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The possible existence of phase-incoherent superconductivity in the normal state of cuprates 

is one of the grand unsolved problems of modern condensed matter physics. Optical 

spectroscopy shows that long-range superconducting correlations disappear at Tc, although 

other momentum-integrated probes provide evidence for residual coherence in the normal 

state. Here, we use nonlinear TeraHertz spectroscopy to excite and probe coherent charge 

fluctuations in YBa2Cu3O6+x at frequencies and wavevectors that lie outside the light cone 

accessed by linear optics. In the superconducting state, we show that three-wave mixing 

between one optically driven phonon and two Josephson Plasma Polaritons excites coherent 

c-axis supercurrents at 2.4 THz and at in-plane wavevectors qy > 1000 cm-1. As Tc is crossed, 

these finite momentum supercurrent oscillations evolve continuously into a seemingly 

identical charge fluctuation mode, which survives up to the pseudogap temperature T*. We 

argue that these results are best explained by the existence of short-range superconducting 

fluctuations throughout the pseudogap phase of YBa2Cu3O6+x.  

  



The far-infrared optical properties of high-Tc cuprates display more than one signature of 

superconductivity, including a number of resonances that reflect Josephson tunneling between 

CuO2 planes1,2. Figure 1 displays the frequency-dependent c-axis energy-loss function !(w) =

−&'(1/(*+ + -*.)) (Figure 1a) and the frequency-dependent optical conductivity /+(w) (Figure 

1b), measured in YBa2Cu3O6.5 above and below the superconducting transition temperature Tc = 53 

K (grey curve, T = 300 K; red curve, T = 10 K)3. Long range superconducting coherence is 

evidenced in these spectra by two peaks in the loss function, observed at the so-called Longitudinal 

Josephson Plasma frequencies 0123+ = 0.9 THz and 0123. = 14.2 THz. One additional peak is 

observed in the real part of the optical conductivity /+(w) at 04 = 10.2 THz, reflecting a transverse 

Josephson Plasma mode separated from 0123. by a 4-THz wide reststrahlen band3,4,5,6. Consistent 

with the in-plane optical properties in this and other compounds7,8, the disappearance of 

superconductivity is evidenced here most directly by the temperature-dependent 0.9-THz loss 

function peak (Figure 1c), which vanishes at Tc. Note that this peak has a different temperature 

dependence when compared to all the phonon resonances, which exhibit anomalies at Tc but remain 

finite and approximately temperature independent in the normal state (see Figure 1d)4,9.  

Other features associated with the superconducting condensate, such as the 10.2-THz transverse 

mode observed in	/+(w), have been shown to survive up to temperatures higher than Tc10,11, and 

interpreted as indicative of short-range superconducting correlations surviving within the bilayers 

of YBa2Cu3O6+x. Furthermore, other probes that are sensitive to momentum integrated responses, 

which include the superconducting Nernst effect12,13,14,15,16 and measurements of electrical noise17, 

provide evidence of residual coherence in the normal state.  

In this work, we used TeraHertz three wave mixing to study superconducting fluctuations in 

YBa2Cu3O6+x at wavevectors that lie outside the light cone. The excitation geometry is shown in 

Figure 2a. A femtosecond 17-THz-frequency mid-infrared pulse with stable carrier-envelope phase 



offset18,19 and with polarization aligned along the c-axis of YBa2Cu3O6+x, was used to resonantly 

drive lattice vibrations that modulated the position of the apical oxygen atoms3 (see Figure 2a). 

These large amplitude phonon oscillations can be described as a spatially homogenous excitation 

at the center of the Brillouin zone (67 = 0,	 6: = 0). The phonon coordinate ;<3(=) follows the 

equation of motion of a linear damped harmonic oscillator driven by the laser field: ;̈<3 +

2@<3;̇<3 + B<3
. ;<3 = C∗E(=). In this equation, C∗ is the Born effective charge tensor appropriate 

for each phonon resonance, B<3  is the angular frequency and @F the dissipation constant for the 

phonon. The pulsed laser electric field is E(=) = EGsin	(B<3=) ∙ exp(− =. O.⁄ ).  

The relevant interlayer superconducting tunneling modes are described as dispersive Josephson 

Plasma Polaritons, collective modes of layered superconductors that arise from coupling between 

the supercurrents and electro-magnetic fields. In bilayer YBa2Cu3O6+x, two plasma polariton modes 

are found, a lower energy mode that involves current flow between bilayers, and a higher energy 

one involving intra-bilayer supercurrents (see Figure 2).  

To derive the equations of motion for these Josephson Plasma Polaritons when these are coupled 

to the driven lattice vibrations, one first needs to supplement Maxwell equations with the relations 

between the supercurrents and electromagnetic fields. The latter can be obtained directly from the 

kinetic energies of the interlayer tunneling and in-plane superflow, referred to here as E1QRS and 

E1TUVSW , respectively. The expression for these energies is E1QRS 	= −XS,SY+cos \]S − ]SY+ −
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` is the in-plane superfluid velocity, 

which itself is a function of the in-plane order parameter gradient ∇]7,: and of the vector potential 

`. In these expressions, 2n is the Cooper pair charge and o the speed of light.  



The apical oxygen phonons excited by the pump are infrared-active and hence symmetry odd, and 

modify the local superfluid densities in a bilayer structure in a way that is antisymmetric with 

respect to the two layers (see Figs. 2a and 2b), phi{+,.} ∝ ±;<3 . The effect of these vibrations on 

the in-plane superflow is then to increase and decrease the kinetic energy E1TUVSW  in neighbouring 

planes in an oscillatory fashion, and can be written as (see Supplementary Materials for details): 

 

pE1TUVSW = phi+ji+
. + phi.ji.

. ∝ ;<3(=)(ji+ − ji.)(ji+ + ji.) 

 

The two types of finite-momentum tunneling modes are excited with X+~ji+ − ji. and X.~ji+ +

ji., respectively. Physically, c-axis currents X+ and X. are driven by the lattice excitation because 

the changes in the in-plane kinetic energy also involve perturbed in-plane gradients of the order 

parameter phase ∇], which then makes the c-axis tunneling dependent on the in-plane coordinate.  

The equations of motion for the plasmons are then  

 

X+̈ + 2@1fX+̇ + B1f
. v67+, 6:+wX+ = −x6.;<3(=)X. 	

X.̈ + 2@1yX.̇ + B1y
. v67., 6:.wX. = −x6.;<3(=)X+ 

 

where B1fv67+, 6:+w	describe the in-plane equilibrium dispersion of the Josephson Plasma 

Polariton.  

