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ABSTRACT: We derive the full linear-response theory for
nonrelativistic quantum electrodynamics in the long wave-
length limit and provide a practical framework to solve the
resulting equations by using quantum-electrodynamical
density-functional theory. We highlight how the coupling
between quantized light and matter changes the usual
response functions and introduces cross-correlated light-
matter response functions. These cross-correlation responses
lead to measurable changes in Maxwell’s equations due to the
quantum-matter-mediated photon−photon interactions. Key
features of treating the combined matter-photon response are
that natural lifetimes of excitations become directly accessible
from first-principles, changes in the electronic structure due to strong light-matter coupling are treated fully nonperturbatively,
and self-consistent solutions of the back-reaction of matter onto the photon vacuum and vice versa are accounted for. By
introducing a straightforward extension of the random-phase approximation for the coupled matter-photon problem, we
calculate the ab initio spectra for a real molecular system that is coupled to the quantized electromagnetic field. Our approach
can be solved numerically very efficiently. The presented framework leads to a shift in paradigm by highlighting how
electronically excited states arise as a modification of the photon field and that experimentally observed effects are always due to
a complex interplay between light and matter. At the same time the findings provide a route to analyze as well as propose
experiments at the interface between quantum chemistry, nanoplasmonics and quantum optics.

KEYWORDS: strong light−matter coupling, quantum-electrodynamical density functional theory, benzene molecule,
linear-response theory, excited states

Recent years have seen tremendous experimental advances
in the nascent field of strongly coupled light−matter

systems.1,2 In particular, new experimental advances have been
demonstrated in polaritonic chemistry,3−5 solid-state physics,6

biological systems,7 nanoplasmonics,8,9 two-dimensional ma-
terials,10,11 or optical waveguides,12 among others.
In this so-called strong-coupling regime, as a result of mixing

matter and photon degrees-of-freedom,13,14 novel effects
emerge such as changes in chemical pathways15−17 ground-
state electroluminescence,18 cavity-controlled chemistry for
molecular ensembles,19,20 or optomechanical coupling in
optical cavities,21 new topological phases of matter,22 super-
radiance,23 or superconductivity.24

Due to the inherent complexity of such coupled fermion-
boson problems described in general by quantum electro-
dynamics (QED), the theoretical treatment is usually
drastically simplified. One common approximation is to restrict
the description of the system to simplified effective models that

heavily rely on input parameters. Current state of the art in the
theoretical description of strong light-matter coupling very
often employs a few-level approximation. This approximation
leading to the Rabi or Jaynes-Cummings model25,26 in the
single-emitter case, or the Dicke model27 in the many-emitter
case, is however often not sufficient,28,29 in particular, when
observables besides the energy are of interest,29 such as in
experimental setups involving the modification of chemical
reactivity.1

Alternatively, in linear spectroscopy, the current theoretical
description is built on the semiclassical approximation.30

Herein, the many-particle electronic system is treated quantum
mechanically and the electromagnetic field appears as an
external perturbation. As an external perturbation, the
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electromagnetic field probes the quantum system, but is not a
dynamical variable of the complete system (see also
Supporting Information, S1). Since in the strong-coupling
regime light and matter must be on the same level, a
semiclassical approximation is not adequate, and the feedback
between light and matter has to be considered.
It is, however, long known that the radiative lifetimes are

finite. Furthermore, experimentally excited-state properties are
usually inferred from (de)excitations of the photon field, which
is in stark contrast to the usual semiclassical theoretical
description based solely on the electronic subsystem.
In free-space, this mismatch can be circumvented since

excited-state properties such as radiative lifetimes of atoms and
molecules can be calculated perturbatively using the theory of
Wigner-Weisskopf,31 employing the Markov approximation.
However, this perturbative treatment of the coupling of light
and matter becomes insufficient in the case that strong light−
matter coupling is achieved, for example, due to many emitters
or due to reducing the mode volume of a cavity. In such cases,
the Markov approximation breaks down and the Wigner-
Weisskopf theory is not applicable anymore.32 Additionally, it
is not straightforward how to extend the original formulation of
Wigner-Weisskopf to many electronic levels and, hence, to an
ab initio treatment of electronic systems.
As a consequence, the current literature shows a large gap

for situations, where light and matter is strongly coupled and
observables such as excited-state densities, radiative lifetimes,
or electron-photon correlated observables of interest. A good
example is the control of the radiative lifetimes of single
molecules33,34 by changing the environment. In such cases, the
properties of the many-body system are changed, for example,
the excitation energies and lifetimes are strongly modified. This
happens because certain modes of the photon vacuum field are
enhanced which can lead to a strong coupling of light with
matter. Alternatively, increasing the number of particles leads
to an enhancement of the coupling due to the self-consistent
back-reaction of matter onto the photon field and vice versa. It
is important to realize that such changes are nonperturbative
for the photon field as well as for the matter subsystem and
hence need a self-consistent implementation. This fact is most
pronounced in the appearance of polaritonic states and their
influence on chemical and physical properties of matter.1,13

In this paper, we close this gap by presenting a practical and
general framework that subsumes electronic-structure theory,
nanoplasmonics, and quantum optics. We present a description
that challenges our conception of light and matter as distinct
entities35 and that expresses the excited states as modifications
of the photon field. We do so by introducing a linear-response
formalism for coupled matter-photon systems. This formalism
leads naturally to the ability to calculate radiative lifetimes in
arbitrary photon environments, including free-space, high-Q
optical cavity or nanoplasmonic structures. We make this
approach practical by introducing a linear-response framework
for quantum-electrodynamical density-functional theory
(QEDFT).13,14,36−38 This development is specifically timely
since QEDFT has now been successfully applied to real
systems in equilibrium,39 which demonstrates the feasibility of
ab initio strong-coupling calculations, yet an accurate and
efficient approach to excited states within QEDFT has been
missing. This work therefore furthermore closes a gap within
the QEDFT framework. We further want to note that, there
have been different studies in literature that are devoted to
including the classical feedback of the light field to the matter

systems all in dipole approximation, such as for specific
systems40,41 or reduced dimensionality.42 The presented work
not only generalizes these approaches, but also provides a clear
path to how to include the quantum effects of the light field for
this feedback.

1. LIGHT−MATTER INTERACTION IN THE LONG
WAVELENGTH LIMIT

Our fundamental description of how the charged constituents
of atoms, molecules, and solid-state systems, that is, electrons
and positively charged nuclei, interact is based on
QED;13,43−45 thus, the interaction is mediated via the exchange
of photons. Adopting the Coulomb gauge for the photon field
allows us to single out the longitudinal interaction among the
particles, which gives rise to the well-known Coulomb
interaction and leaves the photon field purely transversal.
Assuming then that the kinetic energies of the nuclei and
electrons are relatively small allows us to take the non-
relativistic limit for the matter subsystem of the coupled
photon−matter Hamiltonian, which gives rise to the so-called
Pauli-Fierz Hamiltonian13,37,45 of nonrelativistic QED. In a
next step, one then usually assumes that the combined matter−
photon system is in its ground state such that the transversal
charge currents are small and that the coupling to the
(transversal) photon field is very weak. Besides the Coulomb
interaction, it is then only the physical mass of the charged
constituents (bare plus electromagnetic mass45) that is a
reminder of the photon field in the usual many-body
Schrödinger Hamiltonian. In this work, however, we will not
disregard the transversal photon field, which makes the
presented framework much more versatile and applicable to
situations of quantum mechanics and quantum optics at the
same time (see also Appendix section, Photonic Observables
and Radiative Lifetimes).

1.1. Spectroscopy from Quantum Description of
Light−Matter Interaction. In the following, we consider
cases in which the semiclassical approximation breaks down, as
outlined in the introduction. In principle, QEDFT can be
formulated for each level of theory of QED as presented in
ref.37 As a consequence, the formalism outlined in this paper
can be straightforwardly extended to more general formula-
tions, including full minimal coupling beyond the dipole
approximation46 (in dipole approximation, only energy can be
transferred between charged particles and the light field, but
not momentum; thus, the dipole approximation is insufficient
to describe processes such as the radiation reaction). In this
manuscript, to illustrate the concepts, we restrict the discussion
in the following to the dipole approximation and the length-
gauge.
To this end, from the Pauli-Fierz Hamiltonian, we make the

long-wavelength or dipole approximation in the length-gauge47

since the wavelength of the photon modes are usually much
larger than the extent of the electronic subsystem, as well as the
Born−Oppenheimer approximations for the nuclei (the
inclusion of the nuclei is straightforward;48 however, the
presented formulation is perfectly suited to provide the
photon-dressed modified potential-energy surfaces for the
nuclei and, hence, access to modifications of chemical reactions
in, e.g., optical cavities15,49), which leads (in SI units) to36,37,50
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where Ĥe(t) is the standard many-body electronic Hamil-
tonian.51 We further restrict ourselves to arbitrarily many but a
finite number M of modes α ≡ (k, s), with s being the two
transversal polarization directions that are perpendicular to the
direction of propagation k. The frequency ωα and polarization
ϵα that enter in λα = ϵαλα, with λ = ϵα S r( )/k 0 and mode
function Sk(r)

37 define these electromagnetic modes. Sk(r) is
normalized, has the unit 1/ V with the volume V, and we
choose a reference point r0, where we have placed the matter
subsystem to determine the fundamental coupling strength (all
results presented in this paper are independent of r0). These
photon modes couple via the displacement coordinate

̂ = ̂ + ̂α ω α α
ℏ †

α
q a a( )

2
, where q̂α is given in terms of photon

annihilation aα̂ and creation aα̂
† operators, to the total dipole

moment R = ∑i=1
N eri (throughout this paper, we use the

implicit definition e = −|e|). The q̂α appears in the contribution
of mode α to the displacement field D̂α = ϵ0ωαλαq̂α.

47 Further,
the conjugate momentum of the displacement coordinate is

given by ̂ = − ̂ − ̂α
ω

α α
ℏ †αp i a a( )

2
. Besides a time-dependent

external potential v(r, t), we also have an external perturbation
jα(t) that acts directly on the mode α of the photon subsystem.
Here, jα(t) is connected to a classical external charge current
J(r, t) that acts as a source for the inhomogeneous Maxwell’s
equation. Formally, however, due to the length-gauge trans-
formations, the jα(t) corresponds to the time-derivative of this
(mode-resolved) classical external charge current36,37 (see also
Appendix section, Self-Consistency of the Maxwell’s Equa-
tion). Physically the static part jα,0 merely polarizes the vacuum
of the photon field and leads to a static electric field.38,52 The
time-dependent part δjα(t) then generates real photons in the
mode α. This term is also known as a source term in quantum
field theory,43 where it generates the particles (here the
photons) that are studied. From this perspective, it becomes
obvious that instead of using δjα(t) one could equivalently
slightly change the initial state of the fully coupled system by
adding incoming photons that then scatter off the coupled
light−matter ground state.45

1.2. Linear Response in the Length Gauge. With the
Hamiltonian of eq 1 in length gauge we can then in principle
solve the corresponding time-dependent Schrödinger equation
(TDSE) for a given initial state of the coupled matter−photon
system Ψ0(r1σ1, ..., rNσN, q1, ..., qM)

