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A critical look at β-function singularities at large N
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We propose a self-consistency equation for the β-function for theories with a large number of
flavours, N , that exploits all the available information in the critical exponent, ω, truncated at a
fixed order in 1/N . We show that singularities appearing in critical exponents do not necessarily
imply singularities in the β-function. We apply our method to (non-)abelian gauge theory, where ω
features a negative singularity. The singularities in the β-function and in the fermion mass anomalous
dimension are simultaneously removed providing no hint for a UV fixed point in the large-N limit.

I. INTRODUCTION

There are indications that perturbative series in quan-
tum field theory are, in general, asymptotic series with
zero radius of convergence. In theories with a large num-
ber of flavour-like degrees of freedom, N , a re-organization
of the perturbative expansion in powers of 1/N is con-
venient. It can be shown that at fixed order in 1/N
expansion, the number of diagrams contributing grows
only polynomially rather than factorially: convergent se-
ries are obtained that can be summed up within their
radius of convergence.

There is a vast literature on resummed results corre-
sponding to the first few orders in 1/N expansion, mainly
for RG functions obtained via direct diagram resumma-
tion or critical-point methods, see e.g. Refs [1–22].

Since the perturbative series at fixed order in 1/N
are convergent, singularities in the (generically complex)
coupling are expected. Appearance of such singularities
on the real-coupling axis seems to be true for all the
d = 4 theories analyzed so far, thereby having a dramatic
effect on RG flows. In particular, the appearance of
singularities in the coefficients of the 1/N expansion for
gauge and Yukawa β-functions have inspired speculations
of a possible UV fixed point [23–29].

In matter-dominated theories where asymptotic free-
dom is lost, a non-trivial zero of the β-function can be
envisaged if the large-N resummation produces a contri-
bution to β functions such that limg→r β

1/N (g) = −∞,
where r is the radius of convergence of the 1/N series.
Near the singularity, the O(1/N) contribution exceeds
the leading-order result, and it is clear that a zero must
emerge. Unfortunately, close to the radius of convergence
the perturbation expansion in 1/N order is broken, and
higher-order contributions are expected to play a major
role.

Moreover, further shadow on the existence of the fixed
point as a consistent conformal field theory is cast by
studying anomalous dimensions of other operators in
the vicinity of the β-function singularity: in the case
of large-N QED truncated at O(1/N), the anomalous
dimension of the fermion mass diverges at the β-function
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singularity [1, 2], and it was recently pointed out that
in the large-N QCD the anomalous dimension of the
glueball operator breaks the unitarity bound near the
singularity [30].

In this letter we provide evidence that these poles are
an artifact of the expansion around N =∞. This is cor-
roborated by the study of higher-order contributions in
1/N obtained from the O(1/N) critical exponents. This
is made possible by the remarkable fact that a fixed-order
truncation in the critical exponents is not equivalent to
the same-order truncation in β-functions, see also Ref. [31].
We show that a negative singularity at a fixed order in
1/N results in singularities in alternating signs at higher
orders signaling an instability. Remarkably, such contribu-
tions can be re-resummed obtaining a result that is valid
for large but finite N close to the would-be singularity.
The limit N → ∞ of such a result is finite signaling an
inconsistency in the limiting procedure.

We show how to take into account these contributions
self-consistently up to a given order in the 1/N expansion
of the critical exponent. We apply the method concretely
for four-dimensional gauge β-function and Gross–Neveu
(GN) model in two dimensions. In the case of large-N
QED the singularity of the anomalous dimension of the
fermion mass is simultaneously removed.

