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S1. Nonlinear phonon-phonon coupling 

The phonon spectrum of the centrosymmetric ortho-II structure of YBa2Cu3O6.5 consists of 73 

non-translational modes at the Brillouin zone center. The most relevant phonon modes for c-

axis polarized THz and mid-infrared excitation are 13 infrared-active B1u modes and 11 

Raman-active Ag modes. 

The full lattice potential 𝑉!"##$%& consists of three distinct contributions.1,2 

1. The harmonic potential of each phonon mode 

 
𝑉'"() = ∑

𝜔$*

2 𝑄$*, (1.1) 

   
with 𝜔+ and 𝑄+ representing the eigenfrequency and coordinate of the 𝑖-th mode, 

respectively. 

2. The anharmonic potential containing higher-order terms of the phonon coordinates and 

combinations of different phonon modes  

 𝑉",'"() = ∑𝑔$-.𝑄$𝑄-𝑄. + ∑𝑓$.!)𝑄$𝑄.𝑄!𝑄), (1.2) 
 

with 𝑔+/0 and 𝑓+012 being the third-order and fourth-order anharmonic coefficients. 

3. The coupling of the resonantly driven infrared-active B1u phonon mode (with 

coordinate Qdrive and eigenfrequency wdrive) to an external electric field Efield 

 𝑉3$&!4 = ∑𝑍4($5&∗ 𝑄4($5&𝐸3$&!4	, (1.3) 
 

with 𝑍4($5&	∗  representing the mode effective charge.  

The crystal lattice dynamics are then determined by the equations of motion for each phonon 

mode, given by 

 
�̈�$ + 2𝛾$�̇�$ + ∇8!(𝑉'"() + 𝑉",'"() + 𝑉3$&!4) = 0. 

 
(1.4) 
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Here 𝛾$ is a phenomenological damping term, which accounts for contributions to the finite 

lifetime not already considered within the anharmonic potential. The equations are restricted 

to phonon modes at the Brillouin zone center, due to the negligible momentum of long-

wavelength THz light. 

First, we consider the resonant excitation of the infrared-active B1u phonon Qdrive by the mid-

IR pulses of electric field Efield oscillating at the frequency 𝜔4($5& of this mode. The equation 

of motion then reduces to  

�̈�4($5& + 𝛾�̇�4($5& + 𝜔4($5&* 𝑄4($5& = 𝑍4($5&∗ 𝑄4($5&𝐸3$&!4 

and predicts a linear scaling of the mode with the electric field strength. Indeed, the measured 

amplitude of the optically driven phonons Qdrive, shown in Figure S1 (dashed line), follows this 

dependence for peak electric fields < 5MV/cm. However, saturation sets in at larger field 

strengths. This can be understood by considering anharmonicity of this mode described by a 

fourth-order term f4Qdrive
4 in the energy potential that renormalizes the frequency of the 

oscillator as 𝜔*(𝑄9:+;<) = 𝜔9:+;<* − 𝑓=𝑄9:+;<*  at large amplitudes and results in a less efficient 

drive by the pump electric field. 

A minimal set of parameters used to calculate the oscillation amplitudes of the two driven 

apical oxygen phonon modes is listed in the following table. 

𝜔4($5& 2𝜋⁄  (THz) 𝛾 (THz) 𝑓= (meV/u2Å4) 𝑍4($5&∗  (e/u0.5) 

17.0 2.9 55 0.84 

20.0 2.4 101 0.78 

 

Next, we consider the impact of the third-order terms in 𝑉",'"(). Only the 11 Ag modes fulfill 

the symmetry requirements to exhibit third-order coupling to the driven B1u mode [3]. To 
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simplify the discussion, we consider coupling between the driven mode and a single Ag mode. 

The equations of motions then reduce to 

 
�̈�4($5& + 𝛾�̇�4($5& + 𝜔4($5&* 𝑄4($5& + 2𝑔𝑄4($5&𝑄>? = 𝑍4($5&∗ 𝑄4($5&𝐸3$&!4 

 
(1.5) 
 

 �̈�>? + 𝛾>?�̇�>? + 𝜔>?* 𝑄>? + 𝑔𝑄4($5&* = 0. (1.6) 
 

They describe a process known as ionic Raman scattering which entails a transient 

displacement and superimposed oscillations of the QAg coordinate [3,4].  

As detailed in the main text, coherent non-polar Ag-symmetry modes can be observed by 

Raman scattering of a femtosecond probe pulse in the time delay dependent reflectivity 

changes. The coherent component of the time-resolved reflectivity ∆𝑅(𝑡), shown in Figure 1b 

of the main text, is shown for YBa2Cu3O6.48 and YBa2Cu3O6.65 together with their Fourier 

transforms in Fig. S2a-d. The frequencies of the observed modes at 3.7, 4.2 and 4.5 THz agree 

with continuous-wave Raman scattering experiments and theoretical predictions of the same 

compound. The real space motions of these impulsively driven modes, which involve 

oscillation of the in-plane Cu atoms, are depicted in Fig. S2e. The measured amplitude of these 

Raman-active modes scales quadratically with the amplitude of the optically driven phonons 

Qdrive, as shown in Fig. S2f. 

The results agree with the calculated response of the Raman-active modes, shown for 

YBa2Cu3O6.5 in Fig. S3, which are driven by the third-order nonlinear coupling to the 

resonantly driven apical oxygen phonons ~Qdrive2QAg. 

Next, we consider the lattice dynamics induced by quartic-order terms in 𝑉@AB@:2. Here, the 

infrared-active B1u modes fulfill the symmetry requirements for bi-quadratic coupling 

	𝑄CD,$* 𝑄CD,-*  and linear-cubic coupling 𝑄CD,$F 𝑄CD,-. Due to the selective resonant excitation of only 

one polar phonon mode, coupling between three or more different modes is neglected. The 

corresponding anharmonic term then becomes 𝑉@AB@:2 = 𝑓G𝑄4($5&* 𝑄CD,** + 𝑓*𝑄4($5&F 𝑄CD,* +
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𝑓F𝑄4($5&𝑄CD,*F . The bi-quadratic term leads to a parametric amplification of the coupled 

phonons, as becomes apparent from the equations of motion 

 �̈�4($5& + 𝛾�̇�4($5& + (𝜔4($5&* + 2𝑓G𝑄CD,** )𝑄4($5& + 3𝑓*𝑄4($5&* 𝑄CD,* + 𝑓F𝑄CD,*F =
𝑍4($5&∗ 𝑄4($5&𝐸3$&!4                                                       

(1.7) 
 

 

�̈�CD,* + 𝛾�̇�CD,* + (𝜔CD,** + 2𝑓G𝑄4($5&* )𝑄CD,* + 𝑓*𝑄4($5&F + 3𝑓F𝑄4($5&𝑄CD,** = 0. 

(1.8) 
 
 
 

This parametric amplification is characterized by an exponential scaling of the coupled mode 

𝑄CD,* as a function of the driven mode 𝑄4($5& and a parametric resonance at 𝜔4($5& = 	2 ∙ 𝜔CD,*. 

Figures S4a-d report comprehensive calculations involving coupling between all B1u modes. 

We scaled the obtained amplitudes by 𝑍HGI,+∗  to calculate the polarization induced by each 

individual mode and convolved the results with the 30-fs time resolution of the experiment. 

We find agreement with the experimental observations shown in Fig. S5a-d. 

 

S2. Nonlinear phonon-phonon coupling in the symmetry broken state   

In a medium with broken inversion symmetry, the strict distinction between zone-center 

Raman-active and infrared-active phonon modes breaks down. Whilst the YBCO crystal 

structure is centrosymmetric, recent experimental (Zhao et al. [5]) and theoretical work 

(Fechner et al. [6]) suggest that a magnetic order develops in the pseudogap phase, which 

simultaneously breaks time and space inversion symmetry to result in a magnetic point group 

of 2/m (Ref. 5) or mmm' (Ref. 6). Hence, all phonon modes can be expected to become Raman-

active and infrared-active at the same time. Specifically, the Ag modes of the inversion 

symmetric phase then develop infrared activity, with the symmetry of the B1u modes.  

