

II. MODEL DETAILS

The LRSM [7–9] extends the SM gauge group GSM ≡ SU(3)c × SU(2)L × U(1)Y to GLR ≡ SU(3)c × SU(2)L ×
SU(2)R × U(1)B−L. The quarks and leptons are assigned to the following irreducible representations of GLR:

QL,i =

(
uL
dL

)
i

:

(
3, 2, 1,

1

3

)
, QR,i =

(
uR
dR

)
i

:

(
3, 1, 2,

1

3

)
, (1)

ψL,i =

(
νL
eL

)
i

: (1, 2, 1, −1) , ψR,i =

(
NR
eR

)
i

: (1, 1, 2, −1) , (2)

where i = 1, 2, 3 represents the family index, and the subscripts L,R denote the left- and right-handed chiral projection
operators PL,R = (1∓ γ5)/2, respectively. The B and L charges are fixed using the electric charge formula [10]

Q = I3L + I3R +
B − L

2
. (3)

In the scalar sector, a bi-doublet (φ) and two triplets (∆L, ∆R) are introduced with the following quantum number
assignments under GLR:

φ : (1, 2, 2, 0), ∆L : (1, 3, 1, 2), ∆R : (1, 1, 3, 2) . (4)

It is conventional to adopt the matrix representation in which φ and ∆L,R are written as

φ =

(
φ0

1 φ+
1

φ−2 φ0
2

)
, ∆L =

(
δ+
L /
√

2 δ++
L

δ0
L −δ+

L /
√

2

)
, ∆R =

(
δ+
R/
√

2 δ++
R

δ0
R −δ+

R/
√

2

)
. (5)

The corresponding transformation rules are

SU(2)L ⊗ SU(2)R : φ → ULφU
†
R, ∆L → UL∆LU

†
L, ∆R → UR∆RU

†
R , (6)

U(1)B−L : φ → φ, ∆L → eiθB−L∆L, ∆R → eiθB−L∆R , (7)

for UL ∈ SU(2)L, UR ∈ SU(2)R and eiθB−L ∈ U(1)B−L. Note that φ̃ ≡ σ2φ
∗σ2 = −εφ∗ε transforms in the same way

as φ.
The model also has a discrete left-right symmetry, which can either be the P parity or the C parity:

P : φ → φ†, ∆L ↔ ∆R , (8)
C : φ → φT , ∆L ↔ ∆∗R . (9)

The scalar potential with P parity is more constrained than that with C parity1 as the latter allows several complex
phases. In this paper, for simplicity, we assume all the couplings in the scalar potential to be real, i.e. there is no
explicit CP violation2 in the potential. Such a potential respects both parities.

In general the full potential contains 17 gauge invariant terms [14]. After spontaneous symmetry breaking, some
components of φ and ∆L,R obtain nonzero vacuum expectation values (VEVs) while the others do not, depending
on the parameters of the potential. Since the gauge symmetry SU(2)L ⊗ SU(2)R ⊗ U(1)B−L is required to break to
U(1)em by these scalar fields, the desired VEV alignment is [14]

〈φ〉 =
1√
2

(
κ1 0
0 κ2e

iθ2

)
, 〈∆L〉 =

1√
2

(
0 0

vLe
iθL 0

)
, 〈∆R〉 =

1√
2

(
0 0
vR 0

)
. (10)

1 See Eqs. (9) and (10) in Ref. [24] for comparison.
2 We do, however, find that a small portion of the randomly generated samples in Sec. V have complex VEVs though the potential
parameters are real, which implies that spontaneous CP violation is possible in this model. See Refs. [11–16] for more details.
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The VEVs should furthermore obey the hierarchy vL � κ1, 2 � vR (vL may vanish) to meet the known phenomenology,
such as tiny neutrino masses, heavy RH gauge boson masses, the electroweak precision parameter ρ ' 1, etc.

Although Eq. (10) is what we need to successfully achieve spontaneous symmetry breaking in the LRSM, for
general (arbitrary) values of the parameters, the scalar potential does not necessarily lead to this VEV alignment.
For example, if we minimize the scalar potential we may obtain a minimum with nonzero diagonal VEVs of 〈∆L〉
or 〈∆R〉, which would break U(1)em. It is also possible to get a minimum with 〈∆L〉 = 〈∆R〉 which would imply
unbroken parity symmetry. The various possibilities of symmetry breaking with the full scalar potential of LRSM,
due to the considerable complexity, have never been comprehensively studied before.

In this paper, we will therefore address an essential question of the spontaneous symmetry breaking in the LRSM:

How can we obtain the VEV alignment in Eq. (10) and how likely is this?

Since the full scalar potential is very complicated, a purely analytical study is difficult and we mainly adopt a
numerical approach. However, we provide some illustrative analytical studies for simplified cases, where a lot of terms
in the potential are absent. Nevertheless, the analytical results give us some useful insight into the vacuum structure of
the scalar potential and serve as a supplement to the full numerical calculations. Our numerical approach has already
been established in Refs. [29–31] to successfully analyze beyond the SM scalar potentials. In general, given specific
values of the potential parameters, we can always use a computer program to numerically minimize the potential and
obtain a minimum. With further developed algorithms (see the details presented in Sec. V), we can make the program
capable of identifying the zero entries in Eq. (10). In this way we can find out all possible VEV alignments that can
be obtained in the LRSM potential. We choose not to use the Vevacious package [34], which, among other things,
can also provide the minima of beyond the SM scalar potentials. This package currently has limited capability to
the case we are interested in, since our potential contains many parameters and field components. In addition, we
will perform a statistical analysis with a large number of random samples. Hence, we use a self-written dedicated
minimization program, which we have made publicly available in GitHub [35].

As noted earlier, the significance of such a study is two-fold. First of all, for any given set of potential parameters,
we can infer whether it can lead to successful symmetry breaking and whether the minimum of the potential is a
global minimum. This in turn can put constraints on the potential parameters and also on the scalar mass spectrum.
If the LRSM is taken as a serious theory of particle interactions beyond the SM, then these theoretical constraints
from vacuum stability should be taken into consideration, in combination with other theoretical constraints, such as
unitarity and perturbativity [22, 23, 36], as well as experimental constraints from lepton flavor violation, neutrinoless
double beta decay, rare meson decays and colliders [37–54].

Secondly, for extended LRSMs with modified scalar sectors, e.g. with additional scalar bi-doublets, triplets, singlets,
etc. [55–66], one would again be concerned about the question of whether the desired VEVs can be obtained. While
the potential for such cases may be too complicated to repeat the analytical calculations given here, our numerical
method can be easily implemented to analyze the vacuum structures of such models. We leave these studies for future
work.

III. THE SCALAR POTENTIAL

The most general gauge invariant scalar potential invariant under Eq. (6) contains 17 independent terms:

V = −µ2
1Tr[φ

†φ]− µ2
2

(
Tr[φ̃φ†] + Tr[φ̃†φ]

)
− µ2

3

(
Tr[∆L∆†L] + Tr[∆R∆†R]

)
+ λ1Tr[φ†φ]2

+λ2

(
Tr[φ̃φ†]2 + Tr[φ̃†φ]2

)
+ λ3Tr[φ̃φ†]Tr[φ̃†φ] + λ4Tr[φ†φ]

(
Tr[φ̃φ†] + Tr[φ̃†φ]

)
+ρ1

(
Tr[∆L∆†L]2 + Tr[∆R∆†R]2

)
+ ρ2

(
Tr[∆L∆L]Tr[∆†L∆†L] + Tr[∆R∆R]Tr[∆†R∆†R]

)
+ρ3Tr[∆L∆†L]Tr[∆R∆†R] + ρ4

(
Tr[∆L∆L]Tr[∆†R∆†R] + Tr[∆†L∆†L]Tr[∆R∆R]

)
(11)

+α1Tr[φ†φ]
(
Tr[∆L∆†L] + Tr[∆R∆†R]) + α3(Tr[φφ†∆L∆†L] + Tr[φ†φ∆R∆†R]

)
+α2

(
Tr[∆L∆†L]Tr[φ̃φ†] + Tr[∆R∆†R]Tr[φ̃†φ] + H.c.

