SUPPLEMENTARY INFORMATION https://doi.org/10.1038/s41596-019-0222-y ## A mass spectrometry workflow for measuring protein turnover rates in vivo Mihai Alevra^{1,5}, Sunit Mandad^{1,2,3,5}, Till Ischebeck⁴, Henning Urlaub^{2,3}, Silvio O. Rizzoli^{1*} and Eugenio F. Fornasiero 10 1* ¹Department of Neuro- and Sensory Physiology & Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany. ²Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany. ³Bioanalytical Mass Spectrometry Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany. ⁴Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany. ⁵These authors contributed equally: Mihai Alevra, Sunit Mandad. *e-mail: srizzol@gwdg.de; efornas@gwdg.de Supplementary Table 1: Exemplary labeling schemes including basic guidelines to optimize labeling | Feeding
scheme
number | Brief description of the feeding scheme | Suggested
number of
time points | Number of mice per time point | Total
number of
mice | Estimated food use (grams) | Estimated food cost (€/\$) | Suggested
1st feeding
time point
(days) | Suggested
2nd time
point
(days) | Suggested
3rd time
point
(days) | Suggested
4th time
point
(days) | Suggested
5th time
point
(days) | Estimated MS time
for two technical
replicates (days) | |-----------------------------|---|---------------------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|--|--|--|--|--|---| | 1 | Minimal design:
limits food consumption and
animal number | 3 | 1 | 3 | ~150 | ~1500 | 5 | 14 | 21 | - | | 6 | | 2 | Standard design:
allows to fit most of the
proteins with good precision | 3 | 3 | 9 | ~450 | ~4500 | 5 | 14 | 21 | | | 18 | | 3 | Design optimized for short-
living proteins*:
allows to optimize results for
short-living proteins | 3 | 3 | 9 | ~270 | ~2700 | 3 | 5 | 14 | | | 18 | | 4 | Design optimized for long-
living proteins*:
allows to optimize results for
long-living proteins | 3 | 3 | 9 | ~1200 | ~12000 | 14 | 30 | 60 | | | 18 | | 5 | Deluxe design: allows to obtain the most reliable results but requires very long MS machine times | 5 | 4 | 9 | ~1700 | ~17000 | 3 | 5 | 14 | 30 | 60 | 40 | $[\]star$ = lifetimes can be estimated from the Supplementary Data 1 from the key reference of this protocol: Fornasiero, E. et al. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat. Commun. (2018) Supplementary Data 1 ## Supplementary Table 2: Influence of biological and technical replicates on the lifetime determination | | Reference
(3 bio. and 3
tech. replicates) | 3 bio. replicates
and 1 tech.
replicate | 1 bio. replicate
and 3 tech.
replicates | 1 bio. replicate
and 1 tech.
replicate | |--|---|---|---|--| | Number of proteins with heavy vs. light ratios | · · · · · · | 2185 | 2188 | 1931 | | Average number of measures /protein | | 5.10 | 5.20 | 2.03 | | Precisely determined lifetimes | 2096 | 1839 | 1640 | 1410 | | Precisely determined lifetimes as % of reference | 100.00 | 87.74 | 78.24 | 67.27 |