To rule out the appearance of any such Raman-active phonon mode in the second harmonic 

measurements, sensitive only to polar excitations, we theoretically analyzed the nonlinear 

phonon-phonon coupling in the magnetic point group of the pseudogap phase. 
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We utilized the first-principles approach of Ref. 6, where a static spin pattern generates the 

magnetic point group. In detail, we impose two opposing AFM checkerboard patterns of spins 

on the Cu atoms within the CuO2 planes, which lower the mmm1' symmetry to mmm' for the 

YBCO6.5 unit cell. In addition, we constrained the size of the local spin moment per Cu site to 

0.2 µB, a value that would be compatible with magnetic probe data [7]. We then calculated the 

phonon and mode effective charges for YBCO6.5 utilizing the procedure described in 

Section S1.  

We find that the mode-effective charges of the former Ag modes are typically three orders of 

magnitude smaller compared to those of the real infrared-active modes. In detail, the two Ag 

modes at 3.1 and 3.4 THz develop values of 0.003qe and 0.001qe, whilst the effective charge 

of the B1u polar modes are close to 1qe.  

We calculated the polarization induced in the YBCO6.5 crystal by the (now) infrared active Ag 

modes in the lattice dynamics simulations, to this end including their mode effective charges. 

The nonlinear phonon-phonon coupling terms were not changed compared to the 

centrosymmetric state, since the symmetry breaking to the mmm' point group does not produce 

new phonon-phonon coupling terms. 

Figures S4e,f show the time-dependent polarization and the corresponding Fourier transforms 

that result from the resonantly driven IR modes, the amplified ‘real’ IR modes (B1u) and the 

nonlinearly coupled ‘new’ IR modes (former Ag), the latter magnified by a factor of 2500. 

Clearly, the polarization induced by the Ag modes is negligible compared to that of the B1u 

modes, not allowing them to appear in the time-resolved SH intensity measurements. 
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S3. Theoretical analysis of the Josephson Plasma Polariton 

Analysis of the collective modes 

Plasmon dispersion in a layered superconductor can be obtained by combining linearized 

dynamical equations for superflow currents and charges with Maxwell equations for 

electromagnetic fields [8,9,10,11]. The fundamental degrees of freedom are density 

fluctuations of the condensate 𝛿𝜌J,$(𝑥?⃗ ), the phase of the superconducting order parameter 

𝜙J,$(𝑥?⃗ ), and the 4-component vector potential ( 𝑉J,$(𝑥?⃗ ), 𝐴J,$,K(𝑥?⃗ )  𝐴??⃗ J,$,LMM⃗ (𝑥?⃗ ) ). Here 𝑖 corresponds 

to the index of the unit cell along the c-axis, 𝜆 = 1,2 labels the number of the layer inside the 

unit cell, and 𝑥?⃗  is the in-plane coordinate, which we will omit in the equations below for brevity. 

While the in-plane components of the vector potential 𝐴??⃗ J,$,LMM⃗ (𝑥?⃗ ) are defined within the 

corresponding layers, 𝐴J,$,K(𝑥?⃗ ) is defined to be on the links between layers starting on layer 

{𝜆, i} as shown in Fig. S6. 

In linearized hydrodynamics, superflow currents are given by 

 𝑗J,$,LMM⃗ = 𝛬OK𝜕LMM⃗ 𝜙J,$ − 𝑒∗𝐴J,$,LMM⃗ N, (3.1) 

 𝑗J,$,K = 𝑗%JK𝛥K𝜙J,$ − 𝑒∗𝐴J,$,KN. (3.2) 

Here 𝑥?⃗  denotes the in-plane 𝑥, 𝑦 components and 𝑧 denotes the c-axis coordinate of the crystal. 

Coupling to the vector potential is given by the Cooper pair charge, 𝑒∗ = 2𝑒, and we work in 

units where ℏ = 1 for the rest of this section. The in-plane components of the superfluid current 

are defined within individual layers and have continuous gradients. The 𝑧 component of the 

current is defined as the Josephson current between adjacent layers and has a lattice gradient 

which corresponds to the phase difference between adjacent layers, 
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 𝛥K𝜙J,$ = S
(𝜙*,$ − 𝜙G,$)/𝑑G, for	𝜆 = 1,
(𝜙G,$PG − 𝜙*,$)/𝑑*, for	𝜆 = 2 (3.3) 

The coefficient 𝛬O is related to the in-plane London penetration length as 𝛬O =
QR"

J#
"(<∗)"

, where 

𝜖 = 𝜖(𝜖U. Physically, it corresponds to the intra-layer superfluid stiffness and is proportional 

to the condensate density, 𝛬OJ ∝ 𝜌J. In linear analysis of the collective modes we can set 𝛬OJ 

to be equal to their equilibrium values since they multiply superfluid velocities, 𝑣??⃗ J,$ = 𝜕LMM⃗ 𝜙J,$ −

𝑒∗𝐴J,$,LMM⃗ , which are already first order in fluctuations. This is why we omitted the layer index 

for 𝛬O in equation (1). Coefficients {𝑗%,J} correspond to interlayer Josephson tunneling 

couplings and obey 𝑗%,J ∝ \𝜌G𝜌*. In linearized hydrodynamics we take 𝑗%,J to be equal to their 

equilibrium value and neglect corrections due to 𝛿𝜌J. Both 𝜌J and 𝑗%,J can be modified by 

exciting apical oxygen phonons, which results in phonon-plasmon coupling that will be 

discussed below. We introduce an effective Hamiltonian that describes plasmon degrees of 

freedom and show that its equations of motion give the correct equations for light and matter 

fields. 

 𝐻 = 𝐻VW#. + 𝐻.$,. + 𝐻YZ. (3.4) 

The first term in eqn. (4) describes finite compressibility of Cooper pairs and their coupling to 

electrostatic potential 

 𝐻VW#. = ∫ 𝑑*𝑥_`
𝛾
2
𝛿𝜌J,$* + 𝑒∗𝛿𝜌J,$𝑉J,$a

+,J

. 
(3.5) 

Compressibility 𝛾 can be related to the Thomas-Fermi length, 𝜆[\, as 𝛾 = J%&
" (<∗)"

Q
. 

The superflow kinetic energy is given by 
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𝐻.$,. = ∫ 𝑑*𝑥_b

1
2𝛬]

𝑗J,$,LMM⃗
* +

1
2𝑗%,J

𝑗J,$,^* c
+,J

. 
(3.6) 

For electromagnetic fields we adopt the Lorenz gauge condition  

 1
𝑐* 𝜕_𝑉J,$ + 𝜕LMM⃗ 𝐴J,$,LMM⃗ + 𝛥K𝐴J,$,K = 0 (3.7) 

then the Hamiltonian for electromagnetic fields is given by 

 
𝐻YZ = ∫ 𝑑*𝑥 e_

𝑐*

2𝜖
+,J

𝑃 ,J,$
* +

𝜖
2g
K𝜕LMM⃗ 𝑉J,$N

* + K𝛥K𝑉J,$N
*h

+
1
2𝜖 𝑃a'((⃗ ,+,!

