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Abstract: We demonstrate how masses of new states, beyond direct experimen-

tal reach, could nevertheless be extracted in the framework of effective field theory

(EFT), given broad assumptions on the underlying UV physics, however not sticking

to a particular setup nor fixing the coupling strength of the scenario. The flat direc-

tion in the g∗ vs. M plane is lifted by studying correlations between observables that

depend on operators with a different ~ scaling. We discuss the remaining model de-

pendence (which is inherent even in the EFT approach to have control over the error

due to the truncation of the power series), as well as prospects to test paradigms of

UV physics. In particular, we provide an assessment of which correlations are best

suited regarding sensitivity, give an overview of possible/expected effects in differ-

ent observables, and demonstrate how perturbativity and direct search limits corner

possible patterns of deviations from the SM in a given UV paradigm.
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1 General Introduction

Given the clear technical limitations in increasing the energy of collider experiments,

it is important to try to access the properties of physics beyond the Standard Model

(BSM) indirectly via precise measurements of observables at available energies. How-

ever, this approach features in general a significant limitation, since new degrees of

freedom, entering as virtual particles in processes with characteristic energy scales

below their production threshold, generically lead to corrections scaling like a ratio

of their coupling and their mass. Acquiring information about their actual mass

spectrum requires usually very specific assumptions about the coupling strength -

which in reality however could span a huge range from very weak coupling g∗ � 1

up to strong coupling, like g∗ . 4π. In this paper we point out how the different ~
scaling of various operators can be used to lift flat directions in the coupling vs. mass

plane by examining more than one observable at a time, thus allowing to estimate

systematically at which mass the new physics (NP) actually can be expected.

The framework used for this analysis is the effective field theory (EFT) extension

of the SM, which is indeed the most general parametrization of NP that resides at

energies much larger than both the electroweak scale MEW and the characteristic

scale E probed by the experiment of interest. It can be fully formulated in terms of

low mass (SM) fields, while the effect of the NP will manifest itself in the presence

of operators with mass dimension D > 4 in the effective Lagrangian [1–3]

Leff = LSM +
∑
i

c
(6)
i O

(6)
i +

∑
j

c
(8)
j O

(8)
j + · · · , (1.1)

where LSM is the SM Lagrangian, and we have assumed baryon and lepton number

conservation. The operators O(D)
i of canonical dimension D consist of all (Poincaré

invariant and hermitian) combinations of SM fields that respect local invariance

under the (linearly-realized) SU(3)c × SU(2)L × U(1)Y SM symmetry group. On
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dimensional grounds, operators of higher D will be suppressed by larger powers of

some fundamental mass scale M � E, associated to the new states that have been

removed as propagating degrees of freedom in the low energy theory Leff (i.e. inte-

grated out in the path integral), with their effect being contained in the coefficients

c
(6)
i [4–18] (for reviews and further developments see, e.g., [19–26]).1 These coef-

ficients allow to capture the effect of NP, no matter what are the exact details of

the theory at higher energies. Determining them in experiment is a first step to

understand the UV completion of the SM. On the other hand, as mentioned above,

they generically depend only on ratios of couplings over masses, and not on masses

alone, so naively it seems not possible to fix the spectrum of NP from such low energy

observations, such as to know where to search for it.2

However, one needs to realize that not all operators depend on the very same

ratio. In fact, from restoring ~ dimensions in the action and simple dimensional

analysis, it is easy to convince oneself, that very generally an operator containing ni
fields features a coefficient scaling as

c
(D)
i ∼ (coupling)ni−2

(high mass scale)D−4
, (1.2)

given that the UV theory is perturbative (see, e.g., [28–30]).3 Analyzing the effect

of more than one operator at a time can provide information about M .

In fact, as we will study in detail below, exploring operators with a different field

content allows us to gain sensitivity on different ratios of coupling over mass such as

to solve for the latter. The broad assumptions required to entertain such correlations

will be detailed in the following section. They correspond to a set of power counting

rules, which are required in any case to assess the validity of the EFT setup, and do

not include specific assumptions, such as on concrete coupling strengths. This article

is arganized as follows. In Section 2, we will provide more details on the setup that

forms the basis for our analysis, in Section 3, we will perform the actual simultaneous

study of different observables that will allow us to learn something on the underlying

mass scale and to test UV paradigms, while we will conclude in Section 4.