)
+β1

(
Tr[φ∆Rφ

†∆†L] + Tr[φ†∆Lφ∆†R]
)

+ β2

(
Tr[φ̃∆Rφ

†∆†L] + Tr[φ̃†∆Lφ∆†R]
)

+β3

(
Tr[φ∆Rφ̃

†∆†L] + Tr[φ†∆Lφ̃∆†R]
)
,
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where, as we mentioned above, all couplings are assumed real. The spontaneous symmetry breaking in such a
complicated potential may result in various types of VEV alignments. Some of them may successfully achieve the
desired symmetry breaking given by Eq. (10) and have phenomenologically viable consequences whereas some may
not. In what follows, for convenience, we will refer to the former as good vacua and the later as bad vacua.

A. Good Vacua

Since the electromagnetic gauge symmetry U(1)em should not be broken in any extension of the SM, only the
electric neutral components (namely φ0

1, φ0
2, δ0

L and δ0
R) can acquire nonzero VEVs. In general, the charge conserving

VEVs of φ, ∆L and ∆R should be

〈φ〉 =
1√
2

(
κ1e

iθ1 0
0 κ2e

iθ2

)
, 〈∆L〉 =

1√
2

(
0 0

vLe
iθL 0

)
, 〈∆R〉 =

1√
2

(
0 0

vRe
iθR 0

)
. (12)

However, two of the phases (let us take θ1 and θR) can be removed by the transformation (6) with

UL =

(
e−i(θ1−

1
2 θR) 0

0 ei(θ1−
1
2 θR)

)
, UR =

(
eiθR/2 0

0 e−iθR/2

)
. (13)

Meanwhile, θ2 and θL are transformed to θ2 + θ1 and θL + 2θ1 − θR, which for simplicity can be redefined as θ2 and
θL. Therefore, without loss of generality, one can always set

θ1 = θR = 0 , (14)

which reduces Eq. (12) to Eq. (10). Assuming the potential has a minimum for the VEVs given by Eq. (10), one can
replace the fields with their VEVs and derive the minimization conditions:

∂V

∂κ1
=

∂V

∂κ2
=

∂V

∂vL
=

∂V

∂vR
=

∂V

∂θ2
=

∂V

∂θL
= 0 . (15)

From Eq. (15) one can derive (see Appendix A) the renowned seesaw relation of VEVs in LRSM [67]:

β1κ1κ2 cos (θ2 − θL) + β2κ
2
1 cos θL + β3κ

2
2 cos (2θ2 − θL) = (2ρ1 − ρ3)vLvR. (16)

The left-hand side is roughly of the order βv2 where β = β1, 2, 3 and v = 246 GeV, and the right-hand side is ρ vLvR
where ρ ≡ 2ρ1− ρ3. From βv2 = ρ vLvR, one can see that for very large vR (correspondingly very heavy WR), vL will
be suppressed by 1/vR, corresponding to very tiny neutrino masses, known as the seesaw relation of the VEVs.

Here we would like to give two comments.

• Eq. (16) holds only if v2
L 6= v2

R. If v2
L = v2

R, then the VEVs (κ1, κ2, vL, and vR) may violate the relation (16)
while the derivatives in Eq. (15) remain zero. This can be seen from the analytical calculations in Appendix
A and is also verified in our numerical studies. Despite that v2

L = v2
R is phenomenologically not allowed (since

parity is not broken in this case), it turns out that this case appears much more frequently in the numerical
scan than the case with v2

L 6= v2
R. Therefore, if in numerical studies a minimum is obtained with the same VEV

alignments as in Eq. (12), one should carefully check whether v2
L = v2

R. Only when v2
L 6= v2

R, it is a good vacuum
with the VEVs satisfiying the seesaw relation (16).

• Eq. (15) is based on the assumption that a minimum in the form of Eq. (12) exists. The six equations in (15) can
(in general) always be solved with respect to the six variables (κ1, κ2, vL, vR, θ2, θL). However, the existence
of solutions of Eq. (15) implies neither the existence of the minimum, nor that the first-order derivatives with
respect to the fields vanish, i.e. ∂V/∂ϕ = 0, where ϕ stands for all components of φ and ∆L,R.

B. Bad Vacua

Next, we shall investigate other vacua that could appear but would lead to unacceptable physical or phenomenolog-
ical consequences, e.g. U(1)em breaking. Without the requirement of charge conservation, in general, any components
of φ and ∆L,R could acquire nonzero VEVs. But before we put nonzero VEVs arbitrarily, we need to examine the
symmetries in the potential to avoid considering redundant cases.
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First of all, there is the gauge symmetry SU(2)L ⊗ SU(2)R ⊗ U(1)B−L, which allows one to remove some degrees
of freedom (DOF) in the scalar fields by gauge fixing. By analogy to the SM case, where the Higgs doublet in the
unitarity gauge has only one DOF (the physical Higgs boson), in the LRSM we can adopt a similar gauge to remove
3 + 3 + 1 = 7 DOFs, equal to the number of gauge bosons. More specifically, we use the transformations UL and UR
in Eq. (6) to diagonalize φ (not 〈φ〉) so that

φ =

(
φ1e

iθ1 0
0 φ2e

iθ2

)
, ∆L =

(
b1√

2
eiβ1 c1e

iγ1

a1e
iα1 − b1√

2
eiβ1

)
, ∆R =

(
b2√

2
eiβ2 c2e

iγ2

a2e
iα2 − b2√

2
eiβ2

)
. (17)

Some phases can be further removed by Eq. (13) and U(1)B−L transformations3 so that one can further set

θ1 = α2 = β2 = 0 . (18)

As one can check, indeed seven DOFs have been removed.
Secondly, a vacuum with 〈φ1〉 = 〈φ2〉 and nonzero 〈b1, 2〉 or 〈c1, 2〉 does not necessarily break U(1)em due to additional

symmetries in the vacuum. Note that if 〈φ1〉 = 〈φ2〉, then 〈φ〉 is invariant under

〈φ〉 → UL〈φ〉U†R, UR = UL

(
1 0
0 eiθ2

)
, (19)

where UL can be any SU(2) matrix. Accordingly, 〈∆L〉 and 〈∆R〉 will be transformed by the above UL and UR to
other forms. For example, if θ2 = 0 and the following identical textures of 〈∆L,R〉 are realized,

〈∆L〉 ∝ 〈∆R〉 ∝
(

1 −1
1 −1

)
, (20)

then one could choose the following UL,R transformations:

UL = UR =
1√
2

(
1 −1
1 1

)
. (21)

It is now straightforward to show that one obtains the same VEV alignment as in Eq. (10). This implies that the
vacuum in this example is physically equivalent to the charge-conserving vacuum.

A necessary and sufficient condition to infer whether 〈∆L〉 and 〈∆R〉 really break U(1)em in the absence of 〈φ〉 is
that U(1)em is not broken if and only if

det〈∆L〉 = det〈∆R〉 = 0 . (22)

It is straightforward to see that if U(1)em is not broken, then the determinants must be zero. The converse, however,
needs a short proof: first, note that in the absence of 〈φ〉, for any 〈∆L〉 and 〈∆R〉, we can always transform them via
the Schur decomposition4 to the following form:

〈∆L〉 → UL〈∆L〉U†L =
1√
2

(
xL 0
vL −xL

)
, 〈∆R〉 → UR〈∆R〉U†R =

1√
2

(
xR 0
vR −xR

)
. (23)

The determinants det〈∆L〉 = x2
L and det〈∆R〉 = x2

R imply that if they are zero, the diagonal elements in Eq. (23)
must be zero, hence U(1)em is conserved if one makes arbitrary SU(2)L × SU(2)R transformations.