These equations predict three-wave mixing between the apical oxygen phonons and the upper and 

lower Josephson Plasma Polaritons, leading to the excitation of damped harmonic oscillations for 

X+ and X. at finite momenta along the two-dimensional dispersion of Figure 2c, with a driving term 

x6.;<3(=)X.,+. Note that the driving term depends on the momentum of the plasma polariton as 6., 



it is zero for long wavelengths (6	= 0) but naturally couples to supercurrents at finite in-plane 

wavevectors. The two equations of motion predict that the phonon excites pairs of Josephson 

Plasma Polaritons with frequencies that satisfy B+ + B. = B<3 , driven at opposite in-plane momenta 

(67+ = −67. or 6:+ = −6:.). 

A numerical solution of these equations of motion is shown in the color-coded dispersion of Figure 

2c and 2d. There, the three-wave mixing process is shown to couple preferentially the driven 

phonon to plasma polaritons at in-plane momenta 6: ~ 1500 cm-1 (l ~ 6.7 µm) where phase 

matching can take place. Because of the pump optical field is screened in the propagation direction 

(perpendicular to the optical surface) over a skin depth of ~1.5 µm, phase matching is inefficient 

along x (see Figure 2c). This results in the excitation of pairs of high (intra bilayer) and low (inter 

bilayer) frequency Josephson Plasma Polaritons, which propagate along the optical surface 

X+(B+,+	6:) and X.(B.,	−6:), or X+(B+,	−6:) and X.(B.,	+6:). The corresponding responses in time 

and frequency are shown in Figures 2e and 2f, which display the calculated momentum-integrated 

time profile and a combined spectrum for the three fields involved X+, X.and ;<3, which resonate at 

2.4 THz, 14 THz and 17 THz.  

Note that other mechanisms can couple the driven phonon to Josephson Plasma Polaritons, such as 

those that descend from the modification of the interlayer Josephson coupling strength, for example 

by modifying the dielectric constant between the bilayers20. However, symmetry requires that this 

coupling scales with ;<3.  and is to be thought of as a four-wave mixing process between two 

phonons and two Josephson Plasma Polaritons, which is weaker, not frequency resonant and hence 

not taken into account at this stage. Furthermore, at the field strengths used in these experiments 

the lattice response is expected to involve also high-order phonon harmonics21 and coupling 

between otherwise normal lattice modes22,23,24,25. However, for the purposes of the present 

discussion, these lattice-only nonlinearities are also neglected.  



The prediction of a three-wave mixing between apical oxygen phonon and two Josephson Plasma 

Polaritons was validated in pump probe experiments on YBa2Cu3O6.48 that combined the excitation 

of phonon oscillations at 17 THz frequency with time resolved reflectivity measurements from the 

excited surface using a near-infrared (800-nm) optical pulse of 30 fs duration (see Figure 3a). The 

probe pulse was polarized along the same c-axis direction of the mid-infrared excitation and was 

delayed in time with respect to the pump. The 30-fs duration of the optical probe corresponded to 

a Nyquist sampling frequency of approximately 17 THz, and could resolve the amplitudes of all 

the plasma modes and of the driven phonons without deconvolution.  

As shown in Figure 3, we recorded two quantities as a function of time. First, we measured the 

time-dependent linear reflectivity ∆{(=) (Figure 3b), which exhibited coherent oscillations 

associated with zone-center totally-symmetric modes of Ag symmetry through Stimulated Ionic 

Raman Scattering24. Second, we measured the time-dependent second harmonic intensity ∆&|}(=), 

which was generated by the 800 nm probe below the surface (Figure 3c)26. The measurement of 

∆&|}(=) enabled detection of all the coherently excited infrared-active optical phonons and the 

Josephson Plasma Polaritons27,28,29, which are symmetry-odd and hence modulated the second-

order susceptibility ∆c.(=) in time (see Supplementary Materials). As shown schematically in 

Figure 3a, for a time dependent second harmonic occurring at momentum 6:=1500 cm-1 (see 

calculation in Figure 2d), one expects second-harmonic radiation diffracted over a broad set of 

angles centered around ∆] =	1.8 degrees from the specular reflection. A lens was used to collect 

all the second harmonic scattered from the sample and to focus it on a photo-multiplier. An 

interference filter blocked the linear reflection at 800 nm wavelength (see Supplementary 

Materials).  

Figure 4 reports the measured oscillations in second harmonic intensity in the low temperature 

superconducting state (T = 5 K ≪ Tc = 53 K), extracted from the traces similar to that reported in 



Figure 3c by subtracting the slowly varying non-oscillatory contributions to the signal. In Figure 

4a we display measurements obtained in the superconducting state for the weakest phonon 

excitation (500 kV/cm peak electric field). The corresponding spectrum (Figure 4b) displays two 

groups of peaks. Two different phonon modes at 17 and 20 THz were observed (shaded in yellow), 

which were directly driven by the pump. Indeed, although the pump was tuned to be resonant with 

the 17 THz mode, its finite frequency bandwidth (17 THz ± 5 THz) covered a second apical oxygen 

mode at higher frequency. At lower frequencies, we detected two Josephson Plasma Polariton 

modes (shaded in red and magenta) at 2.3 and 14 THz, as predicted by the theory in Figure 2f, and 

indicating that even at this relatively small excitation field the nonlinear coupling between the 

phonon and the plasma oscillations was activated.   

The results for strong excitation (7 MV/cm) are reported in Figures 4c and 4d. The same two sub-

harmonic peaks at 2.3 and 14 THz are observed, with larger amplitude than those reported in 

Figures 4a and 4b. Note that for this excitation field a number of additional peaks (shaded in grey 

in Figure 4d) were observed at 4, 6, 8 and 10 THz, which correspond to known infrared-active 

phonons at or near zero momentum. These are excited by a higher order, phononic four-wave 

mixing process25, not discussed here (see Supplementary Materials for details).   

In Figure 5a, we report the pump-field dependence of the 2.3-THz Josephson Plasma Polariton 

amplitude. As both phonon and plasmon amplitudes were measured simultaneously with the phase 

sensitive probe, X+(;<3) was extracted directly from the data. The appropriateness of our model is 

underscored by the plot in Figure 5b, which displays the same scaling in the calculated X+ at several 

;<3 values.  

