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ABSTRACT: We present a first-principles approach to
electronic many-body systems strongly coupled to cavity
modes in terms of matter−photon one-body reduced density
matrices. The theory is fundamentally nonperturbative and thus
captures not only the effects of correlated electronic systems but
accounts also for strong interactions between matter and
photon degrees of freedom. We do so by introducing a higher-
dimensional auxiliary system that maps the coupled fermion-
boson system to a dressed fermionic problem. This
reformulation allows us to overcome many fundamental
challenges of density-matrix theory in the context of coupled
fermion-boson systems and we can employ conventional reduced density-matrix functional theory developed for purely
fermionic systems. We provide results for one-dimensional model systems in real space and show that simple density-matrix
approximations are accurate from the weak to the deep-strong coupling regime. This justifies the application of our method to
systems that are too complex for exact calculations and we present first results, which show that the influence of the photon field
depends sensitively on the details of the electronic structure.

KEYWORDS: polaritonic chemistry, cavity quantum electrodynamics, electronic structure theory,
reduced density matrix functional theory, quantum optics, strong coupling

Experiments performed in the last decades (see, e.g., refs 1
and 2) have made accessible the strong and ultrastrong (we

follow the definition of the light−matter coupling regimes of ref
3) interaction regime between matter degrees of freedom and
the quantized modes of optical cavities, which allows for the
study of many new phenomena, including modification of
chemical reaction rates,4,5 interacting photons in quantum
nonlinear media,6 or super-radiance of atoms in a photonic
trap.7 At the same time, it creates opportunities such as the
modification of energy-transfer pathways within photosynthetic
organisms,8 an increase of conductivity in organic semi-
conductors hybridized with the vacuum field,9 or the generation
of long-distance molecular interactions that, for example, allow
for energy transfer way beyond the short-range dipole−dipole-
mediated transfer (Förster theory).10 All these phenomena are
related by the emergence of hybrid light−matter quasi-particle
states, called polaritons, that determine the properties of the
respective coupled electron−photon system. The physics of
these exotic states can be understood impressively well by model
systems of Dicke-type,11 meaning several few-level systems
coupled to some photon modes.3 Many experimentally found
features of the (ultra)strong coupling regime could be
described12−16 and much exciting new physics was pre-

dicted17−21 using such models. This article focuses on the
influence of (ultra)strong coupling on the ground state of light−
matter systems, a topic on which considerably less literature
exists. Only recently, polaritonic ground states, which are
believed to be fundamental for the understanding of polaritonic
chemistry,1 have been started to be investigated in more
detail.3,22 However, limits and difficulties of few-level approx-
imations have been pointed out,23−28 and recently, new models
have been used to investigate polaritonic chemistry.15,28−41 Still,
many questions remain open, especially whether the collective
(ultra)strong coupling, predicted by the Dicke model can
actually modify ground state properties of single molecules.17,42

Another example is the ongoing discussion on the theoretical
understanding of super-radiance.24,43 These debates suggest that
there is a need for new theoretical tools that treat matter and
photons at the same level of theory.27,28,35 Up to now, standard
theoretical modeling treats in detail either the photons or the
matter, which becomes insufficient when the matter and photon
degrees of freedom are equally important.27 We present in this
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paper further evidence that the impact of the light−matter
interaction on the matter is far from trivial and can change from
system to system.
However, the full quantum-mechanical description of just the

electronic degrees of freedom is already computationally very
challenging due to the exponential scaling of the wave function.
(Imagine, for instance, a four-electron system in one spatial
dimension, coupled to one cavity mode (which corresponds to
the beryllium example, presented in Numerical Results). Every
eigenstate of the corresponding Hamiltonian would be a
function that depends on five variables. Thus, if we wanted to
calculate the exact ground state, assuming 100 grid points per
coordinate (corresponding to, e.g., a box size of 20 with spacing
of 0.2) and 8 byte per function value (double precision), we
would need 1005 × 8 Byte ≈ 75 Gigabyte of working memory,
which is close to the edge of current high performance
technology). Instead, reformulations of the many-body problem
in terms of reduced quantities, like the electron density44,45 or
the Green’s function,46−48 have been shown to provide accurate
results for relatively low computational costs. Thus, working
with reduced quantities seems to be a natural choice also for
coupled light−matter systems.49 Recently, quantum-electro-
dynamical density-functional theory (QEDFT) was introduced
as an extension to pure electronic density-functional theory
(DFT).50−53 First calculations showed the feasibility of
QEDFT,54,55 leading to the possibility to perform full first-
principles calculations of real molecules coupled to cavity
modes.56,57 However, standard approximations in DFT (usually
based on a noninteracting auxiliary Kohn−Sham system)
become inaccurate if applied to strongly correlated systems.
This is very well studied in terms of the strong-correlation
regime in electronic systems58 and also observed for the existing
QEDFT functionals that approximate the electron−photon
interaction.56 Consequently, to study novel effects arising in the
ultrastrong59 or deep-strong coupling regime60 of light and
matter from first-principles, that is, without resorting to
simplified few-level systems, one needs to develop new
functionals for the combined matter−photon systems or explore
alternative many-body methods.
Reduced density-matrix functional theory (RDMFT) is such a

method. RDMFT is based on the electronic one-body reduced
density matrix (1RDM) instead of the electronic density (as in
DFT) as its basic functional variable.61 Similar to DFT,
approximations are necessary in RDMFT, as it is not known
how to express explicitly all expectation values of operators in
terms of the 1RDM. Simple approximations within this
approach62 have proven very efficient in dealing with difficult
electronic structure problems like the correct qualitative
description of a dissociating molecule63 or the prediction of
the Mott-insulating phase of certain strongly correlated solids.64

Thus, it seems worth exploring how RDMFT performs in
describing also the strong interaction between molecular
systems and cavity modes.
Specifically, we will discuss in this work the properties of

coupled light−matter systems in a setting that resembles typical
cavity experiments (see Figure 1). It turns out that transferring
RDMFT to such systems involves overcoming additional
difficulties in contrast to the DFT framework. The reason
behind this is the conditions under which the corresponding
reduced density matrices (RDMs; which will be purely
electronic, purely photonic, and coupled) connect to the
original wave function, which is crucial to construct a well-
defined reduced density-matrix framework. Already for the

purely electronic system, the conditions under which such a
connection exists (known as N-representability conditions) are
not trivial.65−67 For RDMs in matter−photon systems, these
conditions are entirely unexplored. Nevertheless, we manage to
overcome this difficulty by mapping the original system to a
higher-dimensional auxiliary system that allows for an effective
description of the problem by fermions. Hence, the correspond-
ing RDMs connect to the auxiliary wave functions under N-
representability conditions of fermionic systems. Despite being
fermions, the newly introduced quasi-particles will depend on
electronic and bosonic degrees of freedom. This construction
was recently introduced by some of the authors in ref 68 and
used to construct a DFT scheme specifically for the strong
coupling regime of light−matter systems. In the auxiliary system,
the Hamiltonian consists of only 1- and 2-body terms for the
new quasi-particles, thus, it has the same structure as the
conventional electronic Hamiltonian for molecular systems,
which allows us to apply electronic RDMFT without major
modifications. We will present some results for model systems
with the simplest known RDMFT functional, the Müller
functional,62 and show that this dressed RDMFT is accurate
from the weak to the strong coupling regime. Then, we will
present two examples highlighting that how matter reacts to the
interaction with photons depends strongly on the system. For
instance, for the same coupling strength, the repulsion between
the particles can be locally suppressed in one system but
enhanced in another. We finish with commenting on some open
issues and challenges for future applications.
This article is structured as follows. First, we explain the

physical setting of an electronic system in a cavity in Physical
Setting. In Reduced Density Matrices for Coupled Light−
Matter Systems, we discuss the RDMs that appear in the ground-
state energy expression of the coupled light−matter system. We
will explain the difficulties that are introduced by the coupling
between fermions and bosons and having non-particle-
conserving terms. In “Fermionization” of Matter−Photon
Systems, we introduce the auxiliary system that will allow us
to avoid most of the aforementioned difficulties. We show how
to construct a proper RDMFT framework in this system in
Dressed Reduced Density-Matrix Functional Theory, explain
our numerical implementation in Numerical Implementation,

Figure 1. Typical setting of a cavity experiment. A matter system (here
represented by a diatomic molecule) is put inside an optical cavity that
enhances specific modes of the electromagnetic field (here represented
by the lowest cavity mode, but in principle many modes can become
important). By that, the coupling between the matter system and the
light modes can be considerably enhanced with respect to the free
space. The dipole of the molecule should be aligned with the
polarization of the enhanced mode and its position is assumed at the
field maximum. Note that, in principle, also higher multipole moments
can become important.
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and present the numerical results in Numerical Results. We
finish with discussing possibilities as well as challenges of dressed
RDMFT in Conclusion.