However, in the presence of 〈φ〉 such transformations may be partially or fully forbidden, depending on whether
〈φ1〉 = 〈φ2〉 or not. In this case, it could be that 〈∆L〉 and 〈∆R〉 with zero determinants break U(1)em. But in
our numerical study presented in Sec. V, among a large number of randomly generated samples, we do not find any
samples belonging to this exotic category. Therefore, based on a high-statistics numerical study, we can draw the
conclusion that in the presence of 〈φ〉, generally det〈∆L〉 = det〈∆R〉 = 0 is sufficient to ensure the conservation of
U(1)em.

3 The explicit phase removing process to get Eq. (17) is as follows. First, U(1)B−L allows overall phase transformations of ∆L and ∆R,
which can be used to make the diagonal part of ∆R real, i.e. β2 = 0. Then one applies Eq. (13) to remove phases in the 1-1 and 2-1
entries of φ and ∆R respectively. The phases of the diagonal parts of ∆L and ∆R will not be changed by Eq. (13).

4 The Schur decomposition states that a arbitrary complex square matrix A can always be decomposed into A = UTU†, where U is a uni-
tary matrix and T is a lower triangular matrix (i.e., Tij = 0 for i < j)—see, e.g., http://mathworld.wolfram.com/SchurDecomposition.
html.
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Finally, some discrete symmetries may connect the vacuum in Eq. (10) to other vacua. Consider the following two
vacua:

Vac. 1 : 〈φ〉 =
1√
2

(
κ2e

iθ2 0
0 κ1

)
, 〈∆L〉 =

1√
2

(
0 vLe

iθL

0 0

)
, 〈∆R〉 =

1√
2

(
0 vR
0 0

)
, (24)

Vac. 2 : 〈φ〉 =
1√
2

(
κ1 0
0 κ2e

−iθ2

)
, 〈∆L〉 =

1√
2

(
0 0
vR 0

)
, 〈∆R〉 =

1√
2

(
0 0

vLe
iθL 0

)
, (25)

As one can check, the above two minima can be transformed to each other by UL = UR = iσ2 combined with the P
parity transformation:

Vac. 1
UL=UR=iσ2, & P−−−−−−−−−−−−−−→ Vac. 2. (26)

They can also be transformed to Eq. (10) by either UL = UR = iσ2 or P. If the potential has a minimum at Eq. (10),
then the above minima (24) and (25) also exist and have exactly the same potential depth as Eq. (10). The vacuum
of Eq. (24) breaks U(1)em but it always coexists with the vacuum of Eq. (10). The vacuum of Eq. (25) generated by
the parity transformation, would cause 〈∆L〉 � 〈∆R〉 if vL � vR, though it does not break U(1)em. Combining the
transformations of both UL = UR = iσ2 and parity, one can get one more vacuum with the same potential depth.

Therefore, the vacuum of Eq. (10), if it exists, is always accompanied by several wrong vacua which have the same
potential depth and are connected by discrete symmetries5, which are subgroups of the left-right gauge symmetry. On
the other hand, if one finds a minimum corresponding to one of these wrong vacua, then it implies the existence of the
true vacuum. In this sense, searching for minima of these wrong types is also useful. This is particularly important
for the numerical searches to be performed later.

In summary, a vacuum which superficially seems to be bad may actually imply the coexistence of a good vacuum,
or may itself be a good vacuum up to some continuous symmetry transformation. Considering these possibilities, we
would like to propose the following gauge independent criteria for the good vacuum:

good vacuum criteria :

(a) 〈φ〉 6= 0;

(b) 〈∆R〉 6= 0 or 〈∆L〉 6= 0;

(c) det〈∆L〉 = det〈∆R〉 = 0;

(d) 〈∆L〉 6= 〈∆R〉.

(27)

For the VEV alignment in Eq. (10), one can straightforwardly check that the above criteria are satisfied. Conversely,
if a minimum of the potential satisfies Eq. (27), the VEVs must be of the form in Eq. (10) or can be transformed to
Eq. (10) under the previous mentioned symmetries.

IV. ANALYTICAL STUDY OF LR VACUA IN LIMITING CASES

In principle, we can analytically compute the first-order derivatives of the scalar potential to find out the minima.
However, for the full potential in Eq. (12) the calculations are too complicated to perform analytically. In this section,
we focus on some simplified cases in which several terms in the potential are absent. Although as such it is not a full
analysis (and sometimes even unrealistic), the analytical results obtained in this way provide crucial insight into the
vacuum structure of the scalar potential. The details are expanded below and the results are summarized at the end
of this section.

The first simplification we will make is to set α and β to be zero because only the α- and β-terms “lock" the
bidoublet with the triplets. With α = β = 0, the potential can be written as two separate parts

V |α=β=0 = Vφ + V∆, (28)

where Vφ and V∆ contain only φ and ∆L/R respectively. In this case, the global symmetry of the potential becomes
much larger i.e. G = [SU(2)L × SU(2)R]φ × [SU(2)L × SU(2)R]∆ × U(1)B−L. (In fact this is true as long as α3 = 0

5 This may cause the cosmological domain wall problem [32]—for evading this problem, see e.g. [33].
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and βi = 0) Once the 〈φ〉 and 〈∆〉 vevs are switched on, the resulting symmetry will be U(1)L × U(1)R × U(1)Y .
This will lead to 10 massless states out of which six will be absorbed as longitudinal modes of the gauge bosons of
the theory leaving four massless states. Clearly therefore, this theory is not realistic. But nevertheless we study the
vacuum structure and the symmetries of the vacuum in order to understand the same for the full model with all
couplings turned on.

Expressed in terms of the explicit components defined in Eq. (17), Vφ and V∆ are

Vφ = −µ2
1(φ2

1 + φ2
2)− 4µ2

2φ1φ2 cos θ2

+λ1(φ2
1 + φ2

2)2 + λ28φ2
1φ

2
2 cos 2θ2 + λ34φ2

1φ
2
2 + λ44φ1φ2

(
φ2

1 + φ2
2

)
cos θ2 , (29)

V∆ = −µ2
3

[(
a2

1 + b21 + c21
)

+
(
a2

2 + b22 + c22
)]

+ρ1

[(
a2

1 + b21 + c21
)

2 +
(
a2

2 + b22 + c22
)

2
]

+ρ3

(
a2

1 + b21 + c21
) (
a2

2 + b22 + c22
)

(30)

+ρ2

[
4a2

1c
2
1 + b41 + 4a1b

2
1c1 cos (α1 − 2β1 + γ1) + (1→ 2)

]
+ρ4

[
4a2b

2
1c2 cos (α2 − 2β1 + γ2) + 4a1b

2
2c1 cos (α1 − 2β2 + γ1)

+8a1a2c1c2 cos (α1 − α2 + γ1 − γ2) + 2b22b
2
1 cos 2 (β1 − β2)

]
.

