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Abstract Adopting particular decision biases allows organisms to tailor their choices to

environmental demands. For example, a liberal response strategy pays off when target detection is

crucial, whereas a conservative strategy is optimal for avoiding false alarms. Using conventional

time-frequency analysis of human electroencephalographic (EEG) activity, we previously showed

that bias setting entails adjustment of evidence accumulation in sensory regions (Kloosterman

et al., 2019), but the presumed prefrontal signature of a conservative-to-liberal bias shift has

remained elusive. Here, we show that a liberal bias shift is reflected in a more unconstrained neural

regime (boosted entropy) in frontal regions that is suited to the detection of unpredictable events.

Overall EEG variation, spectral power and event-related potentials could not explain this

relationship, highlighting that moment-to-moment neural variability uniquely tracks bias shifts.

Neural variability modulation through prefrontal cortex appears instrumental for permitting an

organism to adapt its biases to environmental demands.

Introduction
We often reach decisions not only by objectively weighing different alternatives, but also by allowing

subjective biases to influence our choices. Ideally, such biases should be under internal control,

allowing us to flexibly adapt to changes in task context while performing a challenging task. Specifi-

cally, contexts which prioritize target detection benefit from a liberal response strategy, whereas a

conservative strategy should be used at times when it is important to avoid errors of commission

(e.g. false alarms). Adaptive shifts in decision bias are presumed to rely on prefrontal cortex

(Rahnev et al., 2016), but despite growing interest (Chen et al., 2015; Reckless et al., 2014;

Windmann et al., 2002), the spatio-temporal neural signature of such within-person bias shifts is

currently unknown.

One candidate neural signature of decision bias shifts that has not been considered thus far is the

variability of brain activity, as reflected in its moment-to-moment irregularity. Temporal neural vari-

ability is a prominent feature in all types of neural recordings (single-cell, local field potentials, EEG/

MEG, fMRI) and has traditionally been considered noise that corrupts neural computation

(Dinstein et al., 2015; Faisal et al., 2008). In contrast, heightened neural variability is increasingly

proposed to support cognitive flexibility by allowing the brain to continuously explore its dynamical

repertoire, helping it to quickly adapt to and process a novel stimulus (Ghosh et al., 2008;

Misić et al., 2010). Indeed, a growing body of evidence suggests that neural variability can prove

optimal for neural systems, allowing individuals to perform better, respond faster, and adapt quicker

to their environment (Garrett et al., 2015, Garrett et al., 2013a, Garrett et al., 2011).
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One tangible possibility is that cognitive flexibility emerges when a neural system avoids locking

into a stereotypical, rhythmic pattern of activity, while instead continuously exploring its full dynamic

range to better prepare for unpredictably occurring events. Consistent with this notion of explora-

tion, influential attractor models of neural population activity (Chaudhuri et al., 2019; Inagaki et al.,

2019; Wimmer et al., 2014) typically contain a ‘noise’ component that drives a dynamical system

from attractor state to attractor state within a high-dimensional state space (Deco et al., 2009;

Deco and Romo, 2008). This element of noise might indeed correspond to modulations of moment-

to-moment neural variability during cognitive operations that can be empirically observed. Here, we

perform a crucial test of the utility of temporal neural variability in the context of adaptive human

decision making. In line with recent ideas that a high-fidelity, more variable neural encoding regime

may be particularly required in more complex, non-deterministic situations (Garrett et al., 2020;

Marzen and DeDeo, 2017; Młynarski and Hermundstad, 2018), we hypothesized that increased

neural variability might underlie a state of higher receptiveness to and preparedness for events of

interest that are not predictable in time, permitting the adoption of a more liberal bias toward con-

firming that such an event has indeed occurred.

Interestingly, improved cognitive function has also recently been linked to reduced neural vari-

ability, in line with the presumed corruptive role of noise for cognitive operations (Faisal et al.,

2008). In particular, transient variability decreases after stimulus onset – called ‘quenching’

(Churchland et al., 2010) – have been proposed to reflect the settlement of an attractor into a sta-

ble state (Churchland et al., 2010; Schurger et al., 2015; Wang, 2002), with quenching reportedly

being stronger during conscious perception relative to when a stimulus passes unseen

(Schurger et al., 2015). Stronger quenching has also been reported in observers with higher percep-

tual sensitivity (Arazi et al., 2017), in line with a central assumption of signal detection theory (SDT)

that internal noise is detrimental for sensitivity and thus should be suppressed (Green and Swets,

1966). To attend to this conceptual discrepancy, we further asked whether a quenching effect can

also be observed in moment-to-moment variability, and if so, whether it reflects adaptive decision

bias shifts and perceptual sensitivity.

We investigated these issues using previously published data from humans performing a continu-

ous target detection task under two different decision bias manipulations, while non-invasively

recording their electroencephalogram (EEG) (Kloosterman et al., 2019). Sixteen participants (three

experimental sessions each) were asked to detect orientation-defined squares within a continuous

stream of line textures of various orientations and report targets via a button press (Figure 1A). In

alternating 9-min blocks of trials, we actively biased participants’ perceptual decisions by instructing

them either to report as many targets as possible (liberal condition), or to only report high-certainty

targets (conservative condition). We played auditory feedback after errors and imposed monetary

penalties to enforce instructions.

In our previous paper on these data, we reported within-participant evidence that decision bias in

each condition separately is implemented by modulating the accumulation of sensory evidence in

posterior brain regions through oscillatory EEG activity in the 8–12 Hz (alpha) and gamma (60–100

Hz) frequency ranges (Kloosterman et al., 2019). In no brain region, however, did we find a change-

change relationship between participants’ liberal–conservative shifts in decision bias and in spectral

power, despite substantial available data per participant (on average 1733 trials) and considerable

inter-individual differences in the bias shift. Reasoning that moment-to-moment variability of neural

activity may instead better capture the adaptive bias shift from person to person, potentially reveal-

ing its hypothesized prefrontal signature, we here measured temporal variability in the EEG data

using a novel extension of multi-scale entropy (MSE)(Costa et al., 2002). We then tested for a

change-change relationship by correlating within-person liberal–conservative shifts in decision bias

with those estimated via our modified MSE (mMSE) measure. We indeed found that those partici-

pants who shifted more toward a liberal bias (in line with task demands) also showed a stronger

boost in mMSE. This relationship could not be explained by overall EEG signal variation, band-spe-

cific spectral power, and event-related potentials, highlighting the unique contribution of moment-

to-moment neural variability to the bias shift. Finally, we show that interactions between spectral

power and phase in low frequencies (1–3 Hz) may underlie the observed effects.
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Results

Large individual differences in the extent of decision bias shift
Participants differentially adopted the intended decision biases in the respective conditions, as quan-

tified by the criterion SDT measure of bias (Green and Swets, 1966). Subjects assumed a lower cri-

terion (more liberal bias) when target detection was emphasized (c = –0.13, standard deviation (SD)

0.4) and adopted a higher criterion (more conservative bias) when instructed to avoid false alarms

(c = 0.73, SD 0.36; liberal vs. conservative, p=0.001, two-sided permutation test, 1000 permutations)

(Figure 1B). Participants varied substantially not only in the average criterion they used across the

two conditions (range of c = –0.24 to 0.89), but also in the size of the criterion shift between condi-

tions (range of Dc = –1.54 to –0.23). Highlighting the extent of individual differences, participant’s

biases in the two conditions were only weakly correlated (Spearman’s rho = 0.24, p=0.36), as can be

seen from the subjects’ large variation in criterion intercept and slope between the two conditions

