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Humans commonly engage in a variety of search behaviours,
for example when looking for an object, a partner, information
or a solution to a complex problem. The success or failure of a
search strategy crucially depends on the structure of the
environment and the constraints it imposes on the individuals.
Here, we focus on environments in which individuals have to
explore the solution space gradually and where their reward is
determined by one unique solution they choose to exploit. This
type of environment has been relatively overlooked in the past
despite being relevant to numerous real-life situations, such as
spatial search and various problem-solving tasks. By means of
a dedicated experimental design, we show that the search
behaviour of experimental participants can be well described
by a simple heuristic model. Both in rich and poor solution
spaces, a take-the-best procedure that ignores all but one cue at
a time is capable of reproducing a diversity of observed
behavioural patterns. Our approach, therefore, sheds lights on
the possible cognitive mechanisms involved in human search.

1. Introduction

Many aspects of life can be seen as search for rewarding outcomes
[1,2]. Animals forage for food or mates [3,4], people search for
information in the Internet or for a smart move during a chess
game [5] and organizations search for new market opportunities
[6]. Search involves at least two main components: (i) sampling
solutions by exploring the environment, and (ii) collecting rewards
by exploiting the discovered solutions [1,2,6]. For example, a
hungry tourist searching for a place to eat in a foreign city will first
examine the surrounding streets and evaluate the quality of several
restaurants (exploration), before eventually deciding which one to
have dinner at (exploitation).

Exploration and exploitation are not always mutually exclusive
[2,7]. In fact, numerous search problems exhibit a structure where
the pay-off of every explored solution is immediately earned and
accumulates over time. This situation typically induces a dilemma
between exploring new solutions and exploiting known ones [8].
For example, in multi-armed bandit problems (MABs) a gambler
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needs to decide which of the many slot machines to play next, while simultaneously collecting the reward of [ 2 |
each decision [8,9]. Similarly, foraging hummingbirds combine feeding on nectar with the pursuit of finding
new flowers [2]. In other types of search problems, however, exploration and exploitation are temporally
separated. In these cases, as in the hungry tourist example, the reward is based on one single solution that
the individual chooses by stopping the exploration process and transitioning from exploration to
exploitation. This type of search problems has been studied for example in the sampling paradigm [10]
or in the secretary problem [11].

Another dimension along which search problems differ is how the environment can be explored [12].
In some situations, individuals can directly move between two distant solutions, irrespective of their
location. That is, they can jump between remote regions of the solution space, without the necessity to
move through all the intermediate solutions. Examples include search for information on the Internet,
where individuals are free to switch from one website to any other, or Mason and Watts’ network
experiment where participants harvest resources in a virtual landscape [13]. In other search problems,

*sosi/Jeunof/610Guiysgnd/aposjedos

however, jumps between distant solutions are not possible. In such problems, the exploration is
gradual, that is, it is constrained to the neighbourhood of the current solution. Our hungry tourist, for
example, can only evaluate the quality of the adjacent restaurants. Likewise, people searching for a
good solution to the travelling salesman problem in the experiment performed by Dry et al. [14] can
only add or remove one connection at a time, exploring the solution space gradually.

These two features of the search problem (i.e. the separation of exploration and exploitation and the gradual
exploration) can have a strong impact on the way individuals deal with search problems. Yet, research has
mostly focused on search problems where exploration and exploitation happen simultaneously (e.g. MAB
[15]; abstract search [16]; Lévy processes [17]; comparison of different paradigms [18]) and/or where jumps
in the solution space are allowed (e.g. correlated MAB [19]; sampling paradigm [10]; secretary problem [20];
random sampling [21]). Nevertheless, many search problems are characterized by separated exploration
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and exploitation phases and gradual exploration; examples include animals deciding where to hunt prey

[22,23], algorithms maximizing their reward in a reinforcement learning settings [24] and humans visually

searching for a lost item [25] or solving a complex problem [5,14]. How do people solve such search tasks?
In the present work, we focus on such type of problems by addressing two research questions:

(1) How do people explore their environment when only gradual movements are possible (i.e. jumps are
not feasible)?