■ PHYSICAL SETTING
To describe weak and strong matter−photon interaction, it is
necessary to go beyond typical quantum-chemistry or solid-state
physics theories that describe electrons in a local potential
interacting via Coulomb interaction and being perturbed by a
classical external electromagnetic field. Instead, we need to treat
explicitly the quantum nature of light and the back-reaction
between electrons and electromagnetic field excitations
(photons).35 Therefore, the framework of quantum electro-
dynamics (QED) needs to be employed. However, we do not
want to treat QED in its full complexity, but will apply some
well-established approximations (see ref 35 for a detailed
discussion). First, we apply the Born−Oppenheimer approx-
imation and treat the nuclei as fixed classical particles (the
extension to also include the nuclei as quantum particles is, in
principle, straightforward by following, e.g., similar strategies like
discussed in refs 27 and 55). Second, we work in the
nonrelativistic limit, which for the typical energy scales of
molecules and their low-energy excitations is usually sufficient.
Third, we assume that the wavelength λ of the relevant
electromagnetic modes is much larger than the spatial extension
d of the electronic system (λ ≫ d) such that the dipole
approximation (here in the Coulomb gauge) is valid.69,70 In the
case of the dipole approximation, where every photon mode
couples to all Fourier components of the charge current of the
electronic subsystem,52,53 an effective description with only a
few modes is usually sufficient. The continuum of modes is then
effectively taken into account by using, instead of the bare mass,
the physical mass of the electrons.27,57 Since we focus on
equilibrium situations, the openness of the cavity can be
neglected.
Therefore, the basic Hamiltonian that we use to describe

strongly coupled light−matter systems reads (we use atomic
units throughout)

∑ ∑
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Here the first two sums on the right-hand side correspond to the
usual electronic many-body Hamiltonian Ĥe = T̂ + V̂ + Ŵ, used
to describe the uncoupled matter system consisting of N
electrons in an external potential v(r) interacting via the
Coulomb repulsion w(r, r′). The third sum describesM photon
modes that are characterized by their elongation pα, frequency
ωα, and polarization vectors λα. The polarization vectors include

already the effective coupling strength λ= | |α α
ωαg
2

35 and

couple to the total dipole D̂ = ∑k=1
N rk of the electronic system.

The sum can be decomposed in a purely photonic part

̂ = ∑ − +α
ω

α=
∂
∂ α
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k
jjj

y
{
zzzH pM

pph 1
1
2 2

22

2

2

, the dipole self-interaction (note

that this term is necessary for the existence of a ground state70)
Ĥd =∑α=1

M 1/2(λα · D̂)
2, which we split for later convenience in

its one-body Ĥd
(1) = ∑α=1

M ∑k=1
N 1/2(λα · rk)

2 and two-body part
Ĥd

(2) =∑α=1
M ∑k≠l1/2(λα · rk)(λα · rl), and the bilinear interaction

ĤI = −∑α=1
M ωαpαλα · D̂. Some comments on this Hamiltonian

are appropriate. Since we work in Coulomb gauge, the dipole-
self-energy term arises only for the transversal but not for the
longitudinal part of the field.71 However, if we assume a cavity
then the Coulomb interaction is modified.72 We can easily
incorporate this into our framework since w(r, r′) is completely
at our disposal and we do not rely on any kind of Coulomb
approximation. Thus, we can also treat the influence of, for
example, a plasmonic environment.73

The ground-state wave function of eq 1 is a function of 4N +
M coordinates

σ σΨ p pr r( , ..., ; , ..., )N N M1 1 1 (2)

where σk is the electronic spin degree of freedom. The wave
function Ψ is, as usual, antisymmetric with respect to the
exchange of any two electron coordinates rjσj ↔ rkσk, and also
depends on M photon-mode displacement coordinates pα.
At this point, we want to remind the reader that there is no

fundamental symmetry with respect to the exchange of two
displacement coordinates pα with pβ. The bosonic symmetry
instead refers to the exchange of mode excitations, which are
interpreted as photons in the number-state representation. To

see this, we first use the ladder operators ̂ = −α
ω
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Hamiltonians, that is,
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Eigenstates of the individual aα̂
+aα̂ in the above representation are

given by multiple applications of creation operators to the
vacuum state |0⟩, that is, |φα

n⟩ = (aα̂
+)n|0⟩. (Note that, as in refs 47

and 74, we chose here explicitly a non-normalized basis {|φα
n⟩} of

the n-photon sector, with ⟨φα
n|φα

n⟩ = n!, which will be convenient
for the discussion of bosonic reduced density matrices in the
next section. The missing normalization factor is shifted to the
resolution of identity, that is, = 1/Nb!∑α α =

M
,..., 1Nb1

|α1,...,αNb⟩⟨α1,...,αNb|, where |α1, ..., αNb
⟩ = aα̂1

+ ···aα̂Nb

+ |0⟩, as defined
later in the text.) These eigenstates are connected to the
displacement representation by φα

n(pα) = ⟨pα|φα
n⟩ = ⟨pα|(aα̂

+)n|0⟩.
We can then express anM-mode eigenfunction asϕn1, ..., nM(p1, ...,

pM) = ⟨p1···pM|ϕn1, ..., nM⟩ = ⟨p1···pM| (a1̂
+)n1···(aM̂

+ )nM|0⟩. In this

form it becomes clear that a multimode eigenstate |ϕn1, ..., nM⟩ can
be considered to consist of Nb = n1 + ... + nM photons (mode
excitations). We can associate every such multimode eigenstate
with a specific photon-number sector, that is, the zero-photon
sector is merely one-dimensional and corresponds to |ϕ01, ..., 0M⟩
≡ |0⟩, the single-photon sector is M-dimensional and
corresponds to the span of aα̂

+|0⟩ ≡ |α⟩ for all α and so on. For
the multiphoton sectors we see due to the commutation
relations of the ladder operators the bosonic exchange symmetry
appearing, for example, aα̂1

+ aα̂2

+ |0⟩ = aα̂2

+ aα̂1

+ |0⟩ ≡ |α1, α2⟩ for α1, α2

∈ {1, ..., M}. It is no accident that the bosonic symmetry
becomes explicit in this representation since the different modes
α determine how the photon wave functions look in real space
(see also the discussion in Supporting Information, section 5). A
general photon state can therefore be represented by a sum over
all photon-number sectors as
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∑ α α α αΦ = ∑
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where Φ̃(α1, ..., αn) = !n
1 ⟨α1, ..., αn|Φ⟩.

