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We present multiloop flow equations in the functional renormalization group (fRG) framework
for the four-point vertex and self-energy, formulated for a general fermionic many-body problem.
This generalizes the previously introduced vertex flow [F. B. Kugler and J. von Delft, Phys. Rev.
Lett. 120, 057403 (2018)] and provides the necessary corrections to the self-energy flow in order
to complete the derivative of all diagrams involved in the truncated fRG flow. Due to its iterative
one-loop structure, the multiloop flow is well suited for numerical algorithms, enabling improvement
of many fRG computations. We demonstrate its equivalence to a solution of the (first-order) parquet
equations in conjunction with the Schwinger-Dyson equation for the self-energy.

I. INTRODUCTION

Two of the most powerful generic methods in the study
of large or open many-body systems at intermediate cou-
pling strength are the parquet formalism [1, 2] and the
functional renormalization group (fRG) [3, 4]. As is com-
monly known, these frameworks are intimately related.
However, their equivalence has only recently been estab-
lished via multiloop fRG (mfRG) flow equations, intro-
duced in a case study of the X-ray-edge singularity [5].
In this paper, we consolidate this equivalence and formu-
late the mfRG flow for the general many-body problem.
For this, we generalize the multiloop vertex flow from
Ref. 5, and, to ensure full inclusion of the self-energy, we
present two multiloop corrections to the self-energy flow.
Altogether, the mfRG flow is shown to fully generate all
parquet diagrams for the vertex and self-energy; it is thus
equivalent to solving the (first-order) parquet equations
in conjunction with the Schwinger-Dyson equation (SDE)
for the self-energy.

The parquet equations (together with the SDE) provide
exact, self-consistent equations for the four-point vertex
and self-energy, allowing one to describe one-particle and
two-particle correlations [1]. The only input is the totally
irreducible (four-point) vertex. Approximating it by the
bare interaction yields the first-order parquet equations
[2] (or parquet approximation [1]), a solution of which
generates the so-called parquet diagrams for the four-point
vertex and self-energy.

The functional renormalization group provides an infi-
nite hierarchy of exact flow equations for vertex functions,
depending on an RG scale parameter Λ. During the flow,
high-energy (& Λ) modes are successively integrated out,
and the full solution is obtained at Λ = 0, such that one
is free in the specific way the Λ dependence (regulator)
is chosen [3, 4]. If one restricts the fRG flow equations
to the four-point vertex and self-energy, one is left with
the six-point vertex as input. In the typical approxima-
tion, the six-point vertex is neglected, implying that all
diagrams contributing to the flow are of the parquet type
[5, 6]. However, due to this truncation, the flow equations
(for both self-energy and four-point vertex) no longer form
a total derivative of diagrams w.r.t. the flow parameter Λ.

This limits the predictive power of fRG and yields results
that actually depend on the choice of regulator.

The mfRG corrections to the fRG flow simulate the
effect of six-point vertex contributions on parquet dia-
grams, by means of an iterative multiloop construction.
They complete the derivative of diagrams in the flow
equations of both self-energy and four-point vertex, which
are otherwise only partially contained. As it achieves a
full resummation of all parquet diagrams in a numerically
efficient way, the mfRG flow allows for significant improve-
ment of fRG computations and overcomes weaknesses of
the formalism experienced hitherto.

The paper is organized as follows. In Sec. II, we give
the setup with all notations, before we recall the basics of
the parquet formalism in Sec. III. In Sec. IV, we present
the mfRG flow equations for the four-point vertex and
self-energy. We show that they fully generate all parquet
diagrams to arbitrary order in the interaction and com-
ment on computational and general properties of the flow
equations. Finally, we present our conclusions in Sec. V.

II. SETUP

We consider a general theory of interacting fermions,
defined by the action

S = −
∑

x′,x

c̄x′
[
(G0)−1

]
x′,x

cx − 1
4

∑

x′,x,y′,y

Γ0
x′,y′;x,y c̄x′ c̄y′cycx,

(1)

with a bare propagator G0 and a bare four-point vertex Γ0,
which is antisymmetric in its first and last two arguments.
The index x denotes all quantum numbers of the Grass-
mann field cx. If we choose, e.g., Matsubara frequency,
momentum, and spin, with x = (iω,k, σ) = (k, σ), and
consider a translationally invariant system with interac-
tion U|k|, the bare quantities read

G0
x′,x

e.g.
= G0

k,σδk′,k δσ′,σ (2a)

−Γ0
x′

1,x
′
2;x1,x2

e.g.
= (U|k′

1−k1|δσ′
1,σ1

δσ′
2,σ2

− U|k′
1−k2|δσ′

1,σ2
δσ′

2,σ1
) δk′1+k′2,k1+k2

. (2b)
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(a)

x x
′ = +

(b)
= − + · · ·

FIG. 1. (a) Dyson’s equation relating the full propagator Gx,x′

(black, thick line) to the bare propagator G0 (gray, thin line)
and the self-energy Σ (circle). (b) First-order diagram for the
self-energy using the bare vertex Γ0 (solid dot).

Correlation functions of fields, corresponding to time-
ordered expectation values of operators, are given by the
path integral

〈cx1
· · · c̄xn

〉 =
1

Z

∫
D[c̄]D[c] cx1

· · · c̄xn
e−S , (3)

where Z ensures normalization, such that 〈1〉 = 1. Two-
point correlation functions are represented by the full
propagator G. Via Dyson’s equation, G is expressed in
terms of the bare propagator G0 and the self-energy Σ
[cf. Fig. 1(a)], according to

Gx,x′ = −〈cxc̄x′〉, G = G0 +G0 · Σ ·G, (4)

using the matrix product (A ·B)x,x′ =
∑
y Ax,yBy,x′ .

In a diagrammatic expansion, the lowest-order contribu-
tion to the self-energy is given by the diagram in Fig. 1(b),
making use of the bare objects G0, Γ0. For later purposes,
we define a self-energy loop (L) as

L(Γ, G)x′,x = −
∑

y′,y

Γx′,y′;x,yGy,y′ . (5)

With this, we can write the first-order contribution from
Fig. 1(b) generally and in the above example as

Σ1st
x′,x = L(Γ0, G0)x′,x (6a)

e.g.
=
(
U0

∑

k̃,σ̃

G0
k̃,σ̃
−
∑

k̃

U|k−k̃|G
0
k̃,σ

)
δk′,kδσ′,σ. (6b)

Four-point correlation functions can be expressed via
the full (one-particle-irreducible) four-point vertex Γ:

〈cx1
cx2

c̄x′
2
c̄x′

1
〉 = Gx1x

′
1
Gx2x

′
2
−Gx1x

′
2
Gx2x

′
1

+Gx1y
′
1
Gx2y

′
2
Γy′1,y′2;y1,y2

Gy1x
′
1
Gy2x

′
2
.

(7)

Note that we omit the superscript compared to the usual
notation (Γ(4)) [3–6] and often refer to the four-point
vertex simply as the vertex. Our definition of Γ [7] agrees
with that of Ref. 4 and therefore contains a relative minus
sign compared to Ref. 3.