* +
𝜖𝑐*

2 gK𝜕LMM⃗ 𝐴J,$,LMM⃗ N
* + K𝛥K𝐴J,$,LMM⃗ N

*h

+
1
2𝜖
𝑃a,,J,$
* +

𝜖𝑐*

2 gK𝜕LMM⃗ 𝐴J,$,KN
* + K𝛥K𝐴J,$,KN

*
hc

 

(3.8) 

Variables {𝑃b,J,$, 𝑃a'((⃗ ,J,$, 𝑃>,,J,$} correspond to the conjugate momenta of the scalar and vector 

potentials, and magnetic permeability 𝜇 = 𝜇(𝜇U is included in the speed of light 𝑐* = 1/𝜇𝜖. In 

Eqn. (8) gradients in the 𝑧 direction are taken in the lattice form so, for example, 

 

𝛥K𝐴J,$,K =

⎩
⎨

⎧
𝐴G,$,K
𝑑G

−
𝐴*,$cG,K
𝑑*

, for	𝜆 = 1,

𝐴*,$,K
𝑑*

−
𝐴G,$,K
𝑑G

, for	𝜆 = 2
 (3.9) 

We use Heisenberg equations of motion (EOM) for the operators, 𝜕_𝑂n = 𝑖[𝐻, 𝑂n], to study 

dynamics of the fields. In deriving equations of motion we use canonical commutation relations 

between 𝜌 and 𝜙, 𝑉 and 𝑃b, 𝐴??⃗  and 𝑃aMM⃗  , i.e. q𝜌$(𝑥?⃗ ), 𝜙-(𝑥?⃗ ′)s = 𝑖𝛿*(𝑥?⃗ − 𝑥?⃗ ′)𝛿$,-, etc. EOM for 

the density and phase operators give the continuity equation and Josephson relation 

 𝜕#𝛿𝜌J,$ + 𝜕LMM⃗ 𝑗J,$,LMM⃗ + 𝛥K𝑗J,$,K = 0. (3.10) 
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 𝜕#𝜙J,$ = −𝛾𝛿𝜌J,$ − 𝑒∗𝑉J,$, (3.11) 

By combining EOM for the electromagnetic fields 𝜙, 𝐴??⃗  and their conjugate momenta we 

obtain Maxwell's equations: 

 t
1
𝑐* 𝜕#

* − 𝜕LMM⃗
* − 𝛥K*u 𝑉J,$ =

𝑒∗

𝜖 𝛿𝜌J,$,

t
1
𝑐* 𝜕#

* − 𝜕LMM⃗
* − 𝛥K*u 𝐴J,$,LMM⃗ =

1
𝑐*
𝑒∗

𝜖 𝑗J,$,LMM⃗ ,

t
1
𝑐*
𝜕#* − 𝜕LMM⃗

* − 𝛥K*u𝐴J,+,K =
1
𝑐*
𝑒∗

𝜖
𝑗J,$,K

 

 

(3.12a) 

(3.12b) 

(3.12c) 

To find collective modes we look for the solutions of equations (10), (11), (12) in the form of 

plane waves, 𝛿𝜌J,!(𝑥, 𝑡) = 𝛿𝜌J(𝑞LMM⃗ , 𝑞K, 𝜔)𝑒+de'LPe-fPe.g1ch_i, with similar expressions for 

other variables. It is convenient not to combine EOM for electromagnetic fields and their 

conjugate variables, so that we have first order linear differential equations of the form 𝜕# 𝑣??⃗ =

𝑴𝑣??⃗ . Matrix 𝑴 contains gradient operators which leads to implicit dependence on momentum 

𝑞??⃗ . We define the characteristic polynomial for 𝑴 as 𝜒(𝜔) = det	}𝑖𝜔 +𝑴}. Due to the Lorenz 

gauge used in our analysis the characteristic polynomial contains unphysical degrees of 

freedom. However, gauge constraint (7) guarantees that they do not couple to matter fields and 

the characteristic polynomial factorizes into physical and unphysical contributions, 𝜒(𝜔) =

𝜒V'jO(𝜔)𝜒k,V'jO(𝜔). Collective modes of the system can be found by solving the secular 

equation 𝜒V'jO(𝜔) = 0. The two lowest energy modes correspond to the Josephson plasmons 

and their dispersion is shown in Fig. S7. 
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To express physical quantities in terms of the amplitudes of the plasmon modes we can use 

eigenvectors 𝑣{G,*},e1  of the secular equation, where components 𝑙 correspond to 𝛿𝜌J, 𝜙J, 𝑉, 𝐴??⃗ , 

etc. Shown in a matrix form: 

 

�

𝜌J(𝑞)
⋮

𝜙J(𝑞)
⋮

� =

⎝

⎜
⎛
𝑣G,n
op+ … (𝑣G,n

op+)∗ …
⋮ ⋮
𝑣G,n
q+ (𝑣G,n

q+)∗

⋮ ⋮ ⎠

⎟
⎞
⋅ �

𝑏G
⋮
𝑏G∗
⋮

� 

 

(3.13) 

where 𝑏G and 𝑏* are amplitudes of the two plasmon modes oscillating at frequencies 

corresponding to their dispersion relations. The eigenvectors, 𝑣{G,*},n1 , are defined through the 

EOM up to a normalization constant. Normalization is fixed through the commutation relations 

of canonically conjugate pairs, such as [𝜌J(𝑞), 𝜙Jr(𝑞′)] = 𝑖𝛿n,nr𝛿J,Jr and commutation 

relations of the plasmon fields, which should correspond to bosonic creation/annihilation 

operators [𝑏+ , 𝑏s] = 𝛿$,-. 

To compute the plasmon dispersion curves shown in Fig. S7 and in Fig. 5b of the main text, 

the following sets of parameters were used for the long and short Josephson junctions.  

𝑗R/(e*) (THz) 𝜖:  d (Å) 

0.75 6.48 9 

10.75 2.64 3.5 

In addition, we used 𝑠 = 2	Å for the thickness of the superconducting layer, 𝜆t = 2000	Å for 

the London penetration depth and 𝜇u<:2+ = 1	Å for the Fermi-screening length. 
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Phonon-plasmon interaction 

The apical oxygen phonon is expected to modify the in-plane superfluid stiffness either by 

changing the in-plane density of carriers or by modifying their hopping. Symmetry of this mode 

requires that these changes are antisymmetric with respect to the two layers inside one unit cell, 

so that 𝛿𝛬O,{G,*}
V'W, (𝑡) = ±𝜉𝑄4($5&(𝑡)𝛬O, where coefficient 𝜉 characterizes the coupling strength. 

Changes of the interlayer Josephson currents arise from changes in the superfluid density 

𝛿𝜌{G,*}
V'W, = ±𝜉� 𝑄4($5&(𝑡)𝜌, which results in 𝛿𝑗%,J(𝑡) = −K𝜉� 𝑄CDN

* //,+
*p

. The last equation shows 

that interlayer Josephson currents couple quadratically to the apical oxygen phonon and lead 

to four-wave phonon/plasmon mixing. Resonant three wave mixing considered in the main text 

comes from phonons modifying 𝛬O,{G,*} and coupling to the in-plane current. 

To derive plasmon dynamics in the presence of excited phonon mode we need to modify 

equation (6) to include 𝛿𝛬OJ
V'W, arising due to phonons. We find 

 𝛿𝐻.$,. = −𝜉 _  
+

∫ 𝑑*𝑥  S 
𝑄vw(𝑡)
2𝛬O

 (𝑗G,$,LMM⃗
* − 𝑗*,$,LMM⃗

* )� (3.14) 

The phonon mode causes a zero momentum three wave parametric process that excites pairs 

of plasmons at opposite momenta. Resonant processes that satisfy energy matching condition 

𝜔4($5& = 𝜔G(𝑞) + 𝜔*(−𝑞)	lead to exponential instability discussed in the main text. After 

projecting the modified EOM to the two the lowest eigenmodes we find equations for 

parametrically coupled oscillators 

 𝜕#* 𝐽G(𝑞) + 2𝛾G𝜕_  𝐽G(𝑞) + 𝜔G*(𝑞??⃗ )𝐽G(𝑞) = −𝑞L*𝑓(𝑞??⃗ )𝑄4($5&(𝑡)𝐽*(𝑞), (3.15a) 

 𝜕#* 𝐽*(𝑞) + 2𝛾*𝜕_  𝐽*(𝑞) + 𝜔**(𝑞??⃗ )𝐽*(𝑞) = −𝑞L*𝑓(𝑞??⃗ )𝑄4($5&(𝑡)𝐽G(𝑞) (3.15b) 

In writing equations (15) we added phenomenological damping constants 𝛾$ to describe 

dissipation due to quasiparticles. Factors of 𝑞x* in equations (15) originate from the fact that 
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phonons couple to plasmons through the in-plane superflow kinetic energy. There is also an 

implicit weaker 𝑞 dependence in 𝑓(𝑞??⃗ ) arising from projecting the interaction to the plasmon 

subspace, which can be derived using the 𝑣{G,*},n
/+,'((⃗  components of the eigenvectors of the secular 

equation. We also note that inversion symmetry forbids three-mode coupling between the 

phonon and Josephson plasmons in the same band. 