σ σℏ ∂
∂

Ψ = ̂ Ψ
t

t H t tr ri ( , ..., ) ( ) ( , ..., )1 1 1 1 (2)

where σ corresponds to the spin degrees of freedom. However,
instead of trying to solve for the infeasible time-dependent
many-body wave function, we restrict ourselves to weak
perturbations δv(r,t) and δjα(t) and assume that our system is
in the ground state of the coupled matter−photon system
initial time (in principle, also other initial states, e.g., an
uncorrelated matter−photon state could be chosen). In this
case, a first-order time-dependent perturbation theory can be
used to approximate the dynamics of the coupled matter−

photon system (for details, see Supporting Information, S2).
This framework gives us access to linear spectroscopy, for
example, the absorption spectrum of a molecule. Traditionally,
if we made a decoupling of light and matter, that is, we
assumed Ψ0(r1σ1, ..., rNσN, q1, ..., qM) ≃ ψ0(r1σ1, ..., rNσN) ⊗
φ0(q1, ..., qM), we would only consider the matter subsystem ψ
(the photonic part φ would be completely disregarded).
Physically, we would investigate the classical dipole field that
the electrons induced due to a classical external perturbation
δv(r, t). To determine this induced dipole field we would only
consider the linear response of the density operator n̂(r) =
∑i=1

N δ(r − ri), which would be given by the usual density−
density response function in terms of the electronic wave
function ψ0 only. In the following, we suppress the spin
component of the wave function and focus exclusively on the
spatial and mode dependence, i.e., Ψ(r1, ..., rN, q1, ..., qM; t).
In this work, however, since we do not assume the

decoupling of light and matter, the full density−density
response is taken with respect to the combined ground-state
wave function Ψ0 and is consequently different to the
traditional density−density response. Further, since we can
also perturb the photon field in the cavity by δjα(t), which will
subsequently induce density fluctuations, the density response
δn gets a further contribution leading to

∫ ∫ ∫∑δ χ δ χ δ= ′ ′ ′ ′ ′ ′ + ′ ′ ′
α

α
=

α
n t dt t t v t t t t j tr r r r r r( ) d ( , ) ( ) d ( , ) ( )n

n
M

q
n

1

(3)

Here the response function χn
n(rt, r′t′) corresponds to the

density−density response but with respect to the coupled
light−matter ground state and χqα

n (rt, t′) corresponds to the
density response induced by changing the photon field. In the
standard linear-response formulation, due to the decoupling
ansatz, changes in the transversal photon field would not
induce any changes in the electronic subsystem. Since
obviously we now have a cross-talk between light and matter,
we accordingly have also a genuine linear-response of the
quantized light field

∫ ∫ ∫∑δ χ δ χ δ= ′ ′ ′ ′ ′ ′ + ′ ′ ′α
α

α
′=

′
α

α
α
′

q t t t t v t t t t j tr r r( ) d d ( , ) ( ) d ( , ) ( )n
q

M

q
q

1

(4)

where χn
qα(t, r′t′) is the full response of the photons due to

perturbing the electronic degrees, and χqα′
qα (t, t′) is the photon−

photon response function. For an alternative definition of
δqα(t), we also refer the reader to eq S14 in the Supporting
Information. The response function χn

qα(t, rt′) is, in general, not
trivially connected to χqα

n (rt, t′), due to the different time-
ordering of t and t′.
The entire linear-response in nonrelativistic QED for the

density and photon coordinate can also be written in matrix
form.53 In this form, we clearly see that the density response of
the coupled matter−photon system depends on whether we
use a classical field δv(r, t), photons, which are created by
δjα(t), or combinations thereof for the perturbation.
Furthermore, we can also decide to not consider the classical
response of the coupled matter−photon system due to δn(r, t),
but rather directly monitor the quantized modes of the photon
field δqα(t). This response yet again depends on whether we
choose to use a classical field δv(r, t) that induces photons in
mode α or whether we directly generate those photons by an
external current δjα(t), and we also see that the different modes

ACS Photonics Article

DOI: 10.1021/acsphotonics.9b00768
ACS Photonics 2019, 6, 2757−2778

2759

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.9b00768/suppl_file/ph9b00768_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.9b00768/suppl_file/ph9b00768_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.9b00768/suppl_file/ph9b00768_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.9b00768


are coupled, that is, that photons interact. Similarly, as charged
particles interact via coupling to photons, also photons interact
via coupling to the charged particles. Keeping the coupling to
the photon field explicitly therefore, on the one hand, changes
the standard spectroscopic observables and, on the other hand,
also allows for many more spectroscopic observables than in
the standard matter-only theory.
1.3. Maxwell−Kohn−Sham Self-Consistent Linear-

Response Theory. The problem with this general framework
in practice is that already in the simplified matter-only theory,
we usually cannot determine the exact response functions of a
many-body system. The reason is that the many-body wave
functions, which we use to define the response functions, are
difficult, if not impossible, to determine beyond simple model
systems. So, in practice, we need a different approach that
avoids the many-body wave functions. Several approaches exist
that employ reduced quantities instead of wave functions.54−56

The workhorse of these many-body methods is DFT and its
time-dependent formulation TDDFT.57−59 Both theories have
been extended to the general coupled matter−photon systems
within the framework of QED.13,36−38,48

QEDFT allows us to solve instead of the TDSE equivalently
a nonlinear fluid equation for the charge density n(r, t)
coupled nonlinearly to the mode-resolved inhomogeneous
Maxwell’s equation.36−38,60 While these equations are, in
principle, easy to handle numerically, we do not know the
forms of all the different terms explicitly in terms of the basic
variables of QEDFT, that is, (n(r, t), qα(t)). To find accurate
approximations, one then employs the Kohn−Sham (KS)
scheme, where we model the unknown terms by a numerically
easy to handle auxiliary system in terms of wave functions. The
simplest approach is to use noninteracting fermions and
bosons that lead to a similar set of equations, which are
however uncoupled. Enforcing that both give the same density
and displacement field dynamics gives rise to mean-field
exchange-correlation (Mxc) potentials and currents.52,61,62

Formally, this Mxc potential and current is defined as the
difference of the potential/current that generate a prescribed
internal pair in the auxiliary noninteracting and uncoupled
system (vs([n], r, t), jα

s ([qα], t)); (the subscript “s” is usually
not explained in the density-functional literature, but we can
assume that it refers to “single particle”, as the potential often
appears in effective single-particle equations62) and the

potential/current that generates the same pair in the physical
system defined by eq 1, which we denote by (v([n, qα], r, t),
jα([n, qα], t)), that is,

[ ] = [ ] − [ ]α αv n q t v n t v n q tr r r( , , , ) ( , , ) ( , , , )Mxc s (5)

λω[ ] = [ ] − [ ] = − ·α α α α α α αj n t j q t j n q t tR( , ) ( , ) ( , , ) ( ),M
s 2

(6)

In the time-dependent case, we only have a mean-field
contribution to the Mxc current,36,38 where the total dipole
moment is written as R(t) = ∫ drern(r, t). Further, we have
ignored the so-called initial-state dependence because we
assume (for notational simplicity and without loss of
generality) in the following that we always start from a ground
state62,63 of the matter−photon coupled system. In this way,
we can recast the coupled Maxwell-quantum-fluid equations in
terms of coupled nonlinear Maxwell-KS equations for auxiliary
electronic orbitals, which sum to the total density ∑i|φi(r, t)|

2

= n(r, t), and the displacement fields qα(t), that is,

φ φ∇ℏ ∂
∂

= − ℏ + [ ]α

Ä
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ÅÅÅÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑÑÑÑ
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e
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2
2
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ω

ω∂
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+ = − + ·α α
α

α
α α

i
k
jjjj

y
{
zzzzt

q t
j t

tR( )
( )

( )
2

2
2

(8)

Here we use the self-consistent KS potential vKS([v, n, qα], r, t)
= v(r, t) + vMxc([n, qα], r, t) that needs to depend on the fixed
physical potential v(r, t),62 and instead of the full bosonic KS
equation for the modes α, we just provide the Heisenberg
equation for the displacement field. Although the auxiliary
bosonic wave functions might be useful for further
approximations, it is only qα(t) that is physically relevant,
and thus, we get away with merely coupled classical harmonic
oscillators, that is, the mode resolved inhomogeneous
Maxwell’s equation. To highlight the extra self-consistency
due to coupling between light and matter, we contrast the
traditional electron-only KS theory with the Maxwell KS
theory in Figure 1. It is then useful to divide the Mxc potential
into the usual Hartree-exchange-correlation (Hxc) potential
that we know from electronic TDDFT and a correction term
that we call photon-exchange-correlation potential (pxc), that
is,

[ ] = [ ] + [ ]α αv n q t v n t v n q tr r r( , , , ) ( , , ) ( , , , )Mxc Hxc pxc

Figure 1. Schematics of the Maxwell KS approach contrasted with schematics of the usual semiclassical KS theory. While in the semiclassical
approach the KS orbitals are used as fixed input into the mode-resolved inhomogeneous Maxwell’s equation in vacuum through the total dipole
R(t) = ∫ drer∑i|φi(r, t)|

2 (see also Appendix section, Self-Consistency of the Maxwell’s Equation), in the Maxwell KS framework the induced field
acts back on the orbitals, which leads to an extra self-consistency cycle.
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Clearly, the correction term vpxc will vanish if we take the

coupling |λα| to zero and recover the purely electronic case.

Since by construction the Maxwell KS system reproduces the

exact dynamics, we also recover the exact linear-response of the

interacting coupled system (see also Supporting Information,

S3). We can express this with the help of the Mxc kernels

defined by the functional derivatives of the Mxc quantities

δ
δ

δ
δ

δ

δ

δ

δ

′ ′ =
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′

′ ′ =
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and use the corresponding definitions for the Hxc kernel (that

only for the variation with respect to n has a nonzero

contribution) and the pxc kernels. We note that, using eq 6, we

explicitly find

λδ ω− ′ = − − ′ ·α α
αg t t t t er r( , ) ( )n

M
2

(9)

and gM
qα′(t, t′) vanishes, since jα,M in eq 6 has no functional

dependency on qα. Via these kernels, we find with χn,s
n (rt, r′t′)

and χqα′,s
qα (t, t′), where χqα′,s

qα (t, t′) ≡ 0 for α ≠ α′, the uncoupled

and noninteracting response functions that
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and accordingly for the mixed matter−photon response
functions
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Here we employed the formal connection between response
functions and functional derivatives χn

n(rt, r′t′) = δn(r, t)/δv(r′,
t′), as well as χqα′

qα (t, t′) = δqα(t)/δjα′(t′) and accordingly for the
auxiliary system. The Mxc kernels correct the unphysical
responses of the auxiliary system to match the linear response
of the interacting and coupled problem. So, in practice, instead
of the full wave function, what we need are approximations to
the unknown Mxc kernels. Later we will provide such

Figure 2. Schematics that contrasts the usual Maxwell’s equation (left) with the fully self-consistent Maxwell’s equation (right). Top: The induced
transversal electric field E⊥ as a consequence of the induced polarization P⊥, which can be equivalently expressed in terms of the auxiliary
displacement field D⊥. Left: mode-resolved nonself-consistent Maxwell’s equation with no backreaction. The external charge current jα induces the
external electric field in Eα

tot = Eα + Eα
ext, which acts as an external perturbation through the dipole. Since the constituents of χ̃n

n expressed in TDDFT
are purely electronic, the induced field does not couple back to the Maxwell field. Right: self-consistent Maxwell’s equation in which jα induces the
internal field qα(t) through the electron-photon correlated dipole which has an explicit dependence as seen in the QEDFT form of χqα

n . The self-
consistency of the induced field through the dipole introduces nonlinearities in the coupled system and, thus, changes the Maxwell field at the level
of linear-response.
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approximations, show how accurate they perform for a model
system and then apply them to real systems. If we decouple
light and matter, that is, Ψ0 ≃ ψ0 ⊗ φ0, and disregard the
photon part φ0 (as is usually done in many-body physics), we
recover the response function of eq 10 with fMxc

qα ≡ 0, and fMxc
n

→ fHxc
n . The response function, which is calculated with the

bare matter initial state ψ0, then obeys the usual Dyson-type
equation relating the noninteracting and interacting response
in TDDFT64,65 with vMxc([n, qα], r, t) → vHxc([n], r, t).
1.4. Excited States as Properties of the Photon Field.