(Figure 1C). Moreover, each participant’s bias shift also fluctuated spontaneously over the course of

the experiment, as indicated by variation in criterion differences between successive, nine-minute lib-

eral and conservative blocks (participant-average SD 0.37, Figure 1D). Participants also varied widely

in their ability to detect targets (range in SDT d´ 0.26 to 3.97), but achieved similar d´ in both bias
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Figure 1. Experimental paradigm and behavioral results. (A) Top, target and non-target stimuli. Subjects detected

targets (left panel) within a continuous stream of diagonal and cardinal line stimuli (middle panel), and reported

targets via a button press. In different blocks of trials, subjects were instructed to actively avoid either target

misses (liberal condition) or false alarms (conservative condition). Auditory feedback was played directly after the

respective error in both conditions (right panel). Bottom, time course of an experimental session. The two

conditions were alternatingly administered in blocks of nine minutes. In between blocks participants were

informed about current task performance and received instructions for the next block. Subsequent liberal and

conservative blocks were paired for within-participant analyses (see panel D, and Figure 3C). (B) Distributions of

participants’ criterion in both conditions. A positive criterion indicates a more conservative bias, whereas a

negative criterion indicates a more liberal bias. (C) Lines indicating the criteria used by each participant in the two

conditions, highlighting individual differences both in overall criterion (line intercepts), and in the size of the

criterion shift between conditions (slopes). (D) Within-person bias shifts for liberal–conservative block pairs (see

panel A, bottom). Participants were sorted based on average criterion shift before plotting.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Perceptual sensitivity and relationship between decision bias and sensitivity.
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conditions (rho = 0.97, p<0.001, Figure 1—figure supplement 1). Moreover, the liberal–conserva-

tive bias shift was only weakly correlated with a shift in sensitivity across participants (rho = 0.44,

p=0.09), indicating that the bias manipulation largely left perceptual sensitivity unaffected. In our

previous paper on these data (Kloosterman et al., 2019), we also quantified decision bias in these

data in terms of the ‘drift bias’ parameter of the drift diffusion model (Ratcliff and McKoon, 2008).

We chose to focus on SDT criterion in the current paper due to its predominant use in the literature

and its comparably simpler computation, while noting the substantial overlap between the two

measures as indicated by their high correlation (rho = –0.89, as reported in Kloosterman et al.,

2019). Taken together, we observed considerable variability in the magnitude of the decision bias

shift as a result of our bias manipulation, both at the group level and within single individuals.

Measuring neural variability with modified multi-scale entropy
We exploited the between- and within-participant variations in liberal–conservative criterion differen-

ces to test our hypothesis that a larger boost in brain signal variability should reflect a more liberal

bias shift. To this end, we developed a novel algorithm based on multi-scale entropy (MSE) that

directly quantifies the temporal irregularity of the EEG signal at shorter and longer timescales by

counting how often temporal patterns in the signal reoccur during the signal’s time course

(Costa et al., 2002; Figure 2A, bottom). In general, signals that tend to repeat over time, such as

neural oscillations, are assigned lower entropy, whereas more irregular, non-repeating signals yield

higher entropy. Please see the Materials and methods section for a step-by-step description of the

MSE computation in our EEG data.
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Figure 2. mMSE estimation procedure. (A) Discontinuous entropy computation procedure. Data segments of 0.5 s

duration centered on a specific time point from each trial’s onset (top row) are selected and concatenated (middle

row). Entropy is then computed on this concatenated time series while excluding discontinuous segment borders

by counting repeats of both m (here, m = 1 for illustration purposes) and m+1 (thus 2) sample patterns and taking

the log ratio of the two pattern counts (bottom row). We used m = 2 in our actual analyses. The pattern similarity

parameter r determines how lenient the algorithm is toward counting a pattern as a repeat by taking a proportion

of the signal’s standard deviation (SD), indicated by the width of the horizontal gray bars. The pattern counting

procedure is repeated at each step of the sliding window, resulting in a time course of entropy estimates

computed across trials. (B) ‘Filt-skip’ coarsegraining procedure used to estimate entropy on longer timescales,

consisting of low-pass filtering followed by point-skipping. Filter cutoff frequency is determined by dividing the

data sampling rate (here, 256 Hz i.e. 1 sample per 3.9 ms) by the index of the timescale of interest (top row). The

signal is then coarsened by intermittently skipping samples (bottom row). In this example, every second sample is

skipped at timescale 2, resulting in two different time courses depending on the starting point. Patterns are

counted independently for both starting points and summed before computing entropy.
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We developed time-resolved, modified MSE (mMSE), that differs from traditional MSE in two

ways. First, slower timescales are usually assessed in conventional entropy analysis by ‘coarsening’

the data through averaging of data samples close to each other in time, and repeating the pattern

counting operation (see Figure 2A). Although this method can remove faster dynamics from the

data in a straightforward way, it is prone to aliasing artifacts and thereby possibly obscures genuine

entropy effects in the data. Therefore, we instead coarsened the data by applying a Butterworth

low-pass filter followed by skipping of data points (Figure 2B), thereby retaining better control over

the frequencies present in the coarsened signal (Semmlow, 2014; Valencia et al., 2009). Second,

conventional entropy analysis requires substantial continuous data (in the order of minutes) for

robust estimation, which makes the standard method unsuitable for studying brief, transient cogni-

tive operations such as perceptual decision making. To investigate entropy dynamics over time, we

calculated entropy across discontinuous data segments aggregated across trials via a sliding window

approach (Grandy et al., 2016; Figure 2A, top), allowing us to examine entropy fluctuations from

moment to moment. Please see Materials and methods for details on the various analysis steps and

our modifications of the MSE algorithm.

Larger boosts in frontal entropy track more liberal decision bias shifts
We tested for a relationship between shifts in decision bias and neural variability from the conserva-

tive to the liberal conditions by Spearman-correlating joint modulations of mMSE and criterion

across participants (averaged over the three sessions), for all electrodes, time points, and timescales.

Strikingly, we found a negative cluster of correlations in mid- and left-frontal electrodes (p=0.015,

cluster-corrected for multiple comparisons [Maris and Oostenveld, 2007]) indicating that partici-

pants who showed a larger bias shift from the conservative to the liberal condition were those who

also exhibited a larger boost in frontal entropy (Figure 3A). The cluster ranged across timescales

from ~20 to 164 ms, with most of the cluster located after trial initialization (solid vertical line in

Figure 3A). To illustrate this correlation, we obtained a point estimate of mMSE per participant by

averaging liberal–conservative mMSE within the significant cluster, and plotted the across-partici-

pant change-change correlation (rho = –0.87) with criterion in a scatter plot (Figure 3B). Since this

correlation is bound to be significant due to averaging across significantly correlating time-timescale

bins from the principal analysis, we consider it a descriptive statistic and refrain from reporting its

p-value. We employ the participant-wise mMSE point estimates to examine the relationship with

other neural measures (see next sections). In contrast to these correlational results, we found no sig-

nificant clusters (main effect) when contrasting the two conditions. To provide an intuition of the

mMSE values that fed into the correlation analysis, we plotted the subject-averaged mMSE values

within the cluster separately for the two conditions (Figure 3—figure supplement 1). This indeed

shows highly similar subject-average mMSE for the two conditions, highlighting the lack of a main

effect of condition in our data. Taken together, we observed a strong change-change correlational

link in frontal brain regions between liberal–conservative shifts in mMSE and decision bias, suggest-

ing that participants with a stronger increase in temporal neural variability from to conservative to

the liberal condition achieved a greater liberal bias shift.