II. β-FUNCTION FROM THE CRITICAL
EXPONENTS

In this section following Ref. [31], we review the general
form for the β-function in the large-N limit written in
terms of the critical exponent, ω. This critical exponent
gives the slope of the β-function at the Wilson–Fisher
(WF) fixed point, gc,

β′(gc) = ω(d) ≡
∞∑

n=0

ω(n)(d)

Nn
, (1)

where d is the dimension of spacetime1. The large-N
expansion of the β-function can be incorporated by using

1 In the literature this equation is often found as ω = −β′/2. We
omit this factor for notational convenience.
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the following ansatz:

β(g) = (d− dc)g + g2

(
bN + c+

∞∑
n=1

Fn(gN)

Nn−1

)
, (2)

where dc is the critical dimension of the coupling g, b
and c are model-dependent one-loop coefficients, and the
functions Fn satisfying Fn(0) = 0 are all-order in gN .

The critical coupling, gc, can then be self-consistently
solved in terms of Fn,

gc = − d− dc
bN + c+

∑∞
n=1

Fn(gcN)
Nn−1

, (3)

and the slope of the β-function at the WF fixed point can
be expanded in 1/N :

β′(gc) = −(d− dc) +
(d− dc)2

b2

∞∑
m=1

F ′m(gcN)

Nm

×
∞∑
k=0

(−b)−k(k + 1)

(
c

N
+

∞∑
n=1

Fn(gcN)

Nn

)k

.

(4)

Using Eq. (4), the unknown functions Fn can be related
to the critical exponents order by order in 1/N .

In Ref. [31], we noticed that the critical exponent ω(1)

contributes to the β-function also beyond O(1/N). Same
holds for each ω(j): it contributes to all Fn with n ≥ j. In
the following, we denote the contribution of ω(1), . . . , ω(j)

to Fn, n ≥ j, by F
(j)
n .

Since ω(1), or equivalently F1, is known, all the F
(1)
n

can in principle be computed. Explicitly up to n = 3, one
has:

F
(1)
1 (K) =F1(K) =

∫ K

0

ω(1)(dc − bt)
t2

dt,

F
(1)
2 (K) =

∫ K

0

c+ F1(t)

b
(2F ′1(t) + tF ′′1 (t))dt, (5)

F
(1)
3 (K) =

∫ K

0

1

2b2

{
[2(c+ F1(t))2 + 4bF

(1)
2 (t)]F ′1(t)

+ [4t(c+ F1(t))2 + 2btF
(1)
2 (t)]F ′′1 (t)

+ t2(c+ F1(t))2F ′′′1 (t)

}
dt.

We notice that, if ω(1) features a negative singularity,
this results into sequence of singularities of alternating

signs in F
(1)
n . A concrete example is given by QED: we

show F
(1)
1 , F

(1)
2 and F

(1)
3 in Fig. 1.

This suggests that the negative pole in F1 is not guar-

anteed to persist when all the F
(1)
n are taken into account.

In the next section, we show that all the F
(1)
n can be actu-

ally resummed, and the final result features no singularity.
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FIG. 1. The functions F
(1)
1,2,3 in the case of QED.

III. SELF-CONSISTENCY EQUATION

Assuming the knowledge of the critical exponent ω for a
one-coupling system up to an order O(1/N j), we can ask
what is the maximum information we can extract about
the corresponding β-function. Since a direct resummation

of these terms, F
(j)
n , is not straightforward, we will then

employ a different approach. Denoting

F(x,N) ≡
∞∑

n=1

Fn(x)

Nn−1 (6)

the relation β′(gc) = ω(d) is rewritten as

−(d− dc) + g2cNF ′(xc, N) = ω(d), (7)

where the dimension and the critical coupling are related
via (cf. Eq. (3))

d = dc − gc(bN + c+ F(xc, N)). (8)

Equation (7) would provide an exact solution, if ω were
known to all orders. However, in practice this is not
the case, but rather we have access to the contributions
induced by ω(1), . . . , ω(j) only. Nonetheless, a consistent
solution to Eq. (7) incorporating all known coefficients
can be achieved by truncating the critical exponent to

ω(d) = −(d− dc) +

j∑
n=1

1

Nn
ω(n)(d), (9)

which corresponds to truncating Fn to F
(j)
n in F(x,N),

Eq. (6):

F(x,N)→ F (j)(x,N) ≡
∞∑

n=1

F
(j)
n (x)