The diagrammatic expansion of Γ up to second order
in the interaction is shown in Fig. 2. In such diagrams,
the position of the external legs will always be fixed and
labeled in correspondence to the four arguments of a
vertex. Let us define bubble functions (B), distinguished

2

1
′

2
′

1

= + + 1
2 − + · · ·

FIG. 2. Diagrammatic expansion of the four-point vertex Γ
(square) up to second order in the interaction (i.e., these dia-
grams define Γ2nd). The positions of the external (amputated)
legs refer to the arguments of Γx′

1,x
′
2;x1,x2

.

between the three two-particle channels r ∈ {a, p, t}, as

Ba(Γ,Γ′)x′
1,x

′
2;x1,x2

=
∑

y′1,y1,y
′
2,y2

Γx′
1,y

′
2;y1,x2

×Gy1,y
′
1
Gy2,y

′
2
Γ′y′1,x′

2;x1,y2
(8a)

Bp(Γ,Γ
′)x′

1,x
′
2;x1,x2

= 1
2

∑

y′1,y1,y
′
2,y2

Γx′
1,x

′
2;y1,y2

×Gy1,y
′
1
Gy2,y

′
2
Γ′y′1,y′2;x1,x2

(8b)

Bt(Γ,Γ
′)x′

1,x
′
2;x1,x2

= −
∑

y′1,y1,y
′
2,y2

Γy′1,x′
2;y1,x2

×Gy2,y
′
1
Gy1,y

′
2
Γ′x′

1,y
′
2;x1,y2

. (8c)

The translation of Fig. 2 is then simply given by

Γ2nd = Γ0 +
∑
r Br(Γ

0,Γ0). (9)

Following the conventions of Bickers [1], the factor of
1/2 in Eq. (8b) (Fig. 2) makes sure that, when summing
over all internal indices, one does not overcount the effect
of the two indistinguishable (parallel) lines. The minus
sign in Eq. (8c) (Fig. 2) stems from the fact that the
antiparallel bubbles (8a) and (8c) are related by exchange
of fermionic legs. Indeed, using the antisymmetry of Γ
and Γ′ in their arguments (crossing symmetry), we find

Ba(Γ,Γ′)x′
1,x

′
2;x1,x2

= −Bt(Γ,Γ′)x′
2,x

′
1;x1,x2

. (10)

The channel label r ∈ {a, p, t} refers to the fact that
the individual diagrams are reducible—i.e., they fall apart
into disconnected diagrams—by cutting two antiparallel
lines, two parallel lines, or two transverse (antiparallel)
lines, respectively. (The term transverse itself refers to a
horizontal space-time axis.) In using the terms antiparallel
and parallel, we adopt the nomenclature used in the
seminal application of the parquet equations to the X-
ray-edge singularity by Roulet et al. [2]. Equivalently, a
common notation [8, 9] for the channels a, p, t is ph, pp, ph,
referring to the (longitudinal) particle-hole, the particle-
particle, and the transverse (or vertical) particle-hole
channel, respectively. One also finds the labels x, p, d in
the literature [10], referring to the so-called exchange,
pairing, and direct channel, respectively.

In the context of fRG (cf. Sec. IV), functions such
as G, Σ, Γ develop a scale (Λ) dependence (which will
be suppressed in the notation). If we write the bubble
functions also symbolically as

Br(Γ,Γ
′) =

[
Γ ◦G ◦G ◦ Γ′

]
r
, (11)
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(a) (b)

=− − 1
2

FIG. 3. (a) Vertex diagram irreducible in all two-particle chan-
nels (i.e., it belongs to R) and thus not part of Γ in the parquet
approximation. (b) Schwinger-Dyson equation, relating the
self-energy to the four-point vertex self-consistently.

we can immediately define bubbles with differentiated
propagators (but undifferentiated vertices) according to

Ḃr(Γ,Γ
′) =

[
Γ ◦
(
∂Λ(G ◦G)

)
◦ Γ′

]
r
, (12)

In the fRG flow equations, we will further need the (so-
called) single-scale propagator, defined by (1x,y = δx,y)

S = ∂ΛG|Σ=const. = (1 +G · Σ) ·
(
∂ΛG

0
)
· (Σ ·G+ 1).

(13)

Before moving on to the mfRG flow, let us next review
the basics of the parquet formalism.

III. PARQUET FORMALISM

The parquet formalism [1, 2] provides exact, self-
consistent equations for both four-point vertex and self-
energy. Focusing on the vertex first, the central parquet
equation represents a classification of diagrams distin-
guished by reducibility in the three two-particle channels:

Γ = R+
∑

r

γr, Ir = R+
∑

r′ 6=r
γr′ . (14)

Diagrams of Γ are either reducible in one of the three
channels (i.e., part of γr for r ∈ {a, p, t}, cf. Fig. 2), or
they belong to the class of totally irreducible diagrams
R [cf. Fig. 3(a)]. (The notation again refers to Ref. 2.)
As a diagram cannot simultaneously be reducible in more
than one channel [2], one collects diagrams that are not
reducible in r lines into the irreducible vertex Ir of that
channel. Reducible and irreducible vertices are further
related by the self-consistent Bethe-Salpeter equations
(BSEs)

γr = Br(Ir,Γ), (15)

the graphical representations of which are given in Fig. 4.
The BSEs (15) are computed with full propagators G.

Thus, they require knowledge of the self-energy, which
itself can be determined by the self-consistent SDE de-
pending on the four-point vertex [cf. Fig. 3(b)]:

Σ = L(Γ0, G) + L
[
Bp(Γ

0,Γ), G
]

= L(Γ0, G) + 1
2L
[
Ba(Γ0,Γ), G

]
. (16)

The only input required for solving the parquet equa-
tions is the totally irreducible vertex R. All remaining

γa = Ia

γp = 1
2 Ip

γt =−

It

FIG. 4. Bethe-Salpeter equations in the three two-particle
channels, relating the reducible (γr) and irreducible (Ir) ver-
tices self-consistently in the parquet formalism.

contributions to the vertex and self-energy are determined
self-consistently. The simplest way to solve the parquet
equations is to approximate R by the bare vertex Γ0. This
is called the first-order parquet solution [2], or parquet
approximation [1], and corresponds to a summation of the
leading logarithmic diagrams in logarithmically divergent
perturbation theories.

The diagrams generated by the first-order parquet so-
lution are called parquet diagrams. For Γ, these can be
obtained by successively replacing bare vertices by one of
the three bubbles from Eq. (8) (connected by full lines),
starting from the bare vertex. For Σ, the parquet dia-
grams are obtained by inserting the parquet vertex into
the SDE. They can also be characterized by the property
that one needs to cut at most one bare line to obtain a
parquet vertex with possible dressing at the external legs.
By this, we mean that, instead of an ingoing or outgoing
amputated leg, the external line is of the type 1+ Σ ·G or
1 +G · Σ, respectively, using again a parquet self-energy.

IV. MULTILOOP FRG FLOW

The functional renormalization group [3, 4] provides
a hierarchy of exact flow equations for vertex functions,
depending on an RG parameter Λ, serving as infrared
cutoff in the bare propagator. A typical choice for the Λ
dependence, in order to flow from the trivially uncorre-
lated to the full theory, is characterized by the boundary
conditions GΛi

= 0 and GΛf
= G, implying ΓΛi

= Γ0.
Restring the flow to Σ and Γ, the six-point vertex remains
as input and is neglected in the standard approximation.