Entropy-bias correlations are also present within participants and in
split data
Correlating brain and behavior across a relatively modest number of participants can be unreliable

(Yarkoni, 2009), depending on the amount of data underlying each observation. Therefore, we next

employed two complementary approaches to strengthen evidence for the observed link between

shifts in neural variability and decision bias. We first asked whether mMSE and bias were also linked

within participants across the nine liberal–conservative block pairs that each participant performed

throughout the three sessions (see Figure 1A, bottom for task structure and Figure 1D for criterion

shifts in single block pairs). Critically, we observed a negative repeated measures correlation

(Bakdash and Marusich, 2017) between within-participant shifts in criterion and mMSE (rrm = –0.19,

p=0.046, Figure 3C), providing convergent within-person evidence for a link between shifts in deci-

sion bias and neural variability. Second, we tested whether the observed across-participant correla-

tion was present within two separate halves of the data after an arbitrary split based on odd and

even trials. We found significant change-change correlations in both data halves, indicating reliable
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between-subject associations (odd, rho = –0.77, p=0.001; even, rho = –0.75, p=0.001)(Figure 3—fig-

ure supplement 2A and 2B). In contrast to the significant change-change correlation, we found no

significant single-condition correlations between mMSE and criterion (conservative: rho = –0.12,

p=0.66, liberal: rho = –0.21, p=0.43) and no significant difference in correlation strength (Drho = –
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Figure 3. Change-change correlation between liberal–conservative shifts in mMSE and bias. (A) Significant

negative electrode-time-timescale cluster observed via Spearman correlation between liberal–conservative mMSE

and liberal–conservative SDT criterion, identified using a cluster-based permutation test across participants to

control for multiple comparisons. Correlations outside the significant cluster are masked out. Left panel, time-

timescale representation showing the correlation cluster integrated over the electrodes included in the cluster,

indicated by the black dots in the topographical scalp map in the right panel. Dot size indicates how many time-

timescale bins contribute to the cluster at each electrode. Color borders are imprecise due to interpolation used

while plotting. The solid vertical line indicates the time of trial onset. The dotted vertical line indicates time of

(non)target onset. Right panel, scalp map of mMSE integrated across time-timescale bins belonging to the cluster.

p-Value above scalp map indicates statistical significance of the cluster. The black triangle indicates participants’

median reaction time, averaged across participants and conditions. (B) Scatter plot of the correlation after

averaging mMSE within time-timescale-electrode bins that are part of the three-dimensional cluster. Since the

cluster was defined based on significant change-change correlations, averaging mMSE across the significant time-

timescale-electrode bins before correlating represents no new information. Thus, the scatter plot serves only to

illustrate the negative relationship identified in panel A. Both Pearson’s r and Spearman’s rho are indicated. We

report no p-values since the bin selection procedure guarantees significance, and consider the correlation a

descriptive statistic only. (C) Within-participant mMSE vs. criterion slopes across liberal–conservative block pairs

completed across the experiment. rrm, repeated measures correlation across all block pairs performed after

centering each participant’s shifts in mMSE and criterion around zero by removing the intercept. Gray lines,

individual participant slopes fit across liberal–conservative mMSE vs criterion block pairs. Black line, slope

averaged across participants.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. This MATLAB file contains the data for Figure 3A and B.

Source data 2. This csv file contains the data for Figure 3C.

Figure supplement 1. Raw mMSE values averaged across subjects within the correlation cluster identified in

Figure 3A.

Figure supplement 2. Correlations between liberal–conservative shifts in mMSE versus criterion in split data, and

versus EEG signal SD and spectral power.

Figure supplement 3. Control analyses investigating signal SD and point averaging method.

Figure supplement 4. EEG spectral power normalized by subtracting the condition-average pre-trial baseline.

Figure supplement 5. Event-related responses in both conditions.
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0.09, p=0.7, non-parametric correlation difference test, 10.000 permutations). This indicates that the

change-change correlation was not driven exclusively by one of the two conditions, but rather that

their difference reveals the strong relationship observed in the present data.

The entropy-bias relationship is not explained by total signal variation
or spectral power
Next, we investigated whether the entropy-behavior correlation could alternatively be explained by

total signal variation (quantified via the signal SD), or spectral power. Specifically, the variance struc-

ture of a signal can influence entropy estimates through the pattern similarity (r) parameter (width of

gray bars in Figure 2), even when this parameter is recomputed for each timescale after coarsening,

as we did (Kosciessa et al., 2020). In addition, E/MEG data is often quantified in terms of oscillatory

spectral power in canonical delta (1–2 Hz), theta (3–7 Hz), alpha (8–12 Hz), beta (13–30 Hz) and

gamma (60–100 Hz) bands, which might be able to explain the entropy results through a similar

dependency. (See Kloosterman et al., 2019 for detailed spectral analysis of the current dataset).

Therefore, we tested whether the Dbias-Dentropy correlation could be explained by broadband sig-

nal SD and band-specific spectral power. To make the computation of spectral power and entropy

as similar as possible, we used the same 0.5 s sliding window and 50 ms step size for spectral analy-

sis (1 s window to allow delta power estimation, see Materials and methods), and selected spectral

power within the same electrodes and time points in which the mMSE effect was indicated.

Strikingly, we found that the Dbias-Dentropy correlation remained strong and significant both

when controlling for signal SD (partial rho = –0.82, p<0.0001), and even when controlling for all

major power bands simultaneously (delta, theta, alpha, beta, gamma; partial rho = –0.75, p=0.005).

See Figure 3—figure supplement 2 for correlations between mMSE and various potentially con-

founding factors. We also found similar results when separately controlling for signal SD within each

time-timescale bin while correlating modulations of mMSE and criterion in all electrodes, time

points, and timescales (Figure 3—figure supplement 3A). Importantly, the results did depend on

our modified entropy estimation method, since the frontal correlation cluster was smaller and non-

significant when performing the Dbias-Dentropy correlation using conventional MSE combined with

our novel sliding window approach (cluster p=0.37) (Costa et al., 2002; Figure 3—figure supple-

ment 3B). In contrast to mMSE, spectral power was not linked to the bias shift. We found no signifi-

cant clusters when correlating the liberal–conservative shifts in bias versus raw spectral power and

versus percent signal change power modulation using either the condition-specific pre-stimulus

baseline, or a condition-average baseline subtraction (Figure 3—figure supplement 4). Finally, sta-

tistically controlling for the participants’ perceptual ability to detect targets, quantified as the lib-

eral–conservative shift in SDT sensitivity measure d´ (Green and Swets, 1966) did not affect the

relationship (partial rho = –0.88, p<0.0001), indicating that perceptual sensitivity could not explain

our results. Taken together, neither overall signal variation, nor spectral power, nor perceptual sensi-

tivity could account for the observed correlation between shifts in mMSE and decision bias,

highlighting the unique ability of mMSE to capture these behavioral differences.

Entropy-bias relationship is not explained by event-related potentials
Next, we investigated whether event-related potentials (ERPs), as a relatively simple and widely used

EEG metric, could explain the observed link between shifts in criterion and entropy (Luck et al.,

2000). We computed ERPs for the liberal and conservative conditions by averaging trial time courses

and tested them against each other for all electrodes and time points using the cluster-based per-

mutation test. We observed one significant positive cluster (p=0.001, cluster-corrected, indicating a

stronger ERP for the liberal condition) over central and parietal electrodes, and one negative cluster

(p=0.001) in midfrontal, central and parietal electrodes (Figure 3—figure supplement 4). The timing

and topography of the positive ERP cluster closely corresponded to the centroparietal positivity

(CPP) signal thought to reflect sensory evidence accumulation (O’Connell et al., 2012). This is in line

with our previous report of increased evidence accumulation in the liberal condition

(Kloosterman et al., 2019). Importantly, when repeating the change-change correlation between

liberal–conservative ERPs and criterion as performed for mMSE, we found no significant clusters

(lowest p-value positive cluster, p=0.69; negative cluster, p=0.23). Furthermore, we repeated the

mMSE analysis after removing the ERP from the overall EEG activity by subtracting the event-related
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potential (computed by averaging all trials within a condition, session, and participant) from each sin-

gle trial. ERP subtraction from single trials is typically performed to remove stimulus-evoked activity

and focus on ongoing or ‘induced’ neural activity (Klimesch et al., 1998). The bias-entropy correla-

tion remained virtually unchanged after removing the ERP (rho = –0.90 with removal versus rho = –

0.87 without removal). See Misić et al., 2010 for similar evidence of independence of MSE from

ERPs. Taken together, these results suggest that liberal–conservative ERPs cannot account for the

brain-behavior link observed between shifts in bias and entropy.