(2) When do people decide to terminate the exploration and start exploiting one solution when these
two phases are temporally separated?

We address these two questions separately by means of a dedicated experimental design. In a first
experimental phase, we study specifically how people explore a two-dimensional solution space when
only gradual movements are allowed. In a second experimental phase, we study the decision to exploit a
solution, when exploration and exploitation are separated. We show that these two behavioural
components are well described by a simple model based on the take-the-best heuristic (TTB) [26,27].
A third experimental phase, combining exploration and exploitation, confirms that the full model has
captured the participants’ search strategies, both in rich and poor solution spaces. We conclude by
comparing the model to alternative approaches proposed in the literature.

2. Material and methods

We conducted an experiment in which participants were instructed to search for the best possible
solution in a landscape—a conceptual Euclidean representation of a solution space [13,28,29]. In a
landscape, each field represented one solution and was associated with one fixed pay-off. Participants
were given 30 rounds of search. In each round, they could move to one of the neighbouring solutions
or stay at their current one. Participants indicated their decision by clicking on the solution they
wanted to move to (see electronic supplementary material, figure Al for the experimental interface).
Movements to distant solutions that were not adjacent to the currently occupied one were not allowed
(gradual exploration). Participants saw the pay-offs associated with their current solution and to the
eight adjacent ones. We call trajectory the sequence of solutions a participant moved through during
the 30 rounds of the experiment. The experiment was divided into three phases (see also table 1):

(i) The exploration phase. In the first phase, participants were positioned in the centre of a squared
landscape containing 63 x 63 fields. The landscape was large enough to ensure that participants
could not reach its border within the allocated time. Participants were instructed to search for



Table 1. Description of the three experimental phases. Every phase consisted of 20 landscapes (divided into 10 rich and 10 poor [JEJ}
landscapes) played for 30 rounds each.

phase landscape size start reward

exploration two-dimensional 63 X 63 (32,32 highest pay-off
exploitation uni-dimensional 1% 63 0] pay-off in last round
combined two-dimensional 63X 63 (32, 32) pay-off in last round

the best possible solution and were rewarded based on the highest pay-off they found after 30
rounds of exploration. In such a way, we could focus solely on the exploration pattern, leaving
out the exploitation decision.

(ii) The exploitation phase. In the second stage, participants were placed at one end of a uni-dimensional
landscape, that is, a vector containing 63 solutions. They were rewarded according to the pay-off of
the field they occupied in the last round. With this design, we focus on how and when the
participants decide to stop exploring the solution space and start exploiting one solution.

(iii) The combined phase. In the third phase, participants were positioned in the middle of a quadratic
landscape containing 63 x 63 (as in the exploration phase) and rewarded according to the pay-off
of the position they occupied in the last round (as in the exploitation phase).

*sosi/Jeunof/610Guiysgnd/aposjedos

In each phase, participants played a total of 10 rich landscapes containing a high number of peaks, and 10
poor landscapes containing a low number of peaks. Rich and poor landscapes were presented to the
participants in a random order.
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2.1. Landscapes

The two-dimensional landscapes used in the exploration and combined phase were produced according
to the following procedure:

(i) We first generated n sub-landscapes. Each sub-landscape consisted of a 63 x 63 matrix filled with
zeroes, except for one randomly selected field that contained a random value drawn from a
normal distribution with mean zero and standard deviation one. We call this non-zero field
a peak. We then squared the peak value to avoid negative pay-offs.

(ii) We then applied a Gaussian filter with a standard deviation of one on each sub-landscape to
create a local gradient around the peak.

(iii) We finally merged the n sub-landscapes into a single one by selecting the highest pay-off across all
sub-landscapes at each coordinate.

We used n=32 and n =512 to create poor and rich landscapes, respectively. The uni-dimensional
landscapes used for the exploitation phase were generated by randomly selecting one horizontal line
from a two-dimensional landscape of the same type.