Nn−1 , (10)

such that F ≡ F (∞).
Let us now concentrate on the simplest case j = 1,

where the truncation leads to the following differential
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equation for F (1):

∂xF (1)(x,N) =
1

x2
ω(1)(d)

=
1

x2
ω(1)

[
dc − x

(
b+

c+ F (1)(x,N)

N

)]
,

(11)

where we have used Eq. (8). If the critical exponent as
a function of space-time dimension is known, this is a
non-linear first-order differential equation for F (1). Tra-
ditionally, this has been solved order by order in the 1/N
expansion giving Eq. (5). Indeed, neglecting the back-
reaction of F (1) on the right-hand side of Eq. (11) gives
the standard solution F (1)(x,∞) ≡ F1(x). The advan-
tage now is that we can solve Eq. (11) as it is and only
afterwards take the large-N limit, which turns out to be

finite. This is equivalent to resumming all the F
(1)
n , given

explicitly in Eq. (5) up to n = 3.
Of particular interest is the case where the critical ex-

ponent, ω(1), has a singularity for some real value of d; e.g.

in QED the first singularity of ω
(1)
QED occurs at d = −1

translating to a singularity in the 1/N -perturbative solu-
tion for β1/N (x) at x = 7.5. The F (1) dependence on the
right-hand side of Eq. (11) tells that the singularity in the
β-function could actually be avoided by a back-reaction of
F (1). In general this requires that the original singularity
and b are of opposite signs; in the same-sign case the
higher-order terms induced by ω(1) would just enhance
the singularity. This kind of non-resummable singularity
is found e.g. in super-QED at O(1/N) [32] and in O(N)
model at O(1/N2) [33].

If the singularity and b are of opposite sign, Eq. (11)
allows for a smooth F (1) which, close to the would-be-
singularity at, say, x = xs, approaches a scaling solution
of the form:

F (1)(x,N) = N
(a
x
− b
)
− c, x & xs, (12)

where

xs

(
b+

c+ F (1)(xs, N)

N

)
= a,

aN = −ω(1)(dc − a).

(13)

The second line of Eq. (13) implicitly defines a, which is
typically O(1), and the first line defines xs. Moreover,
from Eq. (12) we see that the singularity one encounters
in the β-function due to F1 is an artifact of taking the
large-N limit too early: recalling that x = gN , the β
function is always well behaved,

β(g) =
ax

N
= ag g & gs, (14)

where we have used Eq. (12). Equation (14) has no non-
trivial zeros: a fixed point can be realized only before
entering the scaling solution. For a positive one-loop
coeffient, b > 0, such a zero could be proven if a < 0.
This, however, turns out to be incompatible with the
boundary condition F(0, N) = 0 and ω(dc) = 0, which
require a and b to be of the same sign.

When the RG flow enters the scaling regime, the run-
ning coupling can be solved:

g(E) = g0

(
E

E0

)a

, (15)

where g0 ≡ g(E0) ≥ gs. This corresponds to the classical
trajectory for a coupling with dimension −a and shows
that the Landau pole could be avoided, since the coupling
is finite for E <∞.

When the O(1/N2) term in ω, ω(2), is included, there
are two possibilites:

1. the closest singularity at x = x
(2)
s is positive,

2. the closest singularity at x = x
(2)
s is negative.

In the first case, the β-function clearly grows faster

than before close to x
(2)
s , so that no zero appears. If

the new singularity is closer, then this rather implies a
Landau pole. As for all the regular points before the first
singularity, the contribution of ω2 is negligible for large
enough N . An example of this kind of behaviour is given
by the O(N) model [33].

In the second case, we can just apply the same resum-
mation and obtain the asymptotic scaling in Eq. (14) with
a modified coefficient a,

a = − 1

N
ω(1)(dc − a)− 1

N2
ω(2)(dc − a), (16)

starting at x ≈ min(xs, x
(2)
s ). Since the one-loop coeffi-

cient, b, and a must have the same sign, no fixed point
can emerge.