Entropy-bias relationship possibly mediated by power-phase
interactions in the delta range
Given that overall signal variation, spectral power, and ERPs were not able to explain our entropy

findings, it remains an open question as to which aspect of the EEG signal underlies the observed

link between entropy and decision bias shifts. Since we previously found stronger midfrontal oscil-

latory activity in these data in the delta/theta (2–6 Hz) frequency range (Kloosterman et al., 2019),

we next examined the impact of systematically removing the lowest frequencies in the data on the

strength of the observed brain-behavior relationship. To this end, we performed entropy analysis

after applying a high-pass filter with 1, 2, or 3 Hz cutoff frequencies to the time-domain data (filter

order of 4, trials mirror-padded to 4 s to allow robust estimation [Cohen, 2014]). Note that we

applied a 0.5 Hz high-pass filter during data preprocessing to remove slow drift in all cases. To quan-

tify the strength of the brain-behavior correlation at each filtering step, we averaged mMSE within

the time-space-timescale cluster that showed the strong negative correlation in our principal (non-fil-

tered) analysis (see Figure 3B) and plotted scatterplots of the correlation.

Figure 4 shows the results of this analysis for non-filtered data (Figure 4A, copied from

Figure 3B), as well as for 1, 2, and 3 Hz high-pass filters (Figure 4B-D). Interestingly, we found that

the brain-behavior relationship progressively weakened with higher cutoff frequencies, such that the

correlation was non-significant after applying a 3 Hz high-pass filter before entropy analysis.

Whereas this finding suggests that these low frequencies contribute to our entropy effects, our con-

trol analysis in Figure 3—figure supplement 2I indicates that statistically controlling for 1–2 Hz

(delta) power does not affect the brain-behavior relationship. One explanation for these seemingly

incongruent results could be the different ways in which oscillatory phase is treated in these two

analyses: whereas statistically controlling for delta power does not take delta phase into account,

the high-pass filter removes both power and phase information from the signal before entropy is

computed. Taken together, these analyses reveal that the lowest frequencies present in the data

might play a role in the entropy-behavior relationship, possibly through non-linear interactions

between spectral power and phase of these frequencies.

Entropy quenching is not related to behavior
Finally, we tested whether variability ‘quenching’ was related to behavior in our data. Specifically,

improved perceptual sensitivity has been linked to transient, post-stimulus decreases in neural
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variability (Arazi et al., 2017; Churchland et al., 2010; Schurger et al., 2015). Quenching is directly

predicted by attractor models of brain organization (Wang, 2002) and is consistent with the main

principle of signal detection theory that suppression of neural noise enhances perception

(Green and Swets, 1966). Quenching has also been reported in the human EEG over visual cortex

in terms of a variance reduction across trials following stimulus onset (Arazi et al., 2017), although

this type of quenching can be attributed to the well-known suppression of low-frequency (alpha and

beta) spectral power following stimulus onset (Daniel et al., 2019). To our knowledge, only

Arazi et al., 2017 report an across-participant correlational link between perceptual sensitivity and

variance quenching; however, in that study, this correlation could be explained by elevated absolute

variability in the pre-stimulus period and not by brain activity in the post-stimulus period, suggesting

that higher pre-stimulus variability was the more relevant factor for behavior. Nonetheless, we tested

the link between entropy quenching and behavior in our data without any strong prior hypothesis.

To investigate this issue, we computed mMSE quenching by converting the raw mMSE values

into percentage modulation from the pre-stimulus baseline and testing this modulation against zero.

Besides a lateral occipital enhancement of mMSE modulation (Figure 5A) that could not be

explained by spectral power modulation (Figure 5B), we also found a suppression of mMSE with a

focal, mid-occipital topography, in line with quenching (Figure 5C). This focal topography was highly

similar to that of the SSVEP evoked by the strong, visual stimulation frequency at 25 Hz (see Figure

3A of Kloosterman et al., 2019. In addition, spectral analysis of the ERP-subtracted data also

revealed involvement of the subharmonic of this stimulation frequency at 12.5 Hz (data not shown).

The highly periodic nature of this boosted SSVEP is bound to decrease the temporal irregularity of

the signal, which could explain the observed mMSE suppression. In addition, the effect is strongest
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Figure 5. mMSE modulation with respect to pre-trial baseline. (A) Significant positive cluster observed in longer

timescales after normalizing mMSE values to percent signal change (psc) units with respect to the pre-trial

baseline (–0.2 to 0 s) and averaging across conditions. (B) Correlation between mMSE modulation in the positive

cluster depicted in A and spectral power modulation in midfrontal electrodes. Left panel, 3–7 Hz; right panel, 12–

30 Hz. (C and D) As B but for the posterior negative cluster. (E) Significant positive cluster observed in mid-frontal

electrodes in the liberal–conservative contrast of mMSE modulation. (F) Significant cluster resulting from the

correlation between liberal–conservative mMSE modulation with liberal–conservative SDT criterion. Conventions as

in Figure 3.
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in shorter time scales below 40 ms because of the progressive low-pass filter implemented for longer

timescales in the coarse graining procedure, which removes these SSVEP-related frequencies from

timescales slower than ca. 40 ms. mMSE quenching was indeed strongly positively correlated with

low-frequency power encompassing 12.5 and 25 Hz (Figure 5D). Thus, the strongly periodic SSVEP

boost after stimulus onset likely increased the temporal regularity of the EEG signal, which in turn

suppressed post-stimulus entropy and manifested as quenching.

Contrasting transient mMSE percentage modulation between the two conditions, we found a sig-

nificant positive cluster in midfrontal electrodes, indicating a stronger transient mMSE increase fol-

lowing trial onset in the liberal condition (Figure 5E). Furthermore, when change-change correlating

liberal–conservative mMSE modulation and criterion, we observed a left-lateralized negative cluster

in temporal electrodes, but no cluster in occipital electrodes (Figure 5F). Finally, we found no signifi-

cant cluster when correlating liberal–conservative mMSE quenching with shifts in perceptual sensitiv-

ity (d´). Taken together, although we did find occipital, transient entropy quenching likely due to the

strengthened SSVEP response, we found no convincing link between entropy quenching and

behavior.

Discussion
The ability to engage decision biases allows organisms to adapt their decisions to the context in

which choices are made. Frontal cortex has previously been shown to be involved in adaptive bias

shifts in humans (Chen et al., 2015; Rahnev et al., 2016; Reckless et al., 2014; Windmann et al.,

2002) and monkeys (Ferrera et al., 2009), but its spatiotemporal neural signature has to date

remained elusive. Here, we provide first evidence that greater bias shifts are typified in those sub-

jects who exhibit greater shifts in frontal mMSE after stimulus onset, suggesting that mMSE provides

a core signature of such adaptive behavioral shifts. Importantly, the relationship occurred indepen-

dent of total brain signal variation, oscillatory neural dynamics, and ERPs. Moreover, it was observed

at longer time scales, for which estimation was biased in a large amount of previous work

(Kosciessa et al., 2020). Since the results were exclusively observed with principled extensions of

the mMSE algorithm, our finding provides initial evidence for the unique value of brain signal irregu-

larity at longer time scales.