We next turn to the temperature dependence of X+. As the low frequency Josephson Plasma mode 

participating in the three-wave mixing process disappears at Tc in the linear optical spectra of 

Figure 1, one would expect the oscillations in second harmonic to disappear at the same 



temperature. This expectation is contradicted by our experiments. Figures 6a and 6b show the 

temporal oscillations and corresponding spectra for three representative base temperatures of 5 K 

(red), 300 K (light red) and 440 K (grey). The same modes reported in Figure 4 are observed here, 

and are found to extend far above the equilibrium critical temperature Tc, and to vanish only above 

T = 400 K. A more extensive temperature dependence is displayed for the 2.3-THz coherent mode 

in the range between 5 K and 440 K (Figure 6c), and compared to the response of the equilibrium 

Josephson Plasma mode at 0.9 THz, which disappears at Tc. As in the equilibrium spectra, this 

temperature dependence is different from that of the infrared-active phonons (Figure 6d), which 

exhibit only an anomaly at Tc and a temperature independent amplitude in the normal state. Finally, 

we report X+(;<3) measured at two temperatures, T = 5 K and T = 300 K, in which we find a similar 

exponential growth as that reported in Figure 5a. This scaling is characteristic of parametric three-

wave mixing and is further validation of the predictions discussed above. 

The same experiments discussed above for YBa2Cu3O6.48 were repeated for YBa2Cu3O6.65. 

Identical features were observed as those discussed above, including the excitation of Josephson 

Plasma Polaritons at 2.8 THz and 15 THz. These frequencies were higher than those observed for 

YBa2Cu3O6.48, because in YBa2Cu3O6.65 the plasma polaritons were shifted to the blue due to the 

larger c-axis superfluid density (see Supplementary Material) and exhibited a slightly different 

dispersion due to the stronger in-plane inductive coupling. As observed in YBa2Cu3O6.48, the 

plasma modes for YBa2Cu3O6.65 also extended far above Tc.  

Figure 6f displays the temperature dependences of the low-frequency Josephson Plasmon Polariton 

amplitude for the two doping levels, along with an empirical mean-field fit ∝ �1 − O/OÄ that 

yields two critical temperatures OÄ ≈ 380	K and OÄ ≈ 280	K for YBa2Cu3O6.48 and YBa2Cu3O6.65, 

respectively. Strikingly, for these two doping values the measured OÄ values agree well with the 

corresponding pseudogap temperatures O∗16,30,31,32, pictorially displayed in Figure 6g.  



The body of evidence reported above provides useful perspective for the physics of high-Tc 

cuprates. Finite momentum (qy > 1000 cm-1) interlayer tunneling fluctuations, occurring at 

frequencies of 2.4 and 2.8 THz for YBa2Cu3O6.48 and YBa2Cu3O6.65, respectively, were observed 

below Tc. However, unlike the zero momentum peaks detected in linear measurements (see Figure 

1), these TeraHertz modes were not observed to disappear at Tc but extended smoothly into the 

pseudogap phase and up to room temperature. 

Whilst the measurement of these excitations alone is per se not a conclusive demonstration of 

superconductivity in the normal state, the fact that these fluctuations are connected smoothly across 

Tc points to a similarity between the superconducting mode below Tc and the charge oscillations 

above it. Furthermore, the observation of normal state interlayer tunneling with relaxation rates far 

in excess of 1 ps is difficult to reconcile with incoherent charge dynamics characteristic of the 

pseudogap phase of cuprates.  

Note also that no other symmetry-odd mode could explain these oscillations. The lowest frequency 

optical phonon in this material is approximately at 4.5 THz, and remains at approximately the same 

frequency for the range of qy wavevectors reported here. Equally, acoustic phonons dispersing out 

from q = 0 are far too weakly dispersive to hybridize with the charge modes of Figure 2c and 2d at 

these wavevectors, as the speed of sound is many orders of magnitude smaller than the group 

velocity of the Josephson Plasma Polaritons discussed here (approximately 1% of the speed of 

light). Finally, as shown in the temperature dependence of Figure 6c, the 2.4 THz oscillations 

disappear at T*, whereas all optical phonon peaks remain constant with temperature. 

We propose that the coherent charge modes observed in the normal state are more convincingly 

explained by hypothesizing the existence of high temperature superconducting fluctuations at 

frequencies of a few TeraHertz and correlation lengths of several microns33, possibly connected to 

condensation at finite momentum34,35,36,37. These fluctuations lie at frequencies and wavevectors 



outside the light cone, and hence have remained undetected to date. We also note that the higher 

frequency intra-bilayer fluctuations near 12 THz lie at the edge of the light cone, which may explain 

why these are observed in linear optical spectroscopy at temperatures above Tc,10 whilst the lower 

energy inter-bilayer modes are not. 

Note that the experimental method reported here is not generally applicable to all compounds and 

to all dopings, as it relies on the frequency matching between the apical oxygen excitation and the 

two plasma polaritons. For example, in the case of doping levels closer to optimal doping we did 

not find evidence for any charge modes, as the three-wave frequency resonance is not fulfilled (see 

data for YBa2Cu3O6.92 in the Supplementary Materials). Hence, the insight gathered here should be 

validated by more comprehensive methods such as Resonant Inelastic X-ray Scattering38,39 and 

high-resolution Electron Energy Loss probes40. However, our experiments open up new 

perspectives of frequency resonant wave mixing as a new means to study cooperative phenomena 

in quantum materials. Finally, we note that the results reported here may provide a microscopic 

explanation for the observations reported in previous work, in which similar types of phonon 

excitation were shown to give rise to characteristic reflectivity edges and conductivities associated 

with superconducting behavior 41,42,43.   

 

 

 

 

 
 

 



 

 

 

Figure 1| Linear THz optical properties of YBa2Cu3O6.5. a and b, Energy loss function !(w) =

−&'(1/(*+ + -*.)) and real part of the optical conductivity /+(w) along the c-axis of YBa2Cu3O6.5 

for temperatures of 10 K (red lines) and 295 K (grey lines), respectively. The red and magenta 

shaded peaks highlight the Josephson Plasma modes described in the text. The remaining 

resonances can be ascribed to infrared-active lattice vibrations (see Refs. 3 and 42).  c and d, 

Temperature dependence of the oscillator strengths of the low-frequency Josephson plasmon (red-

shaded peak at 0.9 THz in panel a) and of the infrared-active phonon modes.  