To summarize, the singularities in the critical exponents,
or equivalently the singularities in the fixed-order Fn, can
not drive the β-function to zero at large N , and therefore
there is no hint for asymptotic safety in one-coupling
theories in this limit.

We conclude this section by remarking that the re-
summation we have employed is relevant also beyond the
case when the β-function features singularities on the
positive real axis: in the next section we will show that
the wild oscillations in the β-function of the Gross–Neveu
(GN) model can be resummed in the same way.

IV. CONCRETE EXAMPLES

We consider here two prime examples: four-dimensional
gauge β-function and Gross-Neveu (GN) model in two di-
mensions. For the large-N gauge theories, the β-function
is known up to O(1/N), and it features a negative sin-
gularity at the rescaled coupling value x = 7.5 (x = 3)
for (non-)abelian case. Conversely, the GN β-function
has no singularities on the positive-coupling axis, but
rather features a wildly oscillatory behaviour at large
coupling values. However, singularities appear at the
negative-coupling axis resulting again in a finite radius of
convergence. We will show that the similar back-reaction
removing the poles in the gauge β-functions tames the
wild oscillations in GN case. Furthermore, the GN critical
exponent is known up to O(1/N2) allowing us to study
the effect of higher-order corrections.
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FIG. 2. The β-function for QED (upper panel) and QCD
(lower panel) for N = 100 computed numerically according
to Eq. (11). Dashed lines indicate the scaling solution. The
dotted lines show the singular solution one would encounter
neglecting the back-reaction in Eq. (11). As we can see, the
singularity is removed and the β-function approaches the linear
scaling.

A. QED & QCD

The critical exponent for a general gauge β-function is
known up to O(1/N) and is given in d = 2µ by [11]

ω(1)(2µ) =− η(1)(2µ)

TF

(
(2µ− 3)(µ− 3)CF (17)

− (4µ4 − 18µ3 + 44µ2 − 45µ+ 14)CA

4(2µ− 1)(µ)

)
,

where TF and CF are the index and quadratic Casimir
of the fermion representation, resp., CA is the Casimir of
the adjoint representation, and η(1) reads

η(1)(2µ) =
(2µ− 1)(µ− 2)Γ(2µ)

4Γ(µ)2Γ(µ+ 1)Γ(2− µ)
. (18)

For the abelian case, the first singularity occurs at
µ = −1/2, while the non-abelian system has a singularity
already at µ = 1.
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γ
m

FIG. 3. The quark mass anomalous dimension for QED with
N = 100. Dotted red line: O(1/N) result without resumma-
tion. Solid line: the solution using Eq. (19). Dashed gray line:
γ̃m.

We compute the β-function by solving Eq. (11) numer-
ically for a benchmark value N = 100. In the notation
of Eq. (11), QED corresponds to b = 2/3, c = 0, while
QCD is characterised by b = 2/3, c = −11. The scaling
solutions are given by aQED ≈ 4.995, aQCD ≈ 1.985. In
Fig. 2 we show the numerical solutions to Eq. (11) for
QED and QCD with N = 100.

In the QED case, the fermion mass anomalous dimen-
sion has a singularity at the same coupling value as the
first singularity of ω(1), x = 7.5. A fixed point in this
coupling region would have the operator ψ̄ψ violating the
unitarity bound. Similarly as the critical exponent, ω,
we truncate the fermion mass anomalous dimension to
O(1/N):

γm =
γ
(1)
m (d)

N
=
γ
(1)
m

[
dc − x

(
b+ c+F(1)(x,N)

N

)]
N

, (19)

where the O(1/N) result is given by

γ
(1)
m (2µ) = −2η(1)(2µ)/(µ− 2) [10]. Evaluating Eq. (19)

with the solution for F (1), we obtain γm in the same
truncation as the β-function. We find that the singularity
in γm is also removed, and the anomalous dimension
reaches a constant value above x = 7.5 given by

γ̃m =
1

N
γ(1)m (dc − a). (20)

We show the O(1/N) result along with the solution ac-
cording to Eq. (19) in Fig. 3.