The observed relationship between shifts in bias and neural variability in anterior brain regions

complements our previous findings in the frequency domain that humans can intentionally control

prestimulus 8–12 Hz (alpha) oscillatory power in posterior regions to adaptively bias decision making

(Kloosterman et al., 2019). Notably, we previously observed increased oscillatory 2—6 Hz (theta)

power in the liberal condition in the same midfrontal electrodes implicated here in the Dbias-D

entropy correlation, but this theta power difference was not significantly correlated with the bias

shift (rho = 0.23, p=0.39). This suggests that the bias shift may be reflected both in low-frequency

spectral power and entropy in midfrontal regions, but that only entropy is linked to bias shift magni-

tude. One possible explanation for such a dissociation is that spectral power exclusively reflects the

amplitude of oscillatory signal contributions while discarding their phase information. In contrast,

entropy is sensitive to both variations in the magnitude as well as the phase of signal fluctuations.

This notion is also in line with our finding that low-frequency spectral power is insufficient to explain

our observed brain-behavior relationship, while the presence of these frequencies (including narrow-

band non-linear phenomena such as phase resets or temporal dependencies in the amplitude of sig-

nals [Linkenkaer-Hansen et al., 2001]) during entropy estimation is sufficient and necessary for the

relationship to emerge (Figure 4). Moreover, whereas spectral analysis strictly assumes a sinusoidal

waveform of EEG signal fluctuations (Cole and Voytek, 2017; Jones, 2016), entropy analysis is

agnostic to the shape of the waveforms present in the signal. Entropy thus provides a more unre-

stricted description of moment-to-moment fluctuations in neural activity that is highly predictive of

decision bias shifts across participants in our data. Our results suggest that entropy taps into infor-

mation in the EEG signal that is not available in ERPs and spectral power – the most popular analysis

methods used in the field. Intriguingly, this suggests that many previous E/MEG studies analyzing

ERPs and/or spectral power might have structurally overlooked a crucial property of the EEG signal

that is in fact strongly linked to behavior. It could thus be that many interesting brain-behavior links

are still hidden in existing EEG datasets, which can now be uncovered using mMSE.
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Despite the consistent liberal decision bias shift that participants exhibited between the two con-

ditions and the strong change-change correlation between entropy and behavior, mMSE was not

significantly higher on average in the liberal condition. This is in contrast to the raw alpha and theta

power differences that we reported previously, which did show significant condition differences (see

Kloosterman et al., 2019). Strikingly, we show here that the shift in mMSE did correlate with the lib-

eral–conservative bias shift, whereas the shifts in alpha and theta did not. This indicates that inter-

individual differences in mMSE may be sensitive to behavioral adjustments even in the absence of a

group-wise shift. A possible explanation for such a dissociation is that a main effect and a correlation

address somewhat divergent research questions that may conflict with each other. On the one hand,

a main effect tends to occur when subjects respond similarly to an experimental condition, which

typically requires that individual differences be relatively small. On the other hand, chances of

detecting a correlation with behavior typically increase when individual differences are larger, (e.g.

Lindenberger et al., 2008). Thus, the common presumption that a main effect of condition is a pre-

requisite for detecting behavioral effects is unfounded in our view. Therefore, we did not a priori

hypothesize a main effect of condition in the liberal–conservative contrast, but rather focused our

hypotheses on inter-individual adjustments in mMSE that tracked the magnitude of the individual

bias shift. We indeed observed a significantly stronger mMSE transient increase (main effect) after

trial onset in the liberal condition once the data were baseline corrected (as is common in time-fre-

quency EEG analysis), but the change-change correlation with behavior was weaker using baseline

corrected mMSE (Figure 5F).

In apparent contrast to the view that neural variability facilitates cognition, previous work has sug-

gested that a temporary stabilization of neural activity after stimulus onset (quenching, quantified as

a transient suppression of time-domain variance) is beneficial for perception (Arazi et al., 2017;

Schurger et al., 2015). We also observed a suppression in baseline-corrected mMSE, likely due to

increased regularity of the time-domain signal due to the boosted power at the SSVEP frequency

(Kloosterman et al., 2019). Previous work has linked variance quenching to post-stimulus suppres-

sion of rhythmic low-frequency (alpha and beta) power (Daniel et al., 2019). Future work could

investigate whether entropy indeed increases after suppression of these temporally regular signals.

Crucially, however – and divergent from our finding that boosting variability is coupled to an adap-

tive bias shift – we found no evidence for a change-change relationship between entropy quenching

and decision bias or perceptual sensitivity. Since the relations between quenching observed in neural

spiking (Churchland et al., 2010), trial-by-trial variance of E/MEG (Arazi et al., 2017), and mMSE

are currently unclear, further investigation on this issue is needed (Garrett et al., 2013b). Future

studies could also explore how neural variability quenching and boosting in different timescales are

related to various aspects of decision making such as perceptual sensitivity and different kinds of

biases (Fleming et al., 2010; Talluri et al., 2018; Urai et al., 2019), as well as to confidence and

metacognitive processes (Fleming and Dolan, 2012; Yeung and Summerfield, 2012). Furthermore,

individual decision bias has also been linked to the magnitude of transient dilations of the pupil

(de Gee et al., 2017, de Gee et al., 2014) and to entropy of EEG (Waschke et al., 2019), suggest-

ing that pupil-linked neuromodulation (Joshi and Gold, 2020) could be related to decision bias

through adjustments to moment-to-moment neural variability. Further investigation of such relation-

ships could yield fruitful insights about the neurochemical mechanisms underlying associations

between neural variability and higher order cognitive function (Alavash et al., 2018; Garrett et al.,

2015).

Our findings may have important implications for dynamical attractor models of neural population

activity, which have become increasingly influential in recent years (Chaudhuri et al., 2019;

Inagaki et al., 2019; Wimmer et al., 2014). Attractor models cast cognitive outcomes (e.g. deci-

sions, perceptual experiences, or retention of an item in working memory) as low-dimensional, stable

states (‘attractors’) within a high-dimensional energy landscape (Deco et al., 2009; Deco and Romo,

2008). These models typically contain a noise component that enables probabilistic exploration of

the energy landscape, increasing chances of attraction to the most optimal state (e.g. the correct

decision) and limiting the likelihood of settling too rigidly into any particular state. In multi-stable

visual perception, for example, noise is thought to underlie the spontaneous, flexible switching

between perceptual states reported by observers while viewing bi-stable visual illusions

(Kloosterman et al., 2015; Moreno-Bote et al., 2007). Our results suggest that an element of noise

facilitating cognitive flexibility might translate into modulations of moment-to-moment neural
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variability that can be measured in cortical population activity. Future dynamical attractor modeling

work could investigate exactly which characteristics of this noise component underlie effective explo-

ration of the state space within these models, for example by modulating noise amplitude as well as

the relative contribution of different noise frequencies (noise color). Modeling insights could then

guide the search for signatures of noise supporting cognitive operations in moment-to-moment neu-

ral variability.