Here, we view fRG as a tool to resum diagrams which
does not necessarily rely on the original fRG hierarchy
deduced from the flow of the (quantum) effective action.
In previous works [5, 6], we have used the X-ray-edge
singularity as an example to show that the standard
truncation of fRG restricts the flow to parquet diagrams
of the vertex, and that the derivatives of those diagrams
are only partially contained. Using the same model, we
have introduced multiloop fRG flow equations for the
vertex which complete the derivative of parquet diagrams
in an iterative manner, as organized by the number of
loops connecting full vertices, and thus do achieve a full
summation of all parquet diagrams [5]. The X-ray-edge
singularity facilitates diagrammatic arguments as it allows
one to consider only two two-particle channels and to
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(a)

(b)

(c)

γ̇(1)
a = +

γ̇(1)
p = 1

2
+ 1

2

γ̇
(1)
t = − −

γ̇(2)
a = γ̇

(1)
ā + γ̇

(1)
ā

γ̇(2)
p = 1

2
γ̇
(1)
p̄ + 1

2
γ̇
(1)
p̄

γ̇
(2)
t = −

γ̇
(1)
t̄

−

γ̇
(1)
t̄

γ̇(̀ +2)
a = γ̇

(̀ +1)
ā + γ̇

(̀ )
ā + γ̇

(̀ +1)
ā

γ̇(̀ +2)
p = 1

2
γ̇
(̀ +1)
p̄ + 1

4
γ̇
(̀ )
p̄ + 1

2
γ̇
(̀ +1)
p̄

γ̇
(̀ +2)
t =−

γ̇
(̀ +1)
t̄

+ γ̇
(̀ )
t̄ −

γ̇
(̀ +1)
t̄

FIG. 5. Multiloop flow equations for the four-point vertex in a general fermionic model. (a) Standard truncated, one-loop flow,
where a line with double dashes denotes ∂ΛG. (b) Two-loop correction (upon inserting the one-loop contributions, one obtains
two loops connecting full vertices). (c) Higher-loop corrections starting from `+ 2 = 3, which contain the additional contribution
(center part) where vertices from the complementary channels are connected by two bubbles.

neglect self-energies. Here, we give the details of how
the mfRG flow of the vertex is generalized to all three
two-particle channels with indistinguishable particles (as
already indicated in Ref. 5) and formulate the mfRG
corrections to the self-energy flow (not discussed in Ref. 5).

We first pose the mfRG flow equations and motivate
them by showing examples of diagrams, which are oth-
erwise only partially contained. Then, we justify the
extensions of the truncated fRG flow by arguing that all
diagrams are of the appropriate type without any over-
counting. Subsequently, we give a recipe for counting the
number of diagrams generated by the parquet and mfRG
flow equations. This allows one to check that the mfRG
flow fully captures all parquet diagrams order for order
in the interaction. Finally, we discuss computational and
general properties of the flow equations.

A. Flow equations for the vertex

The mfRG flow of the vertex proposed in Ref. 5 makes
use of the channel classification known from the parquet
equations and is organized by the loop order `. We write

∂ΛΓ =
∑

r

∂Λγr, ∂Λγr =
∑

`≥1

γ̇(`)
r , γ̇

(`)
r̄ =

∑

r′ 6=r
γ̇

(`)
r′ , (17)

where γ̇
(`)
r contains differentiated diagrams reducible in

channel r with ` loops connecting full vertices and will be
constructed iteratively; r̄ represents the complementary

channels to channel r. Using the bubble functions (8) and
the channel decomposition, the multiloop flow for Γ is
compactly stated as (` ≥ 1)

γ̇(1)
r = Ḃr(Γ,Γ), (18a)

γ̇(2)
r = Br

(
γ̇

(1)
r̄ ,Γ

)
+Br

(
Γ, γ̇

(1)
r̄

)
, (18b)

γ̇(`+2)
r = Br

(
γ̇

(`+1)
r̄ ,Γ

)
+ γ̇

(`+2)
r,C +Br

(
Γ, γ̇

(`+1)
r̄

)
, (18c)

γ̇
(`+2)
r,C = Br

[
Γ, Br

(
γ̇

(`)
r̄ ,Γ

)]
= Br

[
Br
(
Γ, γ̇

(`)
r̄

)
,Γ
]

(18d)

and illustrated in Fig. 5.
The standard truncated, one-loop flow of Γ is simply

given by Eq. (18a) [Fig. 5(a)]. A simplified version of this
equation, in which one uses the single-scale propagator
S (13) instead of ∂ΛG in the differentiated bubble (12),
corresponds to the result obtained from the exact flow
equation upon neglecting the six-point vertex [11]. The
form given here, with ∂ΛG instead of S (also known as
Katanin substitution [3, 12]), already includes corrections
to this originating from vertex diagrams containing dif-
ferentiated self-energy contributions. In the exact flow
equation, these contributions are contained in the six-
point vertex Γ(6) and excluded in S; omitting Γ(6), they
are incorporated again by ∂ΛG = S +G · (∂ΛΣ) ·G.

Comparing Eqs. (9), (11), (12) with Eq. (18a) [or Fig. 2
with Fig. 5(a)], it is clear that the one-loop flow is correct
up to second order, for which only bare vertices are in-

volved. Indeed, all differentiated diagrams of Γ2nd

, which
are obtained by summing all copies of diagrams in which

one G0 line is replaced by ∂ΛG
0, are contained in

∑
r γ̇

(1)
r .
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(a)

1
2

(b)

−1
2

(c)

1
2

(d)

1
2

(e)

−1
2

(f)

1
2

FIG. 6. (a-c) Some diagrams that are included in the parquet
approximation and only partially contained in one-loop fRG.
(d-f) One particular differentiated diagram for each of the
diagrams (a-c) [the (gray, thin) line with a dash stands for
∂ΛG

0] that is not part of the standard truncated flow, but
included in mfRG.

However, starting at third order, the one-loop flow (18a)
does not fully generate all (parquet) diagrams, since, in
the exact flow, the six-point vertex starts contributing.
In mfRG, the two-loop flow [Eq. (18b), Fig. 5(b)] com-
pletes the derivative of third-order diagrams of Γ (i.e., it

contains all diagrams needed to ensure that γ̇
(1)
r + γ̇

(2)
r

fully represent ∂Λγ
3rd
r ). An example is given in Fig. 6(a),

which shows a parquet diagram reducible in channel a.
The differentiated diagram in Fig. 6(d), as part of the
derivative of Fig. 6(a), is not included in the one-loop flow.

The reason is that γ̇
(1)
a only contains vertices connected

by antiparallel G0-∂ΛG
0 lines, and not parallel ones, as

would be necessary for this differentiated diagram. It is,
however, included in the two-loop correction to the flow,
as can be seen by inserting the lowest-order contributions

for all vertices into the first summand on the r.h.s. of γ̇
(2)
a

(using γ̇
(1)
p ) in Fig. 5(b).