Following the above discussion, the usual response functions
will change and response functions are introduced if we keep
the matter−photon coupling explicitly. This leads to many
exciting consequences. First, we get the completely self-
consistent response of the system including all screening,
retardation (we note that retardation processes which require
the exchange of more than one photon are independent of a
dipolar approximation) and other effects that become
important when either the matter subsystem is becoming
large66−69 or when strong-coupling situations are considered.
Since light and matter influence each other nonperturbatively
the usual simplified approximations that only treat one part of
the system accurately become unreliable28,29 (see also the
discussion in section 3.3). Second, due to the matter-mediated
photon−photon interactions (see Appendix section, Self-
Consistency of the Maxwell’s Equation, and Figure 2), the
Maxwell’s equations become self-consistent. A very interesting
consequence is that, in contrast to a purely classical theory, we
can theoretically distinguish whether a system is perturbed by a
free current (that, in turn, would generate a classical
electromagnetic field) or by a free electromagnetic field, for
example, a classical laser pulse. Third, the inclusion of the
photon modes introduces the missing photon bath that leads
to finite lifetimes (see Appendix section, Photonic Observables
and Radiative Lifetimes, and section 3.2). In connection to this
it becomes important that we suddenly have access to a wealth
of observables that describe the photon field. Most
importantly, this implies the possibility to completely change
our perspective of excited states of atoms and molecules.
Indeed, in line with the experimental situation where changes
in the photon field give us information on the excited states, we
can view excited-state properties as arising from quantum
modifications of the Maxwell’s equations in matter

∫λω δ
δ

ω
ω δ∂

∂
+ = − + ·α α
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The response of the density is then found with help of the
response functions eqs 10−13. In the usual case of an external
classical field δv(r, t) and δjα(t) = 0, we then find the induced
field by (suppressing detailed dependencies with ∫ dr → ∫
and ∫ dr ∑α → )

Here, the first term on the right-hand side corresponds to the
noninteracting matter−response. However, due to the
electron−electron interaction, we need to take into account
also the self-polarization of interacting matter (second term).

Finally, the third term describes the matter-mediated photon−
photon response. The excited states of the coupled light−
matter system are in this description changes in the photon
field. That this perspective is actually quite natural becomes
apparent if one considers the nature of the emerging
resonances for a real system (see Figure 7). These resonances
are mainly photonic in nature, as they describe the emission/
absorption of photons (see Appendix section, Photonic
Observables and Radiative Lifetimes). Let us consider now
in more detail what the terms on the right-hand side of the
modified Maxwell’s equations mean physically. First of all, in a
matter-only theory the self-consistent solution of the Maxwell’s
equations together with the response of the bare matter-system
would correspond approximately to the first two terms on the
right-hand side (see Appendix section, Self-Consistency of the
Maxwell’s Equation). The photon−photon interaction would
not be captured in such an approximate approach. Second, to
highlight the physical content of the different terms, we can
make the mean-field contributions due to

∫ ∫∑ λ λω
π

= ′ · ′ ′ − · + ′ ′
ϵ | − ′|α

α α α α( )v t e n t q t e
e n t
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2
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(15)

explicit

The second term on the right-hand side then corresponds to
the random-phase approximation (RPA) to the instantaneous
matter−matter polarization. Here, a term that corresponds to
the dipole self-energy induced by the coupling to the photons
arises. The third term on the right-hand side is the RPA
approximation to the dipole−dipole mediated photon
interaction. To give these terms further physical meaning,
note that in the usual perturbative derivation of the van der
Waals interaction44 the first two terms would cancel and leave
the photonic dipole−dipole interaction that gives rise to the
R−6 for small distances and the R−7 for larger distances. The
rest are exchange-correlation (xc) contributions that arise due
to more complicated interactions among the electrons and
photons. The last term effectively describe photon−photon
interactions mediated by matter. In addition, we want to
highlight that xc contributions are directly responsible for
multiphoton effects, such as two-photon or three-photon
processes (see Figure 4). If we only keep the mean-field
contributions of the coupled problem, we will denote the
resulting approximation in the following as photon RPA
(pRPA) to distinguish it from the bare RPA of only the
Coulomb interaction. We see how the Maxwell’s equations in
matter become self-consistent due to bound charges, that is,
fields due to the polarization of matter. A new term, the
photon−photon interaction, appears. For free charges, that is,
due to an external charge current δjα(t), we see similar
changes. Clearly, if we had no coupling to matter, then there
would be no induced density change and we just find the
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vacuum Maxwell’s equations coupled to an external current for
the electric field. In other terms, the displacement field trivially
corresponds to the electric field (see Appendix section, Self-
Consistency of the Maxwell’s Equation).

2. ILLUSTRATIVE EXAMPLES FOR THE COUPLED
MATTER−PHOTON RESPONSE

In this section, we discuss the perspective enabled by the linear
response formalism of QEDFT in more detail for a simple and
illustrative model system. We discuss a slight generalization of

the Rabi model,70,71 which is the standard model of quantum
optics. The Rabi model describes a single electron on two
lattice sites/energy levels interacting with a single photon
mode. We schematically depict the system in Figure 3 and
present all further details of this system in Appendix section,
Examples for the Coupled Matter−Photon Response: Details
on the Rabi Model.
First, let us analyze the optical spectra for such a system and

scrutinize the different approximations to the Mxc kernels. We
will compare the numerical exact results, with the mean-field
(pRPA) and the rotating-wave approximation (RWA). In

Figure 3. Two-level system (with excitation ω0) coupled to one mode of the radiation field (with frequency ωc). The matter subsystem is driven by
an external classical field v(t) and the photon mode is driven by an external classical current j(t) and both subsystems are coupled with a coupling
strength λ.

Figure 4. Linear-response spectra for the extended Rabi model (dotted-red) compared to the pRPA (dashed-blue) and RWA (full-orange)
approximations and for different coupling strengths λ. (a) Absorption spectra due to matter−matter response, (b) spectra due to photon−photon
response, (c) spectra due to matter−photon or photon−matter response. (d) The case for λ = 0.7 shows all excitations that arise in strong coupling.
(a−d) Resonant coupling. In (e), the field is halfway detuned from atomic resonance, that is, ω0 = 2 and ωc = 1 with strength and energies shifted
to frequencies favoring 2-photon processes. The insets in (d) and (e) zoom into the frequency axis showing a many-photon process.
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Figure 4a−c we see how the optical spectra of the resonantly
coupled system (i.e., δ = ω0 − ωc = 0) change for an increasing
electron−photon coupling strength λ. Already for small
coupling, the splitting of the electronic state into an upper
and lower polariton becomes apparent. Approximately these
states are given in terms of the RWA as |+, 0⟩ and |−, 0⟩. The
difference in energy between the lower and upper polariton is
called the Rabi splitting ΩR and is used to indicate the strength
of the matter−photon coupling. In molecular experiments
values of up to ΩR/ωc ≃ 0.25 have been measured.72,73 Up to λ
= 0.1 the different spectra for the exact (dotted-red), the pRPA
(dashed-blue) as well as the RWA (full-orange) are in close
agreement before they start to differ. Already the mean-field
treatment is enough to recover the quantized matter-photon
responses, even for the coupled matter-photon spectra in
Figure 4c. Consequently, the pRPA seems a reasonable
approximation for linear-response spectra even for relatively
strong coupling situations. Only upon increasing the coupling
strength further and thus going into the ultrastrong coupling
regime, the discrepancies becomes large. For ultrastrong
coupling (for λ = 0.3 the Rabi splitting is already of the
order of 0.5ωc), the approximations do not recover the exact
results. Increasing further leads then to not only a disagree-
ment in transition frequencies, but also the weights of the
transitions become increasingly different.
Besides a simple check for the approximations to the Mxc

kernels, the extended Rabi model also allows us to get some
understanding of the response functions χq

σx, χσx
q , and χq

q, where
σx is the expectation-value of the corresponding Pauli matrix
and describes the density/occupation changes between the two
sites/energy levels. This means we consider mixed spectro-
scopic observables, where we perturb one subsystem and then
consider the response in the other. We analogously employ
χσx
q (ω) and χq

σx(ω), respectively, to determine a “mixed
polarizability” (see Supporting Information, S5). If we plot
this mixed spectrum (see Figure 4c displayed in dotted-red for
the numerically exact case), we find that we have positive and
negative peaks. Indeed, this highlights that excitations due to
external perturbations can be exchanged between subsystems,
that is, energy absorbed in the electronic subsystem can excite
the photonic subsystem and vice versa. The oscillator strength

of the photonic spectrum (based on χq
q) in Figure 4b provides

us with a measure of how strong the displacement field (and
with this also the electric field) reacts to an external classical
charge current with frequency ω. Similarly, the mixed spectrum
(based on χq

σx or χσx
q ) in Figure 4c provides us with information

on how strong one subsystem of the coupled system reacts
upon perturbing the other one. The oscillator strength here is
not necessarily positive. What is absorbed by one subsystem
can be transferred to the other.
In Figure 4d,e, we show specifically the absorption spectra of

the Rabi model for ultrastrong coupling, that is, λ = 0.7. In this
regime, three new peaks arise for the exact case accounting for
high-lying excited states with nonvanishing dipole moments
due to the strong electron-photon coupling. The new
absorption peaks in Figure 4d, also shown in the inset,
describes the resonant coupling case which the RWA and
pRPA fail to capture in strong coupling, since processes
beyond one-photon are involved. Similarly, Figure 4e depicts
the case where the field is half-detuned from the electronic
resonance indicating a two-photon process. Clearly in
ultrastrong coupling the absorption peaks are merely shifted
close to the bare frequencies of the individual subsystems, but
remain dressed by the photon field as new peaks arise due to
the coupling. The pRPA and RWA capture the first of the two
peaks around ω = 2, which is also the frequency of the atom,
but fail to capture higher lying nonvanishing contributions to
the spectra. These higher-lying peaks correspond to multi-
photon processes. With more accurate approximation for the
xc potential results closer to the exact ones can be obtained.
We note at this point that the peaks in Figure 4 are artificially
broadened and in reality correspond to sharp transitions due to
excited states with infinite lifetimes. How to get lifetimes
quantitatively will be discussed in the next section.

3. COUPLED MATTER−PHOTON RESPONSE: REAL
SYSTEMS

In this section, we apply the introduced formalism in pRPA
approximation to real systems. We make the linear-response
formulation practical by reformulating the problem as an
eigenvalue equation in the frequency-domain. For electron-
only problems this formulation is known as the Casida

Figure 5. Schematic of absorption spectroscopy in optical cavities: Benzene (C6H6) molecule and λα denotes the polarization direction of the
photon field.