The equation of motion for the polar phonon 𝑄4($5& now reads 

  �̈�4($5& + 2𝛾4($5&�̇�4($5& + 𝜔4($5&* 𝑄4($5& = 𝑍4($5&∗ 𝐸4($5&(𝑡) − 𝑞x*𝐽G𝐽*	, (3.16) 

We solved the set of coupled equations for the phonon and plasmon dynamics by utilizing a 

stochastic approach, where we introduced Langevin noise on both, the Josephson plasma and 

phonon coordinates, to create an incoherent initial state. The final trajectories were then 

computed by solving the equations of motion one million times with an algorithm based on the 

Euler-Maruyama method. In addition to the harmonic terms that describe the resonant driving 

of the polar phonon mode, we also considered higher-order (quartic) phonon anharmonicities. 

 

S4. Doping dependence of the amplified Josephson Plasmon 

The SH measurements on the YBa2Cu3O6.48 sample were complemented by measurements on 

two differently doped compounds, namely underdoped YBa2Cu3O6.65 (TC = 67 K) and 

optimally doped YBa2Cu3O6.92 (TC = 94 K). Figure S8 shows the coherent signal oscillations 

extracted from the raw data for all three doping levels, measured at 5 K temperature base 

temperature and 7 MV/cm peak electric field, together with their corresponding Fourier 

amplitude spectra. The set of nonlinearly coupled phonons (grey peaks) remains unchanged for 

all three doping levels, whereas the Josephson Plasma frequencies shift with increasing doping 

to higher frequencies, tracking the blue shift of the Josephson plasma edges in the equilibrium 

superconducting states [12]. The corresponding frequencies are 2.5 THz and 2.8 THz in 
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YBa2Cu3O6.48 and YBa2Cu3O6.65, respectively (see red peaks in Fig. S8b,d). The Josephson 

plasmon amplitude was largest in YBa2Cu3O6.48, smaller in YBa2Cu3O6.65 and disappeared in 

optimally doped YBa2Cu3O6.92. This can be explained by the resonance condition 𝜔4($5& =

	𝜔yGK𝑞V!"ON + 𝜔y*(−𝑞V!"O) for the nonlinear coupling between the resonantly driven phonon 

and the Josephson plasmons at finite q, which can still be fulfilled in YBa2Cu3O6.65 (𝜔yG(0) =

2	THz, 𝜔y*(0) = 15	THz) but not in YBa2Cu3O6.92 (𝜔yG(0) = 7.5	THz, 𝜔y*(0) = 30	THz). 

 

S5. Temperature dependence of the amplified Josephson Plasmon and the phonons 

The time-resolved second harmonic intensity ∆𝐼!"(𝑡) was measured in the YBa2Cu3O6.48 and 

YBa2Cu3O6.65 samples over a broad range of base temperatures. Figure S9a shows the 

oscillatory signal contributions in YBa2Cu3O6.48 for three representative values of 5 K (red), 

300 K (light red) and 440 K (grey), extracted by removing the EFISH contribution as described 

in Section S8 ‘Materials and Methods’. The corresponding Fourier spectra are shown in 

Fig. S9b. The amplitude of the 2.5-THz mode in YBa2Cu3O6.48 was found to extend far above 

the equilibrium critical temperature Tc (~ 45 K), and to vanish only above T = 400 K. The same 

measurements allowed to also quantify the temperature dependent amplitude of the amplified 

phonons Qamplified, by integrating the area under the Fourier transformations in the spectral 

range between 7 and 11 THz.  

The temperature dependent amplitudes of the amplified Josephson Plasmon Polariton, the 

amplified and driven IR modes, as well as the Raman phonons, shown in Fig. 2h,i of the 

manuscript and Fig. S10, were obtained by repeating the temperature dependent SH 

measurements several times and calculating the mean values of the amplitudes to account for 

systematic errors due to sample drift. Unlike the amplified Josephson plasmon, both the 

amplified and the driven phonons extend well above the pseudogap temperature T*. 
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S6. Excitation frequency dependence of the Josephson Plasmon 

Our theory predicts the amplification of the Josephson Plasmon Polariton by three-wave 

mixing with the c-axis apical oxygen phonon mode. Hence, we expect the amplification to be 

enhanced when the mid-infrared excitation pulses are frequency-tuned into resonance with this 

phonon, where the latter is driven to largest amplitudes. 

We tested this prediction by measuring the amplitude of the 2.5 THz mode in YBa2Cu3O6.48 

for different center frequencies of the mid-infrared pulses, keeping the peak electric field 

constant at ~5 MV/cm. In Fig. S11a,b we plot the oscillatory parts of the recorded time-

resolved second harmonic intensity ∆𝐼z{(𝑡) and the corresponding FFT amplitude spectra. The 

amplitude J1 extracted by a time-domain fit (see dashed lines in Fig. S11a) as a function of the 

excitation frequency and the real part of the YBCO optical conductivity are shown in Fig. S11d. 

Clearly, the Josephson Plasmon Polariton amplitude increases when the mid-infrared pulses 

are tuned into resonance with the phonon, supporting the proposed three-wave phonon-

plasmon mixing. 

Furthermore, Fig. S11c shows that the frequency of the amplified Josephson Plasmon Polariton 

does not change as function of the mid-infrared center frequency. Given the JPP dispersion, 

this implies that in the three-wave mixing process, with resonance condition 𝜔CD =

	𝜔yGK𝑞V!"ON + 𝜔y*(−𝑞V!"O), the frequency 𝜔CD always takes the same value. Hence, this has to 

be the eigenfrequency 𝜔4($5& of the phonon and not the tuned frequency of the mid-infrared 

excitation pulses. 

Together, these two observations show that the amplified JPP amplitude scales with the 

resonantly enhanced amplitude Qdrive of the driven apical oxygen phonon, hence exclude a 

scenario where the incident mid-infrared light field couples directly to the Josephson plasmon 

polariton. 
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S7. Excitation strength dependence of the Josephson Plasmon 

The theoretical model presented in this manuscript and discussed in more detail in Ref. 13 

predicts parametric amplification of the finite-momentum Josephson plasmon polariton. One 

validation of this hypothesis was found by fitting the experimental data in Figure 2g (amplitude 

of the low-frequency plasmon 𝐽G vs. driven phonon amplitude 𝑄9:+;<) by an exponential scaling 

function (𝐽G = 𝑎 ∙ (𝑒|801234c} − 1)). The same exponential scaling is also observed for the 

high-frequency Josephson plasmon 𝐽*. This is evidenced in Fig. S12, where we plot the 

normalized amplitude 𝐽* of this mode as a function of 𝑄9:+;<, together with the best fit of 

𝐽G(𝑄9:+;<) (dashed line). 
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S8. Methods 

Sample preparation 

The samples are detwinned single crystals of YBa2Cu3O6+δ grown in Y-stabilized zirconium 

crucibles. The hole doping of the Cu-O planes was adjusted by controlling the oxygen content 

of the CuO chain layer through annealing in flowing O2 and subsequent rapid quenching [14]. 

The critical temperatures of the superconducting transitions were determined by dc 

magnetization measurements (Tc = 45 K for YBa2Cu3O6.48, Tc = 67 K for YBa2Cu3O6.65 and Tc 

= 94 K for YBa2Cu3O6.92). 

For the optical experiments, ac-surfaces of the single crystals were polished to optical grade 

with a final lapping step at 100 nm grid size. The samples were then mounted into an optical 

cryostat where their temperature could be controlled between 10 and 450 K. 