Finally, the pay-offs were rounded to the closest integer and linearly scaled between zero and a
random value between 30 and 80. This procedure generates landscapes similar to those shown in
figure 1. We call the normalized pay-off of a solution its actual pay-off divided by the highest pay-off
of the landscape.

2.2. Procedure and participants

Participants were recruited from the Max Planck Institute for Human Development’s participant pool
and gave informed consent to the experiment. The experimental procedure was approved by the
Ethics Committee of the Max Planck Institute for Human Development.

At the beginning of each phase, participants received information about the goal of the search, the
size of the landscape, the moving rules and completed a practice search. We recruited 50 participants
(28 female, mean age =26.1, s.d. =4.4). They received a flat fee of €12 plus a monetary bonus based on
their aggregated performance (€0.15 per 100 points, mean bonus=€2.46, s.d.=€0.48). The average
completion time was 35.31 min (s.d. = 10.67 min).
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Figure 1. Two examples of exploration trajectories (in red) in a poor (a) and a rich (b) landscape. The red dots indicate the
participants’ trajectory, i.e. the spatial position at each round. The colour coding of the landscape indicates the normalized pay-
off associated with each position (x, y). Participants always started in the middle of the landscape, at position (32, 32).

3. Results

3.1. Exploration phase

In the first phase of the experiment, we focused on how people explore their environment when jumps
are not permitted. For this, participants were instructed to search in a two-dimensional landscape of size
63 x 63 and rewarded based on the highest pay-off they found during 30 rounds of search. Figure 1 shows
two illustrative trajectories of participants in a poor and a rich landscape.

Overall, participants performed better in rich than in poor landscapes (the average normalized pay-off
was 0.33 with s.d. =0.21 in rich landscapes and 0.17 with s.d. = 0.26 in poor landscapes), but explored a
similar number of unique solutions (on average 26.1 and 27.2 fields visited in rich and poor landscapes,
respectively, with an s.d. of 6.64 and 5.39, respectively). In both environments, participants avoided
revisiting previously visited solutions. On average, the fraction of solutions visited more than once was
0.14 (s.d.=0.20). As a comparison, this fraction goes up to 0.57 (s.d.=0.10) for a completely random
exploration process, suggesting that participants are actively avoiding previously visited solutions.

To better understand the exploration mechanisms at play, we aggregated all trajectories (in poor and
rich landscapes separately) to generate the corresponding density maps. These maps indicate how often
each field has been visited relative to the others, irrespective of the peaks positions.

As shown in figure 2, the density map for the poor landscapes reveals a surprising X-shaped
exploration pattern, suggesting that participants have a preference for diagonal movements. This
pattern, however, is not visible in the rich landscapes.

Why do participants tend to explore along diagonal lines when peaks are rare but not when they are
abundant? Diagonal movements uncover up to five new solutions because it enables participants to
move simultaneously along the x- and y-dimensions. By contrast, vertical or horizontal moves can
only reveal up to three new solutions. Therefore, moving diagonally constitutes an efficient strategy to
extend one’s exploration range. The absence of the X-shaped exploration pattern in rich landscapes
suggests that participants might rely on another cue when peaks are frequent: the surrounding pay-off
values. In this case, participants are most likely to use a hill-climbing process consisting in moving to
the most-rewarding adjacent solution [30]. Overall, our data suggest that three rules are guiding the
exploration: (i) not returning to previously visited solutions (using the non-visited cue), (i) maximizing
the immediate pay-off by moving to the most-rewarding neighbouring solution (using the pay-off cue),
and (iii) maximizing the number of new solutions revealed (using the novelty cue). Figure 3 confirms
the important role played by these three components. We formalize these three rules in a simple
lexicographic model based on the TTB [26,27]. TTB assumes that decisions between multiple options
are made by ranking cues and then looking at only one cue at a time. If a cue discriminates, a
decision is made for the best option, and only otherwise the next cue is evaluated.