ACS Photonics Article

DOI: 10.1021/acsphotonics.9b00768
ACS Photonics 2019, 6, 2757−2778

2764

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.9b00768/suppl_file/ph9b00768_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.9b00768


equation.65 We refer the reader to Appendix section, Linear-
Response Theory as a Pseudoeigenvalue Problem, for a
derivation of our extension of the Casida equation, which
includes transverse photon fields. For the following discussion,
we consider benzene molecules in an optical cavity but the
presented approach is not restricted to any specific system.
In Figure 5, we schematically depict the experimental setup

for a photoabsorption experiment under strong light−matter
coupling for a single molecule. First we study the prototypical
cavity QED setup where a molecule is strongly coupled to a
single cavity mode of a high-Q cavity. In the second setup, we
lift the restriction of only one mode and instead couple the
benzene molecule to many modes that sample the electro-
magnetic vacuum field without enhancing the coupling to a
specific mode by hand. In the third setup, we study the
behavior of two molecules in an optical cavity, as well as a
dissipative situation, where only a few modes are strongly
coupled, embedded in a quasi-continuum of modes. In the last
example, we analyze the strong coupling of a single molecule to
a continuum of modes. We find a transition from Lorentzian
line shape to a Fano line shape74 for increasing electron-
photon coupling strength. These different setups provide us
with an ab initio calculation for the spectrum of a real molecule
in a high-Q cavity, an ab initio determination of intrinsic
lifetimes and an ab initio calculation of the nonperturbative
interplay between electronic structure, lifetime, and strong-
coupling. The two last situations need a self-consistent
treatment of photons and matter alike and cannot be captured
by any available electronic-structure or quantum-optical
method. All of those examples highlight the rich possibilities
and perspectives that the QEDFT framework provides.
3.1. Strong Light−Matter Coupling. The first results we

discuss are a set of calculations, where a benzene molecule is
strongly coupled to a single photon mode in an optical high-Q
cavity (our approach could also describe strong light−matter
coupling for other systems, e.g., nanoplasmonic systems8 and
generalizations to quantum interactions in laser pulses could be
done along the lines of ref 75). We have implemented the
linear-response pseudoeigenvalue equation of eq 43 into the
real-space code OCTOPUS76,77 and details of the numerical
parameters are given in Appendix section, Numerical Details.
The routines used to perform all calculations in this work will
be made publicly available. They can be easily transported to
any other first-principles code that has the matter linear-
response equations implemented to make them ready to
describe the complete QED response, i.e., joint matter−
photon response, as described in this work.
In the first calculation, we include a single cavity mode in

resonance to the Π−Π* transition of the benzene
molecule,76,78 that is, ωα = 6.88 eV. For the light−matter
coupling strength λα = |λα|, we choose five different values, that
is, λα = (0, 2.77, 5.55, 8.32, 11.09) eV1/2/nm that correspond
to a transition from the weak to the strong-coupling limit and
the cavity mode is assumed to be polarized along the x-
direction.
Since in this manuscript, we focus on electron−photon

coupling, we do not consider the coupling to the nuclei.
Generalizations are straightforward, for example, along the line
of ref 48. In experiment, in particular for molecular systems,
the majority of the line-broadening is due to vibrational
coupling, see, for example, refs 79 and 80, for the optical
spectra of benzene. Strong light−matter coupling for such
systems will lead to the splitting of the peak into the lower and

upper polariton and both peaks will inherit the vibrational line
broadening of the electronic excitation outside the cavity, as
has been shown in various experiments, for example, refs 81
and 82.
In Figure 6, we show the absorption spectra for these

different values of λα. We start by discussing the λα = 0 case

that is shown in black. This spectrum corresponds to a
calculation of the benzene molecule in free space, and the
spectrum is within the numerical capabilities identical to ref 76.
The spectrum in ref 76 has been obtained using an explicit
time-propagation with finite time. In the limit of zero
broadening and including all unoccupied states, we would
find identical spectra with very long propagated spectra. We
stress that here the broadening of the peaks is only done
artificially since the photon bath is not included in the
calculation. In the examples of sections 3.2 and 3.4 we include
many modes and, hence, sample the photon bath non-
perturbatively. We tune the electron−photon coupling
strength λα in Figure 6. We find for increasing coupling
strength a Rabi splitting of the Π−Π* peak into two
polaritonic branches. The lower polaritonic branch has higher
intensity, compared to the upper polaritonic peak. Numerical
values for the excitation energy EI, the transition dipole
moment xI, and the oscillator strength f I are given in Table 1 in
the Appendix. This demonstrates that ab initio theory is able to
describe excited-state properties of strong light−matter
coupling situations and captures the hybrid character of the

Figure 6. Absorption spectra for the benzene molecule in free space
(black) and under strong light−matter coupling in an optical cavity to
ultrastrong coupling (blue). The value for λα is given in units of
[eV1/2/nm].

Table 1. Rabi Splitting of the Π−Π* Transition: Electron−
Photon Interaction Strength λα = |λα|, Excitation Energy EI,
Transition Dipole Moment xI, and the Oscillator Strength f I

λα (eV
1/2/nm) EI (eV) ⟨xI⟩ (A) f I (a.u.)

0 6.88 0.952 0.546
2.77 6.69 0.721 0.304
2.77 7.03 0.626 0.241
5.55 6.49 0.791 0.355
5.55 7.18 0.550 0.190
8.32 6.28 0.848 0.395
8.32 7.30 0.482 0.149
11.09 6.06 0.896 0.426
11.09 7.41 0.420 0.114
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combined matter−photon states. Thus, predictive theoretical
first-principle calculations for excited-states properties of real
systems strongly coupled to the quantized electromagnetic
field are now available. This will allow unprecedented insights
into coupled light-matter systems, since we have access to
many observables that are not (or not well29) captured by
quantum-optical models.
3.2. Lifetimes of Electronic Excitations from First-

Principles. Next, we consider how to obtain lifetimes from
QEDFT linear-response theory. In this example, we explicitly
couple the benzene molecule to a wide range of photon modes
similar as in the spontaneous emission calculation of ref 83
While in ref 83 the system was simulated with 200 photon
modes, we choose here now 80 000 photon modes. The
energies of the sampled photon modes cover densely a range
from 0.19 meV, for the smallest energy up to 30.51 eV for the
largest one with a spacing of Δω = 0.38 meV. However, we do
not sample the full three-dimensional mode space together
with the two polarization possibilities per mode but rather
consider a one-dimensional slice in mode space. This one-
dimensional sampling of mode frequencies will change the
actual three-dimensional lifetimes, but for demonstrating the
possibilities of obtaining lifetimes, this is sufficient (a detailed
analysis of real lifetimes would include, besides a proper
sampling of the mode space, considerations with respect to the
bare mass of the particles). The sampling of the photon modes
corresponds to the modes of a quasi-one-dimensional cavity.
We choose a cavity of length Lx

83 in the x-direction, with a
finite width in the other two directions that are much more
confined . Thus , we employ ωα = α cπ/Lx and

λ ω=α αℏϵ
cx esin( / )

L L L x
2

0
x y z0

, where x0 = Lx/2 is the position

of the molecule in the x-direction. While we have a sine mode
function in the x-direction, we assume a constant mode
function in the other directions. For this example, we choose a
cavity of length Lx = 3250 μm in the x-direction, Ly = 10.58 Å
in the y-direction, and Lz = 2.65 Å in the z-direction.
The results of this calculation are shown in Figure 7. In

Figure 7a, we show the full spectrum. The electron−photon
absorption function that has been obtained by coupling the
benzene molecule to the quasi one-dimensional cavity with
80 000 cavity modes is plotted in blue. Since we have sampled
the photon part densely, we do not need to artificially broaden
the peaks anymore. Formulated differently, we can directly plot
the oscillator strength and the excitation energies of our
resulting eigenvalue equation and do not need to employ the
Lorentzian broadening anymore. In Figure 7, from blue (more
photonic) to red (more electronic) for the electron−photon
absorption spectrum we plot the different contributions of
each pole in the response function. These results confirm our
intuition that resonances are mainly photonic in nature and
that a Maxwell’s perspective of excited states is quite natural. In
(b) we zoom to the Π−Π* transition. Due to quasi one-
dimensional nature of the quantization volume, we find a
broadening of the peak that is larger than it is for the case of a
three-dimensional cavity due to the sampling of the electro-
magnetic vacuum. This is similar to changing the vacuum of
the electromagnetic field. Accordingly the lifetimes of the
electronic states are shorter if the electromagnetic field is
confined to one dimension and we will discuss this in the next
section.
3.3. Connection to the Standard Wigner-Weisskopf

Theory. If the coupling between light and matter is very weak

and neither subsystem gets appreciably modified due to the
other, in contrast to the previous strong light−matter coupling
case, the radiative lifetimes of atoms and molecules can be
calculated using the perturbative Wigner-Weisskopf theory31 in
single excitation approximation, as well as under the
assumption of the Markov approximation. These approxima-
tions are justified in the usual free-space case, where the results
of Wigner and Weisskopf reproduce the prior results of
Einstein based on the ad-hoc A and B coefficients. However, it
does not include the treatment of ensembles of molecules that
effectively enhance the matter−photon coupling strength, as
shown below. Under the assumption of the Wigner-Weisskopf
theory, the radiative decay rate is given by

ω
π

Γ =
| |

ϵ ℏc
d

33D
0
3 2

0
3

(16)

For a one-dimensional cavity in x-dimension the results change
to32

ω
Γ =

| |
ϵ ℏL L c
d

y z
1D

0
2

0 (17)

For comparison, we show in Figure 7 the peaks in gray that are
predicted by the Wigner-Weisskopf theory. Since our sampling
is very dense, we find for both peaks shown in the bottom a
good agreement with eq 17.
In fact, if we take the continuum limit for the photon modes,

we recover in our framework the lifetimes predicted by the
Wigner-Weisskopf theory, including the diverging energy

Figure 7. First-principles lifetime calculation of the electronic
excitation spectrum of the benzene molecule in an quasi one-
dimensional cavity: (a) Full spectrum of the benzene molecule, (b)
zoom to the Π−Π* transition, where the black arrow indicates the full
width at half-maximum (fwhm) ΔE, (c) zoom to a peak contributing
to the σ−σ+ transition. The gray spectrum is obtained by Wigner-
Weisskopf theory.31 The dotted spectral data points correspond to
many coupled electron−photon excitation energies that together
comprise the natural line shape of the excitation. Blue color refers to a
more photonic nature of the excitations vs red color to a more
electronic nature.
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shifts,84 that is, the Lamb shift. Due to the Lamb shift, our
resulting peaks are slightly shifted, due to the divergencies.
These divergencies can be handled by renormalization theory.
The lifetimes can now be obtained the following way: We
measure the full width at half-maximum (fwhm), indicated by
the black arrow in (b). In this case, we find ΔEfwhm = 0.0204
eV and the corresponding lifetime τΠ−Π* follows by τΠ−Π* = ℏ/
ΔEfwhm = 32.27 fs. Using the Wigner-Weisskopf formula from
eq 17 and the dipole moments and energies from the LDA
calculation without a photon field, we find a lifetime of 32.21
fs. As a side remark, the same transition using eq 16 has a free-
space lifetime of 0.89 ns, roughly in the range of the 2p-1s
lifetime of the hydrogen atom of 1.6 ns.
In Figure 7c, we finally show the ab initio peak of the σ−σ+

transition. We find a narrow ab initio peak that is not as well
sampled as the Π−Π*. We note in passing that we find an
ionization energy of 9.30 eV using Δ-SCF in the benzene
molecule with the LDA exchange-correlation functional. In our
simulation, coupling to peaks higher than the ionization energy
are broadened by continuum (box) states.
3.4. Beyond the Single Molecule Limit and Dis-