 

Optical setup 

The carrier envelope phase (CEP) stable mid-infrared pump pulses were obtained by mixing 

the two signal beams from two optical parametric amplifiers, which were seeded by the same 

white light and pumped by 30-fs pulses at 800 nm wavelength and 1 kHz repetition rate in a 

300 µm thick GaSe crystal. The pulses were 150 fs long and centered at 17.5 THz with a 

bandwidth of 5 THz. An overview of the setup is sketched in Fig. S13a. We used a mid-infrared 

telescope built from two 90° off-axis parabolic mirrors to focus the pump beam to a spot size 

of ~60 µm (see Fig. S13b). The driven dynamics in the YBa2Cu3O6+x samples were probed by 

time-delayed linearly polarized replicas of the 800-nm pulses (70 nJ pulse energy), in non-

collinear geometry with an angle of ~17° to the normal-incidence mid-infrared pump. This 

probe beam was focused down to spot-size of 30 µm by a conventional spherical singlet lens 

and picked up after reflection from the sample by a D-shaped aluminum mirror. Only for the 
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measurements of the nonlinear scattering angle in the second harmonic generation, the two 

beams were aligned collinearly onto the sample. 

The pump induced polarization rotation of the 800-nm pulses, reflected from the YBa2Cu3O6+x 

samples, was measured by detecting the time-resolved difference signal of two intensity-

balanced photodiodes placed behind a half-wave plate and a Wollaston prism.  

The light fields generated at the second harmonic frequency (SH) at 400 nm wavelength were 

separated from the fundamental beam behind the sample by a dichroic mirror and then 

redirected by UV-enhanced aluminum mirrors to a photo multiplier tube for detection. A prism 

polarizer was placed as an analyzer in front of the photomultiplier tube (PMT) to detect the 

400-nm SH intensity with polarization either along the c axis or the a axis of the YBa2Cu3O6.48 

single crystal. We used a hard coated bandpass filter (390 ± 20 nm) in front of the PMT to 

prevent any stray light from reaching the detector. For SH polarimetry measurements, the 

polarization angle of the incoming 800-nm wavelength pulses was rotated by a half-wave plate. 

The whole setup was enclosed to minimize stray light contamination. 

Both schemes probe the material up to a depth of approximately ~0.1 µm, much smaller than 

the penetration depth of the mid-infrared excitation of about 1.5 µm. 

 
Analysis of the time-resolved SH signals 

The measured time-resolved second harmonic intensity ∆𝐼!"(𝑡) (see for example Fig. 1c of the 

manuscript) was fitted by the product of (i) a Gaussian envelope to map the nonlinear optical 

mixing of pump and probe electric fields at time delay zero (electric field induced second 

harmonic generation, EFISH) and (ii) a step function of finite width, multiplied by a decaying 

exponential, i.e. 𝐴(𝑡) = 𝐴 ∙ (1 + erf	((𝑡 − 𝑡U)/𝜎)) ∙ exp	(−𝛾(𝑡 − 𝑡U)), to describe the 

exponentially decaying background signal. Subtraction of this slowly varying background 

revealed the coherent oscillations shown in Figures 2a, 2c and e of the main text for different 

excitation strengths. The oscillatory signals can be divided into sets of three exponentially 
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decaying oscillators: the driven polar phonons Qdrive, the amplified phonons Qamplified, and the 

nonlinearly coupled Josephson Plasmon Polaritons J1 and J2 (see Fig. S5). These were fitted as 

𝐴(𝑡) = 𝐴 ∙ (1 + erf	((𝑡 − 𝑡U)/𝜎)) ∙ exp	(−𝛾(𝑡 − 𝑡U)) ∙ sin(2𝜋Ω𝑡 + 𝜙U). For the phonons, 

their frequencies ΩV'W,W, were constrained to values measured by linear infrared spectroscopy 

[15,16].  

 

Heterodyned and homodyned SH detection 

The time-resolved second harmonic (SH) signals result from hyper-Raman scattering, induced 

by the oscillating Josephson plasmon and the infrared-active lattice vibrations, as well as from 

the electric field induced second harmonic generation (EFISH) prompted by the mid-infrared 

excitation pulses. These processes can be considered as a nonlinear mixing of the oscillating 

fields (at frequencies 𝜔~{^) with the near-infrared probe pulses (of frequency 𝜔vw), resulting 

in the generation of sidebands 𝐸�(2𝜔vw + 𝜔~{^) close to the second harmonic frequency 2𝜔vw 

[17]. 

Both phase and amplitude of the coherent oscillations are detected by recording the time-delay 

dependent interference signal of these sidebands 

𝐼(𝑡) =  𝑑𝜔 g}𝐸U(2𝜔vw) + 𝐸�(2𝜔vw + 𝜔~{^) ∙ exp(𝑖𝜔~{^ ∙ 𝑡) + 𝑐. 𝑐. }
*h 

= 𝐼U + 𝐴(𝜔~{^)cos(𝜔~{^ ∙ 𝑡) + 𝐵(𝜔~{^)cos*(𝜔~{^ ∙ 𝑡), 

with 𝐸U(2𝜔vw) a reference oscillator generated either inside the sample or supplied externally.  

The homodyned term 𝐵(𝜔~{^)cos*(𝜔~{^ ∙ 𝑡) comprises a rectified and an oscillatory 

component at 2𝜔~{^. The largest contributions descend from the EFISH signal 

𝐼Y\C��,'W).(𝑡) 	= 	 𝐼U,Y\C�� ∙ exp(−2𝑡*/𝜎ZCD* ) ∙ cos*(𝜔ZCD ∙ 𝑡), the driven phonons 

𝐼�'W,W,,'W).(𝑡) 	= 	 𝐼U,�'W,W,,'W). ∙ erf(√2𝑡/𝜎�'W,W,) ∙ cos*(𝜔�'W,W, ∙ 𝑡) and the amplified 
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Josephson plasmon 𝐼y�,'W).(𝑡) 	= 	 𝐼U,y�,'W). ∙ erf(√2𝑡/𝜎y�) ∙ cos*(𝜔y� ∙ 𝑡). Here, 𝜎ZCD and 

𝜔ZCD are the temporal width and frequency of the excitation pulse, while 𝜎�'W,W,,y� and 

𝜔�'W,W,,y� denote the rise times and frequencies of the driven phonons and the Josephson 

plasmon.  

The rectified components of the homodyne response produce a slowly-varying background in 

the SH intensity, illustrated by the simulations shown in Fig. S14a and observed in the 

experiments (see Figure 1c of the manuscript). The high-frequency homodyned components of 

the EFISH and the driven phonons (2𝜔~{^ ~ 30-40 THz) are too fast to be resolved by the 30-

fs NIR-probe pulses, hence only the plasmon is visible at twice its eigenfrequency 

(2Ωy� ~ 5 THz).  

The heterodyned term 𝐴(𝜔~{^)cos(𝜔~{^ ∙ 𝑡),		oscillating at 𝜔~{^, descends from the 

interference of the light-induced sidebands 𝐸�(2𝜔vw + 𝜔~{^) with the reference oscillator 

𝐸U(2𝜔vw). In this case, the time-delay dependent SH intensity is given by the EFISH 

contribution 𝐼Y\C��,'&#.(𝑡) 	= 2𝐸U𝐸U,Y\C�� ∙ exp(−𝑡*/𝜎*) ∙ cos(𝜔ZCD ∙ 𝑡), the driven phonons 

𝐼�'W,W,,'&#.(𝑡) 	= 	2𝐸U𝐸U,�'W,W, ∙ erf(𝑡/𝜎�'W,W,) ∙ cos(𝜔�'W,W, ∙ 𝑡) and the amplified 

Josephson plasmon 𝐼y�,'&#.(𝑡) 	= 	2𝐸U𝐸U,y� ∙ erf(𝑡/𝜎y�) ∙ cos(𝜔y� ∙ 𝑡). Assuming 𝐸U ≈ 0.10 ∙

𝐸U,Y\C�� (see the estimation of this ratio below), this heterodyned signal, convolved with the 

time-resolution of the experiment and added to the homodyne component of Fig. S14a, results 

in the response shown in Fig. S14b. It agrees well with the experimental data of Figure 1c, 

indicating that the oscillatory signal contributions are dominated by this heterodyned 

component.  