In our experiment, participants need to decide between nine different options in every round (that is,
moving to one of the eight neighbouring solutions or staying at the current one). To make that decision,
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Figure 2. Density maps for poor (upper line) and rich (lower line) landscapes in the exploration phase, as observed in the
experimental data (a) and obtained from numerical simulations (b). The colour coding indicates how often a given position
(x, y) has been visited at the aggregate level, represented in the logarithmic scale. The starting point of the search is located
in the middle of the map, at coordinates (32, 32). For the simulations, we randomly selected the same number of trajectories

as in the behavioural data to ensure comparable density scales.
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Figure 3. Frequency of decisions based on the three rules as observed in the experimental data and in numerical simulations (for
poor and rich landscapes). Box plots indicating the interquartile range (box), the median (horizontal line) and 1.5-times interquartile
range (whiskers). Outliers are shown as a single dot. (a) Non-visited cue. Proportion of movements towards a non-visited solution.
(b) Pay-off cue. Proportion of movements towards a non-visited solution with the highest pay-off. (c) Novelty cue. Proportions of
movements maximizing the number of new solutions revealed, when the non-visited cue and the pay-off cue do not discriminate. In
(), the decisions based on the novelty cue in poor landscapes are less frequent than predicted by the model, but remain
nevertheless higher than what a random search model predicts (40%). Overall, the three cues presented in (a—c) account for
68.8% of all the decisions made by the participants.

we assume that participants first look at the not-visited cue and stop if the cue discriminates (i.e. if only
one option has not been visited, that particular option is chosen and a decision is made). If the not-visited
cue does not discriminate, they consider the pay-off cue of the remaining options (if exactly one option has
a higher pay-off than all other options, that option is chosen and a decision is made). If the pay-off cue
still does not discriminate, they finally consider the novelty cue (that is the option that reveals the largest
number of new solutions is chosen). If two or more equivalent options remain at the end of the process, a

625061 19 s uado 205 'y sosy/jeunol/bioBusygndisaposeror [y



landscape
— poor
= rich

source
= experimental data

=+ numerical simulation

mean maximal normalized pay-off

round

Figure 4. Performance in the exploration phase. The highest normalized pay-off found as a function of time averaged over all
participants (solid line) or produced in simulations (dashed line). Error bars for the experimental data indicate the standard
error of the mean.

Table 2. Example of the TTB. The decision-maker can choose between nine options (as columns: the eight cardinal directions
and staying (@) knowing the three cue values for each option (as rows: non-visited, pay-off and novelty). In this example, the
decision-maker would first look at the non-visited cue for all options. This stage leaves seven possible non-visited options that
are then compared based on the pay-off cue. At this stage, one option scores better than the others (the ‘East’ option marked
in bold letters) and a decision is made in favour of it. The novelty cue is not examined. Green cells (resp. red cells) indicate cue
values that are considered (resp. ignored) during the decision.

options

random decision is made between them. Finally, we add a uniform noise parameter € to the model,
defined as a low probability to make a random choice between all available options. Table 2 shows an
example of how decisions are made according to our model. The model has one unique parameter,
namely, the noise level e. We fitted € by systematically varying it between zero and one and
comparing the highest pay-off per round to the experimental data (averaged over 8000 simulated
trajectories). The value €=0.17 minimizes the squared difference to the experimental observations
(figure 4). We keep € constant in the remainder of the study.

Once fitted to the pay-off curves, the resulting model also produces consistent patterns on other aspects
of the search behaviour, such as the X-shaped exploration pattern (figure 2) and the influence of the three
cues (figure 3). In the next section, we will extend this model to include the decision to exploit.

3.2. Exploitation phase

In the second phase of the experiment, we examine how people decide to stop their search and exploit a
previously discovered solution. For this, participants are positioned at one end of a uni-dimensional
landscape, and are rewarded based on the pay-off of the field they occupy at the last round. Unlike
the exploration phase, participants can only navigate along a line (i.e. by moving left or right).
Furthermore, they face a trade-off between the benefits of exploring as far as possible and the need to
be positioned at a sufficiently good solution after 30 rounds. Figure 5 illustrates this experiment.