sipation in QEDFT. In contrast to the free-space result, where
weak coupling as well as the assumption of a dilute gas of
molecules are implied, in the case of single-molecule strong
coupling8 or when nearby molecules or an ensemble of
interacting molecules modify the vacuum, the usual perturba-
tive theories break down. Changes in the electronic and the
photonic subsystem become self-consistent, and the usual
distinction of light and matter becomes less clear. In such
situations, the linear-response formulation of QEDFT as well
as the Maxwell’s perspective of excited-state properties
becomes most powerful. Consider, for instance, two benzene
molecules weakly coupled to a one-dimensional continuum of
photon modes. If the molecules are far apart, we just find the
usual Wigner-Weisskopf result. But if we bring the molecules
closer (see Figure 8a), we see that the combined resonance
shifts and the combined line width becomes broader, implying
a shortened lifetime. In Figure 8b, we consider the case of
single-molecule strong coupling, where a few out of the 80 000
modes have an enhanced coupling strength. In red, we show
the spectrum where the molecule is coupled to the continuum,
as is also shown in Figure 7. We then introduce a single
strongly coupled mode at the Π−Π* transition energy, and the
resulting spectra is shown in green. We note that, in the figure,
the cavity frequencies are plotted in dashed lines. The single
mode introduces the expected Rabi splitting into the upper and
lower polariton and the peaks of the upper and lower polariton
become broadened due to the interaction with the continuum.
Interestingly, we find a different line broadening for the lower
and the upper polaritonic peak, since only the sum of both has
to be conserved. The smaller broadening for these two lower
polaritonic states implies that the radiative lifetimes of the
lower and upper polaritonic states are longer than the lifetime
of the excitation in weakly coupled free-space. In blue, we show
the spectra, where we have introduced three strongly coupled
modes in addition to the cavity 80 000 modes of the
continuum. We tune the two additional cavity modes in
resonance to the lower and upper polariton peaks of the green
plot. We find additional peak splitting, but also a shifting of
peak positions, at 7.8 eV.
In the last numerical example, we study the strong coupling

to the continuum for the case of a single molecule. The results
are shown in Figure 9. Here, we effectively enhance the light−

matter coupling strength by reducing the volume of the cavity
along the y- and z-direction. For comparison, we show in red
the setup that is also shown in Figure 7, where the excitations
have a Lorentzian line shape consistent with the Wigner-
Weisskopf theory, as discussed in the previous section. By
gradually reducing the dimensions along the y- and z-direction,
we find drastic changes in the line shape of the excitations.

Figure 8. (a) Two molecules of benzene strongly coupled to 80 000
cavity modes of an one-dimensional cavity. The further apart the
molecules are, the closer the peak gets to the single molecule peak.
Also, we notice the doubled peak broadening (shorter lifetime). The
gray spectrum is obtained by the Wigner-Weisskopf theory.31 (b) We
show the Rabi splitting in a situation of a single strongly coupled
mode with 80 000 cavity modes (green) and three strongly coupled
modes with 80 000 cavity modes (blue). The red lines correspond to
the same setup as in (a). The dashed lines refer to the frequency of
the cavity modes. The peaks become broadened due to the interaction
with the continuum.

Figure 9. Ab intio lifetime calculation of the electronic excitation
spectrum of the benzene molecule in a one-dimensional cavity along
the x-direction with different lengths in the Ly and Lz directions. The
red spectra refer to the same setup as in Figure 7. Effectively the
electron−photon strength increases with smaller Ly and Lz lengths
leading to a transition from a Lorentzian line shape to a Fano line
shape.
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These changes lead to the transition of the line shape from a
Lorentzian to a Fano line shape, as becomes clearly visible for
LxLz = 0.28 Å.
As a summary, we have presented in this section, that

lineshapes, as well as lifetimes can be inferred directly from first
principle calculations. In the case of a Lorentzian line shape, we
find that the width of the calculated peaks (no need to
introduce any artificial broadening as commonly done)
correspond to the lifetimes. These calculations demonstrate
that the ab initio theory is able to capture the true nature of
excitations, that is, resonances with finite intrinsic lifetimes,
without the need of an artificial bath or postprocessing.
Furthermore, we find that the excitations measured in
absorption/emission experiments are mainly photonic in
nature, and it is only the peak position that is dominated by
the matter constituents. This is, of course, very physical, since
what we see is the absorption/emission of a photon, not of the
matter constituents. Further, since we describe the photon
vacuum on the same theoretical footing as the matter
subsystem, we have full control over the photon field, making
it straightforward to simulate very intricate changes, for
example, changing the character of a specific mode out of
basically arbitrarily many, and investigating its influence on
excited-state properties such as the radiative lifetime. This
allows predictive first-principle calculations for intricate
experimental situations similar to the ones encountered in
refs 33 and 34.

4. SUMMARY AND OUTLOOK
In this work we have introduced a linear-response theory for
nonrelativistic quantum-electrodynamics in the long wave-
length limit, which can be straightforwardly extended to the
full minimal coupling case. Compared to the conventional
matter-only response approaches, we have highlighted how in
the coupled matter-photon case the usual response functions
change, how photon−photon and matter−photon response
functions are introduced, how these response functions
provide a photonic perspective on excited state properties,
how the results lead to self-consistent Maxwell’s equation in
matter, and how we can efficiently calculate all these response
functions in the framework of QEDFT. By investigating a
simple model system, we have shown how the spectrum of the
matter subsystem is changed upon coupling to the photon
field. Further, we have demonstrated the range of validity of a
simple yet reliable approximation to the, in general, unknown
mean-field exchange-correlation kernels. Using this approx-
imation, we have presented the first ab initio calculations of the
spectrum of real systems (benzene molecules) coupled to the
modes of the quantized electromagnetic field. In one example
we have calculated the change upon strong coupling to a single
mode of a high-Q cavity, which leads to a large Rabi splitting.
In the second example we have calculated from first-principles
the natural line widths of benzene coupled to a specific
sampling of the vacuum field. In the last examples, we
demonstrated the abilities to calculate many-molecule systems,
as well as dissipative strong-coupling situations, as well as
strong coupling to the continuum, where we find a transition
from Lorentzian line shape to Fano line shape, where the usual
(perturbative) approaches to light-matter coupling fail. These
results demonstrate the versatility and possibilities of QEDFT,
where light and matter are treated on equal quantized footing.
In the context of strong light−matter coupling, for example, in
polaritonic chemistry, the presented linear-response formula-

tion allows now to determine polaritonically modified spectra
from first principles. Together with ab initio ground-state
calculations,39 QEDFT now provides a workable first-principle
description to analyze and predict photon-dressed chemistry
and material sciences. In particular, our approach provides a
unique practical computational scheme to compute photon-
dressed excited-state potential-energy surfaces and non-
adiabatic coupling elements49 that are required for ab initio
calculations in the emerging field of polaritonic chemistry.
Further, in the context of standard ab initio theory, the linear-
response formulation of QEDFT now allows the calculation of
intrinsic lifetimes and provides access to quantum-optical
observables. Specifically, due to the nonperturbative nature of
the approach, quantum-optical problems where the self-
consistent feedback between light and matter has to be taken
into account, for example, that many molecules change the
photon vacuum and hence the Markov approximation breaks
down, becoming feasible. For optical physics, the presented
linear-response framework presents an interesting opportunity
to study the self-consistency of the Maxwell’s equations in
matter from first principles. Finally, we want to highlight that
although the QEDFT linear-response framework includes the
coupling of light and matter, its similarity to the usual matter-
only linear-response formulation in terms of a pseudoeigen-
value problem makes it very easy to include in already existing
first-principle codes. This, together with the above-discussed
possibilities in different fields of physics, shows that there are
many interesting cases that can be studied with the presented
method.

■ SELF-CONSISTENCY OF THE MAXWELL’S
EQUATION

In this section we give more details on the modifications of the
Maxwell’s equations. The semiclassical description of the
light−matter interaction is limited as a result of the transverse
field being treated as an external perturbation. This
approximation breaks the feedback loop between light and
matter that leads to self-consistency in the Maxwell’s equation.
Let us start from the classical description and assume that we
are interested in the induced fields due to an external
perturbation. If everything is perfectly classical there is no
difference whether we perturb by an external transversal field
a⊥ or an external classical current j⊥ due to the inhomogeneous
Maxwell’s equation in vacuum
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Now, if we have some theory to relate these external
perturbations to the induced current J⊥[a⊥], the induced
field reads
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from which we can calculate the induced physical fields, for
example, the transversal electric field in Coulomb gauge is
E⊥(r, t) = −1/c∂tA⊥(r, t) (some textbooks44 define the
connection of the electric field to the vector potential without
the prefactor 1/c; we use the current notation to be consistent
with relativistic literature and ref 37). We can again combine
these two results and look at the total field A⊥

tot = a⊥ + A⊥,
which obeys
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Using the Maxwell relations once more, we can equivalently
find, for example, the induced electric field
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We can now make a connection to the Maxwell’s equation in
matter, where j⊥ is called the free current and J⊥ is the bound
current. Assuming that we can express the induced transversal
current local ly around the center of charge as

≈⊥
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∂ ⊥t tJ r P r( , ) ( , )

t
, where we use the polarization
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and expand the electric field in the modes λα(r) as
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we can rewrite the above equation at the center of charge, that
is, λα(r) → λα, as
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Using this kind of approach, we can connect δn(r, t) of eq 3 to
the induced electric field δE⊥(r, t), where we employ a spatially
homogeneous vector potential a⊥(t) that gives rise to the

external electric field = −⊥
∂
∂ ⊥t tE a( ) ( )

c t
ext 1 . In a final step, to

avoid solving the above mode-resolved Maxwell’s equations,
one often even ignores the spatial dependence of the induced
field and merely uses Eα(t) = −λα · R([a⊥], t). If we now
determine in the linear response R([a⊥], t), we immediately
see that when χn

n is changed due to strong light−matter
coupling, also the induced field is changed. Furthermore, the
reformulation of the linear-response kernel in eq 10 shows that
we get a feedback from the induced photon field onto the
matter. Such intrinsic back-reaction (screening) effects are very
important for large systems, as is well-known from solid-state
physics, where the bare (vacuum) electric field, as determined
by eq 23, does not agree with the measured spectrum. One
needs to include the self-consistent polarization of the system
that counteracts the external perturbing field. This can be done
approximately in linear response by solving self-consistently a
Maxwell’s equation with the matter response as input.66−69 In
the theory of classical electrodynamics, a convenient way to do
so is to switch to the Maxwell’s equations in matter. In the
above considerations, this means we introduce the displace-
ment field D⊥ = ϵ0E⊥ + P⊥, where now all the knowledge about
how the system reacts to an external perturbation is encoded
again in P⊥, such that we find
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After expanding D⊥(r, t) = ϵ0∑αωαλα(r)qα(t) and then
performing the long wavelength limit, we arrive at
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which is the classical analogue of eq 8. In the usual decoupled
light−matter description without self-consistency, we then
simply determine R([a⊥], t) from the electric permittivity and
ignore any feedback that describes how the matter system
affects (screens) the field. Approximate self-consistency is
found once the induced field E⊥ is taken into account to screen
the perturbing field E⊥

ext. But, in our case, we want to go beyond
this simple approximate self-consistency, which will break
down once the coupling between light and matter is strong.
Note that, in the macroscopic Maxwell’s equation, the electric
field becomes Eα(t) = ωαqα(t) − λα · R([a⊥], t), and we see
that if we ignore the spatial dependence in determining E⊥, we
basically assume D⊥ = E⊥.
In our description, we keep the photon field as a dynamical

variable of the system, such that the Maxwell field couples to
the electronic system, leading to a fully self-consistent
description of the light−matter response. Besides the changes
in χn

n, which when used as an input into eqs 21 or 25, captures
the self-consistent response of the light−matter system, we can
now also directly access the induced electric field by
considering the response of the displacement field due to χn

q
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As discussed in section 1.4, this leads to a complete change of
perspective, since it highlights that the excited states of the
coupled light−matter system can be viewed as changes in the
quantized Maxwell field in accordance to the usual
experimental situation. On the other hand, we can now also
investigate what the quantum description of the coupled light−
matter system does to the Maxwell’s equations. We therefore
consider the case where the free (time-derivative of the)
current δjα(t) is nonzero while the external classical field is
zero, that is, δv(r, t) = 0. In this case, we find