2 Setup

In the following, we will detail the power counting rules used in the analysis at

hand. They basically correspond to the assumption of one new scale M and one NP

1This suppression allows for a truncation of the series at a certain D, assuring the predictivity

of the setup.
2See also [27] for a recent discussion on the difference of new mass thresholds and (combined)

interaction scales.
3Note that an additional suppressing factor (coupling/4π)2L can arise if the operator is only

generated at the Lth-loop order.
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coupling g∗, in the spirit of the Strongly-Interacting Light Higgs (SILH) [28], and

are fulfilled in a broad class of models where a weakly coupled narrow resonance

(characterized by a single coupling constant) is integrated out but as well in strongly

coupled NP setups featuring a large N description. Note that the assumption of

power counting rules is crucial in any EFT if one wants to assess its validity, since

only after fixing the scaling of operators with couplings and masses can one start to

estimate the effect of truncating the EFT series at a certain mass dimension (see,

e.g., [31]). For example, in holographic composite Higgs models [32], the mass scale

is set by the Kaluza-Klein (KK) mass M ∼ e−krπk ≡MKK and the coupling-strength

is given by the rescaled five-dimensional gauge coupling g∗ ∼ g5/
√

2πr, where k is

the AdS5 curvature and r the compactification length of the fifth dimension.

In basic examples of integrating out a narrow resonance with a universal cou-

pling to the SM, the couplings entering the coefficients c
(D)
i can in many cases indeed

be identified with the single NP coupling g∗. On the other hand, in more com-

plicated scenarios, interactions of the SM sector with NP might involve additional

small (mixing) parameters and different operators might come with different effec-

tive couplings. In the classical SILH, in fact operators involving gauge bosons (or

light fermions) feature in general smaller couplings gV < g∗, due to the non-maximal

mixing of the corresponding fields with the strong sector.4 Such suppressions can

however be lifted in scenarios that complement the SILH extension of the SM. In a

setup of vector-compositeness, dubbed Remedios [33], also gauge bosons couple in

certain cases with the same strength to the strong sector as the Higgs, gV = g∗. We

will denote variants of well-known scenarios that feature just the latter difference

with a bar, i.e., SILH, in the case discussed before. Beyond that, in a general de-

scription of a light Higgs, without identifying it with a Goldstone boson as in the

SILH, but rather assuming the smallness of the electroweak scale is due to some other

mechanism or an accident – the ALH – (loop) suppression factors of the SILH are not

present (see [33]). The concrete scaling of operators in these two basic frameworks

of BSM physics (including their ’Remedios’ versions5) is summarized in Table 1, to-

gether with the example of integrating out a scalar SU(2)L doublet S(1, 2)1/2 with

hypercharge Y = 1/2 [34, 35].6 The corresponding operators are defined in Table 2,

where we employ the SILH basis (with an adapted normalization) [28, 33]. Note that

we always assume minimal flavor violation (MFV) to be at work, dictating the flavor

structure of the operators [36], such as the coefficients λ4f or the yukawa couplings

entering Table 1. Four-fermion operators under investigation below will be assumed

to feature left-handed quark currents for concreteness, resulting in λ4f → VtbV
∗
ts in

4 Note also that, due to the assumption of minimal coupling as well as symmetry considerations,

some operators in the SILH feature further (loop) suppression factors [28, 33].
5We assume the Remedios+MCHM of [33], however the MCHM-like scaling entering in the last

five columns of Table 1 is not crucial for the following analysis.
6We thus consider λϕ = g2∗ and yfϕ = yf .
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Oyf O4f O6 O3W,3G OBB,GG OW,B O2W,2B,2G OHW,HB OH
SILH yfg

2
∗ λ4fg2

∗
y2t

16π2 g
4
∗

g2∗
16π2 g∗

y2t
16π2 g

2
V gV 1 g2∗

16π2 (g,g′) g2
∗

SILH yfg
2
∗ λ4fg2

∗
y2t

16π2 g
4
∗

g2V
16π2 gV

y2t
16π2 g

2
V gV

g2V
g2∗

g2∗
16π2 gV g2

∗

ALH yfg
2
∗ λ4fg2

∗ g4
∗ g∗ g2

V gV 1 g, g′ g2
∗

ALH yfg
2
∗ λ4fg2

∗ g4
∗

g2V
g2∗
gV g2

V gV
g2V
g2∗

gV g2
∗∫

[φ] yfg
2
∗ λ4fg2

∗ g4
∗

g2

16π2
g
60

. (4π)−2

Table 1. Scaling of the coefficients of the various D = 6 operators in terms of couplings,

in the framework of the SILH (first line), the ordinary SILH (second line), the ALH (third

line), the ALH (fourth line), and when integrating out a narrow scalar S(1, 2)1/2 (fifth

line). λ4f denotes the flavor structure, see text for details.