■ REDUCED DENSITY MATRICES FOR COUPLED
LIGHT−MATTER SYSTEMS

Having introduced our system of interest, we now want to
discuss how to find its ground state. A ground state (if it exists) is
defined as the state (possibly degenerate) that has the lowest
energy expectation value

[Ψ] = ⟨Ψ| ̂ Ψ⟩
Ψ

E Hinf0 (4)

This is the classical formulation of the variational principle due
to Ritz and is well-defined for every Hamiltonian that is bound
from below.While well-known, eq 4 has the disadvantage that, in
practice, the minimization has to be performed over an
enormous configuration space that is spanned by all possible
many-body wave functions. A possible reduction of computa-
tional complexity presents itself by the fact that the full wave
function is usually not necessary to compute the energy
expectation value but typically only reduced quantities are
sufficient. Varying instead over the space of reduced objects
makes the minimization simpler. For instance, in the case of an
electronic many-body state ψe(r1σ1, ..., rNσN) ofN electrons (see
Table 1), the expectation value of a general (nonlocal) q-body

operator Ô(r1, ... rq; r1′, ... rq′), which is given byO = ⟨ψe|Ôψe⟩, can
be determined via the electronic (spin-summed; we define here
only the spin-summed version of the q-body RDM (qRDM),
because in this work, we do not consider explicitly spin-
dependent quantities; for instance, if we included magnetic
fields in the Hamiltonian, the situation would change) qRDM
(note that there are different conventions in the literature for the
normalization of the qRDM; we followed ref 75)

∫
ψ σ σ σ σ
ψ σ σ σ σ
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(5)

For instance, the well-known electronic 1RDM, that we denote
in the following by γe(r, r′) = Γe

(1)(r;r′), is sufficient to calculate
all electronic single-particle observables such as the kinetic
energy. A prominent example of a higher-order operator in the
electronic case is the two-body Coulomb interaction among the
N electrons. To calculate its expectation value, we need to
consider the diagonal of the 2RDM Γ(2)(r1,r2;r1,r2). In the
chosen normalization, all RDMs satisfy the sum-rule

∫ Γ = !
− !r r r r rd ( , ..., ; , ..., )q q

q q
N

N q
3 ( )

1 1 ( )
. So for instance, the

1RDM integrates to the particle number ∫ d3rγe(r, r) = N, the
2RDM integrates to two times the number of pairs, and so on.
Additionally, higher and lower order RDMs are connected via

∫
Γ ′ ′

=
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For bosons, the same construction is possible. In our case,
where we have a discrete set of possible single-boson states, aNb
boson state in the (symmetrized)mode-representationψb(α1, ...,
αNb

) (see Supporting Information, section 5, for more details)
leads to the corresponding bosonic qRDM,

α α α α

ψ α α α α
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According to the electronic case, we denote the 1RDM by γb(α,
β) = Γb

(1)(α; β). However, in the specific case of photons, where
the number of particles is undetermined and we work with Fock-
space wave functions |Φ⟩, we need to consider a Fock-space
1RDM of the form

∑ ∑

γ α β

ψ β α α
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In an according manner one can define a bosonic Fock-space
qRDM via Γb

(q)(α1, ..., αq; α1′, ..., αq′) = ⟨Φ|aα̂1′
+ ···aα̂q′

+ aα̂q
···aα̂1

Φ⟩.
The fermionic and bosonic RDMs can be extended to the

coupled fermion-boson case straightforwardly by just integrat-
ing/summing out the other degrees of freedom. That is, if we
have a general electron-boson state of the form of eq 2, we can

accordingly define Γe
(q) ≡ ∫∑σ σ

!
− !

− rdN
N q

N q
( ) ,...,

3( )
N1

dMpΨ Ψ* , as

well as Γb
(q) ≡ ⟨Ψ|aα̂1′

+ ···aα̂q′
+ aα̂q

···aα̂1
Ψ⟩.

In a next step, we see whether these standard ingredients of
RDMFT are sufficient to express the energy expectation value of
the coupled Hamiltonian of eq 1. For the purely electronic part,
the different contributions can be expressed either explicitly by
the electronic 1RDM or by the electronic 2RDM. The single-
particle operators of Ĥe and the single-particle part of the dipole
self-energy Ĥd

(1) are given in terms of the 1RDM by

∫
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Here we have denoted on the left-hand side the explicit
dependence of the expectation value on the 1RDM, and the
subscript |r′=r indicates that r′ is set to r after the application of
the semilocal single-particle operator (−1/2∇r

2 + v(r)). The
expectation value of the electronic interaction energy Ŵ and the

Table 1. Physical Wave Functions and the Corresponding
Symbols of This Section

Ψ(r1σ1, ..., rNσN;p1, ..., pM) electron-photon many-body state
ψe(r1σ1, ..., rNσN) purely electronic many-body state
ψb(α1, ..., αNb

) photonic many-body state in mode
representation with fixed particle number

Φ(α1,α2, ...) photonic many-body state in Fock space
ϕe
i (r)/ϕb

i (α) electronic/photonic natural orbital
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two-body part of the dipole self-energy Ĥd
(2) are given in terms of

the (diagonal) of the 2RDM by

∫
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Hence, for the electronic operator expectation values little
changes in comparison to a purely fermionic problem, except
that we have a coupled electron-boson wave function and the
extra contributions of the dipole self-energy. For the purely
bosonic part of the coupled Hamiltonian, we find
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However, the bilinear coupling term is not given in a simple
RDM form but becomes

∑

∑
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A new reduced quantity appears that mixes light and matter
degrees of freedom and can be interpreted as a 3/2-body
operator Γe,b

(3/2)(α; r, r′). (To see this in a simple manner, we also
lift the continuous fermionic problem into its own Fock space
and introduce genuine field operators ψ̂e

†(rσ) and ψ̂e(rσ) with
the usual anticommutation relations. Similar to the discussed
bosonic case, the electronic RDMs can then be written in terms
of strings of creation and annihilation field operators.76 We re-
express ⟨Ψ|[(a ̂α+ + a ̂α)λα · D̂ ]Ψ⟩ = ∑σ∫ d3r⟨Ψ|[(a ̂α+ +
aα̂)ψ̂e

†(rσ)ψ̂e(rσ)(λα · r)]Ψ⟩. If we then define Γe,b
(3/2)(α; r, r′)

=∑σ ⟨Ψ|[(aα̂+ + aα̂)ψ̂e
†(rσ)ψ̂e(r′σ)]Ψ⟩, we can rewrite ⟨Ψ|[(aα̂+ +

aα̂)λα · D̂]Ψ⟩ = ∫ d3r(λα · r)Γe,b
(3/2)(α; r, r).) The bilinear

interaction term therefore creates/annihilates bosons by
interacting with the electronic subsystem. The 3/2-body RDM
has, in general, no simple connection to any qRDM, even if we
extend the definitions to include combined matter−boson
qRDMs. (Using the field-operator formulation, the usual
qRDMs consist of strings of particle-number-conserving
combinations of electron and boson operators. Integrating/
summing out a number-nonconserving part of it does not lead to
a simple relation to half-body RDMs, in general.) One obvious
reason is that qRDMs conserve particle numbers, while half-
body RDMs do not. Take, for instance, the Fock-space γb(α, β)
= ⟨Φ|aβ̂

+aα̂Φ⟩. In the special case that |Φ⟩ consists only of
coherent states for each mode (which essentially means that we
have treated the photons in mean field) and since the coherent
states are eigenfunctions to the annihilation operators, we find
γb(α, β) = dβ*dα, where dα is the total displacement of the
coherent state of mode α. In this case, we also know ⟨Φ|aβ̂

+Φ⟩ =
dβ*. If we now assume all but one mode, say mode 1, having zero
displacement, then we only know γb(1, 1) = |d1|

2 from the
bosonic 1RDM. We do, however, in general, not know what d1*
is. For other states, such a connection is even less explicit.