If we contrast this to the classical Maxwell’s equation in matter
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where R([j⊥], t) would be determined from the response of
the matter system due to the corresponding external field a⊥,
we see that, besides the self-consistent response of the matter
system (second term on the right-hand side), also a genuine
(matter-mediated) photon−photon interaction term (third
term on the right-hand side) appears. Making again the mean-
field explicitly lead to
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If we ignore the xc contributions to the matter−photon and
photon−photon response, we get the pRPA approximation to
the Maxwell’s equation in matter. In this pRPA form, we
clearly see how the Maxwell’s equation becomes nonlinear
because of the feedback between light and matter. Such
nonlinearities of the Maxwell’s equations are investigated in
great detail in high-energy physics in the context of strong-field
QED.85 In that case, the strong fields lead to particle creation
and, thus, a matter-mediated photon−photon interaction. In
our case, we do not need these high energies, because we
consider the photon−photon interaction due to condensed
matter in the form of atoms, molecules, or solids and use, for
example, a cavity to enhance the coupling. That the changes in
the Maxwell’s equations are not purely theoretical concepts,
but lead to observable effects can be seen in many physical
situations. As mentioned before, the most well-known effect
are polarization effects in solid-state systems,69 but more
strikingly are effects due to the quantum-matter-mediated
photon−photon interactions, see, for example, ref 86. In this
context, the presented ab initio method allows to theoretically
investigate the photon−photon interactions and possibly
predict systems with very strong photon−photon correlations.
In such cases, the strong photon correlations could be used to
give complementary insights into molecular systems or to
imprint the photonic correlations on the matter subsystem.
Besides these differences, we highlight that the quantized
Maxwell’s equation in matter, if we allow for both, a free
external current and a free external field, can indeed
discriminate between these two sorts of perturbations. In a
purely classical theory, due to eq 18, there can be no difference.
This provides a playground to investigate the difference
between classical and quantum physics.

■ PHOTONIC OBSERVABLES AND RADIATIVE
LIFETIMES

In the presented framework, besides the above highlighted
changes in, for example, the Maxwell’s equations, a wealth of
interesting observables become accessible. For instance, one
can monitor the response of the matter system due to a
perturbation of the photonic subsystem by an external current.
This allows to investigate directly the cross-correlation
between the matter and the photon subsystem induced by
χqα
n . Also note that this cross-correlation observable allows to
distinguish between the response due to a purely classical field
δv(r, t) or due to a quantized field, since δjα(t) generates
photons (which is equivalent to just use a slightly different
initial state with an incoming photon pulse) that then perturb
the correlated matter−photon system. This makes the
presented framework applicable to also determine observables
due to novel spectroscopies that use quantum light.87 This area
of spectroscopy is so far not accessible with common first-

principle methods. One further important observable that can
be captured in this approach is the intrinsic lifetimes of excited
states, which are not accessible in standard matter-only
quantum mechanics. Let us briefly explain what we mean by
this. In standard quantum mechanics, we find besides the
ground state also other eigenstates, that is, excited states.
Hereby, an eigenstate is a square-integrable eigenfunction of a
self-adjoint, usually unbounded Hamiltonian. If we excite a
matter system from its ground state into such an excited state,
it will remain in this state as long as we do not perturb it. In
quantum mechanics we then also have generalized eigenstates,
so-called scattering states, which are not square-integrable and
that constitute the continuous spectrum of such a Hamil-
tonian.88 The simplest example is the free electronic

Hamiltonian ∇̂ = ∑ −=
ℏT i

N
m i1 2

2
e

2

which in infinite space has a

purely continuous spectrum consisting of non-normalizable
plane-waves.89 The physical interpretation of such scattering
states - as already the name indicates - is that particles
propagate to infinity and do not stay bound anywhere. Thus,
exciting a matter system from its ground state into such a
generalized eigenstate corresponds to the physical process of
ionization. Ionization, however, is something completely
different than the process of spontaneous emission. That is,
if we put an atom or molecule into an “excited state”, even
without a further perturbation it will relax to the ground state
by emitting radiation. The time the system stays in this
“excited state” before emitting a photon is called the lifetime.
The process of spontaneousemission clearly cannot be
captured by standard quantum mechanics where matter and
light are decoupled. Nonrelativistic QED, however, does
capture this process45 by coupling the matter system to the
quantized electromagnetic field which consists of infinitely
many harmonic oscillators. In this way the excited states of the
bare matter system turn into resonances and the ground state
(usually) remains the only eigenstate of the combined matter-
photon system. While formally these resonances are indeed
scattering states of the combined matter-photon system, it is
only the photonic part that shows a scattering behavior, i.e., a
photon leaves the vicinity of the matter subsystem.32,83 The
matter subsystem just relaxes to the only stable state, its
ground state.45 In linear response such relaxation processes
express themselves as finite line widths of excitations, where
the line width can be associated with the lifetimes of the
different resonances. In our slightly simplified treatment based
on eq 1, we only consider a finite number of photon modes,
and hence, we do not have genuine resonances. However, by
including enough modes, we sample the influence of the
vacuum, and instead of one sharp transition peak (which
numerically is usually artificially broadened), we get many that
approximate the resonance. In this way, the linear-response
theory for nonrelativistic QED in the long wavelength limit can
determine lifetimes of real systems. We show an example for
such an ab initio lifetime calculation in section 3.2. This
provides an interesting field of research that the presented
framework makes it accessible for ab initio theory. While it is
conceptually very interesting to revisit well-known results for
intrinsic radiative lifetimes of gas phase molecules, since we can
now study the nature of resonances in detail (see, e.g., the
discussion on the photonic nature of resonances in section
3.2), we now have access to even more exciting experimental
situations. By changing the environment, for example, putting
the molecule inside a cavity and thus enhance certain modes
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while suppressing others, one can change and control the
radiative lifetimes of single molecules33,34 (see also section
3.4). We can thus theoretically study and predict realistic
experimental situations where nontrivial changes in the
photonic vacuum, for example, due to nearby surfaces or
other physical entities, directly influence intrinsic lifetimes and
properties of resonances.

■ LINEAR-RESPONSE THEORY AS A
PSEUDOEIGENVALUE PROBLEM

In this section, we reformulate the linear-response theory of
coupled electron−photon systems as a pseudoeigenvalue
problem. The entire linear-response in nonrelativistic QED
for the density and photon coordinate can be written in the
matrix form as

where we imply integration over time and space when
appropriate. In this form we clearly see that the density
response of the coupled matter-photon system depends on
whether we use a classical field δv(r, t), photons, which are
created by δjα(t), or combinations thereof, for the
perturbation. The explicit coupling between the subsystems
(i.e., matter and photons) demonstrates changes in the
subsystems as a result of the back-reaction between matter
and photons. The cross-talk between the respective coupled
subsystems shows up in the cross-correlation response
functions, which leads to changes in the respective observables
(n(r, t), qα(t)). This becomes evident by considering an
external perturbation of the coupled system with the external
potential δv(rt) reduces to the coupled set of responses
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Here, the cross-correlation response function χn
qα(t, r′t′)

accounts for the action of the matter subsystem on the photon
field which gives rise to a response of the photon field as a
result of perturbing the matter. In the semiclassical approach in
which TDDFT is based on, the cross-correlation response
function do not show up but rather just a simplified form
(since there the wave function describes only the matter
subsystem) of the χn

n(rt, r′t′). Similarly, a perturbation of the
coupled system with the external charge current δjα(t) results
in
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The cross-correlation response function χqα
n (rt, t′) accounts for

the action of the photon field on the matter, thus, specifying
the response of the density by perturbing the photon field, and
χqα′
qα (t, t′) describes how the photon interacts via matter, thus,
specifying changes in response of the photon field.
Next, we need to find an efficient way to solve these linear-

response equations in terms of the Maxwell KS system. First,
performing a Fourier transformation from time t and t′ to
frequency space ω and using the Hxc and pxc kernels, we write
the response functions of eqs 10−13 in the following compact
notation
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Those equations are coupled with respect to the external
perturbations as seen in eqs 29 and 30. The perturbation with
respect to the external potential δv(rt) results in a coupled set
of response functions {χn

n(rt, r′t′), χn
qα(t, r′t′)} and for the

external current δjα(t) gives the coupled set {χqα
n (rt, t′), χqα′

qα (t,
t′)}. These pairs of coupled response functions have to be
solved in a self-consistent way to obtain the exact interacting
response functions. The response functions of eqs 29 and 30
can be expressed in frequency space through a Fourier
transform that yields
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A perturbation with the external potential δv(r, ω) induces the
responses δnv(r, ω) and δqα,v(ω). Making a substitution of eqs
31 and 32 into the density and displacement field response due
to an external potential δv(r, ω) yields, after some algebra, the
following eigenvalue problem (for a detailed derivation, we
refer the reader to the SI, section S4)

In this equation, X1 and Y1 are the contributions to the full
solution in the matter part of the equation, while A1 and B1 are
the contributions to the solution in the photon part of the
equation. Further, Ωq refers to the many-body electron-photon
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excitation energies. In comparison to the standard linear-
response formulation of TDDFT, new 2 × 2 blocks arises, the
M-block accounts for the explicit electron-photon interaction,
the N-block accounts for the dipole coupling of the electronic
system to the photon field and the ωα-block are the
frequencies of the photon field. The quantity Lai,jb(Ωq) =
δabδij(ϵa − ϵi) + Kai,jb(Ωq) contains the difference of two
Kohn−Sham energies ϵa and ϵi, where i refers to occupied
orbitals and the index a to unoccupied orbitals. The coupling-
matrix K is given by

∬ φ φ φ φΩ = * Ω *K fr y r r r y y y( ) d d ( ) ( ) ( , , ) ( ) ( )ai q i a
n

q b j,jb Mxc (40)

The quantity Kai,jb(Ωq) differs from the electron-only case since
fMxc
n = f Hxc

n + f pxc
n . Treating the photon field only externally

reduces this matrix to the standard coupling matrix in TDDFT
linear response with fMxc

n = fHxc
n . The two new coupling

functions appearing, M and N that couple the matter block are
given explicitly as

∫ φ φΩ = * Ωα αM fr r r r( ) d ( ) ( ) ( , )ai q i a
q

q, Mxc (41)

∫
ω

φ φ= *α
α

αN gr r r r
1

2
d ( ) ( ) ( )ia i a M

n
, 2

(42)

We emphasize here that the exact coupling matrix Nα,ia has no
frequency dependence since the exact kernel for eq 42 is
equivalent to just the mean-field kernel of the photon modes,
as can be seen from eq 9. Given the exact kernels, the
nonlinear pseudoeigenvalue problem in eq 39 allows to
compute the exact excitation energies of the coupled
matter−photon system. Of course, in practice, approximations
have to be employed for the matter−photon response kernels,
as is also required in the matter-only response formalism. Since
the explicitly known mean-field kernel gM

nα(r) is already exact,
only fMxc

qα (r, Ωq) and fMxc
n (r, y, Ωq) are left to be approximated.