Our results suggest that dynamic adjustment of neural variability in frontal regions is related to

adaptive behavior. Based on our findings, we speculate that heightened frontal entropy results from

a more dynamic, irregular neural regime that enables an individual to be more prepared to process

and act upon uncertain, yet task-relevant information. We believe that quantifying shifts in neural

entropy could help elucidate the mechanisms allowing organisms to adapt to their environment and

ultimately increase their chances of survival.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Biological
sample (Humans)

Participants Kloosterman et al., 2019 https://doi.org/
10.7554/elife.37321

See Subjects
section in Materials
and methods

Software, algorithm MATLAB Mathworks MATLAB_R2016b,
RRID:SCR_001622

Software, algorithm Presentation NeuroBS Presentation_v9.9,
RRID:SCR_002521

Software, algorithm Statistical Analysis R R version 4.0.1,
RRID:SCR_001905

Software, algorithm Custom analysis code Kloosterman et al., 2019 https://github.com/
kloosterman/critEEG

Software, algorithm Custom analysis code Kloosterman et al., 2019 https://github.com/
kloosterman/critEEGentropy

Software, algorithm Custom analysis code Kloosterman, 2020 https://github.com/
LNDG/mMSE/

FieldTrip-
compatible toolbox

Other EEG data
experimental task

Kloosterman et al., 2019 https://doi.org/10.6084/
m9.figshare.6142940

We report a novel analysis of a previously published dataset involving a target detection task during

two different decision bias manipulations (Kloosterman et al., 2019).

Subjects
Sixteen participants (eight females, mean age 24.1 years,±1.64) took part in the experiment, either

for financial compensation (EUR 10,– per hour) or in partial fulfillment of first year psychology course

requirements. Each participant completed three experimental sessions on different days, each ses-

sion lasting ca. 2 hr, including preparation and breaks. One participant completed only two sessions,

yielding a total number of sessions across subjects of 47. Due to technical issues, for one session

only data for the liberal condition was available. One participant was an author. All participants had

normal or corrected-to-normal vision and were right handed. Participants provided written informed

consent before the start of the experiment. All procedures were approved by the ethics committee

of the University of Amsterdam.

Stimuli
Stimuli consisted of a continuous semi-random rapid serial visual presentation (rsvp) of full screen

texture patterns. The texture patterns consisted of line elements approx. 0.07˚ thick and 0.4˚ long in

visual angle. Each texture in the rsvp was presented for 40 ms (i.e. stimulation frequency 25 Hz) and

was oriented in one of four possible directions: 0˚, 45˚, 90˚ or 135˚. Participants were instructed to fix-

ate a red dot in the center of the screen. At random inter trial intervals (ITI’s) sampled from a uniform

Kloosterman et al. eLife 2020;9:e54201. DOI: https://doi.org/10.7554/eLife.54201 12 of 22

Research advance Neuroscience

https://doi.org/10.7554/elife.37321
https://doi.org/10.7554/elife.37321
https://scicrunch.org/resolver/SCR_001622
https://scicrunch.org/resolver/SCR_002521
https://scicrunch.org/resolver/SCR_001905
https://github.com/nkloost1/critEEG
https://github.com/nkloost1/critEEG
https://github.com/nkloost1/critEEGentropy
https://github.com/nkloost1/critEEGentropy
https://github.com/LNDG/mMSE/
https://github.com/LNDG/mMSE/
https://doi.org/10.6084/m9.figshare.6142940
https://doi.org/10.6084/m9.figshare.6142940
https://doi.org/10.7554/eLife.54201


distribution (ITI range 0.3–2.2 s), the rsvp contained a fixed sequence of 25 texture patterns, which

in total lasted one second. This fixed sequence consisted of four stimuli preceding a (non-)target

stimulus (orientations of 45˚, 90˚, 0˚, 90˚, respectively) and twenty stimuli following the (non)-target

(orientations of 0˚, 90˚, 0˚, 90˚, 0˚, 45˚, 0˚, 135˚, 90˚, 45˚, 0˚, 135˚, 0˚, 45˚, 90˚, 45˚, 90˚, 135˚, 0˚,

135˚, respectively) (see Figure 1A). The fifth texture pattern within the sequence (occurring from

0.16 s after sequence onset) was either a target or a nontarget stimulus. Nontargets consisted of

either a 45˚ or a 135˚ homogenous texture, whereas targets contained a central orientation-defined

square of 2.42˚ visual angle, thereby consisting of both a 45˚ and a 135˚ texture. 50% of all targets

consisted of a 45˚ square and 50% of a 135˚ square. Of all trials, 75% contained a target and 25% a

nontarget. Target and nontarget trials were presented in random order. To avoid specific influences

on target stimulus visibility due to presentation of similarly or orthogonally oriented texture patterns

temporally close in the cascade, no 45˚ and 135˚ oriented stimuli were presented directly before or

after presentation of the target stimulus. All stimuli had an isoluminance of 72.2 cd/m2. Stimuli were

created using MATLAB (The Mathworks, Inc, Natick, MA) and presented using Presentation version

9.9 (Neurobehavioral systems, Inc, Albany, CA).

Experimental design
The participants’ task was to detect and actively report targets by pressing a button using their right

hand. Targets occasionally went unreported, presumably due to constant forward and backward

masking by the continuous cascade of stimuli and unpredictability of target timing

(Fahrenfort et al., 2007). The onset of the fixed order of texture patterns preceding and following

(non-)target stimuli was neither signaled nor apparent. At the beginning of the experiment, partici-

pants were informed they could earn a total bonus of EUR 30, -, on top of their regular pay of EUR

10, - per hour or course credit. In two separate conditions within each session of testing, we encour-

aged participants to use either a conservative or a liberal bias for reporting targets using both aver-

sive sounds as well as reducing their bonus after errors. In the conservative condition, participants

were instructed to only press the button when they were relatively sure they had seen the target.

The instruction on screen before block onset read as follows: ‘Try to detect as many targets as possi-

ble. Only press when you are relatively sure you just saw a target.’ To maximize effectiveness of this

instruction, participants were told the bonus would be diminished by 10 cents after a false alarm.

During the experiment, a loud aversive sound was played after a false alarm to inform the participant

about an error. During the liberal condition, participants were instructed to miss as few targets as

possible. The instruction on screen before block onset read as follows: ‘Try to detect as many targets

as possible. If you sometimes press when there was nothing this is not so bad.’ In this condition, the

loud aversive sound was played twice in close succession whenever they failed to report a target,

and three cents were subsequently deducted from their bonus. The difference in auditory feedback

between both conditions was included to inform the participant about the type of error (miss or false

alarm), to facilitate the desired bias in both conditions. After every block, the participant’s score

(number of missed targets in the liberal condition and number of false alarms in the conservative

condition) was displayed on the screen, as well as the remainder of the bonus. After completing the

last session of the experiment, every participant was paid the full bonus as required by the ethical

committee.

Participants performed six blocks per session lasting ca. 9 min each. During a block, participants

continuously monitored the screen and were free to respond by button press whenever they thought

they saw a target. Each block contained 240 trials, of which 180 target and 60 nontarget trials. The

task instruction was presented on the screen before the block started. The condition of the first

block of a session was counterbalanced across participants. Prior to EEG recording in the first ses-

sion, participants performed a 10 min practice run of both conditions, in which visual feedback

directly after a miss (liberal condition) or false alarm (conservative) informed participants about their

mistake, allowing them to adjust their decision bias accordingly. There were short breaks between

blocks, in which participants indicated when they were ready to begin the next block.