Putting the inter-relations among the different RDMs aside
for the moment, the minimization for the coupled matter−
boson problem can be reformulated by

γ

γ

= ⟨Ψ| ̂ Ψ⟩
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,
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(7)

So, in principle, we could replace the variation over all wave
functions, Ψ, by their respective set of RDMs needed to define
the energy expectation values. Instead of varying over the full
configuration space (r1σ1, ..., pM), the above reformulation seems
to indicate that we can replace this by varying over (r, r′) for the
diagonal of Γe

(2) and also for the 1RDM γe, together with a
variation over (α, β) for γb and over (α,r) for Γe,b

(3/2). Such a
reformulation is the basis of any RDMFT, and for electronic
systems, the properties of RDMs have been studied for more
than 50 years.77 However, this seeming reduction of complexity
is deceptive. In order to find physically sensible results, we
cannot vary arbitrarily over the above RDMs, but need to ensure
that they are consistent among each other and that they are all
connected to a physical wave function. This is indicated in eq 7,
where {γe, Γe

(2), γb, Γe,b
(3/2)} → Ψ highlights that the RDMs are

contractions of a common wave function. For systems with fixed
particle numbers, it is, in principle, known how to restrict the set
of trial RDMs to physical ones. The corresponding restrictions
are calledN-representability conditions.65−67 However, only for
the 1RDM of ensembles (fermionic or bosonic) are the
conditions simple. In this case, by diagonalizing the 1RDM in
its eigenbasis γe/b = ∑ni

e/b(ϕe/b
i )*ϕe/b

i , where the ϕe/b
i are called

the natural orbitals and the ne/b
i are the natural occupation

numbers, the conditions are

≤ ≤

≤
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0 1,

0

i
e

i
b

(8)

for fermions and bosons, respectively. If the particle numberNe/b
of one species of the system is conserved, the respective sum-rule

∑ =
=

∞

n N
i

i
e b

e b
1

/
/

(9)

becomes a second part of the N-representability conditions.
Consequently, to define a proper RDM framework for coupled
electron−boson problems, one would need to know the
corresponding constraints that connect the wave function with
all the necessary RDMs. A glance at the history of an important
example, the search for the N-representability conditions of the
electronic 2RDM, suggests that finding similar conditions for the
novel half-body RDMs together with connections between the
fermionic and bosonic qRDMs is a very challenging task. The
electronic-2RDM problem was proposed in 196078 and it took
until 2012, to understand how to make the conditions explicit.67

Although the connection of the different RDMs in coupled
fermion-boson systems is a very interesting subject, and recent
results for a grand-canonical formulation of fermions or bosons
suggest that also a combined formulation is feasible,74 we will
follow an alternative route in this work. We “fermionize” the
coupled fermion-boson problem in such a way that can apply the
known conditions of the fermionic problem.
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■ “FERMIONIZATION” OF MATTER−PHOTON
SYSTEMS

In this section, we explain in detail how a system described by
the Hamiltonian (1), is mapped to an auxiliary space such that
the coupled matter−light degrees of freedom can be modeled
with new particles that are fermions. We call them dressed or
polaritonic particles, because they depend on electronic and
photonic coordinates. (Note that the use of a dressed particle
picture allows to also describe Landau polaritons, as shown
recently in ref 79. Thus, also such systems can in principle be
considered with the presented approach.) This “fermionization”
procedure was introduced in a recent work by Nielsen et al.68

and can be divided into three steps. First, we introduce for each
mode auxiliary extra dimensions (pα,2, ..., pα,N), where the
number of these extra dimensions depends on the number of
electrons N. We therefore embed the physical configuration
space in a higher-dimensional space, that is, we now consider
wave functions depending on (r1 σ1, ..., rN σN, p1, ..., pM, p1,2, ...,
p1,N, ..., pM,2, ..., pM,N). Second, we add for every photon mode α a
linear operator

∑ ω
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∂
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to the physical Hamiltonian of eq 1. This auxiliary Hamiltonian
is a sum of quantum harmonic oscillators with respect to the
auxiliary coordinates. The resultingHamiltonian in the extended
configuration space is Ĥ′ = Ĥ + ∑α=1

M Π̂α (we denote all
quantities in the auxiliary space with a prime symbol). Here we
see that the auxiliary degrees of freedom do not mix with the
physical ones. This will allow in a very simple manner to embed
but also to reconstruct the physical wave function. In the third
step, we perform an orthogonal variable transformation of the
photonic plus auxiliary coordinates to new coordinates (qα,1, ...,
qα,N) such that

∑ ω ω
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This whole procedure can be viewed as the inverse of a center-
of-mass coordinate transformation.80 In total, we find the
auxiliary Hamiltonian in the higher-dimensional configuration
space given as

{
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where we inserted the definition of the dipole operator, D̂ =
∑k=1

N rk, and reordered the expressions, such that the terms with
only one index and the terms with two different indices are
grouped together. Introducing then a (3 + M)-dimensional
polaritonic vector of space and auxiliary photon coordinates z =
(r, q1, ..., qM), we can rewrite the above Hamiltonian as

∑ ∑̂′ = − Δ′ + ′ + ′
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where we introduced the dressed Laplacian Δ′ = ∑i=1
3 ∂

∂ri
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2 +
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2 and the dressed interaction

kernel w′(z,z′) = w(r,r′) +∑α=1
M [− ωα

N
qαλα · r′−

ωα

N
qα′λα · r + λα

· rλα · r′]. Note that the choice of the linear auxiliary operator (eq
10) and the coordinate transformation (eq 11) have a certain
freedom. The operator of eq 10 must not contain physical
coordinates, such that the physical system cannot be influenced
by this auxiliary operator. Further, it must together with the
transformation give rise to polaritonic 1- and 2-body terms, as
shown in eq 12. These requirements are met using an
orthonormal transformation together with the harmonic
oscillators of eq 10. (Note that there are many different
orthonormal transformations, but the exact choice is not
important for the formalism. It only needs to include the first
line of eq 11. One specific example of such a transformation is68

pα,k =
−k k

1
2

(q1 + ... + qk−1− (k− 1) qk) for 2≤ k≤N, alongside

the first line of eq 11.) Since the operator of eq 10 only acts on
the auxiliary coordinates, the normalized physical solution Ψ of
the original (time-independent) Schrödinger equation E0Ψ =
ĤΨ in the standard configuration space is connected to a new
physical solution of the auxiliaryHamiltonian Ĥ′ in a very simple
manner, that is,

σ σ σ χΨ′ = Ψp p p p pr r r( , ..., ) ( , ..., , , ..., ) ( , ..., )M N N N M M N1 1 , 1 1 1 1,2 ,

Here the normalized solution Ψ′ of the auxiliary Schrödinger
equation E0′Ψ′ = Ĥ′Ψ′ is found with χ being the ground state of
∑αΠ̂α. The ground state χ is merely a tensor product of
individual harmonic-oscillator ground states, and therefore,
exchanging pα,i with pα,j does not change the total wave function
Ψ′. If we rewrite this wave function in the new coordinates

σ σ σ σΨ′ = Ψ′q qr r z z( , ..., , , ..., ) ( , ..., )N N M N N N1 1 1,1 , 1 1

and due to the fact that we constructed χ to be symmetric with
respect to the exchange of qα,k and qα,l, we realize that Ψ′ is
antisymmetric with respect to the exchange of (zkσk) and (zlσl).
(Note that the auxiliary ground state of mode α is given as a
Gaussian with respect to∑ =i

N
2 pα,i

2 =∑ =k
N

1qα,k
2 − 1/N(∑ =k

N
1qα,k)

2,

where we used p = 1/√N∑ =k
N

1 qα,k.) Thus Ψ′ is fermionic with
respect to the polaritonic coordinates (zσ) and can be
represented by a sum of Slater determinants of (3 + M)-
dimensional polaritonic orbitals φ(zσ). This makes the
application of the usual fermionic many-body methods possible,
and we can rely on fermionic N-representability conditions.
However, besides the extra dimensions and the new fermionic
exchange symmetry, the physical wave functions of the dressed
auxiliary space also have a further qα,k↔ qα,l exchange symmetry.
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Simple approximations based on single polaritonic Slater
determinants will violate this extra symmetry. We will remark
on such violations when we introduce dressed RDMFT in the
next section. To further see that indeed the constructed Ψ′ is a
minimal-energy state in the extended space with the appropriate
symmetries, we first point out that for any trial wave function