The above matrix equation of eq 39 can be cast into a
Hermitian eigenvalue form following the same transformations
as, for example, in ref 90, where we assume real-valued orbitals,
that is, K = K*, M = M* and N = N*. Further, we drop the
dependency on Ωq for brevity. Then we find the
pseudoeigenvalue equation, reminiscent to the equations
found for excitation energies in Hartree−Fock theory and
TDDFT.65 The eigenvalue problem of eq 39 is now written in
a compact Hermitian form as

ω
= Ω

α
†

i

k
jjjjj

y

{
zzzzz
i

k
jjjjj

y

{
zzzzz

i

k
jjjjj

y

{
zzzzz

U V

V

E

P

E

Pq2
1

1

2 1

1 (43)

where the matrices U and V are given by U = (L − K)1/2(L +
K) (L − K)1/2, V = 2(L − K)1/2M1/2N1/2ωα

1/2 and the matrices
are given explicitly by

δ ω ω ω= + Ω′ ′ ′ ′U K2 ( )qq qq q q q qq q
2

(44)

ω ω= Ωα α α αV M N2 ( )q q q q q (45)

The index q = (a, i) describes transitions from the electronic
occupied (i) to unoccupied states (a), and thus, the difference
of Kohn−Sham energies is given by ωq = ϵa − ϵi. With α we
denote the photon modes. The eigenvectors E1 and P1 can be
used to compute oscillator strengths of the coupled matter−
photon system (see SI, S5). In the decoupling limit of the
light−matter interaction, eq 43 reduces to the well-known

Casida equation (eq S4 in the SI).65 So far we did not solve
anything but have just rewritten the problem in terms of
unknown Mxc kernels that correct the uncoupled and
noninteracting auxiliary response functions. To actually solve
this problem we need to provide approximations to these
unknown quantities. Here it becomes advantageous to have
divided the full Mxc kernels in Hxc and pxc terms, such that we
can use well-established approximations from electronic
TDDFT for the Hxc and specifically developed approximations
for the pxc terms (see section 2 for more details). In the
following, we will employ the above introduced pRPA
approximation, which is a straightforward generalization of
the standard RPA of electronic-structure theory and yields the
following kernels

∑

λ

λ λ λ

π
ω

ω

′ =
ϵ | − ′|

= − ·

′ = · ′ · = − ·

α α

α
α α α α

α

α α

f e f e

f e e g e

r r
r r

r r

r r r r r r

( , )
4

, ( ) ,

( , ) ( ) , ( )

n q

n n

H

2

0
p

p M
2

We note that, at the pRPA level, the matter−photon coupling
mediated via gM

nα is exact. The influence of the photon−matter
xc contributions, f xc

qα and f xc
n , will be highlighted in the next

section. By connecting to the eigenstates E1 and P1, we can
assign to each of the individual poles of the response function,
that is, the excitation energies, the amount of photonic and
electronic contribution to that excitation by using

∑σ = | |
=

Ee
i

N

i
1

1,
2

pairs

(46)

∑σ = | |
α

α
=

Pp

M

1
1,

2

(47)

where Npairs corresponds to the number of occupied-
unoccupied pairs of KS orbitals, in our case, 30 × 500. The
sum of σe and σp is normalized to one, that is, σe + σp = 1.
In the pRPA approximation, all the frequency dependence

that we suppressed at times for brevity now genuinely vanishes
(an adiabatic approximation), which allows us to express M
and N of eqs 41 and 42 as

∫ λω φ φ= − * ·α α αM r er r rd ( ) ( )ai i a, (48)

∫ λφ φ= − * ·α αN r er r r
1
2

d ( ) ( )ia i a, (49)

Next, we want to connect to the standard matter-only linear-
response framework.59 In defining the oscillator strength for
the density−density response function, we make use of the
relationship between the polarizability tensor and suscepti-
bility. The first-order dipole polarizability is given by

∫δ δ=t e n tR r r r( ) d ( , )
(50)

and in frequency space ω α ω ω=
←→

R E( ) ( ) ( ). The dynamic
polarizability tensor can then be written as

∫α ω δ ω
δ ω

=μν μ
ν

←→
er

n
E

r
r

( ) d
( , )

( ) (51)

with μ, ν = 1, 2, and 3, denoting all three spatial directions.
Connecting to the QEDFT linear-response theory, we find
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∑α ω
ω

=
− Ωμν

μ ν←→
† †S Sr Z Z r

( )
2

I

I I

I

1/2 1/2

2 2
(52)

where rμ
I = ∫ dr erμ∑i,aΦia(r) is the Kohn−Sham transition

dipole matrix element of the many-body transition I. Further,
we have used S = (L − K), and the transition density is defined
as Φia(r) = φi*(r)φa(r) in terms of Kohn−Sham orbitals. This
then allows to obtain the full photoabsorption cross section
from the trace of the polarizability tensor through

σ ω πω α ω=
←→

c
m( )

4
Tr ( )/3

(53)

For the oscillator strength,59,65 we find

∑ ∑ω= | | = |⟨Ψ | |Ψ⟩|
μ

μ
μ

μ
=

†

=

f S erZ r
2
3

2
3I I

I
I I

1

3
1/2 2

1

3

0
2

(54)

and also, in the case of QEDFT, the oscillator strength satisfy
the Thomas-Reiche-Kuhn sum rule (also known as f-sum rule),
that is, ∑I f I = N, where N is the total number of electrons in
the system. At this point, we also want to introduce the dipole
strength function S(ω)59 that is defined as

∑ω δ ω= − ΩS f( ) ( )
I

I I
(55)

and integrates according to the f-sum rule to the total number
of electrons. For the nonstandard part of our response theory,
that is, matter-photon and photon−photon perturbations, we
use similar constructions to display the results. Their
derivations and definitions are given in SI S5. We will discuss
their physical meaning in the next section, where we employ a
simple yet illuminating model system. This will not only allow
us to explain many of the so far abstract ideas in a
straightforward manner, but we can also test the accuracy of
the pRPA.

■ EXAMPLES FOR THE COUPLED
MATTER−PHOTON RESPONSE: DETAILS ON THE
RABI MODEL

In this section, we give more details on the model system that
has been employed in section 2. The model Hamiltonian we
consider is given by (in this section, we switch for simplicity to
atomic units)

ω
σ ω λσ σ̂ = ̂ + ̂ ̂ + ̂ ̂ + ̂ + ̂†H t a a q j t q v t( )

2
( ) ( )R z c x x

0
(56)

where ω0 is the transition frequency between the ground state |
g⟩ and excited state |e⟩ and σ̂x as well as σ̂z are the usual Pauli
matrices. We only keep one photon mode with frequency ωc
and use the usual photon creation and annihilation operators
to represent the harmonic oscillator of this mode. By further
compressing the notation, we then describe the coupling
between matter and light by a coupling strength λ and the
displacement coordinate ̂ = ̂ + ̂ω

†q a a( )1
2 c

. Finally, we couple

the matter system to a classical external perturbation v(t) and
the photon system to a classical external current j(t) (a
pictorial representation of the coupled system is given in
Figure 3). We note for consistency with respect to other
works37,50,52 that, in the above Rabi model, we can perform a
unitary transformation that allows us to exchange σ̂x and σ̂z.
Both forms of the extended Rabi model are therefore
equivalent. We further note that, with respect to the full

nonrelativistic QED problem in the long wavelength
approximation of eq 1, the Rabi model does not include the
dipole self-energy term proportional to (λ·R)2. This is because
the analogous term in this model is just a constant energy shift,
that is, it is proportional to σ = ̂

x
2 .47 For more levels, this is no

longer the case,52 and this term has to be taken into account or
else the resulting eigenstates do not have a proper continuum
limit.47 The responses that we want to consider in the
following are those observables that couple to the external
perturbations. In our case, this is σx(t) = ⟨Ψ(t)|σ̂x|Ψ(t)⟩ (in
essence the atomic dipole) and the displacement field q(t) =
⟨Ψ(t)|q̂|Ψ(t)⟩.
The response of these observables (δσx(t), δq(t)) to

perturbations by the external pair (δv(t), δj(t)) can be written
similarly as eq 28 in the collective form

Again, we find besides the usual matter−matter response, χσx
σx,

also matter−photon responses χq
σx and χσx

q , respectively, as well
as a photon−photon response function χq

q. Next, in analogy to
section 1, we reformulate the coupled matter−photon problem
in form of a Maxwell KS auxiliary problem. Using by now well-
established results of QEDFT for the extended Rabi model
systems,37,50 we can introduce two effective fields

σ σ σ[ ] = [ ] − [ ]v q t v t v q t( , ; ) ( ; ) ( , ; )x s x xMxc (58)

σ σ[ ] = [ ] − [ ]j t j q t j q t( ; ) ( ; ) ( , ; )x s xM (59)

that force the auxiliary uncoupled, yet nonlinear Maxwell KS
system to generate the same dynamics of the internal pair
(σx(t), q(t)) as the corresponding coupled reference system.
For an uncoupled initial Maxwell state |Ψ0⟩ = |ψ0⟩ ⊗ |φ0⟩ that
provides the same initial conditions for the internal pair as the
physical initial state,37,50 we then have to solve self-consistently

ψ
ω

σ σ σ ψ∂
∂

| ⟩ = ̂ + + [ ] ̂ | ⟩
Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ

i
t

t v t v q t t( )
2

( ( ) ( , ; )) ( )z x x
0

Mxc (60)

ω λσ∂
∂

+ = − −
i
k
jjjj

y
{
zzzzt

q t j t t( ) ( ) ( )c x

2

2
2

(61)

Since the photon subsystem is merely a shifted harmonic
oscillator we get away with only solving the classical harmonic
oscillator equation coupled to the dipole of the matter
subsystem. We can then express the coupled response
functions of eq 57 in analogy to eqs 10−13 by the uncoupled
auxiliary response functions χσx,s

σx and χq,s
q as

∬
∬

χ χ τ τ χ τ τ τ χ τ

τ τ χ τ τ τ χ τ

′ = ′ + ′ ′ ′ ′

+ ′ ′ ′ ′

σ
σ

σ
σ

σ
σ σ

σ
σ

σ
σ

σ

t t t t t f t

t f t

( , ) ( , ) d d ( , ) ( , ) ( , )

d d ( , ) ( , ) ( , )

s s

s
q q

, , Mxc

, Mxc

x
x

x
x

x
x x

x
x

x
x

x (62)

∬
∬

χ τ τ χ τ τ τ χ τ

τ τ χ τ τ τ χ τ

′ = ′ ′ ′ ′

+ ′ ′ ′ ′

σ
σ
σ

σ
σ σ σ

t t t f t

t f t

( , ) d d ( , ) ( , ) ( , )

d d ( , ) ( , ) ( , )

q s
q

q
q

s q

, Mxc

, Mxc

x
x
x

x
x x x

(63)

∬χ τ τ χ τ τ τ χ τ′ = ′ ′ ′ ′σ
σ

σ
σt t t g t( , ) d d ( , ) ( , ) ( , )q

q s
q

M,x
x

x
x

(64)

∬χ χ τ τ χ τ τ τ χ τ′ = ′ + ′ ′ ′ ′σ σt t t t t g t( , ) ( , ) d d ( , ) ( , ) ( , )q
q

q s
q

q s
q

M q, ,
x x

(65)
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The only real difference is that in the Rabi case we do not have
a longitudinal interaction and therefore the Mxc contributions
come solely from the matter−photon coupling, that is, fMxc

σx =
f pxc
σx and fMxc

q = f pxc
q . This allows us to study exclusively the

influence of these new terms and how approximations of them
perform.