 

 



Figure 2| THEORY. Nonlinear excitation of Josephson plasmons at finite momentum. a, An 

intense mid-infrared pulse, propagating along the crystal a-axis and polarized along c, resonantly 

excites oscillations of the apical oxygen atoms (yellow-shaded motion). b, Sketch of the two 

Josephson Plasma modes at q = 0, with the supercurrents oscillating in-phase (J1) or out-of-phase 

(J2) for the low and high frequency mode, respectively. The thicknesses of the arrows indicate the 

supercurrent strengths between and within the bilayers. c, Dispersion of the two Josephson Plasma 

Polaritons along the in-plane momenta qx and qy, with the red lines being a cut through the qx = 0 

plane. The apical oxygen phonon mode at 17 THz (yellow) does not disperse along either direction. 

The red and blue surfaces represent nonlinearly excited Josephson Plasma Polaritons in response 

to the resonant drive of the apical oxygen phonon at q = 0. The response vanishes along qx, parallel 

to the light propagation direction. d, Detailed insight into the simulation results along qy (for qx = 

0). The driven phonon with zero momentum excites a pair of Josephson Plasmon Polaritons, J1 and 

J2, with opposite wavevectors qy and frequencies that add up to the phonon frequency. The two 

processes for mirrored momentum transfer are shown as red and blue arrows, respectively. e and 

f, Time-dependent momentum-integrated Josephson Plasma oscillations, obtained by solving the 

equations of motion described in the text. The corresponding Fourier amplitude spectrum shows 

peaks at n1 = 2.3 THz (red) and n2 = 14 THz (magenta), which are plotted together with the Fourier 

spectrum of the driven phonon at 17 THz (yellow). 

  



 

Figure 3| EXPERIMENT. Optical probe geometry and time-resolved changes. a, Schematic 

of the probe geometry. The 800-nm pulse was polarized along the YBa2Cu3O6.48 crystal c-axis and 

perpendicular to the CuO2-planes. Light at the fundamental reflects from the sample at the specular 

direction (grey arrow) whilst second harmonic frequencies (red arrow) exit at a small angle ∆] 

from there, due to diffraction from the spatially modulated nonlinear polarization that arises from 

the finite-momentum Josephson Plasma Polaritons (red stripes, 1/qplas ~ 6.7 µm). b, Time resolved 

linear reflectivity at 800 nm wavelength, showing coherent modulations due to fully symmetric 

Raman phonon modes. c, Time resolved second harmonic intensity at 400 nm wavelength (red 

circles) and a numerical fit to the non-oscillatory component of the signal (dashed line). 



 

Figure 4| EXPERIMENT. Coherent oscillations in second harmonic intensity in the 

superconducting state. a and b, Coherent signal of the SH intensity at low excitations fields (E = 

500 kV/cm) and the corresponding Fourier amplitude spectrum at T = 5 K, well below the critical 

temperature TC = 48 K. The peaks at n1 = 2.3 THz and n2 = 14 THz (red and magenta) are ascribed 

to coherent oscillations of the Josephson Plasma modes. The high frequency oscillations at 17 and 

19.5 THz (yellow peaks) are coherent symmetry breaking apical oxygen vibrations, resonantly 

driven by the excitation pulse. c, Coherent SH response at higher excitations fields (E = 7 MV/cm) 

at the same temperature. d, Fourier amplitude spectrum corresponding to the strong field excitation, 

showing the same coherences of panel a and b. The grey peaks label additional phonons nonlinearly 

coupled to the resonantly driven lattice modes.  

  



 

Figure 5| EXPERIMENT. Excitation field dependence of the low-frequency Josephson 

Plasma Polariton. a, Measured amplitude of the low frequency Josephson Plasmon JJPR plotted as 

a function of the driven apical oxygen vibration amplitude QIR, both extracted from similar data as 

shown in Figure 4, for different strengths of the mid-infrared excitation field. The dashed line is an 

exponential fit X(;) = x ∙ (n
ÖÜ

á − 1) to the data. Error bars represent the standard deviation s of 

the amplitudes extracted by numerical fits. b, Theoretically expected amplitudes JJPR plotted against 

QIR, both obtained from the calculations presented in Figure 2 for different mid-infrared excitation 

field strengths. The dashed line is the same fit as of panel a, scaled by a constant factor.  

  



 

 



Figure 6| EXPERIMENT. Temperature dependence of the coherent Josephson Plasmons. a,  

Coherent plasma oscillations in the SH Intensity of YBa2Cu3O6.48 for three different temperatures 

(5 K, red; 300 K, light red; 440 K, grey). b, Fourier amplitude spectra to the curves shown in panel 

a, divided into the Josephson Plasma modes (red and magenta), the driven apical oxygen modes 

(yellow) and the nonlinear lattice response (grey). c, Temperature dependence of the nonlinearly 

driven low frequency plasma amplitude (red dots) fitted by a mean-field law ∝ �1 − O/O∗ (red 

line), together with the temperature dependence of the equilibrium Josephson Plasma mode in the 

superconducting state (dashed line). d, Temperature dependence of the amplitude of the nonlinearly 

coupled infrared-active phonons. The grey line is a guide to the eye. e, Excitation strength 

dependence at low temperature (red circles, 5 K) and high temperature (light red circles, 300 K), 

similar to the plots shown in Figure 5a. f, Temperature dependent Josephson Plasma amplitudes of 

YBa2Cu3O6.48 (red circles) and YBa2Cu3O6.65 (dark red circles). The lines are fits to the data with a 

mean-field approach ∝ �1 − O/O´, yielding O´ = 380	K for YBa2Cu3O6.48 and O´ = 280	K for 

YBa2Cu3O6.65. g, Phase-diagram of YBa2Cu3O6+x, showing the regions of equilibrium 

superconductivity (red) and the pseudogap (grey). The temperatures O´, above which the coherent 

Josephson Plasmon oscillations of our study disappear, are shown as red circles. They agree well 

with the pseudogap temperature O∗ extrapolated from Nernst effect measurements (grey line)16. 

Error bars were obtained by repeating our experiments under equal conditions and represent a 

standard deviation s. 
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Sample preparation 

The samples are detwinned single crystals of YBa2Cu3O6+δ grown in Y-stabilized zirconium 

crucibles. The hole doping of the Cu-O planes was adjusted by controlling the oxygen content 

of the CuO chain layer through annealing in flowing O2 and subsequent rapid quenching.44 The 

critical temperatures of the superconducting transitions were determined by dc magnetization 

measurements (Tc = 45 K for YBa2Cu3O6.48, Tc = 67 K for YBa2Cu3O6.65 and Tc = 94 K for 

YBa2Cu3O6.92). 

For the optical experiments, bc-surfaces of the single crystals were polished to optical grade 

with a final lapping step at 100 nm grid size. The samples were then mounted into an optical 

cryostat where their temperature could be controlled between 10 and 450 K. 