σ σ σΥ′ ≡ Υ′ p p pz z r( , ... ) ( , ..., ; , ..., )N N M M N1 1 1 1 1,2 ,

the q-exchange symmetry implies that the fermionic symmetry is
in the (rσ) coordinates. Then it holds since Ĥ only acts on (r1, ...,
pM), and ∑α=1

M Π̂α only acts on p1,2, ..., pM,N so that

χ χ

⟨Υ′| ̂ ′Υ′⟩ ≥ ⟨Υ′| ̂ Υ′⟩ + ⟨Υ′| ∑ Π̂ Υ′⟩

= ⟨Ψ| ̂ Ψ⟩ + ⟨ | ∑ Π̂ ⟩
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1
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Although we constructed the auxiliary space explicitly in a way
that the physical wave function Ψ can be reconstructed exactly
from its dressed counterpart Ψ′, by integration of all auxiliary
coordinates, this does not hold for all types of operators. (Note
that Ĥ′ also has many eigenstates that are not of the form Ψ′ =
Ψχ, with Ψ antisymmetric under exchange of rkσk ↔ rlσl and χ
symmetric under exchange of qα,k↔ qα,l. In general, we thus have
to enforce these properties to only retain the eigenstates of this
form. However, for the ground state, it is sufficient to enforce the
symmetry under exchange of qα,k ↔ qα,l, together with the
antisymmetry under exchange of zkσk↔ zlσl.) For operators that
depend only on electronic coordinates, there is no difference,
and we have ⟨Ψ|ÔΨ⟩ = ⟨Ψ′|ÔΨ′⟩. This is not surprising because
the coordinate transformation (eq 11) acts only on the photonic
part of the system. For photonic observables instead, the
transformation changes the respective operators and, thus, the
connection between physical and auxiliary space becomes
nontrivial in general. However, at least for all observables that
depend on photonic 1/2- or 1-body expressions, there is an
analytical connection. For half-body operators, that is, any
operator that depends only on the elongation of =αp N
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coordinate transformation itself provides us with the con-
nection. For 1-body operators, this becomes slightly more
involved. For example, consider the mode energy operator
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. The connection be-

tween Ĥph and Ĥph′ is given by the definition of the coordinate
transformation (eq 11),

∑̂ = ̂ ′ − Π̂
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Since the expectation value of Π̂α is known analytically,
χ χ⟨Ψ′|Π̂ Ψ′⟩ = ⟨ |Π̂ ⟩ = − ∑α α α α α
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. This can be generalized

to any operator that contains terms of the form α β α
∂

∂ β
p p p,

p
and

∂
∂

∂
∂α βp p
, where α and β denote any two modes. The reason is that

the transformation (eq 11) preserves the standard inner product

of the Euclidean space of the mode plus extra coordinates. This
transfers also to their conjugates and combinations of both.
From the above, it is straightforward to derive also the
expression for the occupation of mode α, ̂ = ̂ −α

ω α
α

N hph
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■ DRESSED REDUCED DENSITY-MATRIX
FUNCTIONAL THEORY

From the observations of the previous chapter, it is clear that a
simple dressed Kohn−Sham approximation can capture
matter−photon correlations that are hard to capture with
standard approximations of Kohn−ShamQEDFT. But from the
experience with purely electronic DFT, we expect that, for ultra-
and deep-strong coupling situations, the simple dressed
approximations also become less reliable. Instead of developing
more advanced approximations for a dressed Kohn−Sham
approach, we propose to follow another route in this paper.
Similar to electronic-structure theory, where RDMFT becomes
a reasonable alternative to DFT methods when strong
correlations become important,63,64,81 we present a dressed
RDMFT approach to capture ultra- and deep-strong electron−
photon coupling.
Let us therefore analyze the structure of Ĥ′, given in eq 13. It

consists of only polaritonic one-body terms ĥ(1)(z) = −1/2Δ′ +
v′(z), and two-body terms ĥ(2)(z, z′) = w′(z, z′). It commutes
with the polaritonic particle-number operator N̂′ = ∫ d3+Mzn̂(z),
where we used the definition of the polaritonic local density
operator n̂(z) =∑i=1

N δ3+M(z − zi). This means that the auxiliary
system has a constant polaritonic particle number N. Addition-
ally, the physical wave function of the dressed system Ψ′(z1 σ1,
..., zN σN) is per construction antisymmetric. This allows for the
definition of a dressed (spin-summed) 1RDM

∫γ σ σ σ

σ σ σ

′ = ∑ Ψ′* ′

Ψ′
σ σ

+ −N zz z z z z

z z z
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N N
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(3 )( 1)

1 2 2

1 2 2
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(15)

in accordance to eq 5. By construction, this auxiliary density
matrix reduces to the physical electron densitymatrix via γe(r, r′)
= ∫ dMqγ(r,q1, ..., qM;r′,q1, ..., qM). Furthermore, we introduce the
(spin-summed) dressed 2RDM Γ(2)(z1,z2;z1′,z2′) = N(N − 1)
∑σ1, ..., σN∫ d

(3+M)(N−2)zΨ′*(z1′σ1, z2′σ2, z3σ3, ..., zNσN)Ψ′(z1σ1,
z2σ2, z3σ3, ..., zNσN). These dressed RDMs allow for expressing
the energy expectation value of the dressed system by
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Thus, we can define the variational principle for the ground state
only with respect to well-defined reduced quantities,

γ′ = [ Γ ]
γ{ Γ }→Ψ′

E Einf ,0
,

(2)
(2) (16)

To perform this minimization, we need to constrain the
configuration space to the physical dressed RDMs that connect
to an antisymmetric wave function with the extra q-exchange
symmetry by testing the appropriate N-representability
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conditions of the dressed 2RDM and the dressed 1RDM.
Besides the by now well-known conditions for the fermionic
2RDM67 and the fermionic 1RDM,65 we would in principle get
further conditions to ensure the extra exchange symmetry.
However, already for the usual electronic 2RDM the number of
conditions grows exponentially with the number of particles, and
it is out of the scope of this work to discuss possible
approximations. The interested reader is referred to, for
example, ref 82. Instead, we want to stick to the dressed
1RDM γ and approximate the 2-body part as a functional of γ.
The mathematical justification of RDMFT is given by Gilbert’s
theorem,61 which is a generalization of the Hohenberg−Kohn
theorem of DFT.83 More specifically, Gilbert proves that the
ground state energy of any Hamiltonian with only 1-body and 2-
body terms is a unique functional of its 1RDM. Following this
idea, we will express the ground-state energy of the dressed
system as a partly unknown functional F′ of only the system’s
dressed 1RDM
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For this minimization, we need a functional of the diagonal of
the dressed 2RDM in terms of the dressed 1RDM as well as
adhering to the corresponding N-representability conditions
when varying over γ. We also see now the advantage of the
dressed RDMFT approach, which avoids the original variation
over all wave functions as well as a variation over many different
RDMs, as shown in eq 7. Instead, we only need the dressed
1RDM, which has a comparatively simple connection to
fermionic wave functions (at least when we vary over ensembles,
i.e., eqs 8 and 9). The price we pay for this is 2-fold: First, we
have a new symmetry that will most likely lead to extra N-
representability conditions. Second, we need to increase the
dimension of the natural orbitals by one for every photon mode.
However, to capture the main physics of usual cavity
experiments, often one effective mode is enough. Computations
with four-dimensional dressed orbitals are numerically feasible.
It is specifically such settings, where we envision a dressed
RDMFT to be a reasonable alternative to other ab initio
approaches to cavity QED.30,40,41,52,55,68