B. Gross–Neveu model

The critical exponent, λ(d) = β′(gc), for the GN model
is currently known up to O(1/N2) [18]. The O(1/N)
coefficient is explicitly given by

λ(1)(2µ) =
4(µ− 1)2Γ(2µ)

Γ(2− µ)Γ(µ)2Γ(µ+ 1)
, (21)
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FIG. 4. The solid lines show the GN β-function β(2) (β(1)) for
N = 100 computed numerically according to Eq. (11) using

F (2) (F (1)), and the dashed lines indicate the corresponding
scaling solutions. The dotted red line depicts the O(1/N2)
β-function without resummation. The scaling solution using
λ(1) only is given by a(1) ≈ −8.6, while including λ(2) modifies
this to a(2) ≈ −6.3.

while the expression for λ2(d) can be explicitly found in
Ref. [18].

In the notations of Eq. (2), the GN model is charac-
terized by dc = 2, b = −1 and c = 2. We solve again
Eq. (11) numerically for benchmark value N = 100 both
using only the O(1/N) and O(1/N2) critical exponent,
λ. We show the resulting β-functions in Fig. 4 along

with the β-function computed directly up to O(1/N2)
using Eq. (2). The scaling solution using only λ(1) is
given by a(1) ≈ −8.6, while including λ(2) modifies this
to a(2) ≈ −6.3.

V. CONCLUSIONS

We have shown that singularities in a fixed-order large-
N critical exponent do not necessarily imply singularities
in the β-function approaching from finite N . This is due
to the fact that a fixed-order critical exponent generates
contributions to every subsequent order in 1/N in the
β-function. We proposed a self-consistency equation to
properly include these contributions.

In the case of negative singularities that have inspired
speculations of UV fixed points, it turns out that the
same singularity appears with alternating sign at higher-
order terms, and resumming these contributions yields an
asymptotic linear growth of the β-function rather than a
UV zero. As concrete examples we showed this scaling
behavior in the case of QED, QCD and the GN model.
For QED and QCD, the singularities are removed and
in the GN model the wild oscillations tamed. For QED,
this procedure simultaneously cures the singularity of the
fermion mass anomalous dimension.

ACKNOWLEDGMENTS

We thank John Gracey for valuable discussions. The
CP3-Origins centre is partially fundedby the Danish Na-
tional Research Foundation, grant number DNRF:90.

[1] D. Espriu, A. Palanques-Mestre, P. Pascual, and R. Tar-
rach, Z. Phys. C13, 153 (1982).

[2] A. Palanques-Mestre and P. Pascual, Commun. Math.
Phys. 95, 277 (1984).

[3] K. Kowalska and E. M. Sessolo, JHEP 04, 027 (2018),
arXiv:1712.06859 [hep-ph].

[4] O. Antipin, N. A. Dondi, F. Sannino, A. E. Thom-
sen, and Z.-W. Wang, Phys. Rev. D98, 016003 (2018),
arXiv:1803.09770 [hep-ph].

[5] T. Alanne and S. Blasi, JHEP 08, 081 (2018), [Erratum:
JHEP09,165(2018)], arXiv:1806.06954 [hep-ph].

[6] T. Alanne and S. Blasi, Phys. Rev. D98, 116004 (2018),
arXiv:1808.03252 [hep-ph].

[7] A. N. Vasiliev, Yu. M. Pismak, and Yu. R. Khonko-
nen, Theor. Math. Phys. 46, 104 (1981), [Teor. Mat.
Fiz.46,157(1981)].

[8] A. N. Vasiliev, Yu. M. Pismak, and Yu. R. Khonko-
nen, Theor. Math. Phys. 47, 465 (1981), [Teor. Mat.
Fiz.47,291(1981)].

[9] A. N. Vasiliev, Yu. M. Pismak, and Yu. R. Khonko-
nen, Theor. Math. Phys. 50, 127 (1982), [Teor. Mat.
Fiz.50,195(1982)].