 

Optical setup 

The carrier envelope phase (CEP) stable mid-infrared pump pulses were obtained by mixing 

the two signal beams from two optical parametric amplifiers, which were seeded by the same 

white light and pumped by 30-fs pulses at 800 nm wavelength and 1 kHz repetition rate. The 

pulses were 150 fs long and centered at 17.5 THz with a bandwidth of 5 THz. The driven 

dynamics in the YBa2Cu3O6+x samples were probed by time-delayed replicas of the 800-nm 



pulses, in non-collinear geometry with an angle of ~17° to the normal-incidence mid-infrared 

pump (see Fig. S1). 

The pump induced polarization rotation of the 800-nm pulses, reflected from the YBa2Cu3O6+x 

samples, was measured by detecting the time-resolved difference signal of two intensity-

balanced photodiodes placed behind a half-wave plate and a Wollaston prism.  

The light fields generated at the second harmonic frequency (SH) at 400 nm wavelength were 

separated from the fundamental beam behind the sample by a dichroic mirror and then detected 

by a photo multiplier tube. 

Both schemes probe the material up to a depth of approximately ~0.1 µm, much smaller than 

the penetration depth of the mid-infrared excitation of about 1.5 µm.3 

 

SHG probing of the plasma polariton and phonon dynamics by hyper-Raman scattering 

The electric polarization in a material generated by a probe light field !" can be expanded as 

# = %! +
'

(
)!( +⋯ =	#(') + #(() + ⋯,  

where % and ) are the polarizability and hyper-polarizability, respectively.  

The first term #(') describes the linear optical response. For example, the change of 

polarizability % by a non-polar mode is responsible for Raman scattering.45,46  The term #(() is 

responsible for second-order nonlinear optical processes, like second harmonic generation. A 

polar mode that carries an electric-dipole moment inside the crystal modifies the hyper-

polarizability ) proportional to its amplitude / 47,48,49 

∆) =	
1)

1/
/, 

known as hyper-Raman scattering.  

The interaction of the polar mode with the probe light can be described by the wave equation 
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where n is the refractive index of the material and c the vacuum speed of light. Eprobe denotes 

the probe laser field at angular frequency wprobe, i.e. of the fundamental 800-nm pulses, J(t+t) 

= J0 · sin(W · (t+t)) is the time-dependent amplitude of the polar mode, and t  the time delay 

between the pump and probe pulses. The right-hand side of the above equation is equivalent to 

a time dependent second order nonlinear polarization #(() = 	 <=
<>
/(6)!789:;

( , which generates 

light close to the second harmonic frequency of the incoming probe. The frequency spectrum 

of the scattered light then becomes 

!(?) = !789:;(?) +
5 ∙ 4

4
?
1)

1/
∙ B ∙ /C ∙ (!789:;(2? + Ω) ∙ exp	(iΩ ∙ τ) − !789:;(2? − Ω) ∙ exp	(−iΩ ∙ τ)) 

where l is the interaction length between the probe beam and the polar excitation J. It contains 

the unperturbed probe spectrum Eprobe(w) and sidebands generated at frequencies 2wprobe ± W. 

The phase sensitive detection of these sidebands, for example achieved by spectral interference 

with a local oscillator on the detector, carries information about both, the phase and amplitude 

of the polar excitation. 

In the SH measurement, the detected light is generated in a thin layer l of about 100 nm below 

the sample surface. The propagation of the Josephson plasmon along the surface creates a fringe 

pattern with a spatial period 1 L7MNO⁄ . The minima and maxima of this pattern emit SH light 

with phase shifts of 180° as becomes apparent from the linear dependence on J in the nonlinear 

polarization #(() above.  Spatial integration of this pattern by a large probe beam then results 

in zero specular reflection intensity. 

However, the SH intensity measured in the present experiments also contains the first 

diffraction order which fulfils the condition 

sin(S') + sin(ST) = 	
U

2
L7MNO 



where ST denotes the incidence angle with respect to the surface normal, U = 400 nm the SH 

wavelength and S' the exit angle of the diffracted radiation. The resulting diffraction angle 

differs from the specular reflection by ∆S =	 1.8°, which is small enough to allow collimation 

with a lens placed closely behind the sample and detection of the SH light by the photo-

multiplier. 

 

Analysis of the time-resolved SHG signals 

The measured time-resolved SH intensity signals (see for example Fig. 3c of the manuscript) 

were fitted by the product of (i) a Gaussian envelope to map the nonlinear optical mixing of 

pump and probe electric fields at time delay zero (electric field induced second harmonic 

generation, EFISH) and (ii) a step function of finite width, multiplied by a decaying 

exponential, i.e. W(X) = W ∙ (1 + erf	((X − XC)/\)) ∙ exp	(−](X − XC)), to describe the 

exponentially decaying background signal. Subtraction of this slowly varying background 

revealed the coherent oscillations shown in Figures 4a and c of the main text for low- and high 

fluence excitation. The oscillatory signals can be divided into sets of three exponentially 

decaying oscillators: the driven polar phonons, the nonlinearly coupled phonons, and the 

nonlinearly coupled Josephson plasmons (see Fig. S2). Here, the phonon frequencies were 

constrained to values measured by linear infrared spectroscopy.3  

 

Doping dependence of the Josephson Plasma oscillations 

The time-resolved SHG experiments on YBa2Cu3O6.48 presented in the main text were 

complemented by a set of measurements on two differently doped compounds, namely 

underdoped YBa2Cu3O6.65 (TC = 67 K) and optimally doped YBa2Cu3O6.92 (TC = 94 K). Figure 

S3 shows the coherent signal oscillations extracted from the raw data for all three doping levels, 

measured at 5 K temperature and 7 MV/cm peak electric field, together with their 

corresponding Fourier amplitude spectra. The set of nonlinearly coupled phonons (grey peaks) 



remains unchanged for all three doping levels, whereas the Josephson Plasma frequencies shift 

with increasing doping to higher frequencies, tracking the blue shift of the Josephson Plasma 

edges in the equilibrium superconducting states.41 With respect to YBa2Cu3O6.48, the amplitude 

of the coherent plasma oscillations decreased at higher-doped YBa2Cu3O6.65 and disappeared 

at optimally doped YBa2Cu3O6.92. This can be explained by the resonance condition ?^_ =

	?`'aL7MNOb + ?`((−L7MNO) for the nonlinear coupling between the resonantly driven phonon 

and the Josephson plasmons at finite q, which can still be fulfilled in YBa2Cu3O6.65 (?`'(0) =