The type of landscape directly impacted the participants’ performances (average final pay-off 0.60 in
rich landscapes and 0.47 in poor landscapes, with an s.d. of 0.36 and 0.46, respectively). On average
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Figure 5. Exploitation phase. (a) Example of a rich landscape used in the experiment. Participants always started at position x = 1
and could see the pay-offs associated with their current position and to the two neighbouring ones. In the first round, they could
only move to the right. Participants were rewarded based on the pay-off of their final position. (b) Trajectory of a participant
navigating in the landscape shown in (a). The red markers indicate the position in each round and the colour coding shows
the normalized pay-off of each position. In this example, the participant discovered a first peak at round 5 (at position x =5)
but continued her exploration. At round 15, a better solution is found (at position x =15). The participant continued her
exploration for 3 rounds before returning to her best solution and settling there until the end of the 30 rounds. Triangles
indicate that the current solution is the best that has been discovered so far (named X in the main text).

participants moved 20.6 fields (s.d. =9.93) and 13.2 fields (s.d. =8.71) away from their starting point in
poor and rich landscapes, respectively.

The trajectory shown in figure 5b illustrates that, after discovering a new best solution, participants
tend to continue searching for a more advantageous one before eventually returning back to it if no
better solution is found.

At any moment of time, we call Xy the best pay-off that the participant has discovered so far and Ppeg
the position of that best pay-off. We first ask the following question: How far do participants continue their
exploration after discovering Py, before coming back to it if no better one is found? From a normative point
of view, participants should start returning to Py as late as possible, such that their chance to discover a
better solution is maximized. This optimal exploration range simply equals to Doptimar = | Tiert /2], where
Tert is the remaining number of rounds. In such a way, the participant would arrive back at Ppq exactly
at the last round while having maximized her exploration range.

Looking into the behavioural data, however, it seems that participants only use a certain fraction of the
optimal exploration range (see, e.g. the example in figure 5b). That is, they start returning to their best option
too early with respect to Doptimat- Some participants even stop their exploration immediately when a new
Ppeqt is discovered, without using any of the remaining rounds for further exploration. In contrast, it also
happens that participants continue searching longer than Doptmar and hence do not return to Py at all.

To study this process, we measured the safety level S of our participants, defined as the fraction of the
optimal exploration range they used before returning to Ppes. That is, S=R/Dgptimal, Where R is the
distance a participant has actually moved away from Py before returning to it. With this definition,
S=1 indicates that all remaining rounds were used efficiently, S=0 indicates that the exploration has
stopped immediately after the discovery of the peak and S>1 indicates that the participant did not
return to Ppeg at all. Figure 6 shows the values of the safety levels S observed in our experiment, as a
function of the pay-off value Xpeqt.

Figure 6a reveals multiple zones of interest: (i) on the upper part of the figure, the stronger density of
data points around S = 0.9 indicating that participants often continued their search up to about 90% of the
optimal exploration range; (ii) on the lower part of the figure, however, the stronger density of data points
along S =0 indicates that participants often decided to stop their search immediately after discovering a
new peak. In this case, the probability to stop seems to be linearly increasing with the pay-off value Xpegt.
The case where S > 1 is most frequent when the value of Xpe is low (mean pay-off for S>1=9.38, s.d. =
9.05). In sum, participants tend to stop immediately if a sufficiently good peak is found and otherwise
continue their exploration before coming back to it with a certain safety time. If the pay-off of the
discovered peak is too low, however, they do not return to it.

Formally, the exploration range R around a newly discovered best solution Ppes can therefore be
defined as R=1 with a probability of k x Xpest, R =00 with a probability of 1 —1x X and R =S; x
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Figure 6. Safety level § as a function of the pay-off X,es, (@) as observed in the experimental data and (b) obtained from numerical
simulations. All incidents where Dopgimar < 2 0r $> 1 were excluded, as these cases neither show return nor staying behaviour. In
total, the removed incidents account for 26% of the data, of which 75% are cases where no pay-off bigger than zero is found at all.
To generate the heatmap, we first determined the safety level S for all trajectories where the participants returned to a previously
visited Pyesr. We then calculated the relative frequency for S given a certain Xyeq, Which are indicated by the colour coding.