Oyf = |H|2f̄LHfR
O4f = f̄γµf f̄γµf

O6 = |H|6

O3V = 1
3!
FabcV

aν
µ V b

νρV
cρµ

OV V = |H|2V a
µνV

aµν

OV = i
2
(H†σa

←→
DµH)DνW a

µν

O2V = −1
2
(DρV

a
µν)

2

OHV = i(DµH)†σa(DνH)V a
µν

OH = 1
2
(∂µ|H|2)2

Table 2. The operators under consideration, where 3V =3W, 3G; V V =BB,GG;

V =B,W ; 2V =2B, 2W, 2G; HV =HB,HW . Moreover, a, b, c = 1, .., 8; 1, .., 3; ∅, for

SU(3), SU(2)L, U(1)Y , respectively, with Fabc = fabc, εabc, 1 the corresponding structure

constants (and clearly the σa matrices absent in the case of V =B as well as D = ∂ when

acting on Bµν). Note that f denotes, schematically, fermion fields.

the case of bs transitions to leading approximation.7 Finally, we will comment on

the scenario where gV → gSM in footnote 8.

We note from Table 1 that in general strong correlations (via g∗) exist between

the operators Oyf , O4f , O6 (and O3V in the case of the Remedios setup), which have

the same form in many scenarios, as emphasized by the shades of gray. We will thus

consider measurable quantities that are transparently related to these operators in

the following. Two diverse scenarios (visualized by orange and blue dashed lines)

can be identified, which can be mapped to two benchmarks for the analysis of this

article, capturing basically all models at hand concerning the class of operators under

consideration. They are distinguished by the assumption whether O6 is tree or loop

7This is for illustration and the generalization to other operators that are generated in the

scenarios is straightforward. Note that MFV dictates the ratios of couplings accompanying different

quark currents and we neglect subleading terms, suppressed by powers of y2i /y
2
t � 1. Moreover,

it is assumed that chiral-symmetry breaking effects are mediated by SM-like Yukawa couplings,

leading to the appearance of yf in cyf
(or that the same physics that generates the D=4 Yukawa

couplings also generates Oyf
, which is true in many BSM scenarios, such as in composite Higgs

models). We will also comment on the concept of partial compositenss further below.
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Oyf O4f O6 O3W,3G

A yfg
2
∗ λ4fg2

∗ g4
∗ g∗

B yfg
2
∗ λ4fg2

∗
y2t

16π2 g
4
∗

g2∗
16π2 g∗

Table 3. Operators that can be basically divided in two classes of scalings, i.e., A: ALH-

like and B: SILH-like. See text for details.

generated and summarized in Table 3, denoted by capital letters A and B.8

In the following section, we will detail how these scenarios can be tested by study-

ing correlations between observables. In particular, we will discuss which patters of

deviations are expected and how they would allow us to access directly NP masses,

beyond collider reach, and which patterns would exclude given UV paradigms. In

fact, as we will work out below, accessing two operators at a time will allow for a

’model-independent’ direct determination of the NP mass M (without making an as-

sumption for the coupling g∗), valid in a large class of NP frameworks - with the only

remaining freedom being the question whether one is in Scenario A or in Scenario B.

The latter information can however be obtained by including a third observable,

a procedure that we will explicitly go through at the end of this article. Indeed,

considering simultaneously measurements of the coefficients of two operators will

determine both M and g∗, which leads to a distinct prediction for the remaining co-

efficients in both scenarios, which can be confronted with bounds, eventually allowing

us to determine which of the scenarios is viable, and which is excluded.

3 Analysis + Discussion

We will now study in detail how measurable quantities, that depend in a simple way

on the operators identified in Section 2, can be employed to unveil the mass of new

states, even in case the available energy does not suffice to produce them directly.

Let us start by exploring how simultaneous measurements of more than one such

quantity can be used to lift the flat direction in g∗ vs. M and examine the resulting

sensitivity on M .

8The given scaling in the case of O3V holds only in the Remedios setups, where gV = g∗. While

other correlations are rather robust, those including this operator will depend on this assumption.