2	THz,?`((0) = 15	THz)3 but not in YBa2Cu3O6.92 (?`'(0) = 7.5	THz,?`((0) = 30	THz).50 

 

Theoretical analysis of the Josephson Plasma Polariton 

Analysis of the collective modes 

Plasmon dispersion in a layered superconductor can be obtained by combining linearized 

dynamical equations for superflow currents and charges with Maxwell equations for 

electromagnetic fields.51,52,53,54,55,56 The fundamental degrees of freedom are density 

fluctuations of the condensate jkl,T(mn⃗ ), the phase of the superconducting order parameter 

pl,T(mn⃗ ), and the 4-component vector potential ( rl,T(mn⃗ ), Wl,T,s(mn⃗ ) Wnn⃗ l,T,tnn⃗ (mn⃗ ) ). Here u 

corresponds to the index of the unit cell along the c-axis, U = 1,2 labels the number of the layer 

inside the unit cell, and mn⃗  is the in-plane coordinate, which we will omit in the equations below 

for brevity. While the in-plane components of the vector potential Wnn⃗ l,T,tnn⃗ (mn⃗ ) are defined within 

the corresponding layers, Wl,T,s(mn⃗ ) is defined to be on the links between layers starting on layer 

{U, u} as shown in Fig. S4. 

In linearized hydrodynamics, superflow currents are given by 

 xl,T,tnn⃗ = yOa1tnn⃗ pl,T − z
∗Wl,T,tnn⃗ b, (1) 



 xl,T,s = x|la}spl,T − z
∗Wl,T,sb. (2) 

Here mn⃗  denotes the in-plane m, ~ components and 2 denotes the c-axis coordinate of the crystal. 

Coupling to the vector potential is given by the Cooper pair charge, z∗ = 2z, and we work in 

units where ℏ = 1 for the rest of this section. The in-plane components of the superfluid current 

are defined within individual layers and have continuous gradients. The 2 component of the 

current is defined as the Josephson current between adjacent layers and has a lattice gradient 

which corresponds to the phase difference between adjacent layers, 

 
}spl,T = Ä

(p(,T − p',T)/Å', for	U = 1,

(p',TÉ' − p(,T)/Å(, for	U = 2
 

(3) 

The coefficient yO is related to the in-plane London penetration length as yO =
Ñ|Ö

lÜ
Ö(;∗)Ö

, where 

á = á8áC. Physically, it corresponds to the intra-layer superfluid stiffness and is proportional to 

the condensate density, yOl ∝ kl. In linear analysis of the collective modes we can set yOl to 

be equal to their equilibrium values since they multiply superfluid velocities, ânn⃗ l,T = 1tnn⃗ pl,T −

z∗Wl,T,tnn⃗ , which are already first order in fluctuations. This is why we omitted the layer index 

for yO in equation (1). Coefficients {x|,l} correspond to interlayer Josephson tunneling 

couplings and obey x|,l ∝ äk'k(. In linearized hydrodynamics we take x|,l to be equal to their 

equilibrium value and neglect corrections due to jkl. Both kl and x|,l can be modified by 

exciting apical oxygen phonons, which results in phonon-plasmon coupling that will be 

discussed below. We introduce an effective Hamiltonian that describes plasmon degrees of 

freedom and show that its equations of motion give the correct equations for light and matter 

fields. 

 ã = ã79å. + ãçTé. + ãèê. (4) 



The first term in eqn. (4) describes finite compressibility of Cooper pairs and their coupling to 

electrostatic potential 

 ã79å. = ∫ Å(míì
]

2
jkl,T

( + z∗jkl,Trl,Tî

T,l

. 
(5) 

Compressibility ] can be related to the Thomas-Fermi length, Uïñ , as ] = lóò
Ö (;∗)Ö

Ñ
. 

The superflow kinetic energy is given by 
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For electromagnetic fields we adopt the Lorenz gauge condition  

 1

5(
1årl,T + 1tnn⃗ Wl,T,tnn⃗ + }sWl,T,s = 0 (7) 

then the Hamiltonian for electromagnetic fields is given by 
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(8) 

Variables {#ú,l,T , #ü†nn⃗ ,l,T, #ü£,l,T} correspond to the conjugate momenta of the scalar and vector 

potentials, and magnetic permeability § = §8§C is included in the speed of light 5( = 1/§á. In 

eqn. (8) gradients in the 2 direction are taken in the lattice form so, for example, 

 

}sWl,T,s =

⎩
⎨

⎧
W',T,s

Å'
−
W(,T®',s

Å(
, for	U = 1,

W(,T,s

Å(
−
W',T,s

Å'
, for	U = 2

 (9) 



We use Heisenberg equations of motion (EOM) for the operators, 1å©™ = u[ã,©™], to study 

dynamics of the fields.  In deriving equations of motion we use canonical commutation relations 

between k and p, r and #ú, Wnn⃗  and #ünn⃗  , i.e. ≠kT(mn⃗ ), pÆ(mn⃗ ′)∞ = uj((mn⃗ − mn⃗ ′)jT,Æ, etc. EOM for 

the density and phase operators give the continuity equation and Josephson relation 

 1åjkl,T + 1tnn⃗ xl,T,tnn⃗ + }sxl,T,s = 0. (10) 

 1åpl,T = −]jkl,T − z
∗rl,T , (11) 

By combining EOM for the electromagnetic fields p, Wnn⃗  and their conjugate momenta we 

obtain Maxwell's equations: 
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(12a) 

(12b) 

(12c) 

To find collective modes we look for the solutions of equations (10), (11), (12) in the form of 

plane waves, jkl,M(m, 6) = jkl(Ltnn⃗ , Ls, ?)z
Ta≥†tÉ≥¥µÉ≥£∂M®"åb, with similar expressions for 

other variables. It is convenient not to combine EOM for electromagnetic fields and their 

conjugate variables, so that we have first order linear differential equations of the form 1å ânn⃗ =

∑ânn⃗ . Matrix ∑ contains gradient operators which leads to implicit dependence on momentum 

Lnn⃗ . We define the characteristic polynomial for ∑ as ∏(?) = det	ªu? + ∑ª. Due to the Lorenz 

gauge used in our analysis the characteristic polynomial contains unphysical degrees of 

freedom. However, gauge constraint (7) guarantees that they do not couple to matter fields and 

the characteristic polynomial factorizes into physical and unphysical contributions, ∏(?) =

∏7ºµO(?)∏Ωé7ºµO(?). Collective modes of the system can be found by solving the secular 



equation ∏7ºµO(?) = 0. The two lowest energy modes correspond to the Josephson plasmons 

and their dispersion is shown in Fig. S5.  