At all higher loop orders (`+2 ≥ 3) [Eq. (18c), Fig. 5(c)],
we iterate this scheme and further add the center part
(18d) of the vertex flow. This connects the `-loop flow
from the complementary (r̄) channels by r bubbles on
both sides, and is needed to complete the derivative of

parquet diagrams starting at fourth order. Since γ̇
(`+2)
r,C

raises the loop order by two, it was still absent in the

two-loop flow. The three summands in γ̇
(`+2)
r , including

γ̇
(`+2)
r,C , exhaust all possibilities to obtain differentiated

vertex diagrams in channel r at loop order ` + 2 in an
iterative one-loop procedure. The mfRG vertex flow up to
loop order ` therefore fully captures all parquet diagrams
up to order n = `+ 1 in the interaction (cf. Sec. IV D).

B. Flow equation for the self-energy

The self-energy has an exact fRG flow equation, which
simply connects the four-point vertex with the single-scale
propagator (cf. Fig. 7). However, if a vertex obtained from
the truncated vertex flow is inserted into this standard
self-energy flow equation, it generates diagrams that are
only partially differentiated. In fact, even after correcting
the vertex flow via mfRG to obtain all parquet diagrams
of Γ, Σ̇std does not yet form a total derivative. Although
Σ̇std is in principle exact [as is the SDE (16)], using the

=

︸ ︷︷ ︸
Σ̇std

−

︸ ︷︷ ︸
Σ̇t̄

− γ̇t̄,C

︸ ︷︷ ︸
Σ̇t

−

Σ̇t̄

FIG. 7. Multiloop flow equation for the self-energy, adding two
corrections (Σ̇t̄, Σ̇t) to the standard fRG flow, Σ̇std. The (black,
thick) line with a dash denotes the single-scale propagator S.

parquet vertex in this flow gives a less accurate result
than inserting it into the SDE: All diagrams obtained
from Σ̇std are of the parquet type, but their derivatives
are not fully generated by the standard flow equation.

This problem can be remedied by adding multiloop
corrections to the self-energy flow, which complete the
derivative of all involved diagrams. The corrections consist
of two additions that build on the center parts (18d) of
the vertex flow in the a and p channels,

γ̇t̄,C =
∑

`≥1

(
γ̇

(`)
a,C + γ̇

(`)
p,C

)
. (19)

Using the self-energy loop (5), the mfRG flow equation
for Σ is then given by (cf. Fig. 7)

∂ΛΣ = Σ̇std + Σ̇t̄ + Σ̇t, Σ̇std = L(Γ, S), (20a)

Σ̇t̄ = L(γ̇t̄,C, G), Σ̇t = L(Γ, G · Σ̇t̄ ·G). (20b)

Note that self-energy diagrams in Σ̇t and Σ̇t̄ are reducible
and irreducible in the t channel, respectively. However,
here, this property is not exclusive; Σ̇std, too, contains di-
agrams that are reducible and irreducible in the t channel,
as is directly seen by inserting the second-order vertex
from Fig. 2 into the first summand of Fig. 7.

To motivate the addition of Σ̇t̄ and Σ̇t, let us con-
sider the first examples where multiloop corrections are
needed to complete the derivative of diagrams, which
occur at fourth and fifth order, respectively. The diagram
in Fig. 6(b) is obtained by inserting the γa diagram from
Fig. 6(a) (and the symmetry-related γt diagram) into the
SDE [Fig. 3(b)]. The differentiated diagram in Fig. 6(e)
is part of the derivative of Fig. 6(b), but not contained
in the standard flow. In fact, the vertex needed for this
diagram to be part of Σ̇std [i.e., the vertex obtained by
cutting the differentiated line in Fig. 6(e)] is a so-called
envelope vertex, the lowest-order realization of a nonpar-
quet vertex [cf. Fig. 3(b)] [13]. The diagram from Fig. 6(e)

is, however, included in the first correction Σ̇t̄, as can
be seen by inserting the lowest-order contributions of all

vertices in the center part of γ̇
(3)
a (using again γ̇

(1)
p ) in

Fig. 5(c) and connecting the top lines.
Inserting the self-energy diagram from Fig. 6(b) into the

full propagator of the first summand in the SDE [Fig. 3(b)]
yields the diagram in Fig. 6(c). Similar to the previous
discussion, one finds that the differentiated diagram in
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γ̇t̄,C ⊃ ∂Λγt ⊃ −
It

∂Λ ⊃ −
Ia

∂Λ

FIG. 8. Special diagrams contributing to Σ̇t̄. In the last two diagrams, we consider a scenario where the differentiated line is
contained in one of the dashed contributions.

Fig. 6(f), needed for the full derivative of Fig. 6(c), is

neither contained in Σ̇std nor Σ̇t̄. It is, however, included
in the second mfRG correction, Σ̇t, as one of the lowest-
order realizations of the last summand in Fig. 7.

The two extra terms of the mfRG self-energy flow, Σ̇t̄
and Σ̇t, incorporate the whole multiloop hierarchy of
differentiated vertex diagrams via γ̇t̄,C [Eq. (19)]. As
is discussed in the following subsections, they suffice to
generate all parquet diagrams of Σ and, therefore, provide
the full dressing of the parquet vertex in return.

C. Justification

We will now justify our claim that the mfRG flow fully
generates all parquet diagrams for Γ and Σ. We will
first show that all differentiated diagrams in mfRG are
of the parquet type and that there is no overcounting
of diagrams. Concerning the vertex, this has already
been done for the two-channel case of the X-ray-edge
singularity [5]. The arguments for the general case are in
fact completely analogous and repeated here for the sake
of completeness. The self-energy is discussed thereafter.

The only totally irreducible contribution to the four-
point vertex in the mfRG flow is the bare interaction stem-
ming from the initial condition of the vertex, ΓΛi

= Γ0.
All further diagrams on the r.h.s. of the flow equations are
obtained by iteratively combining two vertices by one of
the three bubbles from Eq. (8). Hence, they correspond to
differentiated parquet diagrams in the respective channel.

The fact that there is no overcounting in mfRG, i.e.,
that each diagram occurs at most once, can be seen em-
ploying arguments of diagrammatic reducibility and the
unique position of the differentiated line in the diagrams.
To be specific, let us consider here the a channel; the ar-
guments for the other channels are completely analogous.

First, we note that diagrams in the one-loop term
always differ from higher-loop ones. The reason is that,
in higher-loop terms, the differentiated line appears in
the vertex coming from ∂Λγā. This can never contain
two vertices connected by an a G-∂ΛG bubble, since such
terms only originate upon differentiating γa, the vertex
reducible in a lines.

Second, diagrams in the left, center, or right part [first,
second, and third summand in Fig. 5(c), respectively]
of an `-loop contribution always differ. This is because

the vertex γ
(`)
ā is irreducible in a lines. The left part is

then reducible in a lines only after the differentiated line
appeared, the right part only before, and the center part
is reducible in this channel before and after ∂ΛG.

Third, the same parts (say, the left parts) of different-
order loop contributions (` 6= `′) are always different.
Assume they agreed: As the a bubble induces the first

reducibility in this channel, already γ
(`)
ā and γ

(`′)
ā would

have to agree. For these, only the same parts can agree, as
mentioned before. The argument then proceeds iteratively
until one compares the one-loop part to a higher-loop
(|`− `′|+ 1) one. These are, however, distinct according
to the first point.

Concerning the self-energy, all diagrams of the flow
belong to the parquet type, since they are constructed
from (differentiated) parquet vertices by closing loops
of external legs in an iterative one-loop procedure. By
cutting one G0 or the ∂ΛG

0 line in such a self-energy
diagram, one can always obtain a (differentiated) parquet
vertex with possibly dressed amputated legs.