Note moreover, that in the original version of the SILH proposal [28] vectors were assumed to be

weakly coupled - featuring exactly the SM gauge couplings - which would lead to the replacement

gV → g, g′, gs in columns 4−8 in the second line of Table 1, for V = W,B,G, respectively. Clearly,

making such a specific assumption on the value of couplings entering the NP terms could let us hope

to be able to determine M , in this particular scenario, via processes involving gauge bosons. The

analysis presented here on the one hand considers the generalized context where all NP terms could

appear with a NP coupling - gV in the case of gauge bosons - (focusing on operators with a ’universal’

scaling), but beyond that particularly envisages effects in operators without gauge bosons, Oyf
,O4f ,

and O6, with still ample room for NP. Moreover, TGC measurements and Higgs decays are often

only sensitive to combinations of operators with different scaling, like cW,B and c2W,2B .
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Consider two operators O1 and O2, whose coefficients, c1 ∼ gy1∗ /M
2 and c2 ∼

gy2∗ /M
2, feature a different scaling in g∗, y1 6= y2. Now, assume these coefficients

are extracted from measurements, resulting in c1 = X1 and c2 = X2, with X1,2

featuring mass dimensions D = −2. We can now solve the simple system of equations

(neglecting loop factors, which can be implemented trivially)

gy1∗
M2
∼ X1 ,

gy2∗
M2
∼ X2 (3.1)

for M , leading (for y1 6= y2) to

M ∼
(
Xy2

1

Xy1
2

) 1
2(y1−y2)

. (3.2)

We observe that in general the best sensitivity regarding NP masses results from

studying pairs of operators that feature powers of g∗ that are large for each of the

operators, but close to each other, ∆y ≡ |y1 − y2| ∼ 1. In Scenario B, this would

correspond for example to the pair of operators O6 and O3V (which are however

loop suppressed, limiting the effects due to perturbativity), that feature ∆y = 1 and

would lead to a sensitivity M ≈ (X
3/2
1 /X2

2 ). Moreover, the sensitivity increases if

the operator that features the smaller power of g∗ becomes stronger constrained. On

the other hand, confronting measurements of cyf and c4f leads to no sensitivity at

all in both scenarios - concerning the operators in Table 3, at least a measurement

of c6 or c3V needs to be involved.

A general procedure to determine the NP mass M , given a set of measurements,

is now as follows

1. Consider a pair of measurements that determines two coefficients in Table 3 and

solve for M via relation (3.2), employing the results presented in Figures 1-5,

both for Scenario A and B.

2. Solve for g∗ via eqs. (3.1), derive predictions for the remaining pseudo-observables,

and confront them with measurements. Drop the scenario that is (experimen-

tally) excluded or inconsistent with EFT assumptions or perturbativity (too

small M , too large g∗).

3. The remaining solution provides a direct estimate for the mass of new particles,

completing the SM.

While not involving λZ at the beginning avoids assumptions regarding vector-

boson couplings, it can help to discriminate between the different setups in the end.

In fact, if at some point in the procedure above one encounters a significant contra-

diction, the corresponding underlying hypothesis (e.g., the SILH with assumptions

detailed before) can be excluded to be realized in nature.

We now move to a numerical study of the sensitivities to NP massesM , consid-

ering (hypothetical) measurements of
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1 TeV

2 TeV

4 TeV16 TeV

A

0.00 0.05 0.10 0.15
0

2

4

6

8

δyf

δ
λ

3 TeV

4 TeV8 TeV25 TeV
B

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

δyf

δ
λ

Figure 1. NP mass M in dependence on the variation in the Yukawa couplings (δyf )

and in the triple-Higgs self coupling (δλ) in Scenario A (left) and B (right). The colored

lines denote NP couplings of g∗ = 1, 4, 8, 4π, respectively (from yellow to red). See text for

details.

1) a relative shift in yukawa couplings δyf

2) the coefficient C9 of the four-fermion operator9 O9 ≡ 4GF√
2
VtbV

∗
ts
α
4π

(s̄LγµbL)(¯̀γµ`)

3) a relative deviation in the Higgs self coupling δλ

4) the triple-gauge coupling (TGC) λZ .

These quantities are related to the coefficients of the operators in Table 3 as (see,

9 We take the operator O9 as an example since several current anomalies hint to a non-zero

value of its coefficient, C9 ∼ −1 (see, e.g., [37–40]). Although not all scenarios considered here can

address the experimental observation in a fully consistent way, the case can serve as an illustrative

example for the method in any case.
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e.g., [26])10

δyf = v3/(
√

2mf ) cyf

C9 =

√
2π

αGFVtbV ∗ts
csLbL̀ `

δλ = 2v4/m2
h c6

λZ = −6g2 c3W .