Doptimar otherwise, where Doptimal = | Tlet/2] as previously defined. The parameter k describes the linear
influence of Xyt On the stopping probability (fitted value k=0.0051, s.e. =0.0003 using a linear model
applied to cases where S =0). The parameter [ describes the linear influence of Xpest on the probability
to ignore a peak (fitted value =-0.027, s.e.=0.005 using a linear model applied to cases where S>
1). The parameter S is the safety level that a person adopts and is sampled from a truncated normal
distribution A/ (u, 6%) bounded between zero and one (fitted values u = 0.806, s.e. =0.04 and 0> =0.364,
s.e.=0.03 using a maximum-likelihood estimator applied to all observations with S>0 and S <1).

How can the exploration model described in the previous section be extended to account for this
stopping process? Remarkably, only one additional cue in the TTB heuristic is sufficient to do so: the
exploration-radius cue, indicating whether a given option lies within the exploration radius R or not.
The general model is therefore composed of four cues—exploration-radius, not-visited, pay-off and
novelty—that are considered one at a time and in this order. In other words, the model simply
ensures that only options that are not too far from the current best pay-off are considered.
Interestingly, the returning behaviour does not need to be explicitly implemented in the model.
Instead, it emerges naturally. In fact, the exploration range R shrinks towards the current best solution
Ppest as the end of the allocated time is approaching (due to the dependency of R on the remaining
time Tien). Therefore, after a certain time, only decisions towards Ppes are considered, gradually
driving the individual back to its best solution.

The model reproduces the trends observed in the experimental data, in terms of pay-offs and
individual behaviours (figure 7) and shows a similar relationship between the pay-off Xy and the
safety level S (figure 6).

3.3. Combined phase

In the third experimental phase, participants performed the search task in two-dimensional landscapes
(as in the exploration phase) but were rewarded based on the pay-off of the field they occupy at the last
round (as in the exploitation phase). This phase, therefore, combines the exploration and the exploitation
processes that we previously studied separately, and allows us to evaluate the full model that we have
elaborated.

The average pay-off in the rich landscapes is higher than in the poor landscapes (average final pay-off
0.36, with an s.d. =0.20 and 0.24 with an s.d. =0.29 in the rich and poor landscapes, respectively). When
looking at the density maps, the X-shaped exploration pattern is visible in the poor landscapes but not in
the rich landscape, similar to the exploration phase (figure 8).
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Figure 7. Performance and behaviour in the exploitation phase. (a) Observed and simulated average normalized pay-off as a
function of time. (b) Frequency of exploration (moving away from Py.s) and exploitation (moving towards or staying at Ppeg)
as a function of time. Error bars for the experimental data indicate the standard error of the mean.
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Figure 8. Density maps for poor (upper line) and rich (bottom line) landscapes in the combined phase, as observed in the
experimental data (a) and obtained from numerical simulations (b). The colour coding indicates how often a given position
(x, y) has been visited at the aggregate level, represented in the logarithmic scale. The starting position is located in the
middle of the map, at coordinates (32, 32). For the simulations, we randomly selected the same number of trajectories as in
the behavioural data to ensure comparable density scales.

Does our full model reproduce these patterns? The same fitting procedure as in the exploitation phase
yields the parameter values k =0.011 (s.e. =0.003), [ = —0.022 (s.e. =0.012), u = 0.386 (s.e. =0.02) and o’ =
0.275 (s.e. = 0.01). Interestingly, these values are different from those fitted in the exploitation phase. The
decrease of k (the influence of X5 on the stopping probability) and 4 (the mean safety level) reflect the
fact that participants were satisfied with a lower pay-off and adopted a lower safety level than in the
exploitation phase. This can be explained by the greater complexity of the task, which reduced the
participants” willingness to move away from a discovered solution [2]. Despite this overall decrease of
u, we find a strong correlation between the participants’ safety level in this phase and in the
exploitation phase (Pearson’s correlation =0.42, d.f.=47, p<0.003, see also electronic supplementary
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Figure 9. Performances in the combined phase. Evolution of the average normalized pay-off, aggregated over all participants, as a
function of time in the experimental data and model simulations. Error bars for the experimental data indicate the standard error of
the mean.

material, figure A6), suggesting that the difference between the individual safety levels remained
somewhat stable.