Another advantage of RDMFT in general is the direct access
to all one-body observables. This transfers also to dressed
RDMFT. The calculation of expectation values of purely
electronic one-body observables is trivial with the knowledge
of the dressed 1RDM, but also photonic one-body (and half-
body) observables can be calculated, using the connection
formula shown in the last paragraph of “Fermionization” of
Matter−Photon Systems. Thus, we are able to calculate very
interesting properties of the cavity photons like the mode
occupation or quantum fluctuations of the electric and magnetic
field.
To see whether our approach is practical and accurate, we

perform first simple calculations for coupled matter−photon
systems. We will make the following pragmatic approximations:

We only enforce the Fermionic ensemble N-representability
conditions (this approximation is similarly employed in
electronic RDMFT; for details, we refer to, e.g., ref 84) and
ignore presently the extra exchange symmetry between the q-
coordinates (in all the numerical examples that we studied, this
“fermion polariton approximation” was very accurate; one can
find more details in the Supporting Information), and we
employ simple approximations to the unknown partW′[γ] that
have been developed for the electronic case. To do so, we
further, similarly to the electronic case, decompose W′[γ] =
EH[γ] + Exc[γ] into a classical Hartree part EH[γ] = 1/2
∫ ∫ d3+Mzd3+Mz′γ(z, z)γ(z′,z′)w′(z, z′) and an unknown
exchange-correlation part Exc[γ]. Almost all known functionals
Exc[γ] are expressed in terms of the eigenbasis and eigenvalues of
the 1RDM. In our case, the dressed natural orbitals ϕi(z) and
oc cupa t i on numbe r s n i a r e f ound by so l v i n g
∫ d3+Mz′γ(z,z′)ϕi(z′) = niϕi(z). The simplest approximation is
to only retain the fermionic exchange symmetry and employ the
Hartree−Fock (HF) functional
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As the HF functional depends linearly on the natural occupation
numbers, any kind of minimization will lead to the single-Slater-
determinant HF ground state (which corresponds to occupa-
tions of 1 and 0).85 We call this approximation dressedHartree−
Fock (dressed HF). We can go beyond the single Slater
determinant in dressed RDMFT if we employ a nonlinear
occupation-number dependence in the exchange-correlation
functional. We here consider the Müller functional62
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which has been rederived by Bjuise and Baerends.86 The Müller
functional has been studied for many physical systems63,86 and
gives a qualitatively reasonable description of electronic ground
states. Additionally, it has many advantageous mathematical
properties.62,87 A thorough discussion of different functionals
goes beyond the scope of this work, thus, we only want to remark
that a variety of functionals were proposed after EM[γ] and it is
likely to have even better agreement with the exact solution by
choosing more elaborate functionals.

■ NUMERICAL IMPLEMENTATION
Besides the fact that we can reuse many ideas from electronic
RDMFT, a further advantage of the dressed reformulation is that
we can also reuse most of the numerical techniques developed
for quantum chemistry and materials science. For instance, to
determine the dressed orbitals wemerely need to be able to solve
higher-dimensional static Schrödinger-type equations. We only
have to change the usual electronic potential v to its dressed
counterpart v′. This, together with a change of the electronic
Coulomb interaction w to its dressed counterpart w′ already
allows to perform dressed HF calculations, at least under the
approximation of violating the additional symmetry constraint,
discussed in the previous section. If the code one uses is
furthermore able to perform RDMFT minimizations, it is
straightforward to extend the implementation to also solve
coupled electron-photon problems via dressed RDMFT from
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first principles. We have done so with the electronic-structure
code Octopus,88 and the implementation will be made available
with the upcoming release.
Specifically, we rewrite the approximated energy functional in

the natural orbital basis as
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We use this form to minimize the energy functional by varying
the natural orbitals as well as the natural occupation numbers.
To impose fermionic ensemble N-representability, we first
represent the occupation numbers as the squared sine of
auxiliary angles, that is, 0 ≤ ni = 2 sin2(θi) ≤ 2, to satisfy eq 8.
(Note that the ni is bounded by 2 because we employed a spin-
restricted formulation. If we considered natural spin−orbitals
instead, the upper bound would be 1). The second part of the
conditions (eq 9), that is, ∑i=1ni = N, as well as the
orthonormality of the dressed natural orbitals, that is,
∫ d3+Mzϕi*(z)ϕj(z) = δij, are imposed via Lagrange multipliers
as, for example, explained in ref 88. We have available two
different orbital-optimization methods, a conjugate-gradient
algorithm (we used this method only for some benchmark
calculations, as it is not yet optimized for the needs of RDMFT)
and an alternative method that was introduced by Piris et al. in
ref 89. The latter expresses the ϕi in a basis set and can use this
representation to considerably speed up calculations in
comparison to the conjugate-gradient algorithm. It was used
for all results presented in this paper. However, it is not trivial to
converge such calculations in practice and we developed a
protocol to obtain properly converged results. The interested
reader is referred to the Supporting Information, section 4.

■ NUMERICAL RESULTS
In the following, we present some examples of few electron
systems in one spatial dimension. In the first part of this section,
we validate our method by comparing to exact solutions of
simple atomic and molecular systems. Then we show that our
method also provides reasonable results for a more complex
system. We finish the section with two examples that illustrate
how our method can describe and uncover nontrivial changes of
the matter due to its coupling to photons. We first present the
dissociation of a molecule as an example for a chemical reaction.
Despite the dipole approximated coupling the cavity photons
affect the ground state locally differently. The changes also have
a nontrivial dependence on the interatomic distance. As this
system can be solved exactly, we can again validate that dressed
RDMFT reproduces these intricate effects accurately. Finally,
we show also that the ground state modifications of atomic
systems, that have a very similar density profile outside of the
cavity, are localized and depend strongly on the detailed
electronic structure. These results highlight how cavity photons
can at once locally enhance and suppress electronic repulsion
and modify the electronic structure considerably.
The different systems are described by a local potential v(x)

and coupled to one photonmode. We transfer the systems in the
dressed basis, that leads to a dressed local potential

λ λ′ = + + −ω ωv x q v x x q q x( , ) ( ) ( )1
2

2
2

2
2

2

. Specifically, we

consider a one-dimensional model of a helium atom (He),
that is, = −

+
v x( )

xHe
2

12
, a one-dimensional model of a

hydrogen molecule (H2), that is, vH2
(x) = −

− +x d

1

( ) 12
−

+ +x d

1

( ) 12
, first at its equilibrium position d = deq = 1.628 au,

later with varying d, and a one-dimensional model of a Beryllium
atom Be, that is, = −

+ ϵ
v x( )

xBe
4

2 2
. For the latter, we consider a

smaller softening parameter ϵ = 0.5 to make sure that all
electrons are properly bound. We use the soft Coulomb

Figure 2. Differences of dressed HF (dHF) and dressed RDMFT (dRDMFT) from the exact ground state energies (in Hartree) as a function of the
coupling g/ω for the (one-dimensional) He atom (left) and (one-dimensional) H2 molecule (right) in the dressed orbital description. Dressed
RDMFT improves considerably upon dressedHF. For both systems, the energy of dressed RDMFT remains close to the exact one, the error of dressed
HF instead increases with the coupling strength.
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interaction ′ = | − ′| +w x x x x( , ) 1/ 12 90,91 for all test
systems. For the two-electron examples, we set the photon
frequency in resonance with the lowest excitations of the
respective “bare” systems, so outside of the cavity. For that we
calculate the ground and first excited state of each system with
the exact solver and find the corresponding excitation
frequencies ωHe = 0.5535 au and ωH2 = 0.4194 au. For Be
instead, we choose ωBe = 3.0 au, which is not a resonance of the
Be atom, for rather numerical than physical reasons. As
resonance is not an important feature for ground state
calculations, different choices of ω do not crucially change the
physics of the investigated system. This is in contrast to the
excited states and the ensuing Rabi splitting.27 Instead, the
chosen ωBe considerably enhances the numerical stability of the

calculations, which has the following reason: At the current state
of our implementation, we need tomake use of a basis set that we
generate by a preliminary calculation. To generate a basis that
captures electronic and photonic parts of the system equally
well, we need to make sure that the energy scales of both degrees
of freedom are similar. This can be controlled easiest by varying
ω. We want to stress that this basis-set issue is not a fundamental
problem of the dressed orbital approach. On the one hand, we
plan to control the photonic basis directly and on the other hand,
we are working on optimizing an alternative conjugate-gradient
routine that does not use a specific basis. Details can be found in
the Supporting Information, section 2.3.1.
We start with the discussion of the (N = 2)-particles examples.