To express physical quantities in terms of the amplitudes of the plasmon modes we can use 

eigenvectors â{',(},≥M  of the secular equation, where components B correspond to jkl, pl, r, Wnn⃗ , 

etc. Shown in a matrix form: 
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(13) 

where Ã' and Ã( are amplitudes of the two plasmon modes oscillating at frequencies 

corresponding to their dispersion relations. The eigenvectors, â{',(},≥M , are defined through the 

EOM up to a normalization constant. Normalization is fixed through the commutation relations 

of canonically conjugate pairs, such as [kl(L), plÕ(L′)] = uj≥,≥Õjl,lÕ and commutation relations 

of the plasmon fields, which should correspond to bosonic creation/annihilation operators 

[ÃT, Ã
Œ] = jT,Æ. 

Phonon-plasmon interaction 

The apical oxygen phonon is expected to modify the in-plane superfluid stiffness either by 

changing the in-plane density of carriers or by modifying their hopping. Symmetry of this mode 

requires that these changes are antisymmetric with respect to the two layers inside one unit cell, 

so that jyO,{',(}
7º9é

(6) = ±–—^_(6)yO, where coefficient – characterizes the coupling strength. 

Changes of the interlayer Josephson currents arise from changes in the superfluid density 

jk{',(}
7º9é

= ± –“ —^_(6)k, which results in jx|,l(6) = −a–“ —^_b
( Æ”,°

(≈
. The last equation shows that 

interlayer Josephson currents couple quadratically to the apical oxygen phonon and lead to four-



wave phonon/plasmon mixing. Resonant three wave mixing considered in the main text comes 

from phonons modifying yO,{',(} and coupling to the in-plane current. 

To derive plasmon dynamics in the presence of excited phonon mode we need to modify 

equation (6) to include jyOl
7º9é  arising due to phonons. We find 
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The phonon mode causes a zero momentum three wave parametric process that excites pairs of 

plasmons at opposite momenta. Resonant processes that satisfy energy matching condition 

?7º = ?'(L) + ?((−L)	lead to exponential instability discussed in the main text. After 

projecting the modified EOM to the two the lowest eigenmodes we find equations for 

parametrically coupled oscillators 

 1å
( /'(L) + 2]'1å /'(L) + ?'

((Lnn⃗ )/'(L) = −Lt
(’(Lnn⃗ )—^_(6)/((L), (15a) 

 1å
( /((L) + 2](1å /((L) + ?(

((Lnn⃗ )/((L) = −Lt
(’(Lnn⃗ )—^_(6)/'(L) (15b) 

In writing equations (15) we added phenomenological damping constants ]T to describe 

dissipation due to quasiparticles. Factors of Lt( in equations (15) originate from the fact that 

phonons couple to plasmons through the in-plane superflow kinetic energy. There is also an 

implicit weaker L dependence in ’(Lnn⃗ ) arising from projecting the interaction to the plasmon 

subspace, which can be derived using the â
{',(},≥

Æ°,†nn⃗  components of the eigenvectors of the secular 

equation. We also note that inversion symmetry forbids three-mode coupling between the 

phonon and Josephson plasmons in the same band. 

The equation of motion for the polar phonon reads 

  —̈◊ÿ + 2]◊ÿ —̇◊ÿ + ?◊ÿ
( —◊ÿ = ⁄∗!(6) − Lµ

(/'/(	,  



where ⁄∗ is the coupling to the optical drive field and ]^_	accounts for the finite lifetime of the 

vibrational mode.  

We solved the set of coupled equations for the phonon and plasmon dynamics by utilizing a 

stochastic approach, where we introduced Langevin noise on both, the Josephson plasma and 

phonon coordinates, to create an incoherent initial state. The final trajectories shown in the 

manuscript (see Figure 2e) were then computed by solving the equations of motion one million 

times with an algorithm based on the Euler-Maruyama method. In addition to the harmonic 

terms that describe the resonant driving of the polar phonon mode, we also considered higher-

order (quartic) phonon anharmonicities. 

 

Nonlinear phonon-phonon coupling 

The phonon spectrum of the ortho-II structure of YBa2Cu3O6.5 consists of 73 non-translational 

modes at the Brillouin zone center. The most relevant phonon modes for c-axis polarized THz 

and mid-infrared excitation are 13 infrared-active B1u modes and 11 Raman-active Ag modes. 

The full lattice potential rMNååT|;  consists of three distinct contributions.25,57,58 

1. The harmonic potential of each phonon mode 

 
rºN8¤ = ∑

?T
(

2
—T
(,  

   

with ?T and —T representing the eigenfrequency and coordinate of the u-th mode, 

respectively. 

2. The anharmonic potential containing higher-order terms of the phonon coordinates and 

combinations of different phonon modes  

 
rNéºN8¤ = ∑›TÆç—T—Æ—ç + ∑’TçM¤—T—ç—M—¤, 

 

 

with ›TÆç  and ’TçM¤  indicating third and fourth order anharmonic coefficients, 

respectively. 



3. The coupling of the resonantly driven phonon B1u mode to an external electric field 

 
r;fiT;Mfl = ∑⁄‡'Ω

∗ —‡'Ω!fiT;Mfl	, 
 

 

with ⁄‡'Ω	∗  representing the mode effective charge.25  

The structural dynamics are then determined by the equations of motion for each phonon mode, 

given by 

 
—̈T + 2]T—̇T + ∇>¢arºN8¤ + rNéºN8¤ + r;fiT;Mflb = 0. 

 

 

Here ]T is a phenomenological damping term, which accounts for contributions to the finite 

lifetime which are not already considered within the anharmonic potential. The equations are 

restricted to phonon modes at the Brillouin zone center, due to the negligible momentum of 

long wavelengths THz light. 

First, we consider the impact of the third order terms in rNéºN8¤ on the lattice dynamics. Of the 

modes that we consider here, only the 11 Ag modes fulfill the symmetry requirements to exhibit 

such a third-order coupling to the driven B1u mode.23 To simplify the discussion, we consider 

coupling between the driven mode and a single Ag mode. The equations of motions then reduce 

to 

 
—̈‚'„ + ]—̇‚'„ + ?‡'Ω

( —‡'Ω + 2›—‡'Ω—ü‰ = ⁄‡'Ω
∗ —‡'Ω!fiT;Mfl 

 

 

 
—̈ü‰ + ]ü‰—̇ü‰ + ?ü‰

( —ü‰ + ›—‡'Ω
( = 0. 