First, there is no overcounting between Σ̇std and Σ̇t̄
because cutting the differentiated line in Σ̇std generates a
parquet vertex (with possibly dressed amputated legs com-
ing from the single-scale propagator; cf. Fig. 7), whereas

this is not the case for Σ̇t̄. To illustrate this statement, we
consider in Fig. 8 a typical case of a Σ̇t̄ correction, where
we take the a part of γ̇t̄,C [cf. Eq. (19)] with ∂Λγt in the
center. We can insert the BSE γt = Bt(It,Γ) (Fig. 4) and
consider simultaneously all scenarios where the differenti-
ated line, originating from ∂Λγt, is contained in any of the
dashed parts. To be even more specific, we take a specific
part of It = R + γa + γp, namely γa = Ba(Ia,Γ) (Fig. 4),
and consider the cases where the differentiated line, if
contained in It, is contained in the corresponding bubble.
If one now cuts any of the dashed lines, as candidates
for the differentiated line, one finds that the remaining
vertex is not of the parquet type, as it is not reducible in
any of the two-particle channels. The same irreducibility
in three lines, when starting to cut the differentiated line
in γ̇t̄,C, occurs in all diagrammatic realizations of Σ̇t̄.

Since the standard flow Σ̇std with the full instead of
the parquet vertex is exact, it follows that the Σ̇t̄ part can
be written similarly as Σ̇std, but using a nonparquet (np)

vertex [Fig. 9(a)]. As a consequence, Σ̇t, obtained by con-

necting Σ̇t̄ and Γ by a t bubble, can similarly be written
with a nonparquet vertex [Fig. 9(b)]. Thus, there cannot

be any overcounting between Σ̇std and Σ̇t, either. Finally,
there is likewise no overcounting between Σ̇t̄ and Σ̇t: Af-
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(a)

Σ̇t̄ =− Γnp

(b)

Σ̇t =

Γnp

=− Γ′
np

FIG. 9. Rewriting of the corrections to the self-energy flow:
(a) Σ̇t̄ can be expressed by a nonparquet vertex Γnp con-

tracted with the single-scale propagator S. (b) Σ̇t, obtained

by connecting Σ̇t̄ and Γ by a t bubble, then involves a bubble
connecting a nonparquet and parquet vertex, which yields
another nonparquet vertex Γ′

np, contracted with S.

ter removing the differentiated line in Σ̇t̄, the remaining
nonparquet vertex Γnp is in particular irreducible in the
t channel (as was discussed above). However, removing

the differentiated line in Σ̇t after expressing Σ̇t̄ via Γnp

[cf. Fig. 9(b)], the remaining vertex Γ′np is by construction
reducible in t lines (although not a parquet vertex).

In summary, all diagrams of the four-point vertex and
self-energy generated by the mfRG flow belong to the
parquet class and are included at most once. To show
that the mfRG flow generates all differentiated parquet
diagrams, we will demonstrate next that, at any given
order in the interaction, their number is equal to the
number of diagrams generated by the mfRG flow.

D. Counting of diagrams

In order to count the number of diagrams in all involved
functions, we make use of either exact, self-consistent
equations or the mfRG flow equations. As a first example,
we count the number of diagrams in the full propagator
G at order n in the interaction, NG(n), given the number
of diagrams in the self-energy, NΣ(n). Concerning the
bare propagator and self-energy, we know NG0(n) = δn,0
and NΣ(0) = 0. From Dyson’s equation (4), we then get

NG(n) = δn,0 +

n∑

m=1

NΣ(m)NG(n−m). (21)

Defining a convolution of sequences, according to

N1 = N2 ∗ N3 ⇔ N1(n) =

n∑

m=0

N2(m)N3(n−m) ∀n,

(22)
we can write Eq. (21) in direct analogy to the original
equation (4) as

NG = NG0 +NG0 ∗ NΣ ∗ NG . (23)

Similar relations for the self-energy and vertex can be
obtained from the SDE (16), the parquet equation (14),
and the BSEs (15). The number of diagrams in the bare
vertex is NΓ0 = δn,1 (one can also take any NΓ0 ∝ δn,1).

From the SDE (16), we get for the self-energy

NΣ = NΓ0 ∗ NG + 1
2 NΓ0 ∗ NG ∗ NG ∗ NG ∗ NΓ . (24)

Note that, when counting diagrams, we can ignore the
extra minus signs but must keep track of prefactors of
magnitude not equal to unity. These prefactors avoid dou-
ble counting of the antisymmetric vertex [1] and originate
from the way the diagrams are constructed [14].

Concerning the full vertex, we can use that the symme-
try relation between the a and t bubble given in Eq. (10)
holds for the full reducible vertices γa and γt [1], such
that Nγa = Nγt . In the parquet approximation R = Γ0,
and the parquet equation (14) and the BSEs (15) yield

NΓ = NR + 2Nγa +Nγp (25a)

Nγa = (NΓ −Nγa) ∗ NG ∗ NG ∗ NΓ (25b)

Nγp = 1
2 (NΓ −Nγp) ∗ NG ∗ NG ∗ NΓ. (25c)

Since NΓ0(0) = 0, these equations, just like the original
equations, can be solved iteratively. Knowing the number
of diagrams in all quantities up to order n − 1 allows
one to calculate them at order n. This can also be done
numerically. Table I (first two lines) shows the number
of parquet diagrams up to order 6. For large interaction
order n, we find that the number of diagrams in the
parquet vertex and self-energy grows exponentially in n
[cf. Fig. 10(a)].

To prove our claim that the mfRG flow generates all
parquet diagrams, we must count the number of diagrams,
NΣ̇(n) and Nγ̇r (n), obtained by differentiating the set of
all corresponding parquet graphs. Then, we check that
these numbers are exactly reproduced by the number
of diagrams contained on the r.h.s. of the mfRG flow
equations. A diagram of the full propagator at order n
has 2n + 1 internal lines, a self-energy diagram 2n − 1,
and vertex diagram 2n − 2. According to the product
rule, the number of differentiated diagrams is thus

NĠ(n) = NG(n)(2n+ 1), (26a)

NΣ̇(n) = NΣ(n)(2n− 1), (26b)

Nγ̇r (n) = Nγr (n)(2n− 2). (26c)

From the mfRG flow of the vertex [Eq. (18)], we deduce

N
γ̇

(1)
a

= 2NΓ ∗ NĠ ∗ NG ∗ NΓ, (27a)

N
γ̇

(1)
p

= NΓ ∗ NĠ ∗ NG ∗ NΓ, (27b)

N
γ̇

(2)
a

= 2 (N
γ̇

(1)
a

+N
γ̇

(1)
p

) ∗ NΠ ∗ NΓ, (27c)

N
γ̇

(2)
p

= 2N
γ̇

(1)
a
∗ NΠ ∗ NΓ, (27d)

where NΠ = NG ∗ NG denotes the number of diagrams
in a bubble. For `+ 2 ≥ 3, we have