(3.3)

In that context, recall that csLbL̀ ` is assumed to scale like VtbV
∗
tsg

2
∗, respecting MFV

(such a structure is viable to allow for considerable effects in C9, without being

directly excluded from other measurements in flavor physics). A similar scaling holds

in the case of partial compositeness, with the left-handed (b) quarks and leptons

coupled significantly to the composite sector [41].

The expected sensitivities at the end of the high luminosity LHC (HL-LHC)

run are δyf ∼ 5%, for f = (t), b, τ (see, e.g., [42]), δλ ∼ (20 − 30)% [43–45], and

λZ ∼ 10−3 [46]11, which will set the ballpark for the hypothetical measurements

considered below. These values could still be improved, for example by the ILC,

which could allow for δyf ∼ 1%, for f = b, c, τ [42], δλ ∼ 10% [47], and λZ ∼ 10−4

[46]. For C9, on the other hand, we consider a value of C9 ∼ −1, as suggested by

experimental anomalies in B physics, see footnote 9.

In Figs. 1-5, we finally explore the predictions for these quantities, induced by

non-zero values of the corresponding coefficients, both for Scenario A and B. Em-

ploying relations (3.2) and (3.3), we can draw iso-contours of constant M (divid-

ing regions of different color) in two-dimensional planes spanned by the different

(pseudo-)observables, where we can determine the heavy mass M via a combined

measurement of the latter. With a slight abuse of notation, we plot the absolute

values of the corresponding quantities, keeping in mind that the signs of the various

coefficients might vary.

We start by studying the correlations between δyf and δλ, visualized in Figure 1.

We also present, as colored lines, the values of the coupling g∗ scanning the planes,

where the dot-dashed yellow and orange lines correspond to NP couplings of g∗ =

1, 4, respectively. The green dashed line visualizes the boundary of g∗ = 8, beyond

which perturbation theory becomes problematic, while the red line, corresponding

10Note that δyf and δλ also receive contributions from a non-vanishing cH . In the former case,

these can be included simply by rescaling δyf by a factor of 3/2 [26], which is accounted for in

our numerical analysis (and for uniformity/simplicity we adjust similarly yfϕ → 3/2yf for the scalar

resonance). In the latter case, for Scenario A the effect is suppressed by the ratio of the (small)

SM-like trilinear self coupling over the NP coupling squared, λ/g2∗, and thus basically negligible for

g∗ & 1. Since the interesting parameter space just features this range of couplings in all cases where

δλ is involved, this effect can be discarded. In Scenario B, we include the impact of cH by adding

a term − 3
2v

2cH to the third line of eq. (3.3).
11Note that current experimental constraints are already at the level of λZ ∼ 3%.
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to g∗ = 4π, signals the complete breakdown of perturbation theory. We thus do not

draw the colored regions beyond this point.

Looking at the left panel of the figure, representing Scenario A, we find that the

observation of a deviation in Yukawa couplings of

• δyf = 15% together with a change in the trilinear Higgs self coupling of δλ ∼ 8

indicates NP at M ≈ 3 TeV.

Observing on the other hand

• δyf = 1% and δλ ∼ 2.5 leads to a prediction of M ≈ 20 TeV,

and thus to an explicit sensitivity to the mass, where a new particle is expected,

far beyond direct collider reach.12 The maximally reachable sensitivity (respecting

g∗ < 8 and experimental prospects) appears for δyf = 1%, δλ ∼ 3 and correspond

to M ≈ 25 TeV. The corresponding values for all pairs of pseudo-observables for the

scenarios at hand will be summarized in Table 4.13

Finally, the analysis leads to the further interesting observation that an effect of,

say, ∼ 20% in Yukawa couplings requires in fact sizable deviations in the self coupling

of ∼ 250%, if no new physics resides below 1 TeV. Similarly

• δyf = 40% would require a factor of almost 10 in the self coupling, within LHC

reach in the near future.

Thus, if such a deviation in yukawa couplings would be observed, while the self

coupling would be constrained to δλ < 10 (and no new physics would appear below

a TeV), the large class of NP described by Scenario A could be basically excluded.

Indeed, for constant yf ,

• increasing δλ leads to larger NP masses,

which is due to the peculiar scaling of δλ with a large power of g∗. In that context, the

figure finally demonstrates that sizable deviations in the Higgs trilinear self coupling

are possible, with small deviations elsewhere and a theory respecting perturbativity,

as can be seen from the fact that a factor of a few in the former coupling is consistent

with deviations in Yukawa interactions at/below the per cent level and moderate

coupling strength (g∗ � 4π), as well as large NP masses (M > 10 TeV).