Here the field components (e.g., φ1, 2, a1, 2, b1, 2, c1, 2, · · · ) have been defined in Eq. (17). To proceed, let us further
set µ2

2, λ2, λ4, ρ2, and ρ4 to zero so that we are not bothered by the cosines appearing in the above expression. In
this very simplified case, we note that Vφ and V∆ have essentially the same form:

Vφ0 = −µ2
1(φ2

1 + φ2
2) + λ1(φ2

1 + φ2
2)2 + 4λ3φ

2
1φ

2
2 , (31)

V∆0 = −µ2
3

(
δ2
1 + δ2

2

)
+ ρ1

(
δ2
1 + δ2

2

)
2 + (ρ3 − 2ρ1)δ2

1δ
2
2 , (32)

with δ2
1 ≡ a2

1 + b21 + c21 and δ2
2 ≡ a2

2 + b22 + c22. Here we have extracted 2ρ1δ
2
1δ

2
2 in Eq. (32) so that V∆0 shows explicitly

the same form as Vφ0. In the following discussion, we will focus on Vφ0 while the conclusions can be easily transferred
to V∆0 by replacing µ2

1 → µ2
3, λ1 → ρ1 and 4λ3 → (ρ3 − 2ρ1).

A notable feature of Vφ0 is that it respects the following dihedral (D4) symmetry

D4 : (φ1, φ2)T → R(φ1, φ2)T , (33)

R =

(
0 ±1
±1 0

)
, or

(
±1 0
0 ±1

)
, (34)

which leads to D4-symmetric vacuum structures shown in Fig. 1. The bounded from below (BFB) condition for the
potential in Eq. (31) is manifest:

λ1 > 0, λ3 > −λ1. (35)

In the following discussion of minima, by default we assume the BFB condition should be satisfied.
From the first-order derivatives

∂Vφ0

∂φ1
= 2φ1

[
−µ2

1 + 2λ1(φ2
1 + φ2

2) + 4λ3φ
2
2

]
= 0 , (36)

∂Vφ0

∂φ2
= 2φ2

[
−µ2

1 + 2λ1(φ2
1 + φ2

2) + 4λ3φ
2
1

]
= 0 , (37)

we get three possible solutions

(φ2
1, φ

2
2) =

µ2
1

4(λ1 + λ3)
(1, 1), with Vφ0 = − µ4

1

4(λ1 + λ3)
, (38)

(φ2
1, φ

2
2) =

µ2
1

2λ1
(0, 1) or

µ2
1

2λ1
(1, 0), with Vφ0 = − µ4

1

4λ1
, (39)



8

Figure 1. The D4-symmetric potential in Eq. (31) for different values of λ3/λ1. In the upper left panel (λ3/λ1 = −1), the
potential is not bounded from below. In the upper right panel (λ3/λ1 = −1/2), the potential has four minima at (φ1, φ2) =
1√
2
(±1, ±1). In the lower left panel (λ3/λ1 = 0), the potential has infinite minima connected by an SO(2) symmetry. In the

lower right panel (λ3/λ1 = 1), the potential has four minima at (φ1, φ2) = 1√
2
(±1, ±1).

(φ2
1, φ

2
2) = (0, 0), with Vφ0 = 0. (40)

Here all the denominators such as 4(λ1 +λ3) and 2λ1 are positive according to the BFB condition (35), which implies
that the solutions (38) and (39) will not exist if µ2

1 < 0, because this will lead to negative φ2
1 or φ2

1. Therefore, for
µ2

1 < 0, the potential has only one minimum, which is necessarily the global minimum of the potential.
By comparing the potential values Vφ0 of the three solutions, we can infer which one can be the global minimum

without computing the second-order derivatives (Hessian matrix). One can see from Eq. (38) and (39) that if λ3 > 0
(assuming µ2

1 > 0 and λ1 > 0), then Eq. (39) should be the global minimum because it is deeper than the other
candidates. If λ3 < 0, Eq. (38) is the global minimum.

Actually, as one can check that if λ3 < 0 the Hessian matrix for Eq. (38) is positive definite while the Hessian
matrix for Eq. (39) loses positive definiteness, and vice versa. In the critical case λ3 = 0, there is an SO(2) symmetry
so any point on the circle φ2

1 + φ2
2 =

µ2
1

2λ1
is a global minimum.

In summary, assuming µ2
1 > 0 and λ1 > 0, the vacuum structure depends on the ratio λ3/λ1 as follows:

• λ3/λ1 ≤ −1: Vφ0 is not BFB;

• −1 < λ3/λ1 < 0: Vφ0 has four minima at (φ1, φ2) ∝ (±1, ±1), with equal depth;

• λ3/λ1 = 0: Vφ0 has infinite minima on the circle φ2
1 + φ2

2 =
µ2
1

2λ1
, with equal depth;

• λ3/λ1 > 0: Vφ0 has four minima at (φ1, φ2) ∝ (0, ±1) and (±1, 0), with equal depth.

In Fig. 1, we show how the potential varies for different values of λ3/λ1. We set µ2
1 = 1 and λ1 = 1 in Eq. (31) and

select four values −1, −1/2, 0, and 1 for λ3/λ1 so that all the four cases above are covered.
So far, we have not taken µ2

2, λ2, λ4 into consideration. In the presence of these terms, the D4 symmetry will
be broken and the complexity of the above analysis will be increased. We do not plan to derive the corresponding
analytic expressions. But we can discuss qualitatively on the consequences using the D4-symmetric conclusions. If
we set µ2

2 > 0 while keeping λ2 and λ4 still at zero, this is the same as adding the term −4µ2
2φ1φ2 cos θ2 to the

D4-symmetric potential Vφ0. From the potential Vφ0 − 4µ2
2φ1φ2 cos θ2 we can immediately see that cos θ2 should be

1 (if 4µ2
2φ1φ2 > 0) or −1 (if 4µ2

2φ1φ2 < 0) to reach a minimum, which implies that we would still get real solutions
even if we turn on the complex phase. Therefore instead of Vφ0 − 4µ2

2φ1φ2 cos θ2 we can focus on Vφ0 − 4µ2
2φ1φ2. In
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Figure 2. Vacua in the D4-symmetric (upper panels) and D4-broken (lower panels) potentials. The D4-symmetric potential is
given by Eq. (31) with λ3 = −1/2, 0, and 1 (from left to right) and µ2

1 = λ1 = 1. The D4-broken broken potential is obtained
by adding −4µ2

2φ1φ2 to Eq. (31) with µ2
2 = 0.15. This changes the locations of stable vacua (marked in black). The potentials

are normalized so that Vmin = −1.

Fig. 2, we plot both Vφ0 and Vφ0 − 4µ2
2φ1φ2 to show the changes caused by the µ2

2 term. In the upper left panel
(λ3/λ1 = −1/2, µ2

2 = 0), the four minima has the same depth due to the D4 symmetry. When the µ2
2 term is added

(for illustration we choose µ2
2 = 0.15), as shown in the corresponding lower panel, two of the minima become deeper

than the other two. Note that in this case (φ1, φ2) at the minima still align in the direction (1, 1) or (1, −1). In the
middle panels (λ3/λ1 = 0), the SO(2) symmetry is broken when µ2 is nonzero, leading also to the VEV alignment
(φ1, φ2) ∝ (1, 1). In the right panels (λ3/λ1 = 1), the four minima still have equal depth after adding the µ2

2 term,
but the VEV alignment is changed from (1, 0) or (0, 1) to (1, r) or (r, 1) where r depends on µ2.

Therefore, within the simple D4-soft-broken potential Vφ0 − 4µ2
2φ1φ2 cos θ2, we can already get an arbitrary VEV

alignment (φ1, φ2) ∝ (1, r). Further turning on λ2 and λ4 couplings may produce more possibilities (e.g. spontaneous
CP breaking) which should include the VEV alignments obtained in Vφ0 − 4µ2

2φ1φ2 cos θ2.