Behavioral analysis
We defined decision bias as the criterion measure from SDT (Green and Swets, 1966). We calcu-

lated the criterion c across the trials in each condition as follows:
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c ¼�
1

2
Z Hit-rateð Þ þ Z FA-rateð Þ½ �

where hit-rate is the proportion target-present responses of all target-present trials, false alarm (FA)-

rate is the proportion target-present responses of all target-absent trials, and Z(...) is the inverse

standard normal distribution. Furthermore, we calculated perceptual sensitivity using the SDT mea-

sure d´:

d0 ¼ Z Hit-rateð Þ� Z FA-rateð Þ

EEG recording
Continuous EEG data were recorded at 256 Hz using a 48-channel BioSemi Active-Two system (Bio-

Semi, Amsterdam, the Netherlands), connected to a standard EEG cap according to the interna-

tional 10–20 system. Electrooculography (EOG) was recorded using two electrodes at the outer

canthi of the left and right eyes and two electrodes placed above and below the right eye. Horizon-

tal and vertical EOG electrodes were referenced against each other, two for horizontal and two for

vertical eye movements (blinks). We used the FieldTrip toolbox (Oostenveld et al., 2011) and cus-

tom software in MATLAB R2016b (The Mathworks Inc, Natick, MA; RRID:SCR_001622) to process

the data. Data were re-referenced to the average voltage of two electrodes attached to the ear-

lobes. We applied a Butterworth high-pass filter (fourth order, cutoff 0.5 Hz) to remove slow drifts

from the data.

Trial extraction
We extracted trials of variable duration from 1 s before target sequence onset until 1.25 after button

press for trials that included a button press (hits and false alarms), and until 1.25 s after stimulus

onset for trials without a button press (misses and correct rejects). The following constraints were

used to classify (non-)targets as detected (hits and false alarms), while avoiding the occurrence of

button presses in close succession to target reports and button presses occurring outside of trials: 1)

A trial was marked as detected if a response occurred within 0.84 s after target onset; 2) when the

onset of the next target stimulus sequence started before trial end, the trial was terminated at the

next trial’s onset; 3) when a button press occurred in the 1.5 s before trial onset, the trial was

extracted from 1.5 s after this button press; 4) when a button press occurred between 0.5 s before

until 0.2 s after sequence onset, the trial was discarded. After trial extraction, the mean of every

channel was removed per trial.

Artifact rejection
Trials containing muscle artifacts were rejected from further analysis using a standard semi-automatic

preprocessing method in Fieldtrip. This procedure consists of bandpass-filtering the trials of a condi-

tion block in the 110–125 Hz frequency range, which typically contains most of the muscle artifact

activity, followed by a Z-transformation. Trials exceeding a threshold Z-score were removed

completely from analysis. We used as the threshold the absolute value of the minimum Z-score

within the block, + 1. To remove eye blink artifacts from the time courses, the EEG data from a com-

plete session were transformed using independent component analysis (ICA), and components due

to blinks (typically one or two) were removed from the data. In addition, to remove microsaccade-

related artifacts we included two virtual channels in the ICA based on channels Fp1 and Fp2, which

included transient spike potentials as identified using the saccadic artefact detection algorithm from

Hassler et al., 2011. This yielded a total number of channels submitted to ICA of 48 + 2 = 50. The

two components loading high on these virtual electrodes (typically with a frontal topography) were

also removed. Blinks and eye movements were then semi-automatically detected from the horizontal

and vertical EOG (frequency range 1–15 Hz; z-value cut-off four for vertical; six for horizontal) and tri-

als containing eye artefacts within 0.1 s around target onset were discarded. This step was done to

remove trials in which the target was not seen because the eyes were closed. Finally, trials exceeding

a threshold voltage range of 200 mV were discarded. To attenuate volume conduction effects and

suppress any remaining microsaccade-related activity, the scalp current density (SCD) was computed

using the second-order derivative (the surface Laplacian) of the EEG potential distribution

(Perrin et al., 1989).
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ERP removal
In a control analysis, we removed stimulus-evoked EEG activity related to external events by comput-

ing the event-related potential (ERP) and subtracting the ERP from each single trial prior to entropy

or spectral analysis. This was done to focus on ongoing (termed ‘induced’, [Klimesch et al., 1998])

activity. To eliminate differences in evoked responses between sessions and conditions, we per-

formed this procedure separately for ERPs computed in each condition, session, and participant.

Entropy computation
We measured temporal neural variability in the EEG using a form of multiscale entropy (MSE)

(Costa et al., 2002), which we modified in several ways. MSE characterizes signal irregularity at mul-

tiple time scales by estimating sample entropy (SampEn) of a signal’s time series at various sampling

rates. The estimation of SampEn involves counting how often specific temporal patterns reoccur

over time, and effectively measures how unpredictably the signal develops from moment to

moment. At a given time scale, the estimation of SampEn consists of the following steps:

1. A to-be-counted temporal ‘template’ pattern consisting of m samples is selected, starting at
the beginning of the time series.

2. The data is discretized to allow comparing patterns of samples rather than exact sample values
(which are rarely exactly equal in physiological timeseries). A boundary parameter r is used to
determine whether other patterns in the time series match the template. r denotes the propor-
tion of the time series standard deviation (SD, see also Figure 2A), within which a pattern is a
match, as follows:

Boundaryparameter¼ r � SD ð1Þ

3. Template pattern repeats throughout the time series are counted, yielding pattern count
N mð Þ.

4. Steps 1 to 3 are repeated for patterns consisting of mþ 1 samples, yielding pattern count
N mþ 1ð Þ.

5. Steps 1 to 4 are iterated to assess each temporal pattern as a template once. Counts for each
template pattern are then summed, yielding total counts across templates for N mð Þ and
N mþ 1ð Þ.

6. Finally, SampEn is computed as the logarithm of the ratio of the counts for m and mþ 1:

SampEn¼ ln
N mð Þ

N mþ 1ð Þ
ð2Þ

Thus, SampEn estimates the proportion of similar sequences of m samples that are still similar

when the next sample, that is mþ 1, is added to the sequence. Here, we use m ¼ 2 and r ¼ 0:5, as

typically done in neurophysiological settings (Courtiol et al., 2016; Grandy et al., 2016;

Richman and Moorman, 2000).

We have implemented three modifications of regular MSE that we outline in the next sections.

We refer to our own measure as modified MSE (mMSE) throughout the manuscript.

MSE modification #1: multi-scale implementation through filtering and
point skipping
In multiscale entropy, the computation of SampEn is repeated for multiple time scales after progres-

sively lowering the time series sampling rate by a process called ’coarsening’ (Costa et al., 2002).

By default, SampEn quantifies entropy at the time scale that corresponds to the sampling rate of the

time series, which is typically in the order of milliseconds or lower in (non-downsampled) neurophysi-

ological data. To enable estimation of entropy at longer time scales, the time series is typically coars-

ening by averaging groups of adjacent samples (’point averaging’) and repeating the entropy

computation (Costa et al., 2002). However, despite being straightforward, this method is subopti-

mal for eliminating short temporal scales from the time series. Point averaging is equivalent to low-

pass filtering using a finite-impulse response filter, which does not effectively eliminate high frequen-

cies (Semmlow, 2014; Valencia et al., 2009). For this reason, we used an improved coarsening pro-

cedure involving replacement of the multi-point average by a low-pass Butterworth filter, which has
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a well-defined frequency cutoff and precludes aliasing (Valencia et al., 2009; Figure 2B, top). The

filter cutoff frequency CutoffFreq is determined as:

CutoffFreq¼ NyquistFreq�
1

scale number
(3)

where NyquistFreq is the highest estimable frequency given the signal’s sampling rate. This filter-

ing ensures that an increasingly larger portion of the higher frequencies is removed for slower time

scales. Note that low-pass filtering affects the temporal structure of the time-domain signal, which

could hamper the interpretation of the EEG dynamics due to smearing of responses (Van-

rullen, 2011). This issue is largely mitigated, however, due to the liberal–conservative subtraction

that we perform before correlating with behavior, since this issue presumably affects both conditions

similarly. Low-pass filtering is followed by a point-skipping procedure to reduce the sampling rate of

the time series (Figure 2B, bottom). Since point-skipping omits increasingly large portions of the fil-

tered time series depending on the starting point of the point-skipping procedure, we counted pat-

terns separately for each starting point within a scale (see section Entropy computation above),

summed their counts for N mð Þ and N mþ 1ð Þ and computed entropy as described above.