The model predicts the emerging X-shaped exploration pattern (figure 8) as well as the evolution of
the average pay-offs (figure 9). Overall, this confirms that the full model has captured some of the key
mechanisms involved in the search process of the participants.

3.4. Model comparison

How well does our full model perform compared to alternative modelling approaches? Because most
models in the literature either focus on the exploration (e.g. [9,19,31]) or the exploitation mechanism
(e.g. [10,11,20]), we tested these two main components separately. For this, we first kept the
exploitation mechanism unchanged, and tested five different models for the exploration phase: (i) our
take-the-best model, (ii) a probabilistic variation of that model in which the individual chooses to rely on
the pay-off cue or the visibility cue based on the most-rewarding neighbouring solution [32,33], (iii) a
typical hill-climbing model where exploration is always directed towards the most-rewarding adjacent
position [34], (iv) a blind search model in which the exploration is only guided by novelty, and (v) a
random search model in which the next position is randomly chosen among the adjacent solutions. For
the probabilistic model, we fit a logistic regression to predict the probability of using the pay-off cue
over the novelty cue, depending on the most-rewarding neighbouring solution. The probability to rely
on the pay-off cue is 1 — 1/ 1309+030pma  where pnp,., is the pay-off of the most-rewarding
neighbouring solution (see electronic supplementary material, figure A7).

The results are presented in table 3. It appears that take-the-best predicts the experimental data best, in
terms of both the pay-off and the density map. Specifically, the three models that use the pay-off cue (take-
the-best, probabilistic, and hill-climbing) are in good agreement with the observed pay-offs pattern.
However, the X-shaped pattern observed in the experimental density maps can only be predicted when
using the novelty cue (see also the electronic supplementary material, figures A2 and A3).

We then evaluated the exploitation mechanism analogously, by keeping the exploration mechanism
unchanged, and tested four possible models for the exploitation phase: (i) a normative model in which the
individuals return to their best solution with no safety time, (ii) an early-stop model in which the
individuals stop exploring whenever the first peak is found [28], (iii) our returning model, and (iv)
simple returning, a variation of our model where individuals do not ignore peaks with low pay-off
[35]. The results are shown in table 4. The normative model strongly deviates from the observed pay-
off pattern, as participants tend to stop exploration and return to their best solution much earlier than
the simulated agents. Likewise, the early-stop model produces pay-off patterns that are inconsistent
with the observations (see electronic supplementary material, figures A4 and A5). The two remaining
models have similar performances: the returning model predicts the experimental data slightly better,
whereas the simple returning model has one less free parameter [36]. Remaining deviations from
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Table 3. Comparison of different exploration mechanisms. The first column indicates how much the model predictions deviate
from the observations with regard to the pay-off patter shown in figure 9. Formally, dist,,, .« measures the squared difference
between the observed and the predicted pay-off curves. The second column indicates the deviation of the predictions with
regard to the density map (figure 8). Here, distyensiyy Measures the absolute average difference between each position of the
observed and the predicted density maps. To assess the prediction accuracy we used a k-fold cross-validation (k=5) and out-of-
sample predictions for calculating disty,y.ofr and distgenity [36]. The last two columns indicate the number of free parameters of
the model and the number of cues used in the exploration mechanism. All five exploration models are tested in combination
with the returning model for exploitation (table 4).

distgensity parameters
take-the-best 2.83 0.68 1 3
. probébilis‘ti‘c S S S
blind search 696 w6 0 2
s

Table 4. Comparison of different exploitation mechanisms. The values of disty,y.of and distgensiy measure the difference between
observations and model’s predictions, in terms of pay-off patterns and density maps, respectively (see table 3 for formal
definitions). All four exploitation models are tested in combination with the take-the-best model for exploration (table 3).

distpay-off distgensity parameters

returning

simple returning . .
early-stop

normative

observed data in the TTB model can be attributed to some of the model’s simplifications, such as ignoring
a possible time-dependency of the safety level S (see electronic supplementary material, figure A8).