Now let us discuss on the triplet sector. As previously mentioned, if ρ2 = ρ4 = 0, the potential of ∆L and ∆R

reduces to V∆0 which has the same form as Vφ0. Using the previous conclusions on Vφ0, we know that when

µ2
3 > 0, ρ3 > 2ρ1 > 0, (41)

the D4-symmetric potential V∆0 has four minima at (δ1, δ2) ∝ (0, 1) or (1, 0), which implies the VEV alignment

〈∆L〉 = 0, 〈∆R〉 6= 0 (42)

can be obtained.
We would like to point it out that even if ρ2 and ρ4 are nonzero, V∆ is still D4-symmetric. The symmetry

transformation is similar to Eq. (33) with (φ1, φ2) replaced by (∆L, ∆R). Consequently, the VEV alignments of
(∆L, ∆R) from Eq. (31) have only three possibilities: (i) one of (∆L, ∆R) is nonzero and the other is zero, like
Eq. (42); (ii) both are zero; or (iii) both are nonzero but ∆L = ∆R.

However, the above arguments treat ∆L and ∆R as two singlets and do not take the fact that they have internal
components into consideration. Analyses in terms of the components (ai, bi, ci) will be much more complicated. We
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adopt a numerical method to check the above conclusions and find that there are indeed only the three cases, except
that (iii) should be interpreted as a2

1 + b21 + c21 = a2
2 + b22 + c22.

Besides, one should notice that for nonzero ρ2 and ρ4, Eq. (41) is no longer the condition to get Eq. (42). But at
least the simple conclusion with ρ2 = ρ4 = 0 is enough to show that the VEV alignment in Eq. (42) can be obtained
in a part of the parameter space.

Eq. (42) is what we need to achieve spontaneous parity breaking. The other two possible cases, namely ∆L = ∆R 6= 0
and ∆L = ∆R = 0, can be modified by D4-breaking terms [e.g. the α and β terms in (12)] so that ∆L 6= ∆R and
∆R 6= 0. However the experimental constraints require that 〈∆L〉 should be much smaller than 〈∆R〉 since the former,
limited by the electroweak ρ parameter, has to be lower than the GeV scale while the latter should be above the TeV
scale (collider bounds on WR). Such a strong hierarchy would require substantial fine-tuning in the scalar potential.
Therefore, the solution 〈∆L〉 = 0 as a consequence of symmetry is a more favored option.

Focused on the solution with zero ∆L and nonzero ∆R, we proceed to study the VEV alignments of the internal
components of ∆R. For simplicity, let us first set ρ4 = 0 (µ2

3, ρ1, ρ2, and ρ3 are nonzero). Note that in the remaining
terms of V∆, only the ρ3 term couples ∆L to ∆R. This term has no contribution to the first-order derivatives at the
minimum with zero ∆L because

∂(δ2
1δ

2
2)

∂ai
=
∂(δ2

1δ
2
2)

∂bi
=
∂(δ2

1δ
2
2)

∂ci
= 0, for ∆L = 0.

In the absence of ρ3 and ρ4, ∆R decouples with ∆L in V∆. Hence we only need to consider the following part of the
potential

V∆2 = −µ2
3

(
a2

2 + b22 + c22
)

+ ρ1

(
a2

2 + b22 + c22
)

2 + ρ2

[
4a2

2c
2
2 + b42 + 4a2b

2
2c2 cos (α2 − 2β2 + γ2)

]
= −µ2

3δ
2
2 + ρ1δ

4
2 + 4ρ2|det ∆R|2 , (43)

where in the second line we have simplified the ρ2 term which can be verified by an explicit computation. To proceed,
we need the following useful relation:

0 ≤ |det ∆R| ≤
1

2
δ2
2 , (44)

which can be proven by δ2
2 = a2

2 + b22 + c22 ≥ max(b22 + 2a2c2, b
2
2 − 2a2c2)≥ |b22 + 2a2c2e

iω| = 2|det ∆R|, where
ω = α2 − 2β2 + γ2. Note that for a fixed value of δ2

2 , |det ∆R| can reach any value in the above range. Therefore, we
can parametrize |det ∆R| as 1

2δ
2
2 cos θ and write

V∆2 = −µ2
3δ

2
2 +

(
ρ1 + ρ2 cos2 θ

)
δ4
2 . (45)

From Eq. (45), it is obvious to identify the minima. Let us take ρ1 > 0 and µ2
3 > 0, which is necessary to satisfy the

BFB condition and obtain nonzero VEVs. If ρ2 > 0, the minimum should be at cos2 θ = 0; and if ρ2 < 0, it should
be at cos2 θ = 0. Therefore the minima of V∆2 should locate at:

ρ2 > 0 : δ2
2 =

µ2
3

2ρ1
, det ∆R = 0, (46)

ρ2 < 0 : δ2
2 =

µ2
3

2(ρ1 + ρ2)
, det ∆R =

1

2
δ2
2 =

µ2
3

4(ρ1 + ρ2)
. (47)

As long as α1, 2, 3 = β1, 2, 3 = 0, we always have the freedom to transform ∆R → UR∆RU
†
R individually (without

the corresponding transformation of the bidoublet φ) within the triplet potential V∆. According again to the Schur
decomposition, we can always transform ∆R to a lower triangular matrix. In this form, Eqs. (46) and (47) should be

ρ2 > 0 : ∆R =

√
µ2

3

2ρ1

(
0 0
1 0

)
, (48)

ρ2 < 0 : ∆R =

√
µ2

3

4(ρ1 + ρ2)

(
1 0
0 −1

)
. (49)
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Eq. (48) is straightforward to get, because if det ∆R = 0, only the 2-1 element can be nonzero. Eq. (49) has zero a2

because when |det ∆R| = 1
2δ

2
2 , |a2| and |c2| should be equal, according to the derivation of Eq. (44). One should keep

in mind that Eqs. (48) and (49) are derived under the assumption that µ2
3 > 0, ρ4 = α1, 2, 3 = β1, 2, 3 = 0, and that

the potential is BFB.

The above analyses implies the following sufficient but not necessary conditions to get a good vacuum:

µ2
1, µ

2
2, µ

2
3 > 0, (50)

λ1 > 0, λ2 = 0, λ3 > −λ1, λ4 = 0, (51)

ρ1 > 0, ρ2 > 0, ρ3 > 2ρ1, ρ4 = 0, (52)

α1, 2, 3 = β1, 2, 3 = 0. (53)

If the potential parameters satisfy the above conditions, then it can be guaranteed that the potential has a global
minimum corresponding to a good vacuum. In practical use, however, αi and βi cannot all be set to zero because
of additional massless states, as mentioned before. To solve this problem, we can add small perturbations to αi to
avoid the massless states. More explicitly, using the above condition, we can easily find a set of potential parameters
satisfying Eqs. (50), (51) and (52). Then if we set αi to zero, the potential has a good vacuum, though not realistic.
Next we can explore the nearby around this point by tentatively adding some small perturbations to αi. If the
perturbations are small enough, the conclusion should hold as well. Sometimes, the perturbations can be very large
without changing the conclusion. The exploration starting from Eq. (53) needs numerical assistance, as will be done
in Sec. V. And we will show (see Fig. 5), indeed one can find some deviations from Eq. (53) that lead to successful
symmetry breaking.

Besides, we have other comments on the above conditions:

• The above conditions also guarantee BFB;

• If −λ1 < λ3 < 0, 〈φ〉 ∝ diag(1, 1); if 0 < λ3, 〈φ〉 ∝ diag(1, r) with r 6= 1;

• The vacuum obtained in this way always has 〈∆L〉 = 0.

The conditions (50)-(53) obtained by the above analytic study will be very useful in the subsequent numerical study.
It helps to quickly find out a viable region in which the potential has a good vacuum. In addition, it is also important
for setting some benchmarks when studying the global minimum constraints.