N
γ̇

(`+2)
a

= 2 (N
γ̇

(`+1)
a

+N
γ̇

(`+1)
p

) ∗ NΠ ∗ NΓ

+NΓ ∗ NΠ ∗ (N
γ̇

(`)
a

+N
γ̇

(`)
p

) ∗ NΠ ∗ NΓ, (28a)

N
γ̇

(`+2)
p

= 2N
γ̇

(`+1)
a

∗ NΠ ∗ NΓ

+ 1
2 NΓ ∗ NΠ ∗ Nγ̇(`)

a
∗ NΠ ∗ NΓ. (28b)
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n 1 2 3 4 5 6

NΓ 1 2 1
2

15 1
4

108 1
8

832 1
16

6753 21
32

NΣ 1 1 1
2

5 1
4

25 7
8

156 1
16

1073 3
32

NΓ̇ 0 5 61 648 3
4

6656 1
2

67536 9
16

NΓ̇(1`) 0 5 45 373 3
4

3117 1
2

26519 1
16

NΓ̇(2`) 0 0 16 216 2264 21972

NΓ̇(3`) 0 0 0 59 1062 13481 1
2

NΓ̇(4`) 0 0 0 0 213 4792 1
2

NΓ̇(5`) 0 0 0 0 0 771 1
2

NΣ̇ 1 4 1
2

26 1
4

181 1
8

1404 9
16

11804 1
32

NΣ̇std
1 4 1

2
26 1

4
177 1

8
1311 9

16
10348 1

32

NΣ̇t̄
0 0 0 4 89 1349

NΣ̇t
0 0 0 0 4 107

TABLE I. Number of (bare) parquet diagrams, differentiated
parquet diagrams, and diagrams generated by mfRG up to
interaction order 6 and loop order 5. Fractional parts originate
from multiple factors of 1/2, used to avoid double counting of
the antisymmetric vertex [1]. As we use NΓ0 = δn,1, we count
Hugenholtz diagrams [15] [where, e.g., NΣ(1) = 1, cf. Fig. 1].
The choice NΓ0 = 2δn,1 [cf. Eq. (2b)] would give an extra
factor 2n for all numbers of diagrams at order n, resulting
in the (integer) numbers of Feynman diagrams [where, e.g.,
NΣ(1) = 2].

Summing all loop contributions yields

NmfRG
γ̇a

=
∑
`≥1Nγ̇(`)

a
, NmfRG

γ̇p
=
∑
`≥1Nγ̇(`)

p
. (29)

For the flow of the self-energy (20), we need the center
part of the vertex flow in the a and p channel, for which
the number of diagrams sums up to

Nγ̇t̄,C = NΓ ∗ NΠ ∗
(

3
2 NmfRG

γ̇a +NmfRG
γ̇p

)
∗ NΠ ∗ NΓ.

(30)

The number of diagrams in the single-scale propagator S
(13) can be obtained from two equivalent relations

NS = NĠ −NG ∗NΣ̇ ∗ NG (31a)

= (N
1

+NG ∗ NΣ) ∗ NĠ0 ∗ (N
1

+NΣ ∗ NG), (31b)

with NĠ0(n) = δn,0 = N1(n). From Eq. (20), we then get

NmfRG
Σ̇

= NΣ̇std
+NΣ̇t̄

+NΣ̇t
, NΣ̇std

= NΓ ∗ NS ,
NΣ̇t̄

= Nγ̇t̄,C ∗ NG, NΣ̇t
= NΓ ∗ NΠ ∗ NΣ̇t̄

.

(32)

Numerically, one can check order for order in the inter-
action [cf. Table I and Fig. 10(b)] that, indeed, the mfRG
flow generates exactly the same number of diagrams as
obtained by differentiating all parquet diagrams, i.e.,

Nγ̇r (n) = NmfRG
γ̇r (n), N

Σ̇
(n) = NmfRG

Σ̇
(n) ∀n. (33)

This demonstrates the equivalence between solving the
multiloop fRG flow and solving the (first-order) parquet
equations for a general model.

5 20n
100

1020

N
X (a)

X=Γ
X=Σ

3 11n
0.5

1

N
Ẋ
/N

m
fR

G
Ẋ

1` 2`
3`

4`
5`

std
t̄

(b)

300 900n

10.47

10.53

ra
ti

o

FIG. 10. Logarithmic plots for the number of diagrams at
interaction order n for both vertex and self-energy. (a) NΓ, NΣ

grow exponentially for large n (inset: the ratio of subsequent
elements approaches a constant). (b) The cumulative low-

loop vertex flows (1` up to 5`) and the self-energy flows Σ̇std

(labeled std) and Σ̇std + Σ̇t̄ (labeled t̄) miss differentiated
parquet diagrams. However, the full multiloop flow for vertex
and self-energy generates all differentiated parquet diagrams
to arbitrary order in the interaction.

E. Computational aspects

All contributions to the mfRG flow—for the vertex as
well as for the self-energy—are of an iterative one-loop
structure and hence well suited for numerical algorithms.
In fact, by keeping track of the left (L) and right (R)
summands in the higher-loop vertex flow (18c)

γ̇
(`+2)
r,L = Br

(
γ

(`+1)
r̄ ,Γ

)
, γ̇

(`+2)
r,R = Br

(
Γ, γ

(`+1)
r̄

)
, (34)

the center part (18d) can be efficiently computed as

γ̇
(`+2)
r,C = Br

(
Γ, γ

(`+1)
r,L

)
= B

(
γ

(`+1)
r,R ,Γ

)
. (35)

Consequently, the numerical effort in the multiloop correc-
tions of the vertex flow scales linearly in `. The self-energy
flow (20) is already stated with one integration only.

The (standard) fRG hierarchy of flow equations con-
stitutes a (first-order) ordinary differential equation. Ne-
glecting the six-point vertex, it can be written as

∂ΛΣ = f std
Σ (Λ,Σ,Γ), ∂ΛΓ = f std

Γ (Λ,Σ,Γ), (36)

where, here and henceforth, f denotes the part of the r.h.s.
of the flow equation corresponding to its indices. Improv-
ing this approximation by adding differentiated self-energy
contributions in the vertex flow (as is also done in mfRG),

f std
Γ is replaced by another function f̃ std

Γ (Λ,Σ,Γ, ∂ΛΣ),
which further depends on the Λ derivative of the self-
energy. Such a differential equation is still feasible for
many algorithms as one can simply compute ∂ΛΣ first
and use it in the calculation of ∂ΛΓ. However, the full
mfRG flow for the vertex and self-energy has the form

∂ΛΣ = fΣ(Λ,Σ,Γ, ∂ΛΓ), ∂ΛΓ = fΓ(Λ,Σ,Γ, ∂ΛΣ),
(37)

in which derivatives occur on all parts of the r.h.s., yielding
an algebraic (as opposed to ordinary) differential equation.