4. Discussion

Search problems can vary on many different dimensions. We investigated how people search for a rewarding
outcome in problems characterized by gradual exploration (i.e. when jumps between distant solutions are
not allowed) and a temporal separation between exploration and exploitation. This type of search is
relevant for numerous real-life situations, such as visual search, spatial search and most problem-solving
situations [5,14,24,25]. On that account, we have developed a dedicated experimental design enabling us
to isolate the exploration from the exploitation mechanisms. We then modelled these two components
separately, before merging them in a full and comprehensive model of search.

We described the participants’ behaviour by means of the TTB heuristic. With that approach, four
cues can describe the exploration and exploitation behaviour of the participants: the exploration-radius
cue, the non-visited cue, the pay-off cue and the novelty cue. While TTB constitutes a valid model to
describe how people make decisions between two options [37], we have shown that it can also be
used to describe search behaviours.

Recent research on human search behaviours distinguishes between directed and undirected
exploration [19,31,32]. In multi-armed bandit tasks undirected exploration refers to the stochasticity of
the search process causing random exploration decisions. By contrast, directed exploration seeks out
solutions that are informative about the underlying reward distribution [32]. Both components play an
important role in solving the exploration-exploitation dilemma and are often considered as ‘two core
components of exploration” [31]. Our full model stands along the same lines: the noise parameter e
accounts for undirected exploration, whereas the novelty cue guides the exploration towards unknown
regions of the solution space and hence accounts for directed exploration.
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Our experimental data revealed that the decision to stop exploration and start exploiting a solution relies
on a satisficing behaviour [35]. That is, participants exhibited a tendency to terminate their exploration
immediately when a good enough solution is found, even though more time was still available. In this
context, the idea of satisficing seems inefficient as individuals overlooked an opportunity to explore new
solutions and come back to their best solution only when time was running out. Research has shown that
satisficing—and thus deliberately reducing the exploration range—can be adaptive when the number of
solutions is much larger than the individual’s search horizon [35] and when exploration is too difficult
compared to its expected reward gain [38]. In our design, continuing the exploration after the discovery of
a sufficiently good solution creates a risk of not finding it again when returning to it. This uncertainty
should grow as the size of the solution space increases. In agreement with this idea, we observed that
participants were satisficed earlier in two-dimensional landscapes than in uni-dimensional ones.

We also observed a correlation between the participants’ safety levels across the different phases of
the experiment. That is, participants who exhibited a higher safety level in the exploitation phase were
also more likely to show a higher safety level in the combined phase (and respectively, for a lower
safety level). Interestingly, the safety level reflects the participant’s propensity to take risks: the longer
individuals continue to explore after finding a peak, the higher their risk of not finding the peak
again. The consistency of the observed safety levels across phases thus agrees with risk research
showing that people’s risk preferences tend to be stable over time and tasks [39].

In our experiments and simulations, we systematically compared two specific types of search
environments: rich and poor landscapes, which differ in the number of peaks that are present.
Nevertheless, other structural aspects of the search environment could be varied as well, such as the
peaks widths, heights or locations. This last feature is particularly useful to create ‘patchy’ landscapes
in which peaks tend to be clustered in specific regions of the search space [40]. Additional simulations
presented in figures A2-A4 in the electronic supplementary materials show that our heuristic model
seems to behave realistically in this new type of environments, although these predictions still need to
be tested experimentally. Future work will investigate if heuristic models similar to our TTB approach
could be generalized to describe people’s search behaviour in different types of environments,
including such patchy landscapes.
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