Matter−Photon Correlation Effect in Maxwell’s Equations
Let us follow the previous general section 1.4 and briefly
consider the influence of the matter−photon coupling on the
Maxwell’s equations in this model system, that is, eq 61. The
inhomogeneous Maxwell’s equation here accounts for the
back-reaction of the matter on the field through the atomic
dipole operator σx([v, j]; t). If we, for instance, perturb the
two-level system directly via a δv(t), the response of the
Maxwell’s equation expressed in terms of the uncoupled
problem with the help of eq 63 becomes

∫
∭
∬

ω δ λ χ δ

λ τ τ χ τ τ τ χ τ δ

λ τ τ χ τ τ τ δ τ

∂ + = − ′ ′ ′

− ′ ′ ′ ′ ′ ′

− ′ ′ ′

σ
σ

σ
σ σ

σ
σ

σ
σ

q t t t t v t

t t f t v t

t f q

( ) ( ) d ( , ) ( )

d d d ( , ) ( , ) ( , ) ( )

d d ( , ) ( , ) ( )

t c s

s

s
q

2 2
,

, Mxc

, Mxc

x
x

x
x x

x
x

x
x

(66)

Having no coupling, that is, the Mxc terms are zero, merely
recovers the usual inhomogeneous Maxwell’s equation for a
classical external current. The matter system evolves according
to the perturbation and we can determine its induced Maxwell
field without any back-reaction. The second term describes the
matter polarization due to the induced field and leads to an
effective self-interaction of the two-level system. If there was
more than one particle, this would induce an effective matter−
matter interaction as well. The third term then accounts for the
field polarization and induces an effective self-interaction in the
mode of the light field. That is, the coupling to matter leads to
a photon−photon interaction. This can be made more explicit
by separating the mean-field contribution vM(t) = λq(t) and
rewriting the above equation as

∫
∭
∫ ∬

ω δ λ χ δ

λ τ τ χ τ τ τ χ τ δ

λ τχ τ δ τ λ τ τ χ τ τ τ δ τ
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(67)

The third term on the right-hand side is then the pRPA form
of photon−photon response. Similar terms also appear for a
perturbation induced by an external current δj(t), which can be
rewritten with the help of eq 64 and the mean-field made
explicit as

∫
∬
∭

ω δ δ λ τχ τ δ τ

λ τ τ χ τ τ τ δ τ

λ τ τ χ τ τ τ χ τ δ
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(68)

Here we used that fM
q (τ, τ′) = λδ(τ − τ′). As is most obvious in

the pRPA limit, both types of perturbations lead to the same
resonance conditions, i.e., peaks in the responses. They are
connected to the combined eigenstates of the matter−photon
system. However, the detailed response can differ strongly.
That these resonance conditions that we get from the pRPA
are indeed connected to the coupled eigenstates, we will show
next.

Application of the Pseudo-Eigenvalue Problem
As a preparatory step, we first rewrite the linear-response
problem of the extended Rabi model in terms of the previously
introduced pseudo-eigenvalue problem of eq 43. In the two-
level one-mode case we consider here, this reduces to

where the matrices in the model system reduce to functions of
Ωq as U = ω0

2 + 2ω0K(Ωq), V(Ωq) = 2ω0
1/2M(Ωq)

1/2N1/2ωc
1/2,

and V*(Ωq) = 2ωc
1/2N1/2M(Ωq)

1/2ω0
1/2. The coupling functions

are given explicitly using eqs(40-(42) as

ω

Ω = + Ω

Ω = + Ω

=

σ σ

σ

K f f

M f f

N g

( ) ( ),

( ) ( ),

1
2

q M xc q

q M
q

xc
q

q

c
M

x x

x

where the Kohn-Sham states is the dipole matrix element φaφi*
= ⟨g|σ̂x|e⟩ = 1. The Mxc kernels can be defined using the
inverse of the auxiliary and interacting response functions (see
also eqs S30 and S31 in the SI) and are given in the frequency
space by

ω χ ω χ ω= −σ
σ
σ

σ
σ− −f ( ) ( ( )) ( ( ))sMxc ,

1 1x

x

x

x

x
(70)

ω χ ω= − −f ( ) ( ( ))q
n
q

Mxc
1

(71)

Here, (χσx,s
σx (ω))−1, (χσx

σx(ω))−1, and (χn
q(ω))−1 are the inverses

of the uncoupled response function of the electronic subsystem
and the fully coupled response function of the electronic dipole
and of the displacement field of the Rabi model, respectively.
With these quantities, we then determine spectroscopic
observables such as the photoabsorption cross section. To
determine this cross section we first note that the linear
polarizability α(ω) induced by the external potential v(ω) is
related to the “dipole−dipole” response function as α(ω) =
χσx
σx(ω). Using eq 53, we can determine the photoabsorption
cross section of the Rabi model (see Figure 4a displayed in
dotted-red for the numerically exact case).

σ ω πω χ ω= σ
σ

c
m( )

4
( )

x

x

(72)

Here, the mean of the polarizability was not considered since
the Rabi model is a one-dimensional system. Analogously, we
define a linear “field polarizability” β(ω) due to polarizing the
photon mode by an external current. In the same way, we
relate the field polarizability to the response function of the
photon mode as β(ω) = χq

q(ω) and then determine a photonic
spectrum from (see Figure 4b displayed in dotted-red for the
numerically exact case).

σ ω πω χ ω̃ ≡
c

m( )
4

( )q
q

(73)

Finally, we consider mixed spectroscopic observables where we
perturb one subsystem and then consider the response in the
other. We analogously employ χσx

q (ω) and χq
σx(ω) in eqs 72 and

73, respectively, to determine a “mixed polarizability”. If we
plot this mixed spectrum (see Figure 4c displayed in dotted-
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red for the numerically exact case), we find that we have
positive and negative peaks. Indeed, this highlights that
excitations due to external perturbations can be exchanged
between subsystems, that is, energy absorbed in the electronic
subsystem can excite the photonic subsystem and vice versa.
Next, we want to employ the pRPA approximation to the
extended Rabi model and try to solve it analytically. The pRPA
is equivalent to using the mean-field approximation in the
coupled equations, that is, approximating the electron−photon
coupling term as σ̂xq̂ ≈ ⟨σ̂x⟩q̂ + ⟨q̂⟩σ̂x. This corresponds then
to a coupled Schrödinger-Maxwell treatment of the coupled
matter−photon problem.13 In the Maxwell KS equations this
leads to approximating the full vMxc by the mean-field potential
vM = vp = λq. The mean-field current is known explicitly as jM =
λσx. In the case of the pseudo-eigenvalue problem this amounts
to approximating K = f M

σx = 0, M = f M
q = λ and

= =
ω

σ λ
ω

N g,1
2 M 2

x

c c
. Consequently, we have

ω λ
ω

ω ω= = = =αU V W, 2
2

,0
2 0 2

c
2

The resulting nonlinear eigenvalue equation yields the
excitation frequencies
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ω ω ω ω λ ωΩ + = + + − +( )
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(75)

and the corresponding normalized eigenvectors can be given in
closed form as
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(76)

The resulting pRPA-approximated spectra are displayed in
Figure 4 in dashed-blue. We will discuss the results in a little
more detail at the end of this section, before we consider a
slightly more advanced approximation based on the rotating-
wave approximation (RWA). If we slightly simplify the full
Rabi problem by approximating the full coupling as
σ σ σ̂ ̂ ≈ ̂ ̂ + ̂ ̂ω + −

†q a a( )x
1
2 c

, we end up with the Jaynes-Cumming

Hamiltonian91 given as

ω
σ ω λ

ω
σ σ σ̂ = ̂ + ̂ ̂ + ̂ ̂ + ̂ ̂ + ̂ + ̂†

+ −
†H t a a a a j t q v t( )

2 2
( ) ( ) ( )z c xJC

0

c

(77)

Here we used σ̂± = (σ̂x ± iσ̂y)/2. The above approximation is
called the RWA because we ignore quickly oscillating terms
and thus assume that the excitation of the matter subsystem
can only destroy and the de-excitation only create a photon.
This approximation is justified (with respect to the full wave
function) if we are in the weak coupling regime, that is, λ ≪
ωc, and near to resonance, that is, δ = ω0 − ωc ≈ 0. The
ground-state of the Jaynes-Cummings model is the uncoupled
tensor product of the matter ground-state and the photon
ground-state with ground-state energy of E0 = −ω0/2. The
excited states of the Jaynes-Cummings Hamiltonian are known
analytically and are given by (we only show the lowest lying
excited states where a single photon is excited and for which
the matrix elements are non-zero with the ground-state)

θ θ| − ⟩ = − | ⟩| ⟩ + | ⟩| ⟩g e, 0 sin 1 cos 00 0 (78)

θ θ| + ⟩ = | ⟩| ⟩ + | ⟩| ⟩g e, 0 cos 1 sin 00 0 (79)

With these eigenstates, we find the transition frequencies
that correspond to the linear response from the ground state
(due to the approximations involved only one photon
absorbed or emitted) to be

ω ωΩ = + − Ω−(0)
1
2

( )c 0 0 (80)

ω ωΩ = + + Ω+(0)
1
2

( )c 0 0 (81)

where δ λΩ = + ′40
2 2 where λ′ = λ

ω2 c
. So we already

know where the RWA will generate the poles of the response
function. Since we know analytically the eigenfunctions in the
RWA, we can construct the RWA response functions
analytically. Using the definitions of the Mxc kernels of eq
70 we can then analytically construct the RWA Mxc kernels.
These kernels are frequency dependent, therefore the resulting
Mxc approximation is non-adiabatic.59 Substituting them into
M(Ωq) we recover the known poles Ωq = Ω±(0) from eq 69.
Further, we can then construct the different spectra associated
with the RWA. We show them in Figure 4 in full-orange.

■ NUMERICAL DETAILS
We start by discussing the general setup before considering the
specialized situations discussed above. We have implemented
the linear-response pseudoeigenvalue equation of eq 43 into
the real-space code OCTOPUS.76,77 The absorption spectrum
of the benzene molecule has been very successfully studied
with TDDFT calculations.76,78 Small organic molecules and
benzene in particular are rewarding systems to be studied with
TDDFT, since the adiabatic approximation in concert with the
local-density approximation (LDA)92,93 capture the occurring
Π−Π* transition exceptionally well.78 This transition is a
characteristic of carbon conjugate compounds76 and occurs
around 7 eV in the case of a benzene molecule. To calculate
the electronic structure of the benzene molecule, we follow
closely the setup of ref 76. Thus, we use a cylindric real space
grid of 8 Å length with the radius of 6 Å in the x−y plane and a
spacing of Δx = 0.22 Å. For the benzene nuclear structure, we
use the C−C bond length of 1.396 Å and C−H bond length of
1.083 Å. We explicitly describe the 30 valence electrons, while
the core atoms are considered implicitly by LDA Troullier-
Martins pseudopotentials.94 In the excited state manifold, we
include 500 unoccupied states in the pseudoeigenvalue
calculation. This number amounts to 30 × 500 = 7500 pairs
of occupied-unoccupied states. Further, to describe the
electron−electron interaction in the response functions, we
apply the adiabatic LDA (ALDA) kernel, that is, fMxc

n →
f Hxc,ALDA
n + f p

n. Solving the linear-response pseudoeigenvalue
problem of eq 43 provides us with the transition amplitudes, as
well as the excitation energies of the correlated electron−
photon system. These quantities can be used to calculate
photoabsorption spectra by using, for example, eq 55. In
standard calculations, to obtain such spectra and mimic the
finite lifetime of the excited state usually a peak-broadening is
applied. In our case, where necessary, we apply a Lorentzian
broadening, that is, the standard implementation of the
OCTOPUS code, that is of the following form
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ω ω
π ω ω

Γ = Δ
− + Δ

( , )
1

( )I
I

2 2
(82)

where ωI is the excitation frequency, and Δ is the broadening
parameter. The actual dipole strength function as defined in eq
55 is then obtained by

∑ω ω ω= ΓS f( ) ( , )
I

I I
(83)

where f I denotes the oscillator strength as defined in eq 54. We
obtain the spectra for systems not immersed in the photon
bath in this paper, where the peaks have been broadened by
applying the broadening as defined in eq 82 with Δ = 0.1361
eV.
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