The dominance of the heterodyned response, detecting the oscillators at their fundamental 

frequency 𝜔~{^, is confirmed by a deeper analysis of the Josephson plasmon dynamics. In 

Fig. S15h and i, we display time-resolved plasmon dynamics, isolated from all the phonon 
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contributions via a SH polarimetry analysis (see section below for details), together with its 

Fourier transform. The heterodyned component at 𝜔y� is four times larger than the homodyned 

response at 2𝜔y�.  

The reference oscillator 𝐸U(2𝜔vw), required for the heterodyne detection, is generated by 

second harmonic generation in the path of the near-infrared probe pulses from the Ti:sapphire 

amplifier system to the detector. This is evidenced by chopping the probe beam, in that way 

detecting the total time-resolved intensity 𝐼�� instead of the pump induced changes ∆𝐼��. 

Fig. S16a shows the result of these measurements, with the pump beam either exciting the 

sample (red curve) or being blocked in front of it (blue curve). The time delay independent SH 

intensity of the reference oscillator accounts for approximately 1.5% of the peak of the pump 

induced SH intensity, which corresponds to 𝐸U 	≈ 	0.12 ∙ 𝐸U,Y\C��, confirming the assumption 

made for the simulation shown in Figure S14.  

In addition, we replaced the sample with a metallic mirror (black curve) to rule out that this 

reference is generated by the sample itself (see discussion in and Ref. 5). We confirmed that 

the reference oscillator, detected with the sample in the optical cryostat, is temperature 

independent (see Fig. S16b). 

Importantly, the oscillations observed in the time-delay dependent SH intensity cannot be 

explained by changes in the linear reflectivity of the SH reference oscillator arising from the 

coherent excitation of Raman-active phonons (see Fig. S2a). Those were to be expected of 

order 1% ∆𝑅/𝑅U, which is significantly smaller than size of the coherent oscillations in the SH 

intensity (∆𝐼z{/𝐼U,��	~	1).  
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SH polarimetry 

To describe the SH polarimetry signals of the symmetry-odd modes in Figure 3, we consider 

that the instantaneous second harmonic intensity, which is mediated by a third-order 

susceptibility 𝜒#(ωIR, ωIR, ωTHz), can be described as an effective second-order optical 

nonlinearity 𝜒&33,#
* (ωCD, ωCD). Hence, the polarization angle dependence can be calculated by 

considering the full tensorial form of this effective second harmonic generation process 

                                                        𝑃$*h 	= 	∑ 𝜒$-.
(*)𝐸-h𝐸.h-,.  .                                               (8.1) 

Here, the indices i,j,k represent the polarization directions of the polarization P and the electric 

fields E. The directions 1,2,3 correspond to the crystal axes a,b,c of the YBa2Cu3O6+x unit 

cell18. 

The nonlinear coefficient 𝜒$-.*  is a third-rank tensor that connects the three interacting fields. 

Given the Kleinman symmetry condition, the number of independent elements of this tensor 

can be reduced to 18 elements 𝑑$! and the most general equation describing second harmonic 

generation is 

                               ¨
𝑃G*h

𝑃**h

𝑃F*h
© = 2ª

𝑑GG 𝑑G* 𝑑GF
𝑑*G 𝑑** 𝑑*F
𝑑FG 𝑑F* 𝑑FF

					
𝑑G= 𝑑G� 𝑑G�
𝑑*= 𝑑*� 𝑑*�
𝑑F= 𝑑F� 𝑑F�

«

⎝

⎜⎜
⎜
⎛

𝐸G*

𝐸**

𝐸F*
2𝐸*𝐸F
2𝐸G𝐸F
2𝐸G𝐸*⎠

⎟⎟
⎟
⎞

.             (8.2) 

Depending on the point group symmetry, the number of independent tensor elements can be 

further reduced. Given the symmetries of the amplified optical phonons and the Josephson 

Plasmon Polaritons (see Fig. 5f,g of the manuscript), the relevant point groups for the 

discussion in this work are mm2 and m’. Their corresponding 𝑑$! tensors read 

                                𝑑$!(𝑚𝑚2) = ª
0 0 0
0 0 0
𝑑FG 𝑑F* 𝑑FF

					
0 𝑑G� 0
𝑑*= 0 0
0 0 0

«                                           (8.3) 

and  
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                               			𝑑$!(𝑚′) = ª
𝑑GG 𝑑G* 𝑑GF
0 0 0
𝑑FG 𝑑F* 𝑑FF

					
0 𝑑G� 0
𝑑*= 0 𝑑*�
0 𝑑F� 0

«.                               (8.4) 

By choosing an appropriate orientation of the analyzer in front of the detector, we measured 

the components 𝑃F*h (s-analyzer) and 𝑃G*h + 𝑃**h (p-analyzer). Equation 4.2 could then be used 

to fit the shape of the SH polarimetry signals and determine the individual tensor elements 𝑑$! 

at any given time delay. 

Figure 3 of the manuscript shows data taken with the analyzer oriented along the YBa2Cu3O6.48 

c axis (s-analyzer), whilst Fig. S17a plots the measurements taken with the analyzer oriented 

along the a axis (p-analyzer). 

 

Decomposition of the SH polarimetry by frequency filtering 

The time-resolved polarimetry signal shown in Fig. 3b of the manuscript, was dissected into 

the individual contributions of the amplified Josephson plasmon, the amplified phonon and the 

driven phonons by frequency filtering. To this end, each time trace ∆𝐼��(𝑡) for a given near-

infrared polarization angle 𝜑, was subjected to either a low-pass (amplified plasmon), band-

pass (amplified phonons) or high-pass (driven phonon) filter. The result of this procedure is 

shown in Fig. S18. The polarimetry data, shown in Figure 3c-e of the manuscript, were taken 

from a cut through these angle-dependent data at a constant time delay of 150 fs. 

The same analysis was performed on SH polarimetry data with the analyzer oriented along the 

a axis (see Fig. S17b). For one representative time delay the results are shown in Fig. S17c-e. 

Again, the directly driven phonons (yellow) and the amplified phonons (grey) can be fitted by 

the 𝜒$ tensor of the mm2 point group (dashed lines) relevant for the B1u-symmetry lattice 

distortions. The sign of the phonon amplitudes at this delay, and hence their phases, are 

independent of the polarization angle 𝜑. In contrast, the angular dependence of the 2.5 THz 
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Josephson Plasmon Polariton requires a fit by the 𝜒$ tensor of a lower-symmetry point group 

(m’ or lower) and the amplitude of this mode changes sign as a function of the polarization 

angle 𝜑. 

This result agrees with the symmetry analysis presented in the manuscript for the s-analyzer 

configuration. 

Decomposition of the SH polarimetry by symmetry analysis 

The tensorial form of the second harmonic coefficients 𝑑+1(𝑚𝑚2) and 𝑑+1(𝑚′) for the amplified 

phonons and the Josephson plasmon, allowed us to decompose the time and angle dependent 

SH polarimetry signal into three contributions 

∆𝐼z{(𝑡, 𝜑) = [𝐴G(𝑡) cos* 𝜑 + 𝐴*(𝑡) sin* 𝜑 + 2𝐴F(𝑡) cos𝜑 sin𝜑]*             (8.5) 

The amplified phonons reduce the symmetry to the point group mm2, allowing for two two-

lobe patterns that involve the coefficients 𝐴G(𝑡) and 𝐴*(𝑡), see Fig. S15a,d. The Josephson 

plasmon reduces the point group further to m', generating a 45°-rotated four-lobe pattern 

proportional to 𝐴F(𝑡), see Fig. S15g, in addition to the two two-lobe patterns proportional to 

𝐴G(𝑡) and 𝐴*(𝑡). Hence, the time evolution of the coefficient 𝐴F(𝑡) can be uniquely identified 

with the dynamics of the amplified Josephson plasmon. 