In this setting, the dressed auxiliary system is four-dimensional

Figure 3.Deviations of dressedHF (dHF) and dressed RDMFT (dR) ground state densities from the exact solution (ρex, depicted in the insets) for the
He atom (top) and the H2 molecule (bottom) with coupling g/ω = 0.1. We separate the electronic (x, left) and photonic (q, right) coordinates as
explained in the text. For both systems, dressed RDMFT finds a considerably better electronic density than dressed HF, which is consistent with the
better result in energy (see Figure 2). The photonic densities are reproduced almost exactly for both levels of theory.
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(two particles with two coordinates each), which is still small
enough to be solved exactly in a four-dimensional discretized
simulation box, so that we can compare dressed RDMFT (with
the Müller functional of eq 19), dressed HF (see eq 18) and the
exact solutions. We used the box lengths of Lx = Lq = 16 au and
spacings of dx = dq = 0.14 au to model the electronic x and
photonic coordinates q of the two dressed particles in the exact
routine. (We want to mention that the box length is not entirely
converged with these parameters. In a (numerically very
expensive) benchmark calculation, we observed a further
decrease of energy with larger boxes (the calculations with
respect to the spacing are converged), but the changes in energy
and density are only of the order of 10−5 or less. All the following
results require a maximal precision of the order of 10−2 in energy
as well as in the density and thus we can safely use the given

parameters. Details can be found in the Supporting Information,
section 1). For dressed RDMFT and dressed HF instead, we
considered two-dimensional simulation boxes for every dressed
orbital and we set Lx = Lq = 20 au and dx = dq = 0.1 au. We
obtained converged results for = 41 ( = 71) natural
orbitals for He (H2). Details about how we determined these
parameters can be found in the Supporting Information.
We first show (see Figure 2) the deviations of the ground state

energies for dressed RMDFT and dressed HF from the exact
dressed calculation as a function of the dimensionless relation
between effective coupling strength and photon frequency g/ω
(this quantity is typically used as a measure for the strength of
the light−matter interaction, see, e.g., ref 28) for He and H2,
respectively. We thereby go from weak to deep-strong coupling
with g/ω = 1.3 The deep-strong coupling regime has been

Figure 4. First three natural orbital densities ρex/dR
(i) (x) of the exact (ex) and dressed RDMFT (dR) calculations for the He atom (top) and the H2

molecule (bottom) with coupling g/ω = 0.1. We see in both cases that ρex
(1)(x) is almost exactly reproduced by dressed RDMFT, but ρdR

(2)(x) deviates
already visibly from ρex

(2)(x) (left). However, it is in both cases qualitatively correct. This changes for ρdR
(3)(x) of H2, which has one node more than

ρex
(3)(x). For He instead, ρdR

(3)(x) is reproduced correctly (right).
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reached in different systems like for instance for Landau
polaritons.60 For (organic) molecules the highest reported
coupling strengths are in the ultrastrong regime of g/ω ≈ 0.4.3

We see that while dressed HF deviates strongly for large
couplings, dressed RDMFT remains very accurate over the
whole range of coupling strength. Still, a more severe test of the
accuracy of our method is if instead of merely energies, we
compare spatially resolved quantities like the ground-state
density ρ(x, q) ≡ γ(x, q; x, q). To simplify this discussion, we
separate the electronic and photonic parts of the two-
dimensional density by integration, i.e., ρ(x) = ∫ dqρ(x, q)
and ρ(q) = ∫ dxρ(x, q). The exact reference solutions show that
with increasing g/ω, the electronic part of the density becomes
more localized, while the photonic part becomes broadened (the

reader is referred to the last two paragraphs of this section and
Figures 10 and 11 for details about the effects of matter−photon
coupling). This behavior is captured qualitatively with dressed
HF as well as with dressed RDMFT. The latter performs for the
electronic density considerably better over the whole range of
coupling strength, whereas for the photonic densities, both
levels of theory deviate in a similar way from the exact result.
This is shown for g/ω = 0.1 in Figure 3 for both test systems.
Looking at the electronic densities, we can observe a feature that
the ground state energy does not reveal. In some cases the effects
of the two approximations are contrary to each other as we can
see in the He case. Here, the dressed RDMFT electronic density
is more localized around the center of charge than the exact
reference and the electronic density of dressed HF less. In other

Figure 5.We show the differences Δρ(i) = ρdR
(i)(q) − ρex

(i)(q) between the dressed RDMFT (dR) and the exact (ex) photonic natural orbital densities
ρiex/dR(q) for the three highest occupied natural orbitals for the He atom (left) and the H2 molecule (right) for coupling strength g/ω = 0.1. For both
systems, the exact ρex

(i)(q) have a similar shape as the density (see inset).We see in both cases that dressed RDMFT captures the exact solution very well.

Figure 6. Total mode occupation Nph, calculated from the exact, dressed HF and dressed RDMFT solutions for He (left) and H2 (right). We see that
both dressed RDMFT and dressed HF underestimate Nph. In the ultrastrong coupling regime for g/ω > 0.3 both dressed HF and dressed RDMFT
(with the Müller functional) deviate strongly from the exact solution.
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cases instead, both theories overlocalize ρ(x) (here visible for
H2).
An even more stringent test of the accuracy of the dressed

RDMFT approach is to compare the dressed 1RDMs. The
essential ingredients of the dressed 1RDMs are their natural
orbitals ϕi(x, q). Again, we separate electronic and photonic
contributions and show their reduced electronic density ρi(x) =
∫ dq |ϕi(x, q)|

2. Figure 4 depicts the first three dressed natural
orbital densities of dressed RDMFT in comparison with the
exact ones for both test systems. While it holds that for both
systems, the lowest natural orbital density of the dressed
RDMFT approximation is almost the same as the exact one, and
the second natural orbital density is only slightly different, the
third natural orbital density of H2 differs even qualitatively. For
He, similar strong deviations are visible for the fourth natural
orbital. However, as long as such strong deviations only occur for
natural orbitals with small natural occupation numbers, like in
these cases (H2: n1 = 1.878, n2 = 0.102, n3 = 0.015; He: n1 =
1.978, n2 = 0.020, n3 = 0.001), their (inaccurate) contribution to
the density and total energy remains small.
To complete the picture, we also look at the photonic natural

orbital densities, ρi(q) = ∫ dx|ϕi(x, q)|
2, the first three of which

are plotted in Figure 5, for He and H2. Here, the dressed
RDMFT results even agree better with the exact solution than
their electronic counterparts. Apparently, dressed RDMFT
captures the photonic properties of the tested systems very
accurately for the ultrastrong coupling regime. The accuracy
drops with increasing g/ω.
As an example for a photonic observable, we show in Figure 6

the mode occupation Nph as a function of the coupling strength

g/ω that we calculated by using eq 14, that is,Nph = ω

Eph − N
2
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the photon mode energy
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From weak to the beginning of the ultrastrong coupling regime
(g/ω≈ 0.1), both dressed HF and dressed RDMFT captureNph
well. For very large coupling strengths, the deviations to the
exact mode occupation becomes sizable. This might sound
counterintuitive, as the photonic density is described com-
paratively well. The reason is that the photon occupation, in
contrast to the density, is mainly determined by the second and
third natural orbital, because the first natural orbital resembles a
photonic ground state with occupation number zero in the
studied cases. Dressed HF does not consider a second orbital
(the first instead is doubly occupied) and thus cannot capture
the effect, and for dressed RDMFT, the error in the second and
third natural orbital is much larger than in the first (see Figure
5). However, it is probable that this can be improved by better
functionals.
By comparing to the exact solution, we showed that the