V. NUMERICAL STUDY

With the modern technology of numerical computation, given a set of specific values of the potential parameters
one can readily obtain a numerical minimum. There have been various algorithms well developed to find minima
of multi-variable functions6. Most algorithms are based on iterative searches which means the program starts by
given an initial point and iteratively computes the next step according to some principles until the steps converge to
a minimum. The convergence can not be guaranteed, so for a single process searching for minima there is a small
probability of failure. In case of failure, one can try to start the process again with a different initial point. Repeating
the processes will eventually arrive at a minimum which may be local or global.

Once we get a numerical minimum of the potential, we can inspect the field component values at the minimum,
checking if some of them are zero or some of them are equal. However, in numerical calculations it is impossible
to have infinite accuracy so the would-be zero numbers are generally nonzero but very small (e.g. 10−6 ∼ 10−9 for
numerical minimization based on a 8-byte real number system). This implies that, due to limited accuracy, there is no
absolute equality in the numerical results. The simplest solution to this problem is by setting a cut on the difference
of two numbers, below which the two numbers are thought to be equal and above which they are not7. But this may

6 See, e.g. [68] or the SciPy document: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#
scipy.optimize.minimize. In this paper, we adopt the Nelder-Mead simplex method which is the most commonly used algorithm
since it does not require derivatives of the function.

7 Actually, we use this to check whether a quantity is zero while for checking whether two quantities a and b are equal, we convert it to
the problem of checking whether (a− b)/b is zero.
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Figure 3. Pecentages of the samples leading to the five types of vacua (type A: 48.6%, type B: 48.7%, type C: 0.5%, type D:
2.2%, type E: 0.05%) classified by the conditions in Eq. (27). Only type E corresponds to viable symmetry breaking of LRSM.
More details of the five types of VEV alignments are listed in Tab. I. To generate the samples, we randomly set the potential
parameters in Eq. (12), check the BFB condition, and numerically minimize the potentials.
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Figure 4. Similar to Fig. 3 except that the potential parameters are generated with additional constraints given by Eq. (54)
and Eq. (55) so that the probability of obtaining type E vacua is significantly enhanced. Left: all potential parameters are
positive, α1, 2, 3 are suppressed by a small factor and β1, 2, 3 = 0; Right: in addition to the constraints used in the left panel, we
require that λ2 = λ4 = ρ4 = 0, ρ3 > 2ρ1. The percentages from left to right are 11.0% (A), 23.9% (B), 35.9% (C), 13.0% (D),
16.2% (E); 3.4% (A), 10.5% (B), 0 (C), 0 (D), 86.0% (E).

cause misjudgment since the difference of two actually unequal numbers may occasionally be smaller than the cut.
To double check if a field component is zero at the minimum, we can invoke the minimization process again with
this component fixed to zero. If it gives a slightly better minimization, then we can conclude that it is zero at the
minimum.

We apply the above numerical method to the LRSM potential in Eq. (12). First, let us arbitrarily set the values
of potential parameters to see in general what VEV alignments would be obtained. Both the quadratic and quartic
couplings are generated by a uniform distribution in the interval [−4π, 4π]. In this work, the energy scales of all
dimensional quantities such as the quadratic couplings and the field values are not relevant. For example, we can use
v ≡ 246 GeV as the energy unit, instead of GeV or TeV, then µ2

1 = 0.5 × (246 GeV)
2

= 0.5v2 can be simply written
as 0.5 in the computer program.

The quartic couplings generated in the above way can not guarantee that the potential is bounded from below. The
BFB check can be numerically performed by setting the quadratic couplings to zero and then run the minimization
process. If any point with V < 0 is reached during minimization, then the potential is not BFB and the sample is
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Table I. VEV alignments of various types of minima found in the numerical search. Except for type E, each type is defined by
a relation that violates the good vacuum conditions in Eq. (27). The typical VEV alignments in each type are listed in the
3rd–5th columns, with “ci” (i = 1, 2, 3, 4) standing for independent nonzero values. Note that other VEV alignments that can
be converted to the ones in this table are not shown (see the main text for more details about this issue), “· · · ” indicates that
the enumeration is not exhaustive.

type definition 〈φ〉 〈∆L〉 〈∆R〉

A violate Eq. (27) by
〈φ〉 = 0

[
0 0

0 0

] [
0 0

c1 0

] [
0 0

c1 0

]
[

0 0

0 0

] [
c1 0

0 −c1

] [
c1 0

0 −c1

]
[

0 0

0 0

] [
0 0

0 0

] [
0 0

0 0

]
· · · · · · · · ·

B violate Eq. (27) by
〈∆L〉 = 〈∆R〉 = 0

[
c1 0

0 c1

] [
0 0

0 0

] [
0 0

0 0

]
[
c1 0

0 c3

] [
0 0

0 0

] [
0 0

0 0

]

C violate Eq. (27) by
det〈∆L〉 or det〈∆R〉 6= 0

[
c1 0

0 c1

] [
c2 0

0 −c2

] [
c2 0

0 −c2

]
[
c1 0

0 c3

] [
c2 0

0 −c2

] [
c2 0

0 −c2

]
· · · · · · · · ·

D violate Eq. (27) by
〈∆L〉 = 〈∆R〉

[
c1 0

0 c3

] [
0 0

c2 0

] [
0 0

c2 0

]

E satisfy Eq. (27)
[
c1 0

0 c2

] [
0 0

c3 0

] [
0 0

c4 0

]

abandoned. If a sample passes the BFB check, then we further minimize the potential with the nonzero quadratic
couplings.

When a minimum is successfully obtained in this process, we check if it violates the four good vacuum conditions
in Eq. (27), from (a) to (d) sequentially. If any of them is violated, then we stop checking the remaining conditions
and tag it as type A, B, C, or D, corresponding to the violation of condition (a), (b), (c), or (d), respectively. If all
the conditions are satisfied, it is tagged as type E, a good and successful vacuum.

In Fig. 3, we present the result of the above analysis on 144891 samples (all passing the BFB check). In this
randomly generated data set, 70380, 70625, 683, and 3135 of the samples fall into the categories of type A, B, C,
and D, respectively. Only 68 samples are of type E, which is about 0.05% of the total number. We further inspect
the VEV alignments of all samples of the five types and list them in in Tab. I. As we have discussed in Sec. III B,
some symmetry transformations can transform the VEV alignments from one form to another—see, e.g. Eq. (26).
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For such cases, in Tab. I we only list the representative forms. More specifically, whenever appropriate UL and UR
transformations are allowed (e.g. 〈φ〉 = 0, or κ1 = κ2, or UL = UR = iσ2), we always use them to transform ∆L and
∆R to lower triangular forms according to the Schur decomposition.

The low percentage (0.05%) of type E can be understood from the analytical studies in Sec. IV. First, for those
simplified cases we have studied, one can see that the quadratic couplings µ2

1, µ2
2 , and µ2

3 have to be positive to
get nonzero 〈φ〉 and 〈∆L/R〉. Let us assume that for more general potentials (e.g. λ4, β1, 2, 3 are no longer zero)
this conclusion approximately holds as well. Then requiring the three quadratic couplings to be positive in the
random number generation already produces a factor of (1/2)3 = 1/8 which suppresses the percentage by one order
of magnitude. Moreover, in Eq. (51) and Eq. (52) some quartic couplings may also need to be positive to get a good
vacuum. If 11 of the 17 parameters in the full potential are required to be positive, the suppression factor can easily
reach (1/2)11 ≈ 0.05%. Some parameters may contribute suppression factors smaller or larger than 1/2, say 1/p.
Generally it is possible to get a significant suppression at the order of (1/p)n where n ≤ 17. This explains why the
percentage can be suppressed to the level of 0.05%.