MSE modification #2: Pattern similarity recomputed at each time scale
By increasingly smoothing the time series, coarse-graining affects not only the signal’s entropy, but

also its overall variation, as reflected in the decreasing standard deviation as a function of time scale

(Nikulin and Brismar, 2004). In the original implementation of the MSE calculation, the similarity

parameter r was set as a proportion of the original (scale 1) time series’ standard deviation and

applied to all the scales (Costa et al., 2002). Because of the decreasing variation in the time series

due to coarse graining, the similarity parameter therefore becomes increasingly tolerant at slower

time scales, resulting in more similar patterns and decreased entropy. This decreasing entropy can

be attributed both to changes in signal complexity, but also in overall variation (Kosciessa et al.,

2020; Nikulin and Brismar, 2004). To overcome this limitation, we recomputed the similarity param-

eter for each scale, thereby normalizing mMSE with respect to changes in overall time series varia-

tion at each scale.

MSE modification #3: Time-resolved computation
An important limitation of MSE is the need for substantial continuous data for robust estimation.

Heuristically, the recommended number of successive data points for estimation at each scale is 100

(minimum) to 900 (preferred) points using typical MSE parameter settings (Grandy et al., 2016).

This limitation precludes the application of MSE to neuroimaging data recorded during cognitive

processes that unfold over brief periods of time, such as perceptual decisions. Grandy et al., 2016

has shown that the pattern counting process can be extended to discontinuous data segments that

are concatenated across time, as long as the counting of artificial patterns across segment borders is

avoided (as these patterns are a product of the concatenation and do not occur in the data itself).

We applied the mMSE computation across discontinuous segments of 0.5 s duration (window size).

To track the evolution of mMSE over the trial, we slid this window across the trials in steps of 50 ms

from �0.2 s until 0.6 s, each time recomputing mMSE across segments taken from the time window

in each trial.

Given our segments of 0.5 s window length sampled at 256 Hz, we computed mMSE for scales 1

(129 samples within the window) until 42 (three or four samples within the window, depending on

the starting point). Note that using a pattern parameter m ¼ 2, a minimum of three samples within a

segment is required to estimate entropy across the segments of continuous data, yielding a maxi-

mum possible scale of 42. In line with the MSE literature (Courtiol et al., 2016), we converted the

time scale units to milliseconds by taking the duration between adjacent data points after each coar-

segraining step. For example, time scale 1 corresponds to 1000 ms / 256 Hz = 3.9 ms, and time scale

42 to 1000 / (256/42) = 164 ms.

Spectral analysis
We used a sliding window Fourier transform; step size, 50 ms; window size, 500 ms; frequency reso-

lution, 2 Hz) to calculate time-frequency representations (spectrograms) of the EEG power for each
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electrode and each trial. We used a single Hann taper for the frequency range of 3–35 Hz (spectral

smoothing, 4.5 Hz, bin size, 1 Hz) and the multitaper technique for the 36–100 Hz frequency range

(spectral smoothing, 8 Hz; bin size, 2 Hz; five tapers)(Mitra and Bokil, 2007). See

Kloosterman et al., 2019 for similar settings. Finally, to investigate spectral power between 1 and 3

Hz (delta band), we performed an additional time-frequency analysis with a window size of 1 s (i.e.

frequency resolution 1 Hz) without spectral smoothing (bin size 0.5 Hz). Spectrograms were aligned

to the onset of the stimulus sequence containing the (non)target. Power modulations during the tri-

als were quantified as the percentage of power change at a given time point and frequency bin, rela-

tive to a baseline power value for each frequency bin. We used as a baseline the mean EEG power

in the interval 0.4 to 0 s before trial onset, computed separately for each condition. If this interval

was not completely present in the trial due to preceding events (see Trial extraction), this period was

shortened accordingly. We normalized the data by subtracting the baseline from each time-fre-

quency bin and dividing this difference by the baseline (x 100%). In an additional analysis, we per-

formed a baseline correction by subtracting the condition-averaged pre-stimulus power, without

converting into percent signal change.

Statistical significance testing of mMSE and spectral power and
correlations across space, time, and timescales/frequencies
To determine clusters of significant modulation with respect to the pre-stimulus baseline without any

a priori selection, we ran statistics across space-time-frequency bins using paired t-tests across sub-

jects performed at each bin. Single bins were subsequently thresholded at p<0.05 and clusters of

contiguous time-space-frequency bins were determined. For the correlation versions of this analysis,

we correlated the brain measure at each bin with the criterion and converted the r-values to a t-sta-

tistic using the Fisher-transformation (Fisher, 1915). We used a cluster-based procedure (Maris and

Oostenveld, 2007) to correct for multiple comparisons using a cluster-formation alpha of p<0.05

and a cluster-corrected alpha of p=0.05, two-tailed (10.000 permutations). For visualization pur-

poses, we integrated (using MATLAB’s trapz function) power or entropy values in the time-fre-

quency/entropy representations (TFR/TTR) across the highlighted electrodes in the topographies.

For the topographical scalp maps, modulation was integrated across the saturated time-frequency

bins in the TFRs/TTRs. See Kloosterman et al., 2019 for a similar procedure in the time-frequency

domain.

High-pass filtering analysis
To examine the effect of systematically removing lower frequencies from the data before computing

mMSE, we high-pass filtered the data using 1, 2 and 3 Hz high-pass filters (filter order of 4). We mir-

ror-padded trials to 4 s to allow robust estimation (Cohen, 2014). After high-pass filtering, we per-

formed mMSE analysis as reported above.

Correlation analysis
We used both Pearson correlation and robust Spearman correlation across participants to test the

relationships between the behavioral variables as well as with the EEG entropy and power (modula-

tion). To test whether behavior and EEG activity were linked within participants, we used repeated

measures correlation using the rmcorr package in R (R Development Core Team, 2020). Repeated

measures correlation determines the common within-individual association for paired measures

assessed on two or more occasions for multiple individuals by controlling for the specific range in

which individuals’ measurements operate, and correcting the correlation degrees of freedom for

non-independence of repeated measurements obtained from each individual (Bakdash and Maru-

sich, 2017; Bland and Altman, 1995). To test whether spectral power could account for the

observed correlation between criterion and mMSE, we used partial Spearman and Pearson correla-

tion controlling for other variables. To test whether the mMSE-bias correlation was stronger in any

of the two conditions, we used a non-parametric correlation difference test. Specifically, data was

shuffled 10,000 times within each correlation data pair, each time taking the difference between cor-

relations to generate a distribution of correlations differences under the null hypothesis. Finally, the r

difference of the actual correlations was compared to this distribution to obtain a p-value.
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Data and code sharing
The data analyzed in this study are publicly available on Figshare (Kloosterman et al., 2019). We

programmed mMSE analysis in a MATLAB function within the format of the FieldTrip toolbox

(Oostenveld et al., 2011). Our ft_entropyanalysis.m function takes as input data produced by Field-

trip’s ft_preprocessing.m function. In our function, we employed matrix computation of mMSE for

increased speed, which is desirable due to the increased computational demand with multi-channel

data analyzed with a sliding window. The function supports GPU functionality to further speed up

computations. The software can be found on https://github.com/LNDG/mMSE. A tutorial for com-

puting mMSE within the FieldTrip toolbox can be found on the FieldTrip website (http://www.field-

triptoolbox.org/example/entropy_analysis/). Analysis scripts for the current paper can be found on

https://github.com/kloosterman/critEEGentropy (Kloosterman, 2020; copy archived at https://

github.com/elifesciences-publications/critEEGentropy/).
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