Techniques to solve algebraic differential equations ex-
ist, but a discussion of them exceeds the scope of this
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paper. Let us merely suggest an approximate solution
strategy that reduces the mfRG flow to an ordinary dif-
ferential equation, has no computational overhead, and
deviates from the exact flow starting at sixth order in the
interaction, summarized as follows:

Σ̇std = fΣ̇std
(Λ,Σ,Γ), (38a)

∂ΛΓ ≈ Γ̇approx = fΓ(Λ,Σ,Γ, ∂ΛΣ = Σ̇std), (38b)

∂ΛΣ ≈ Σ̇std + fΣ̇t̄
(Λ,Σ, ∂ΛΓ = Γ̇approx)

+ fΣ̇t
(Λ,Σ, ∂ΛΓ = Γ̇approx). (38c)

According to this scheme, one computes first the standard
flow of the self-energy, which deviates from the full Σ flow
at interaction order U4. Inserting this into the vertex flow
yields an approximate vertex derivative, Γ̇approx, where
deviations from the full flow, induced by the approximate
form of ∂ΛΣ, start at order U6. The center part of the
vertex flow involves at least four vertices, such that de-
viations, induced by the self-energy, start at order U8.
The resulting, approximate γ̇t̄,C can then be used to com-

plete ∂ΛΣ, adding the terms Σ̇t̄ and Σ̇t, such that the
self-energy flow is correctly computed up to errors of order
U8. Evidently, this scheme can also be iterated [using
Eqs. (38b) and (38c)], increasing the accuracy by four
orders with each step. We have attached a pseudocode for
such a solution strategy of the mfRG flow in Appendix A.

F. General aspects

Since the standard fRG flow for the self-energy and four-
point vertex—including the six-point vertex—is exact, all
mfRG corrections can be understood as fully simulating
the effect of the six-point vertex on parquet diagrams of Σ
and Γ. For instance, the two-loop corrections to the vertex
flow and the Katanin substitution in the improved one-
loop flow equation contain all third-order contributions
of the six-point vertex [6, 12, 16]. Nevertheless, in the
standard fRG hierarchy of flow equations, the parquet
graphs comprise n-point vertices of arbitrary order (n) [6],
such that a non-diagrammatic derivation of mfRG based
on this hierarchy appears rather difficult. Conversely, the
derivation of the mfRG flow does not rely on the fRG
hierarchy or properties of the (quantum) effective action;
it can thus be understood independently and without
prior knowledge of fRG.

The mfRG flow at the two- or higher-loop level is exact
up to third order in the interaction and therefore naturally
fulfills Ward identities with accuracy O(Γ4), compared
to O(Γ3) in the case of one-loop fRG [12]. Yet, since the
parquet self-energy is exact up to fourth order but the
parquet vertex only up to third order, such identities are
typically violated starting at fourth order. One can think
of schemes to extend mfRG beyond the parquet approxi-
mation. However, we find those rather impracticable and
only briefly mention them in Appendix B.

Furthermore, the mfRG flow is applicable for any initial
condition of the vertex functions. Whereas the choice
GΛi

= 0 used here leads to a summation of all parquet
diagrams, starting the mfRG flow from the local quantities
of dynamical mean-field theory (DMFT) [17, 18] allows
one to add nonlocal correlations, similarly to solving the
parquet equations in the dynamical vertex approximation
(DΓA) [19–21]. However, contrary to DΓA, the mfRG

flow is built on the full vertex Γ
(4)
DMFT and does not require

the diagrammatic decomposition of the nonperturbative

vertex [22] Γ
(4)
DMFT = R +

∑
r γr that leads to diverging

results close to a quantum phase transition [29–31].
Inspecting the one-loop flow equations of the vertex

once more, we observe that diagrams on the r.h.s. contain
the differentiated propagator only in the two-particle lines
that induce the reducibility. Propagators which appear in
two-particle lines which do not induce the reducibility are
not differentiated. Therefore, only those diagrams that
are reducible in all positions of two-particle lines—the
so-called ladder diagrams—are fully included. It follows
that the standard truncated, one-loop fRG flow is biased
towards ladder constructions of the four-point vertex.

For a constant interaction U and a transfer energy-
momentum Ω, ladder diagrams of a certain channel can
easily be summed to Γladder

Ω = U(1 − UΠΩ)−1, where
ΠΩ is the corresponding bubble. Ladder diagrams are
therefore particularly prone to divergences with increas-
ing U or increasing values of ΠΩ (as can occur upon
lowering the cutoff scale Λ) and can thus be responsible
for premature vertex divergences in fRG. Indeed, so far,
fRG computations have often suffered from such vertex
divergences, and the flow had be stopped at finite RG
scale Λc [3, 32]. In this context, the two-loop corrections
have been found to significantly reduce the critical scale
of vertex divergences Λc [16, 33]. This suggests that it
would be worthwhile to study the effect of higher-loop
mfRG corrections—we expect that they reduce Λc even
further.

Throughout this paper, we have taken a perspective
that views fRG as a tool to resum diagrams (say, physical
diagrams) by integrating a collection of differentiated (and
thus Λ-dependent) diagrams. In this regard, the mfRG
corrections do not add new physical diagrams to the flow,
they only add differentiated diagrams to complete those
derivatives of physical diagrams that are only partially
contained by one-loop fRG. In other words, for any phys-
ical diagram to which a differentiated diagram of mfRG
contributes, there also exists a differentiated diagram in
one-loop fRG. The differentiated diagrams of the higher-
loop corrections and the one-loop flow all contribute the
same set of physical diagrams—the parquet diagrams.

Whereas the one-loop flow of the vertex contains differ-
entiated propagators at the two-particle-reducible posi-
tions, the multiloop flow iteratively adds those parts for
which the differentiated line is increasingly nested. Such
non-ladder contributions are crucial to suppress vertex
divergences originating from the summation of ladder
diagrams [5]. Similarly, the standard self-energy flow does
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not form a total derivative any more if one has only the
parquet vertex at one’s disposal. All diagrams of the stan-
dard flow are of the parquet type, but differentiated lines
in heavily nested positions are omitted (cf. Fig. 6). The
mfRG corrections incorporate all remaining contributions
by two additions that build up on the multiloop vertex
flow. Altogether, the mfRG flow achieves a full summa-
tion of all parquet diagrams of the vertex and self-energy.
Consequently, mfRG solutions are no longer dependent
on the specific way the Λ dependence (regulator) was
introduced [5] and thus fully implement the meaning of
the original fRG idea.

V. CONCLUSION

We have presented multiloop fRG flow equations for
the four-point vertex and self-energy, formulated for the
general fermionic many-body problem. The mfRG correc-
tions fully simulate the effect of the six-point vertex on
parquet diagrams, completing the derivatives of diagrams
that are only partially contained in the standard truncated
fRG flow. Whereas one-loop fRG contains differentiated
propagators only at the two-particle-reducible positions
and the standard self-energy flow does not suffice to form
a total derivative when having only the parquet vertex at
one’s disposal, the multiloop iteration adds all remaining
parts, where the differentiated line appears at increasingly
nested positions. We have motivated the multiloop cor-
rections at low orders and ruled out any overcounting of
diagrams. Moreover, we have put forward a simple recipe
to count diagrams and numerically check that the mfRG
flow generates all differentiated parquet diagrams for the
vertex and self-energy, order for order in the interaction.