We periodically extended the SH polarimetry signal along the polarization angle axis 𝜑 and 

Fourier filtered these data into circular (q = 0), two-lobe (q = 2) and four-lobe (q = 4) features: 

𝑞 = 0 

𝐹[∆𝐼z{](0) =
F
=
𝐴G(𝑡)* +

G
*
𝐴G(𝑡)𝐴*(𝑡) +

F
=
𝐴*(𝑡)* + 𝐴F(𝑡)*            (8.6) 

𝑞 = 2 

𝑅𝑒{𝐹[∆𝐼z{](2)} =
G
*
𝐴G(𝑡)* −

G
*
𝐴*(𝑡)*              (8.7) 

𝐼𝑚{𝐹[∆𝐼z{](2)} = 𝐴G(𝑡)𝐴F(𝑡) + 𝐴*(𝑡)𝐴F(𝑡)              (8.8) 
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𝑞 = 4 

																						𝑅𝑒{𝐹[∆𝐼z{](4)} =
G
�
𝐴G(𝑡)* −

G
=
𝐴G(𝑡)𝐴*(𝑡) +

G
�
𝐴*(𝑡)* −

G
*
𝐴F(𝑡)*            (8.9) 

𝐼𝑚{𝐹[∆𝐼z{](4)} =
G
*
𝐴G(𝑡)𝐴F(𝑡) −

G
*
𝐴*(𝑡)𝐴F(𝑡)           (8.10) 

 

This set of five equations allowed us to uniquely determine the coefficients 𝐴G(𝑡), 𝐴*(𝑡), and 

𝐴F(𝑡) from the Fourier amplitudes at their specific periodicity. Repeating this procedure for all 

time delays resulted in the time evolutions of 𝐴G(𝑡), 𝐴*(𝑡), and 𝐴F(𝑡) plotted in Fig. S15 

together with their Fourier transforms. 

 
Momentum-resolved detection of the Josephson Plasmon Polariton 

In the SH measurement, the 400-nm wavelength light is generated in a thin layer l of about 100 

nm below the sample surface. The finite in-plane momentum 𝑞y� of the amplified Josephson 

Plasmon Polariton leads to a deflection of the second harmonic light with respect to the specular 

reflection. The spatial distribution of the emitted radiation was determined by taking second 

harmonic intensity measurements ∆𝐼!"(𝑡) at different positions of a 200-µm slit, which was 

scanned across the re-collimated reflected beam 100 mm after the sample. The amplitudes of 

the frequency-filtered 2.5-THz JPP and the amplified phonon contributions are plotted as a 

function of the slit position in Fig. S19b,c, together with the EFISH amplitude at time zero 

shown in Fig. S19a. The momentum transfer was calculated from the deflection angle Δ𝜃 by  

𝑞x 	= 	√𝜀�	tan(Δ𝜃)𝑘=UU, 

where 𝑘=UU is the vacuum wavenumber of the 400-nm light. While both the EFISH and 

amplified phonon contributions are symmetric and peak at zero in-plane momentum transfer 

𝑞x, the plasmon response is asymmetric and peaks at a finite momentum qx = 190 cm-1. 
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The momentum distribution of the Josephson Plasmon Polariton, shown in Fig. 4d of the main 

text, was then obtained by deconvolving the measured JPP profile (Fig. S19c) from the 

divergence of the probe beam. To this end, consistent with our theoretical model, two 

constrained Gaussian profiles, with equal but opposite abscissa offsets and same widths, were 

fitted to the data. The best fit was deconvolved with the Gaussian profile of the undeflected 

second harmonic beam, which is accessible from the momentum dependent EFISH signal due 

to the collinearity between the incident mid-IR excitation and 800-nm probe beams in these 

measurements. Constrained in this way, the deconvolution yielded a unique result which 

describes the data, shown in Fig. 4d. The error-bars of the deconvoluted data points are 

determined by the deviation of the least squares fit to the data points. Note that the 190-cm-1 

momentum shift is already clearly visible in the raw data shown in Fig. S19c.  



27 
 

SUPPLEMENTAL FIGURES 

 

 

Figure S1: Measured dependence of the driven phonon amplitude Qdrive as a function of the 

incident peak electric field. The dashed black line is a linear fit, 𝑄4($5& 	= 	𝑎𝐸3$&!4. Error bars 

represent the standard deviation s of the amplitudes extracted by numerical fits. 
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Figure S2: Coherent component of the polarization rotation signal of YBa2Cu3O6.48 in panel a 

and of YBa2Cu3O6.65 in panel c both recorded at an excitation field of ~ 7MV/cm. The dashed 

lines are a time domain fit with several exponentially decaying oscillators. The corresponding 

Fourier amplitude spectra are shown in panel b and d, respectively. The individual oscillators 

of the time domain fits are shown as grey peaks. e Real space motion of the two dominant 

Raman modes at 3.7 and 5 THz determined by ab-initio methods. f, Measured excitation 

strength dependence of the amplitude of the 3.7 THz mode as a function of the amplitude of 

the driven apical oxygen vibration The dashed black line is a parabolic fit, 𝑄D 	= 	𝑎𝑄4($5&* . 

Error bars represent the standard deviation s of the amplitudes extracted by numerical fits. 
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Figure S3: Simulated coherent oscillations of the Raman modes excited by ionic Raman 

scattering due to their third-order nonlinear coupling to the resonantly driven apical oxygen 

phonons. The corresponding frequency spectrum is shown in the right panel and displays the 

same dominant response at 3.7 and 5 THz as observed in the experiment. 

  



30 
 

 

Figure S4: a Simulated polarization induced by the coherent oscillations of the resonantly 

driven apical oxygen vibrations Qdrive (yellow). b, The corresponding Fourier amplitude 

spectrum exhibits two peaks at 17 and 20 THz (dashed line). The individual phonon responses 

are shown as yellow peaks, whilst the total response is drawn as a dashed black line. c, 

Simulated polarization induced by the coherent oscillations of the nonlinearly coupled 

(amplified) infrared-active vibrations Qamplified at 4, 6, 8 and 10 THz (grey), which are driven 

through fourth-order nonlinear coupling to the resonantly driven apical oxygen phonons. d, 

The Fourier amplitude spectrum (dashed black) can be dissected into the response of the 

individual modes, which are shown as shaded grey peaks. The response agrees well with the 

experimental data. e, Simulated polarization of the nonlinearly coupled Ag Raman phonons 

when artificially lowering the point group symmetry of YBCO6.5 to mmm', magnified by a 

factor of 2,500 relative to the panels a and c. f, The total Fourier amplitude spectrum (dashed 

line) is plotted together with the individual modes that are shown as shaded peaks (again 

magnified by 2,500).  
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Figure S5: Coherent oscillations in the time-resolved second harmonic intensity ∆𝐼!"(𝑡) from 

YBa2Cu3O6.48, as shown in Fig. 2e of the main text for 7MV/cm excitation at 5 K, divided into 

three contributions and shown together with their Fourier amplitude spectra. Panels a,b show 

the driven apical oxygen phonons, panels c,d show the amplified infrared-active phonons, and 

panels e,f show the Josephson Plasma Polariton modes. Experimental phonon oscillations 

(yellow and grey dots in a and c, respectively) are fitted by oscillators with frequencies 

constrained by infrared spectroscopy data (dashed lines). Oscillations of the two Josephson 

plasma modes (experimental data as red dots in e) are best fitted by two oscillators at 2.5 and 

14 THz (dashed line). In the Fourier amplitude spectra, the colored peaks highlight the 

respective contributions. 