[10] J. A. Gracey, Phys. Lett. B318, 177 (1993), arXiv:hep-
th/9310063 [hep-th].

[11] J. A. Gracey, Phys. Lett. B373, 178 (1996), arXiv:hep-
ph/9602214 [hep-ph].

[12] M. Ciuchini, S. E. Derkachov, J. A. Gracey, and A. N.
Manashov, Nucl. Phys. B579, 56 (2000), arXiv:hep-
ph/9912221 [hep-ph].

[13] J. A. Gracey, Int. J. Mod. Phys. A6, 395 (1991), [Erratum:
Int. J. Mod. Phys.A6,2755(1991)].

[14] J. A. Gracey, Phys. Lett. B297, 293 (1992).
[15] S. E. Derkachov, N. A. Kivel, A. S. Stepanenko, and

A. N. Vasiliev, (1993), arXiv:hep-th/9302034 [hep-th].
[16] A. N. Vasiliev, S. E. Derkachov, N. A. Kivel, and A. S.

Stepanenko, Theor. Math. Phys. 94, 127 (1993), [Teor.
Mat. Fiz.94,179(1993)].

[17] A. N. Vasiliev and A. S. Stepanenko, Theor. Math. Phys.
97, 1349 (1993), [Teor. Mat. Fiz.97,364(1993)].

[18] J. A. Gracey, Int. J. Mod. Phys. A9, 567 (1994),
arXiv:hep-th/9306106 [hep-th].

[19] J. A. Gracey, Int. J. Mod. Phys. A9, 727 (1994),
arXiv:hep-th/9306107 [hep-th].

[20] J. A. Gracey, Phys. Rev. D96, 065015 (2017),
arXiv:1707.05275 [hep-th].

[21] A. N. Manashov and M. Strohmaier, Eur. Phys. J. C78,
454 (2018), arXiv:1711.02493 [hep-th].

[22] J. A. Gracey, Int. J. Mod. Phys. A33, 1830032 (2019),
arXiv:1812.05368 [hep-th].

[23] R. Mann, J. Meffe, F. Sannino, T. Steele, Z.-W. Wang,
and C. Zhang, Phys. Rev. Lett. 119, 261802 (2017),
arXiv:1707.02942 [hep-ph].

http://dx.doi.org/10.1007/BF01547679
http://dx.doi.org/10.1007/BF01212398
http://dx.doi.org/10.1007/BF01212398
http://dx.doi.org/10.1007/JHEP04(2018)027
http://arxiv.org/abs/1712.06859
http://dx.doi.org/ 10.1103/PhysRevD.98.016003
http://arxiv.org/abs/1803.09770
http://dx.doi.org/10.1007/JHEP08(2018)081, 10.1007/JHEP09(2018)165
http://arxiv.org/abs/1806.06954
http://dx.doi.org/10.1103/PhysRevD.98.116004
http://arxiv.org/abs/1808.03252
http://dx.doi.org/10.1007/BF01030844
http://dx.doi.org/10.1007/BF01019296
http://dx.doi.org/10.1007/BF01015292
http://dx.doi.org/10.1016/0370-2693(93)91803-U
http://arxiv.org/abs/hep-th/9310063
http://arxiv.org/abs/hep-th/9310063
http://dx.doi.org/10.1016/0370-2693(96)00105-0
http://arxiv.org/abs/hep-ph/9602214
http://arxiv.org/abs/hep-ph/9602214
http://dx.doi.org/10.1016/S0550-3213(00)00209-1
http://arxiv.org/abs/hep-ph/9912221
http://arxiv.org/abs/hep-ph/9912221
http://dx.doi.org/10.1142/S0217751X91000241
http://dx.doi.org/10.1016/0370-2693(92)91265-B
http://arxiv.org/abs/hep-th/9302034
http://dx.doi.org/10.1007/BF01019324
http://dx.doi.org/10.1007/BF01015764
http://dx.doi.org/10.1007/BF01015764
http://dx.doi.org/10.1142/S0217751X94000285
http://arxiv.org/abs/hep-th/9306106
http://dx.doi.org/10.1142/S0217751X94000340
http://arxiv.org/abs/hep-th/9306107
http://dx.doi.org/10.1103/PhysRevD.96.065015
http://arxiv.org/abs/1707.05275
http://dx.doi.org/10.1140/epjc/s10052-018-5902-1
http://dx.doi.org/10.1140/epjc/s10052-018-5902-1
http://arxiv.org/abs/1711.02493
http://dx.doi.org/10.1142/S0217751X18300326
http://arxiv.org/abs/1812.05368
http://dx.doi.org/ 10.1103/PhysRevLett.119.261802
http://arxiv.org/abs/1707.02942