The situation is quite different in the SILH-like Scenario B, where perturbativity

significantly limits the size of δλ for moderate values of δyf . A 10% deviation in

12Alternatively, the effect could stem from N particles with masses of
√
N M .

13Note that limitations in the accuracy of the measurements need to be considered, when deter-

mining the different NP masses. Nevertheless, the prospective accuracy will for example allow to

clearly distinguish the two parameter-space points considered above, and thus can lead to valuable

knowledge on where to expect NP, see also below.
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Yukawa couplings allows at most for a similar effect in the trilinear coupling, since

larger values correspond to couplings g∗ entering a terrain where perturbation theory

starts to become unreliable, as depicted by the dashed green line. Measuring, on the

other hand, simultaneously such deviations,

• δyf = δλ = 0.1, leads to the knowledge that NP should show up at M ≈ 8 TeV,

assuming Scenario B.14 Moreover, seeing

• δyf approaching ∼ 0.5 and at most δλ . 0.3 requires NP appearing below

M . 3 TeV

(without very weak couplings, since the orange dot-dashed line, signaling g∗ ≤ 4,

does not yet appear) - otherwise the SILH is not realized in nature.

We now move to Figure 2, where we display the correlation between effects in

the four-fermion operator O9 and δλ. Beginning again with Scenario A, shown in

the upper left panel, we observe a potential sensitivity to very large NP masses,

reaching even the 100 TeV range. As discussed before, in this case there are actual

experimental hints for a non-vanishing NP effect, corresponding to C9 ∼ −1, which

we depict by the red dashed line. Motivated by this anomaly, we now exemplify

in the lower panel of the Figure in more detail a potential determination of the

NP mass M . Assume that in fact a value of C9 = −1.2 ± 0.2 is established in

the future [39], while the trilinear Higgs self-coupling exhibits a δλ = (60 ± 10)%

correction. Given this information, we could conclude that M ∈ {40, 60}TeV, which

is derived from building the minimum and the maximum of M over the four corners

of the gray box denoted by ∼ 50 TeV. On the contrary, a hypothetical value of

C9 = −4± 0.2, together with the constraint δλ . 10% would lead to the prediction

M . 6 TeV, if the underlying framework is Scenario A. The plot in the upper

right panel summarizes the results in Scenario B. Here, this pair of observables

is less rich, since moderate values of C9 allow at most for δλ . 3 %, beyond any

hope for detectability with current or planned experiments. Still, establishing any

deviation in the triple Higgs coupling (without an excessive C9) would again exclude

the underlying SILH hypothesis.

Next, we consider a simultaneous measurement of the TGC parameter λZ and

δyf in Scenario A. Here, a pretty strong constraint/exact measurement of a potential

deviation in λZ is necessary, together with non-vanishing effects in δyf , approaching

the perturbativity bound, in order to reach high masses. For example, λZ . 1.5 %

and δyf ∼ 20 % leads to M ≈ 5 TeV, as can be read off from the upper left panel of

Figure 3, while λZ . 10−3 and δyf ∼ 1 % leads to M ≈ 20 TeV, as is visible from

the zoom into the small λZ region in the lower left panel. In Scenario B, the scaling

of M with λZ is inverted, due to the additional loop factor entering c3V . While a

14This prediction finally needs to be confronted with all pseudo-observables, see below.
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25 TeV

50 TeV

150 TeV
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4
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-
C
9

Figure 2. NP mass M in dependence on the variation in the triple-Higgs self coupling

(δλ) and the coefficient of the four fermion operator O9 (C9) in Scenario A (upper panel,

left) and B (upper panel, right). The colored lines denote NP couplings of g∗ = 1, 4, 8, 4π,

respectively (from yellow to red). The lower panel includes two hypothetical measurements

of a signal in the λZ− c9 plane and illustrates the correspondingly extracted masses of new

particles in Scenario A. See text for details.

δyf = 5 % deviation in Yukawa couplings together with a λZ = 5×10−4 effect features

M ≈ 3 TeV, the same deviation coming with λZ = 1.5× 10−3 leads to M ≈ 10 TeV.