 

 

They describe a process known as ionic Raman scattering which entails a transient displacement 

and superimposed oscillations of the —ü‰ .22,23,24,25  

As detailed above, coherent non-polar Ag-symmetry modes can be observed by Raman 

scattering of a femtosecond probe pulse in the time delay dependent reflectivity changes. The 

amplitude spectrum of the coherently oscillating Raman modes, shown in Fig. 3b of the 

manuscript, is shown in Fig. S6. The frequencies of the observed modes at 3.7, 4.2 and 4.5 THz 



agree with continuous-wave Raman scattering experiments and theoretical predictions of the 

same compound (also shown in Fig. S6).24  

Next, we consider the implications of the quartic order terms in rNéºN8¤. In addition to the Ag 

modes, also the B1u modes fulfill the symmetry requirements for bi-quadratic coupling 

	—^_,T
( —^_,Æ

(  and linear cubic coupling —^_,TÂ —^_,Æ. Due to the selective resonant excitation of only 

one polar phonon mode, coupling between three or more modes is neglected. The corresponding 

anharmonic term then becomes rNéºN8¤ = ’'—^_,'
( —^_,(

( + ’(—^_,'
Â —^_,( + ’Â—^_,'—^_,(

Â . The bi-

quadratic term leads to a parametric amplification of the coupled phonons, as becomes apparent 

from the equations of motion 

 
—̈◊ÿ,' + ]—̇◊ÿ,' + (?^_,'

( + 2’'—^_,(
( )—^_,' + 3’(—^_,'

( —^_,( + ’Â—^_,(
Â = ⁄^_,'

∗ —^_,'!fiT;Mfl 
 

 

 
—̈◊ÿ,( + ]—̇◊ÿ,( + (?^_,(

( + 2’'—^_,'
( )—^_,( + ’(—^_,'

Â + 3’Â—^_,'—^_,(
( = 0. 

 

 

This parametric amplification is characterized by an exponential scaling of the coupled mode 

—^_,( as a function of the driven mode —^_,' and a parametric resonance at ?^_,' = 	2 ∙ ?^_,(. 

Fig. S6 reports comprehensive calculations involving coupling between all B1u modes. We 

scaled the corresponding amplitudes by ⁄‡'Ω,T∗  to calculate the polarization induced by each 

individual mode and further convolved the results with the 30-fs time resolution of the 

experiment. We find agreement with the experimental observations (see Fig. S7). 

  



 

Fig. S1: Schematic drawing of the experimental setup. 30-fs pulses from a Ti:sapphire amplifier 

pump two optical parametric amplifiers (OPA), which are seeded by the same white light 

continuum (WLC) . Carrier envelope phase stable 3-µJ 150-fs pulses at 17 µm wavelength are 

generated by difference frequency mixing the two signal beams from the OPAs. These 

excitation pulses are focused onto the sample at spot size of ~65 µm and overlapped with the 

800-nm probe pulses (35 µm spot size). Their time delay dependent second harmonic intensity 

and polarization rotation are detected by a photo multiplier tube and a balanced detection 

scheme, respectively.  

  



 

Fig. S2: Coherent oscillations in the time delay dependent second harmonic intensity from 

YBa2Cu3O6.48, as shown in Fig. 4c of the manuscript for 7MV/cm excitation at 5 K, divided 

into three contributions and shown together with their Fourier amplitude spectra. Panels a,b 

show the apical oxygen phonons, panels c,d show the nonlinearly coupled infrared active 

phonons, and panels e,f show the Josephson Plasma modes. Experimental phonon oscillations 

(yellow and grey dots in a and c, respectively) are fitted by oscillators with frequencies 

constrained by infrared spectroscopy data (dashed lines).3 Oscillations of the two Josephson 

plasma modes (experimental data as red dots in e) are best fitted by two oscillators at 2.3 and 

14 THz (dashed line). In the Fourier amplitude spectra, the colored peaks highlight the 

respective contributions. 

  



 

Fig. S3 Coherent oscillations in the time delay dependent second harmonic intensity of a 

YBa2Cu3O6.48, c YBa2Cu3O6.65 and e YBa2Cu3O6.92, measured in the superconducting state at 5 

K, together with corresponding Fourier amplitude spectra in b, d, f. Experimental data are 

plotted as red dots in panels a, c, e, together with the best fits to the data (light grey dashed 

lines) and the dominating low-frequency Josephson plasmon contribution (black solid line). 

The Fourier amplitude spectra include Josephson plasmons as red and magenta peaks, 

resonantly driven apical oxygen phonons as yellow peaks, and the nonlinear coupled infrared 

active phonons as grey peaks. Note the absence of the Josephson plasma oscillations in 

YBa2Cu3O6.92. All experiments were performed with a peak electric field strength of 7 MV/cm. 

  



 

 

Fig. S4 

Schematic drawing of a bilayer superconductor. Variables jkT,l, pT,l, xT,l,tnn⃗ , and WT,l,tnn⃗  are 

defined within layer U in unit cell u and describe condensate density fluctuations, phase of the 

order parameter, parallel component of the superfluid current, electrostatic potential, and in-

plane vector potential respectively. Variables xT,l,s, and WT,l,s are defined between the layers 

and correspond to interlayer Josephson current and out of plane component of the vector 

potential, respectively. 
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Fig. S5: 

Dispersion relation of the two lowest energy modes of equations (10)-(12) in the {Lt, Ls}-plane. 

At Ls = 0, the upper plasmon is strongly hybridized with the original photon mode. This results 

in the energy of the mode increasing rapidly along the Lt axis with the slope approaching the 

speed of light. Away from Ls = 0 strong mixing with the photon is absent and the frequency 

of the mode decreases with increasing Lt. 

  



 

 

Fig. S6: Fourier amplitude spectrum of Raman active phonons in YBa2Cu3O6.48, extracted from 

the time-resolved polarization rotation measurement of 800-nm probe pulses shown in Fig. 3b 

of the main text (left), and obtained from calculations of their third order nonlinear coupling to 

the resonantly driven apical oxygen phonons (right).  



 

 

Fig. S7: Contributions of infrared active phonons to the Fourier amplitude spectrum of the time-

resolved second harmonic intensity measurement, shown in Fig. 4d of the main text, are plotted 

on the left. The resonantly driven apical oxygen vibrations and nonlinear coupled lattice modes 

are shown as yellow and grey peaks, respectively. The Fourier spectrum obtained from 

calculations of the dynamics of the driven apical oxygen phonons and their fourth order 

coupling to the lower frequency phonons are shown in the right panel.   
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