Due to its iterative one-loop structure, the mfRG flow
is well suited for efficient numerical computations. We
have given a simple approximation, which renders the al-
gebraic differential equation accessible to standard solvers
for ordinary differential equations and exhibits only minor
deviations from the full mfRG flow. Given the general
formulation, the benefits of mfRG on physical problems
can be exploited in a large number of fRG applications.
The full resummation of parquet diagrams via mfRG elim-
inates the bias of fRG computations towards divergent
ladder constructions of the vertex and restores the in-
dependence on the choice of regulator. We expect that
this will generically enhance the usefulness of the trun-
cated fRG framework and increase the robustness of the
physical conclusions drawn from fRG results.
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Appendix A: Pseudocode implementation

In this section, we present a pseudocode for the ap-
proximate solution strategy of the mfRG flow explained
in Sec. IV E. Generally, an ordinary differential equation
(ODE) is of the form ∂ΛΨ(Λ) = f(Λ,Ψ), and numerous
numerical ODE solvers are available. The only input
required for such an ODE solver, apart from stating the
initial condition Ψ(Λi) = Ψi and the extremal points Λi,

Function f(Λ,Ψ):
1: S = S(Λ,Ψ.Σ)
2: G = G(Λ,Ψ.Σ)
3: dΣstd = L(Ψ.Γ, S)
4: dΨ.Σ = dΣstd

5: for it = 1 . . . itf do
6: dG = S +G · dΨ.Σ ·G
7: for r = a, p, t do
8: dγr = Ḃr(Ψ.Γ,Ψ.Γ, G, dG)
9: end for

/* jump to line 41 for one-loop fRG */
10: for r = a, p, t do
11: dγL

r = Br

(∑
r′ 6=r dγr′ ,Ψ.Γ, G

)
12: dγR

r = Br

(
Ψ.Γ,

∑
r′ 6=r dγr′ , G

)
13: end for
14: for r = a, p, t do
15: dγT

r = dγL
r + dγR

r

16: dγr ← dγr + dγT
r

17: end for
/* jump to line 41 for two-loop fRG */

18: dγC
t̄ = 0

19: for ` = 3 . . . `f do
20: for r = a, p, t do
21: dγC

r = Br(Ψ.Γ, dγL
r , G)

22: dγL
r = Br

(∑
r′ 6=r dγT

r′ ,Ψ.Γ, G
)

23: dγR
r = Br

(
Ψ.Γ,

∑
r′ 6=r dγT

r′ , G
)

24: end for
25: for r = a, p, t do
26: dγT

r = dγL
r + dγC

r + dγR
r

27: dγr ← dγr + dγT
r

28: end for
29: dγC

t̄ ← dγC
t̄ + dγC

a + dγC
p

30: if maxr{||dγT
r ||/||dγr||} < ε then

31: break
32: end if
33: end for

/* jump to line 41 for `f -loop fRG without corrections
to the self-energy flow */

34: dΣt̄ = L(dγC
t̄ , G)

35: dΣt = L(Ψ.Γ, G · dΣt̄ ·G)
36: dΨ.Σ = dΣstd + dΣt̄ + dΣt

37: if ||S +G · dΨ.Σ ·G− dG||/||dG|| < ε then
38: break
39: end if
40: end for
41: dΨ.Γ =

∑
r dγr

42: return dΨ

ALGORITHM 1. Pseudocode for computing the r.h.s. of the
mfRG flow for a given state of the system Ψ (containing Ψ.Σ
and Ψ.Γ) and a scale parameter Λ.
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Λf , is an implementation of the function f(Λ,Ψ).
In the case of mfRG, Ψ—describing the state of the

physical system at a specified value of the flow parameter
Λ—is a vector that contains the self-energy (say, Ψ.Σ) and
the vertex (say, Ψ.Γ) for all configurations of quantum
numbers (e.g., Matsubara frequency, momenta, and spin).
In order to use an ODE solver to compute the mfRG flow,
we only need to specify a way to compute f(Λ,Ψ). This
is provided by Algorithm 1, written in pseudocode.

Algorithm 1 makes use of functions outlined in the main
text, for which we also include dependencies that have
been suppressed earlier. This applies to the single-scale
propagator S [Eq. (13)] in line 1, the Dyson equation for

G [Eq. (4)] in line 2, the differentiated bubble Ḃ [Eq. (12)]
in line 8, and the bubble B [Eq. (8)], which is used several
times. For a good numerical performance, an efficient
implementation of the bubble functions appearing in Al-
gorithm 1 using vertex symmetries and high-frequency
asymptotics is crucial [9, 34].

The algorithm has a few external parameters: `f (line
19) denotes the maximal loop order, and itf (line 5) the
number of iterations that improve the accuracy of the
flow by four orders of the interaction with each step
(cf. Sec. IV E). These parameters can also be used dynam-
ically via the break conditions of the loops depending on
the tolerance ε (lines 30, 37). Note that, typically, one
also specifies a tolerance for the numerical ODE solver,
say εODE. If ε is chosen in accordance with εODE and the
number of loops (`f ) or iterations (itf ) is not fixed a pri-
ori, this algorithm yields a solution of the full mfRG flow
and thus a full summation of all parquet diagrams—to
the specified numerical accuracy.

The straightforward implementation as given by the
pseudocode in Algorithm 1 demonstrates the feasibility
of the mfRG flow for almost any fRG application.

Appendix B: Multiloop flow beyond the parquet
approximation

The mfRG flow as described so far achieves a full sum-
mation of all parquet diagrams of the vertex and self-

energy. The first deviations from the exact quantities,
i.e., the first nonparquet diagrams, occur at fourth order
for the vertex—these are the envelope vertices, such as
the one shown in Fig. 3(a)—and, as follows by use of the
SDE (16), at fifth order for the self-energy.

One can in principle add terms to the mfRG flow equa-
tions that go beyond the parquet approximation. The flow
equation of Γ then also needs to generate differentiated
diagrams of envelope vertices. This is achieved by adding
the differentiated envelope vertices, i.e., all envelope dia-
grams of Γ with one G line replaced by ∂ΛG at all possible
positions, to the flow equation. Subsequently, one per-
forms the replacement Γ0 → Γ to generate contributions
at all interaction orders. (Note that the mfRG corrections
of the self-energy flow have to be changed accordingly.)
However, such contributions to the vertex flow are—by
the very fact that they are of nonparquet type—not of
an iterative one-loop structure anymore [i.e., their evalu-
ation requires the computation of two or more (nested)
integrals] and are thus computationally unfavorable.

Another possibility to obtain nonparquet diagrams from
mfRG is to keep the flow equations unchanged and modify
the initial condition. One can then add scale-independent
envelope vertices, i.e., envelope vertices computed in the
final theory (at Λf ) with some approximation of the self-
energy, to the initial condition of the vertex: ΓΛi

= Γ0 +

Γenvelope
Λf

. (Hence, Γenvelope must be computed only once.)

This yields contributions to the flow that are not actually
differentiated diagrams at a given scale Λ. Nevertheless,
the initial vertex ΓΛi constitutes a new totally irreducible
building block in the mfRG flow. After completion of the
flow, one obtains a summation of all “parquet” diagrams
with the totally irreducible vertex R = ΓΛi

instead of
R = Γ0; i.e., one obtains vertex and self-energy at one
level beyond the parquet approximation [cf. Eq. (14)].
Such results deviate from the exact quantities starting
at fifth and sixth order for Γ and Σ, respectively. This
scheme of adding nonparquet contributions can also be
iterated and used with expressions for R = ΓΛi

of even
higher order. However, it appears rather tedious and is
more in the spirit of an iterative solution of the parquet
equations than of an actual fRG flow.
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