Large effects in λZ together with small δyf , such as λZ & 1 % and δyf . 30 % are

not possible in the perturbative regime, while the inverted case of λZ . 2 × 10−3

and δyf & 30 % is in conflict with the non-observation of new sub-TeV particles. In

fact, sizable effects in one of the pseudo-observables require also non-negligible effects

in the other. The same tendency holds also in Scenario A. In summary, while for
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Figure 3. NP mass M in dependence on the variation in the Yukawa couplings (δyf )

and the triple-gauge coupling (λZ) in Scenario A (left) and B (right). The colored lines

denote NP couplings of g∗ = 1, 4, 8, 4π, respectively (from yellow to red), and the lower

panel shows a zoom into the plots of the upper panel. See text for details.

the pair of (λZ , δyf ) the potential to determine large NP masses is not tremendous,

the strong correlations offer a valuable means to test/rule out the SILH or ALH

paradigms. Moreover, the observation that the sensitivity to heavy masses increases

if the coefficient that features the smaller power of g∗ becomes stronger constrained

(which is λZ (δyf ) in Scenario A (B)) is nicely confirmed in the plots.

Another interesting pair of (pseudo-)observables is δλ and λZ , explored in Fig-

ure 4. In Scenario A, given in the left panel of the figure, large corrections to the

trilinear Higgs self coupling are viable, with no measurable impact on λZ . Observing

– 12 –



1 TeV

2 TeV4 TeV
8 TeV

25 TeV

A

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0

2

4

6

8

λZ

δ
λ

2 TeV

4 TeV15 TeV

80 TeV

B

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0.0

0.5

1.0

1.5

2.0

2.5

3.0

λZ

δ
λ

8 TeV

15 TeV

25 TeV

A

0.000 0.001 0.002 0.003 0.004
0

2

4

6

8

λZ

δ
λ

4 TeV

8 TeV

15 TeV
25 TeV

80 TeV

B

0.000 0.001 0.002 0.003 0.004
0.0

0.1

0.2

0.3

0.4

λZ

δ
λ

Figure 4. NP mass M in dependence on the the triple-gauge coupling (λZ) and the

variation in the triple-Higgs self coupling (δλ) in Scenario A (left) and B (right). The

colored lines denote NP couplings of g∗ = 1, 4, 8, 4π, respectively (from yellow to red), and

the lower panel shows a zoom into the plots of the upper panel. See text for details.

for example a δλ = 100 % correction simultaneously with λZ = 2 × 10−4 is consis-

tent with the framework and corresponds to a very large NP mass of M = 50 TeV!

Similarly, λZ = 2 × 10−3 allows for δλ = 8 − a measurement which would indicate

that M ≈ 15 TeV. In Setup B, on the other hand, δλ = 100 % requires λZ & 3 %

(see right panel of the figure), which is already in tension with current limits. NP

masses corresponding to combined experimental results in this plane within collider

reach are rather low, not exceeding M ≈ 8 TeV, which is reached for δλ = 10 % and

λZ = 3× 10−3.

The remaining plane to be discussed is spanned by C9 and λZ . Here we can
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Figure 5. NP mass M in dependence on the triple-gauge coupling (λZ) and the coefficient

of the four fermion operator O9 (C9) in Scenario A (left) and B (right). The colored lines

denote NP couplings of g∗ = 1, 4, 8, 4π, respectively (from yellow to red), and the horizontal

dashed line depicts the currently preferred value of C9 ∼ −1. See text for details.

focus on Scenario A, depicted in the left panel of Figure 5, since measurable effects

in Scenario B (in λZ), explored in the right panel of the same figure, are basically

excluded from perturbativity. In the former setup, however, largely different NP

masses can be discriminated. While λZ = 0.4 % with C9 = −1 leads to the prediction

M ≈ 2 TeV, just at the boundary of the current direct reach, extracting λZ = 0.1 %

and C9 = −1.5 induces M ≈ 10 TeV, and λZ = 3 × 10−4 with the same value for

C9 allows the conclusion that M ≈ 35 TeV. At the same time, Scenario B strictly

predicts a very small λZ ∼ O(10−4), given a moderate C9 not exceeding O(1). While

for λZ = 10−4 and C9 = −1.5 one finds M ≈ 50 TeV, a sizable λZ basically excludes

this scenario.