Although the suppression is understandable, it is would be better to avoid the suppression or at least to know a part
of the parameter space that would lead to the correct symmetry breaking with a much higher probability. According
to our analytical study, we are led to simple conditions to enhance the probability of ending in a good vacuum:

0 ≤ µ2
i ≤ 4πv2 (i = 1, 2, 3),

0 ≤ λi, ρi ≤ 4π (i = 1, 2, 3, 4),

0 ≤ αi ≤ 0.2π (i = 1, 2, 3),

βi = 0 (i = 1, 2, 3).

(54)

Requiring the constraints in Eq. (54), we repeat the numerical process used to generate Fig. 3 and obtain the left
plot in Fig. 4. As the plot shows, with these constraints, the percentage of type E is enhanced to 16.2%, which is at
the same order of magnitude as the other types. Eq. (54) is proposed based on the analytical result summarized in
Eqs. (50)-(53), but it allows more general parameter settings, e.g. λ2, ρ2, 4, α1, 2, 3 do not have to be fixed to zero. It
is a compromise between the generality (also simplicity) and the enhancement of the percentage.

Including more constraints from Eqs. (50)-(53) can further enhance the percentage at the cost of loss of generality.
In the right panel of Fig. 4, we include the constraints

λ2 = λ4 = ρ4 = 0, ρ3 > 2ρ1, (55)

together with Eq. (54) and obtain a much higher percentage (86%) of type E, which means the majority of the samples
generated under these constraints have type E vacua.

As we have seen that among those randomly generated samples some may have type E vacua and some may not, if
the potential is required to lead to successful symmetry breaking, it must be subjected to a lot of constraints. Below
we would like to study such constraints.

Note that these constraints are not fully equivalent to the requirement that the potential has a type E minimum. If
the potential has no type E minimum, then of course it can not lead to successful symmetry breaking. But even if it
has a type E minimum, the minimum could be a local one which coexists with other much deeper minima. Then the
vacuum at the type E minimum is not absolutely stable as it may decay to other deeper vacua via quantum tunneling
or thermal fluctuation. There is a possibility that the decay rate is very low so that the lifetime is longer than the age
of the Universe, known as the meta-stability. Since the analyses including meta-stability would be too much involved
here, for simplicity, we only consider the absolute stability. Therefore in what follows, when we claim that a potential
can lead to successful symmetry breaking, we mean the potential has a global minimum of type E. The corresponding
constraints will be referred to as the global minimum constraints.

Let us investigate the effect of global vs. local minimum. Since there is no minimization algorithm that can guarantee
to find global minima for general cases, the method of global minimum test used in our program is repeating the
minimization process with random initial values for many times. If none of these minima is deeper than the one being
tested, the more likely it is a global minimum. Obviously the more times the process is repeated, the more likely it
is a global minimum. This method still can not guarantee the correctness of the global minimum, but with a large
number of repetitions, the result will be very reliable. To quantify the effect of testing for a global minimum, we
present now constraints on some parameters as illustration, choosing the six α1, 2, 3 and β1, 2, 3 parameters. In Fig. 5
the green region has successful symmetry breaking with a global minimum, while the blue region only is a global
minimum. Each plot shows the constraint on a pair of the parameters (αi−αj or βi−βj) while the other parameters
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Figure 5. Global minimum constraints on α and β. Samples in the green region have type E global minima so they will lead to
successful symmetry breaking; the blue region violates the global minimum constraints which means that either the potential
does not have type E minimum or its type E minimum is local; the black region violates the BFB condition. Other potential
parameters, if not indicated by the plots, are fixed at the benchmark values in Eq. (56). The grid interval is 0.2π.
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are fixed at:

benchmark :



(µ2
1, µ

2
2, µ

2
3) = (5.0, 2.0, 9.0)v2 ,

(λ1, λ2, λ3, λ4) = (1.0, 0.0, 1.2, 0.0) ,

(ρ1, ρ2, ρ3, ρ4) = (1.0, 0.2, 3.0, 0.0) ,

(α1, α2, α3) = (0.5, 0.0, 0.7) ,

(β1, β2, β3) = (0.0, 0.0, 0.0) .

(56)

This benchmark is set in such a way that by default (i.e. no parameters are changed) it has a global minimum of type
E. The plots are produced in coarse grids because for each sample the program has to run the global minimum test
for many times which is CPU intensive. So currently we cannot compute too many samples with limited computer
power and consequently the interval of grid scan cannot be too small. In Fig. 5 we use 40 × 40 grids in the range
[−4π, 4π]2 with a interval of 0.2π.

As one can see in the left panels of Fig. 5, the green regions cover the central point α1, 2, 3 = 0 and the nearby part
(within 3 or 4 blocks) is also green. This implies that small αi indeed can lead to absolutely stable type E vacua,
which is a conjecture of our analytical study. This is approximately true also for the β parameters. However, the
difference is that the αi do not have to be small (in some direction they can reach 4π) while the βi, at least for this
benchmark, have to be small.

We also note that Fig. 3 and Fig. 4 establish our claim in the introduction that the BFB conditions only provide a
necessary but not sufficient condition for an acceptable vacuum since all the columns in Fig. 3 and Fig. 4 satisfy the
BFB condition whereas only the green column satisfies the desired vacuum condition.

Because the scalar mass spectrum is fully determined by the parameters of the scalar potential, the global minimum
constraints on the potential parameters can be converted to constraints on the scalar mass spectrum. After symmetry
breaking the scalar sector contains (including the Goldstone bosons) eight electrically neutral bosons, four singly
charged bosons and two doubly charged bosons, among which the bosons with the same electric charge generally have
mass mixing. Therefore the mass matrices of the neutral and singly charged scalar bosons are quite complicated,
but the mass matrix of doubly charged bosons is much simpler. For simplicity, we will thus only discuss the mass
spectrum of the doubly charged bosons. Their mass matrix is

M±±11 =

(
M±±11 M±±12

M±±21 M±±22

)
, (57)

where

M±±11 =
1

2
(ρ3 − 2ρ1)v2

R + 2ρ2v
2
L +

1

2
α3(κ2

1 − κ2
2) ,

M±±22 = 2ρ2v
2
R +

1

2
(ρ3 − 2ρ1)v2

L +
1

2
α3(κ2

1 − κ2
2) ,

M±±12 =
(
M±±21

)∗
= 2ρ4vRvLe

−iθL +
1

2

(
β1κ1κ2e

−iθ2 + β2κ
2
2e
−2iθ2 + β3κ

2
1

)
.

Note that if ρ4 and β1, 2, 3 are set to zero, then the mass matrix is diagonal and one can immediately obtain the
eigenvalues (i.e. the mass squares of the two doubly charged bosons):(

M±±1

)2
= (ρ3 − 2ρ1)v2

R/2 + α3(κ2
1 − κ2

2)/2 ,
(
M±±2

)2
= 2ρ2v

2
R + α3(κ2

1 − κ2
2)/2 . (58)

This greatly simplifies the scenario and we would like to take it as an example to show the global minimum constraints
on the mass spectrum. We also set other parameters to the following specific values:

(µ2
1, µ

2
2, µ

2
3) = (0.3, 0.2, 9)v2

X ,

(λ1, λ2, λ3, λ4) = (0.13, 0, 0.6, 0),

(α1, α2, α3) = (0, 0, 1× 10−4),

(59)

except for ρ1, ρ2 and ρ3. We take ρ1 and ρ3 as free parameters ranging from −ρmax to ρmax, and fix ρ2 at some values
indicated in Fig. 6. Here ρmax is set at a small value 10−3 (for a reason to be explained below) and v2

X is a floating
energy scale which is always tuned to make

√
κ2

1 + κ2
2 = 246 GeV.
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Figure 6. The global minimum constraint on the two doubly charged scalar masses (M±±1 , M±±2 ) for the example given by
Eq. (59).