6

[24] G. M. Pelaggi, A. D. Plascencia, A. Salvio, F. Sannino,
J. Smirnov, and A. Strumia, Phys. Rev. D97, 095013
(2018), arXiv:1708.00437 [hep-ph].

[25] O. Antipin and F. Sannino, Phys. Rev. D97, 116007
(2018), arXiv:1709.02354 [hep-ph].

[26] E. Molinaro, F. Sannino, and Z. W. Wang, Phys. Rev.
D98, 115007 (2018), arXiv:1807.03669 [hep-ph].

[27] G. Cacciapaglia, S. Vatani, T. Ma, and Y. Wu, (2018),
arXiv:1812.04005 [hep-ph].

[28] F. Sannino, J. Smirnov, and Z.-W. Wang, (2019),
arXiv:1902.05958 [hep-ph].

[29] C. Cai and H.-H. Zhang, (2019), arXiv:1905.04227 [hep-
ph].

[30] T. A. Ryttov and K. Tuominen, (2019), arXiv:1903.09089
[hep-th].

[31] T. Alanne, S. Blasi, and N. A. Dondi, (2019),
arXiv:1904.05751 [hep-th].

[32] P. M. Ferreira, I. Jack, D. R. T. Jones, and C. G. North,
Nucl. Phys. B504, 108 (1997), arXiv:hep-ph/9705328
[hep-ph].

[33] J. A. Gracey, New computing techniques in physics re-
search V. Proceedings, 5th International Workshop, AI-
HENP ’96, Lausanne, Switzerland, September 2-6, 1996,
Nucl. Instrum. Meth. A389, 361 (1997), arXiv:hep-
ph/9609409 [hep-ph].

http://dx.doi.org/ 10.1103/PhysRevD.97.095013
http://dx.doi.org/ 10.1103/PhysRevD.97.095013
http://arxiv.org/abs/1708.00437
http://dx.doi.org/10.1103/PhysRevD.97.116007
http://dx.doi.org/10.1103/PhysRevD.97.116007
http://arxiv.org/abs/1709.02354
http://dx.doi.org/10.1103/PhysRevD.98.115007
http://dx.doi.org/10.1103/PhysRevD.98.115007
http://arxiv.org/abs/1807.03669
http://arxiv.org/abs/1812.04005
http://arxiv.org/abs/1902.05958
http://arxiv.org/abs/1905.04227
http://arxiv.org/abs/1905.04227
http://arxiv.org/abs/1903.09089
http://arxiv.org/abs/1903.09089
http://arxiv.org/abs/1904.05751
http://dx.doi.org/10.1016/S0550-3213(97)00448-3
http://arxiv.org/abs/hep-ph/9705328
http://arxiv.org/abs/hep-ph/9705328
http://dx.doi.org/10.1016/S0168-9002(97)00130-7
http://arxiv.org/abs/hep-ph/9609409
http://arxiv.org/abs/hep-ph/9609409

	A critical look at -function singularities at large N
	Abstract
	I Introduction
	II -function from the critical exponents
	III Self-consistency equation
	IV Concrete examples
	A QED & QCD
	B Gross–Neveu model

	V Conclusions
	 Acknowledgments
	 References