Before concluding we will finally discuss the procedure lined out below eq. (3.2)

for two simple explicit examples. To this end, consider first a measurement of λZ ≈
0.15 % and δλ ≈ 10 %.15 Employing Figure 4 (or eq. (3.2)), we deduce M ≈ 18 TeV

for Scenario B and M ≈ 9 TeV for Scenario A, with couplings g∗ ≈ 10 and g∗ ≈ 2,

respectively. With this information, we derive via eqs. (3.1) and (3.2) δyf ≈ 3 %

with C9 ≈ −18 in Scenario B, while in Scenario A we obtain δyf ≈ 0.5 % and

C9 ≈ −2. While Scenario B is clearly excluded, establishing a C9 . −(1− 2) would

lead to a consistent picture of effects in Scenario A. Thus, given that nature respects

approximately the scaling lined out in Table 3, we could conclude that NP is present

at M ≈ 10 TeV, with a moderate coupling strength g∗ ≈ 2, in the reach of a future

15 Although this is a far-future scenario, it serves the illustrative purpose.
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collider.

Clearly, less involved examples exist, where directly one of the two orthogonal

scenarios is excluded. Consider thus finally δλ = 70 % and C9 = −1.2. From

Figure 2 we can directly exclude Scenario B. For Scenario A, on the other hand, we

derive M ≈ 50 TeV and g∗ ≈ 8. This leads now to the predictions δyf ≈ 0.2 % and

λZ ≈ 2 × 10−4, obviously in agreement with current limits, such that we obtain a

consistent picture of rather strongly coupled NP significantly above energies testable

at (near) future colliders.

We conclude this section noting that in less simple concrete models the final

Wilson coefficients might deviate by a numericalO(1) factor from the above estimates

- however, given that the scenario is broadly characterized by a single relevant NP

coupling strength and a single mass scales (and not conflicting the broad assumptions

we detailed), the NP mass that the analysis at hand will point to stays in the same

ballpark and general correlations and tendencies remain valid.

4 Conclusions

We have shown how simultaneous measurements of (pseudo-)observables allow to

determine explicitly the mass of NP particles, beyond direct reach. This is achieved

by exploiting their different scaling with the NP coupling g∗, as derived after restoring

the ~ dimensions of the operators, with the details of the procedure worked out in

the body of the paper.

To summarize the results from the perspective of expected effects in the two

orthogonal scenarios considered, in the ALH-like Scenario A O(1) effects are possible

in δλ, without other problematic contributions, while sizable δyf of & 10 % require

a large λZ & 1 % and a C9 exceeding significantly experimental limits (under the

given flavor hypothesis). Even a δyf & 1 % leads to λZ & 0.1 % and |C9| & 5.

In turn, sizable C9 are possible without inducing large corrections to other pseudo-

observables. Finally, a large λZ at the per cent level induces also a detectable δyf ,

unless the mass of the new physics is very low (M . 1 TeV), along with |C9| & O(1),

while δλ can easily remain at an unobservable level.

On the other hand, the SILH-like Scenario B predicts basically tiny δλ and λZ ,

below a detectable level, since otherwise |C9| becomes too large (requiring perturba-

tivity). Even ignoring the flavor-structure related C9, sizable δλ and λZ at a level

detectable in the near future are disfavored, since they also induce large corrections

in Yukawa couplings around the current experimental sensitivity. Finding however

a sizable δyf ∼ 25% would in turn lead unavoidably to a λZ observable in the long-

term LHC run (requiring M & 1 TeV) and to a C9 vastly exceeding limits. The

strong and correlated predictions in this scenario offer a powerful means to test it

indirectly in the near future with simple observations. Finally, sizable C9 are viable
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A δyf δλ λZ c9

δyf - 25 TeV 25 TeV -

δλ 25 TeV - 70 TeV 150 TeV

λZ 25 TeV 70 TeV - 70 TeV

C9 - 150 TeV 70 TeV -

B δyf δλ λZ c9

δyf - 8 TeV 25 TeV -

δλ 8 TeV - 8 TeV N/A

λZ 25 TeV 8 TeV - 40 TeV

C9 - N/A 40 TeV -

Table 4. Maximal mass M detectable, for each pair of pseudo-observables, considering

ILC projections, see text for details.

in Scenario B, without any other observable prediction. The (δλ, C9) plane is par-

ticularly promising for testing large M in Scenario A, while in Scenario B the same

holds true for (λZ , C9) and the figures can also be used to estimate if NP is expected

to be detected first directly or indirectly.

The presented approach allows to test simple NP frameworks, such as the SILH

or ALH, and to arrive at a mass M , as a (unique) solution to the experimental

picture. While the article lines out the general procedure, in the presence of a signal

dedicated studies along the lines worked out above will be in order to finally unveil

the nature of the NP. After all, this work provides on overview of which patterns of

NP can be expected and how an indication for the NP mass can be obtained, given

only indirect observation, which can help to find the UV completion of the SM and

to develop strategies to detect the NP directly.
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