To make the scenario considered here more realistic, we also require that it contains a SM-like Higgs boson with
the mass mh ≈ 125 GeV and a large vR so that the mass of WR is above the LHC constraints. The parameters in
Eq. (59) have been tuned in such a way that for ρ1 and ρ3 varying in [−ρmax, ρmax], the SM Higgs mass mh ranges
within 125 ± 1.5 GeV and vR ranges from 21 to 67 TeV. We have checked that changing ρmax within one order of
magnitude leads to very little change of (M±±1 , M±±2 ) or mh. Changing ρmax, however, has significant impact on vR.
Generally larger ρmax leads to smaller vR, which is the reason why we use a small ρmax here.

With the above parameter setting, we scan the parameter space and compute the mass spectrum of the doubly
charged Higgs bosons when the sample satisfies the global minimum requirement. The result is shown in Fig. 6, where
the yellow, green, and blue regions are the allowed regions by the global minimum requirement for ρ2 = 0.1ρmax,
0.2ρmax, and 0.5ρmax respectively. Note that the constraints presented in Fig. 6 are only for a very specific parameter
setting so they should not be interpreted as universal constraints on the mass spectra. Changing the parameter setting
can easily lead to significant changes of the constraints, as illustrated by different values of ρ2 in Fig. 6. It is still
interesting that there are certain mass ranges for the doubly charged scalars which are forbidden by our analysis and
can be used to test the model.

VI. CONCLUSION

We have performed a study on the vacuum structure of the left-right symmetric scalar potential. The goal was to
investigate whether the usually considered VEV alignment in Eq. (10) can be obtained from a generic scalar potential
as a global minimum. General criteria to identify a charge conserving and parity violating vacuum were derived (see
Eq. (27), and it was demonstrated that the potential parameters are subject to many constraints in order to achieve
this minimum. In general if we do not put any constraints on the potential parameters, as indicated by Fig. 3, the
probability to end up within the desired VEV alignment is very low, only 0.05%.

We have also analytically studied the minima of the potential in the absence of some terms and obtained conditions
that enable us to obtain the correct VEV alignment more easily, as shown in Fig. 4. By requiring that the corresponding
minimum is global in this case, we also illustrate the constraints on the potential parameters in Fig. 5.

Our work suggests that successful generation of the usually considered VEV alignment in standard left-right sym-
metric theories and keeping the vacuum absolutely stable would produce important constraints on the parameters of
the potential. These constraints may have interesting phenomenological consequences such as constraints on the mass
spectrum of scalar bosons, or the Higgs self-couplings, etc., which can be used to test the model. We have given the
example of doubly charged scalar masses in the model as an example.

The present paper can be a starting point for further and much more involved analyses along these lines, such
as analyzing loop-corrected effective potentials, investigating the vacuum lifetime of non-global minima, more phe-
nomenological consequences of the global minima, or studies of alternative left-right symmetric models.
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Appendix A: Deriviation of the seesaw relation of VEVs

In this appendix, we review the derivation of the seesaw relation between the left and right ∆ vevs. To do this let us
first, let us compute the six derivatives in Eq. (15) explicitly:

0 =
∂V

∂κ1
= 8κ2

2κ1λ2 cos 2θ2 + 2κ3
1λ1 + 2κ2

2κ1λ1 + 4κ2
2κ1λ3 − 2κ1µ

2
1

+2κ2 cos θ2

(
3κ2

1λ4 + κ2
2λ4 − 2µ2

2 + α2v
2
L + α2v

2
R

)
(A1)

+2β2κ1vLvR cos θL + β1κ2vLvR cos (θ2 − θL) + α1κ1v
2
L + α1κ1v

2
R ,

0 =
∂V

∂κ2
= 8κ2

1κ2λ2 cos 2θ2 + 2κ3
2λ1 + 2κ2

1κ2λ1 + 4κ2
1κ2λ3 − 2κ2µ

2
1

+2κ1 cos θ2

(
κ2

1λ4 + 3κ2
2λ4 − 2µ2

2 + α2v
2
L + α2v

2
R

)
(A2)

+2β3κ2vLvR cos (2θ2 − θL) + β1κ1vLvR cos (θ2 − θL)

+α1κ2v
2
L + α3κ2v

2
L + α1κ2v

2
R + α3κ2v

2
R ,

0 =
∂V

∂vR
= ρ3v

2
LvR + β2κ

2
1vL cos θL + β3κ

2
2vL cos (2θ2 − θL) + β1κ1κ2vL cos (θ2 − θL)

+4α2κ1κ2vR cos θ2 + α1κ
2
1vR + α1κ

2
2vR + α3κ

2
2vR − 2µ2

3vR + 2ρ1v
3
R , (A3)

0 =
∂V

∂vL
= β2κ

2
1vR cos θL + β3κ

2
2vR cos (2θ2 − θL) + β1κ1κ2vR cos (θ2 − θL) + ρ3vLv

2
R

+4α2κ1κ2vL cos θ2 + α1κ
2
1vL + α1κ

2
2vL + α3κ

2
2vL − 2µ2

3vL + 2ρ1v
3
L , (A4)

0 =
∂V

∂θ2
= −8κ2

2κ
2
1λ2 sin 2θ2 − 2κ1κ2 sin θ2

(
κ2

1λ4 + κ2
2λ4 − 2µ2

2 + α2v
2
L + α2v

2
R

)
−vLvRκ2 (β1κ1 sin (θ2 − θL) + 2β3κ2 sin (2θ2 − θL)) , (A5)

0 =
∂V

∂θL
= −β2κ

2
1vLvR sin θL + β1κ2κ1vLvR sin (θ2 − θL) + β3κ

2
2vLvR sin (2θ2 − θL) . (A6)

The first three equations can be regarded as linear equations of µ2
1, µ2

2, and µ2
3 so we can solve them with respect to

µ2
1, µ2

2, and µ2
3 without much effort:

µ2
1 =

(
α1κ

2
1 − α1κ

2
2 − α3κ

2
2

) (
v2
L + v2

R

)
2 (κ2

1 − κ2
2)

+
vLvR

(
β2κ

2
1 cos θL − β3κ

2
2 cos (2θ2 − θL)

)
κ2

1 − κ2
2

+2κ2κ1λ4 cos θ2 + κ2
1λ1 + κ2

2λ1 , (A7)

µ2
2 = κ1κ2 sec θ2 (2λ2 cos 2θ2 + λ3) +

1

2

(
κ2

1 + κ2
2

)
λ4 +

(
v2
L + v2

R

)(α3κ1κ2 sec θ2

4 (κ2
1 − κ2

2)
+
α2

2

)
+
κ1κ2vLvR [β3 cos (2θ2 − θL)− β2 cos θL] sec θ2

2 (κ2
1 − κ2

2)
+

1

4
β1vLvR sec θ2 cos (θ2 − θL) , (A8)

µ2
3 = 2α2κ1κ2 cos θ2 +

1

2
α3κ

2
2 +

1

2
α1

(
κ2

1 + κ2
2

)
+

1

2
ρ3v

2
L + ρ1v

2
R

+
vL
[
β2κ

2
1 cos θL + β1κ2κ1 cos (θ2 − θL) + β3κ

2
2 cos (2θ2 − θL)

]
2vR

. (A9)



19

Then substituting the solutions of µ2
1 , µ2

2 , and µ2
3 into Eq. (A4) gives(

v2
L − v2

R

) [
β2κ

2
1 cos θL + cos (θ2 − θL)β1κ2κ1 + cos (2θ2 − θL)β3κ

2
2 − (2ρ1 − ρ3) vLvR

]
= 0 , (A10)

which for v2
L − v2

R 6= 0 leads to the seesaw relation (16).
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