  



32 
 

 

Figure S6: Schematic drawing of a bilayer superconductor. Variables 𝛿𝜌$,J, 𝜙$,J, 𝑗$,J,LMM⃗ , and 

𝐴$,J,LMM⃗  are defined within layer 𝜆 in unit cell 𝑖 and describe condensate density fluctuations, 

phase of the order parameter, parallel component of the superfluid current, electrostatic 

potential, and in-plane vector potential respectively. Variables 𝑗$,J,K, and 𝐴$,J,K are defined 

between the layers and correspond to interlayer Josephson current and out of plane component 

of the vector potential, respectively. 
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Figure S7: Dispersion relation of the two lowest energy modes of equations (10)-(12) in the 

{𝑞x, 𝑞K}-plane. At 𝑞K = 0, the upper plasmon is strongly hybridized with the original photon 

mode. This results in the energy of the mode increasing rapidly along the 𝑞x axis with the slope 

approaching the speed of light. Away from 𝑞K = 0 strong mixing with the photon is absent and 

the frequency of the mode decreases with increasing 𝑞x. 
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Figure S8: Coherent oscillations in the time delay dependent second harmonic intensity of a 

YBa2Cu3O6.48, c YBa2Cu3O6.65 and e YBa2Cu3O6.92, measured in the superconducting state at 

5 K, together with corresponding Fourier amplitude spectra in b, d, f. Experimental data are 

plotted as red dots in panels a, c, e, together with the best fits to the data (light grey dashed 

lines) and the dominating low-frequency Josephson plasmon contribution (black solid line). 

The Fourier amplitude spectra include Josephson plasmons as red and magenta peaks, 

resonantly driven apical oxygen phonons as yellow peaks, and the nonlinear coupled infrared 

active phonons as grey peaks. Note the absence of the Josephson plasma oscillations in 

YBa2Cu3O6.92. All experiments were performed with a peak electric field strength of 7 MV/cm. 
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Figure S9: a Temperature dependent coherent oscillation of the SH intensity in YBa2Cu3O6.48 

for three base temperatures of 5 K (red), 300 K (light red) and 440K (grey). Their corresponding 

FFT amplitude spectra are shown in panel b. The shaded areas highlight the spectral regions 

of the amplified Josephson plasma modes. 
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Figure S10: Temperature dependent amplitudes of the driven infrared-active phonon (a, taken 

from time-resolved second harmonic measurements) and of the nonlinearly coupled Ag Raman 

phonons (b, taken from time-resolved reflectivity measurements). The dashed lines are a guide 

to the eye. Error bars represent the standard deviation s of the amplitudes obtained by repeating 

the experiment under equivalent conditions. All experiments were performed with a peak field 

strength of ~7 MV/cm. 
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Figure S11: a and b show the coherent oscillations of the SH intensity and the corresponding 

FFT amplitudes measured in YBa2Cu3O6.48 at different mid-infrared frequencies while peak 

electric field of ~5 MV/cm. c and d, Frequency and amplitude of the low-frequency Josephson 

Plasmon Polariton (red data points) extracted from a time-domain fit to the data shown in panel 

a (dashed lines). The amplitude increases towards the resonance of the optically excited apical 

oxygen lattice vibration. The real part of the optical conductivity is drawn as solid black line, 

and as a dashed line when convolved with the bandwidth of the excitation pulses. Error bars 

represent the standard deviation s of the JPP amplitudes extracted by numerical fits. Horizontal 

error bars represent the standard deviation s of the center wavelength determined by electro-

optic sampling. 
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Figure S12: Measured amplitude J2 of the amplified 14-THz Josephson plasmon polariton in 

YBa2Cu3O6.48 as a function of the driven apical oxygen vibration amplitude Qdrive. The dashed 

line is the exponential fit obtained from the dependence of the low-frequency plasmon J1 as a 

function of Qdrive, highlighting similar scaling of the low- and high-frequency Josephson 

plasmons.  

  



39 
 

 

Figure S13: a, Sketch of the experimental setup used for the generation of strong-field mid-

infrared pulses and time-resolved optical detection of the linear and nonlinear sample response. 

The mid-infrared pump pulses were obtained by mixing the two signal beams from two optical 

parametric amplifiers (OPA), which were seeded by the same white light (WLC) and pumped 

by 30-fs pulses at 800 nm wavelength from a 1 kHz repetition rate Ti:sapphire amplifier 

system. The driven dynamics in the YBa2Cu3O6+x samples were probed by time-delayed 

linearly polarized replicas of the 800-nm (70 nJ) pulses, in non-collinear geometry to the 

normal-incidence mid-infrared pump. The reflected fundamental (800 nm) and second 

harmonic (400 nm) beams were separated by a dichroic mirror and detected separately. The 

polarization of the SH beam was analyzed by a prism polarizer. b, Detailed Sketch of the 

experiment detection geometry.  
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Figure S14: a, Simulated changes ∆𝐼�� of the SH intensity taking into account only the 

homodyned signal contribution. b, Simulated changes ∆𝐼�� of the SH intensity signal including 

both the heterodyne and the homodyne components, with a static background (reference 

oscillator) of 1% of the peak SH intensity. Both curves were convolved with the experimental 

time resolution of 30 fs. 
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Figure S15: a, d and g, Angular dependence of the SH polarimetry signal contributions, 

associated with the three coefficients 𝐴G(𝑡), 𝐴*(𝑡) and 𝐴F(𝑡), that result from the symmetry 

reduction of YBCO6.5 to the 𝑚𝑚2 (phonons) and 𝑚′ (Josephson plasmon) point groups. Panels 

b,e,h and c,f,i, plot the corresponding temporal evolution, extracted from the signal in Figure 

3b of the manuscript, as well as their Fourier transforms, respectively. See Methods section 

‘SH polarimetry’ for details of the symmetry analysis used to filter the different contributions. 
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Figure S16: a, Normalized total SH intensity measured with the pump and probe beams 

incident on the sample (red line), with only the probe beam present (blue line), and with the 

sample replaced with a metallic mirror (black line). b, Temperature dependence of the time 

delay independent SH background detected with the YBCO sample in place (blue line in a). 

Error bars represent the standard deviation s of the amplitudes obtained by repeating the 

experiment under equivalent conditions. 
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Figure S17: a, Sketch of the SH polarimetry experimental geometry for a horizontal analyzer 

alignement. b, SH signal as a function of polarization angle and pump-probe time delay, 

measured at room temperature.  c,d and e, Normalized SH polarimetry signal of the driven 

phonons (yellow dots), amplified phonons (grey dots) and amplified Josephson Plasmon 

Polariton (red and blue dots) for an analyzer oriented along the crystal a-axis, around a time-

delay t = 500 fs. The signal of the two sets of phonons can be reproduced by a fit to a mm2 

point group symmetry (dashed line) and the phase of the oscillations is polarization angle 𝜑 

independent. The signal of the amplified Josephson Plasmon Polariton agrees with a fit to point 

group m (dashed line). The phase of the polarimetry signal is indicated by the red and blue 

color-coding. The SH polarimetry data was recorded at room temperature with at peak electric 

field of ~5 MV/cm.  
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Figure S18: Normalized polarimetry signals of the amplified plasmon, the amplified phonon 

and the driven phonon, extracted from Figure 3b of the manuscript by applying a, a low-pass 

filter, b, a band-pass filter and c, a high-pass filter, respectively. 
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Figure S19: a In-plane momentum distribution of the EFISH-component, b amplitude of the 

amplified phonon oscillations and c coherent Josephson Plasmon Polariton oscillations, as 

measured in the experiment sketched in Figure 4a of the main text. Data points are shown as 

blue, grey and red symbols. The Gaussian fit to the EFISH data, shown as a dashed grey line 

in a, reveals the divergence of the second harmonic beam. In panel c, the fit to the raw data and 

of the Josephson Plasmon Polariton amplitude and its 𝜔%& =	𝜔'(+𝑞')- + 𝜔'$(−𝑞'))  

deconvolution are plotted as dashed grey and red lines, respectively. Error bars represent the 

standard deviation s of the amplitudes extracted by numerical fits. Horizontal error bars 

represent the standard deviation s due to the finite width of the measurement slit. The data was 

recorded at room temperature with a peak field of ~5 MV/cm. 
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