dressed-orbital construction seems to be a reasonable starting
point for an approximate description of both the electronic and
the photonic part of coupled matter−photon systems. Thus, we
can now go one step further and present results for a many-body
system that cannot easily be solved exactly: the one-dimensional
Be-atom in a cavity. In Figure 7, we see the total energy as a
function of the coupling strength g/ω for dressed HF and
dressed RDMFT, respectively. Like in the two-electron systems,
the deviation between both curves increases for larger g/ω and,
as expected, the dressed RDMFT energies are lower than the
dressed HF results. Analyzing the ground-state densities, we see

a similar trend as in the two-particle systems. With increasing g/
ω, the electronic (photonic) part of the density becomes more
(less) localized, though the details differ as we show in the last
part of this section (see Figure 11 and the corresponding part in
the main text). Comparing dressed RDMFT with dressed HF,
we observe that the variation of the electronic (photonic)
density with increasing coupling strength is less (more)
prounounced for dressed RDMFT, as Figure 8 shows. We
conclude the survey of Be with the mode occupation under
variation of the coupling strength (see Figure 9). We see that the
value of g/ω≈ 0.5 separates two regions. For g/ω < 0.5, dressed
RDMFT finds a larger mode occupation than dressed HF, and
for g/ω > 0.5 instead, the dressed HF mode is more strongly
occupied. We found similar behavior also for the two-particle
systems, although the boundary between the two regions was
considerably different there (He: g/ω ≈ 0.8, H2: g/ω ≈ 0.1, see
Figure 6).
We conclude this section with two examples, for which the

light-matter interaction changes the bare systems nontrivially,
depending not only on the coupling strength but also on the
details of the electronic structure. We start with the dissociation
of H2 as an example for a chemical reaction, where we use vH2

(x)
with different d. In Figure 10, we see the density of two H-atoms
under variation of the distance d with and without the (strong)
coupling to the cavity. We see that the influence of the cavity
mode strongly depends on the exact electronic structure. The
interaction with the cavity mode can locally reduce or enhance
the electronic repulsion due to the Coulomb interaction, where
the exact interplay between both effects depends on the
interatomic distance. Thus, we can observe a number of
different effects like pure localization of the density toward the
center of charge (d = 1) or localization combined with a local
enhancement of repulsion such that the density deviations
exhibit a double peak structure (d = 2). The local enhancement
of electronic repulsion can grow so strong that the density at the
center of charge is reduced but at the same time the density

Figure 7. Total energy of the dressed HF and dressed RDMFT
calculations of Be for increasing g/ω. We observe the same trend as for
the two-electron systems: for both levels of theory, the energy grows
with increasing g/ω, though for dressed HF faster than for dressed
RDMFT.
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maxima shift closer to each other, which is an effective
suppression of electronic repulsion (d = 3). This interplay is
reflected in the natural orbitals and occupation numbers. The
coupling shifts a considerable amount of occupation from the
first natural orbital to the second and third one. The
contribution to the total density of the former (latter) has the
character of enhanced (suppressed) electron repulsion. To show
the potential of these effects, we present calculations in the deep-
strong coupling regime with g/ω = 1.0, where the effects reach
the order of 10% of the unperturbed density, which is enormous.
For smaller coupling strengths of the order of g/ω = 0.1, these
effects are as diverse, but naturally smaller with density
deformations of the order of 10−3. However, as every observable

depends on the density, such deviations are significant.
Remarkably, dressed RDMFT reproduces the effects accurately.
In the second example, we compare the behavior of the He

and Be atoms under the influence of the cavity. Though the
shapes of the electronic density of the two bare systems are very
similar (see insets in Figure 11), they behave very differently
under the influence of the cavity, which can be seen in Figure 11.
The electronic density of He is pushed toward its center of
charge with increasing coupling strength, which can be
understood as a suppression of the electronic repulsion induced
by the Coulomb interaction. As He can be understood very well
with only one orbital, this is to be expected. (For g/ω = 0.8, we
still observe n1 = 1.85. However, it should be noted that the good
agreement of dressed RDMFT with the exact calculation in
comparison to dressed HF is exactly because of the contribution
of the second natural orbital, that is (still considerably) occupied
with n2 = 0.14.) Things change for Be, where we have several
dominant orbitals. With increasing coupling strength, we see like
in the dissociation example a subtle interplay between
suppression and local enhancement of the electronic repulsion,
that depends on the coupling strength. Thus, for the same
coupling strength, we can observe opposite (g/ω = 0.1 and 0.4 in
the plot) but also similar effects (g/ω = 0.8 in the plot) in two
systems that have almost the same “bare” density shape. Like in
the dissociation example, this intricate behavior can be
understood by the interplay of the different natural orbitals
contributing to the electronic density. In this particular case, the
main physics happens in the second and third natural orbital,
where the former (with a double-peak structure) loses a
considerable amount of occupation to the latter (with a triple
peak structure) with increasing coupling strength.
These (seemingly simple) examples show how subtle details

of the electronic structure influence the changes induced by the
coupling to photons. We see a nontrivial interplay between local
suppression and enhancement of the Coulomb induced
repulsion between the particles. This is reflected in the natural
orbitals and occupation numbers of the light-matter system and
thus influences all possible observables. It has been shown that
such small changes are capable to strongly affect chemical
properties and reactions, which are determined by an intricate

Figure 8. Shown are the electronic (ρg/ω
dHF/dR(x), left) and photonic (ρg/ω

dHF/dR(q), right) densities of Be for dressedHF (dHF) and dressed RDMFT (dR)
for two different coupling strengths subtracted from their counterparts in the no-coupling limit (ρg/ω=0

dHF/dR(x/q)). We see in the electronic (photonic)
case that the dressed RDMFT deviations are less (more) pronounced than for dressed HF.

Figure 9. Total mode occupationNph of Be for dressed HF and dressed
RDMFT. We see that dressed RDMFT exhibits larger Nph until a
coupling strength of g/ω ≈ 0.5. For larger coupling the dressed HF
mode occupation becomes higher.
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interplay between Coulomb and photon-induced correlations.28

Whether these modifications of the underlying electronic
structure are indeed a major player in the changes of chemical
and physical properties still needs to be seen. However, to
capture such modifications in the first place (and study their
influence) clearly needs an ab initio theory that is able to treat
both types of (strong) correlations accurately and is predictive
inside as well as outside of a cavity. We have shown here that
dressed RDMFT is a viable option to predict and analyze these
intricate structural changes.

■ CONCLUSION

In this work we presented an RDMFT formalism for coupled
matter−photon systems. This formalism is capable to account
for the full quantum-mechanical degrees of freedom of the
coupled fermion-boson problem. We discussed that extending
the standard formulation of electronic RDMFT to systems with
coupled fermionic and bosonic degrees of freedom is not
straightforward. Then, we presented an alternative approach
which overcomes most of the intricate representability issues by

Figure 10.We show the differences in the electronic density of the H2 molecule for three different bond lengths d (as examples of the dissociation) for
g/ω = 1.0 compared to g/ω = 0, calculated exactly (ρg/ω

ex (x), left) and with dressed RDMFT (ρg/ω
dR (x), right). We see that for small d, the cavity mode

reduces the electronic repulsion and localizes the charges at the bond center (d = 1 < deq = 1.628) in comparison to the freemolecule (insets). For larger
d, the electronic repulsion is locally enhanced such that the charge deviations are separated in two peaks (d = 2). For very large d, this interplay between
local suppresion and enhancement of repulsion becomes more pronounced (d = 3). The dressed RDMFT calculations capture the behavior very well.

Figure 11.We show the differences in the electronic density (ρg/ω(x)) of He (left) and Be (right) for three different coupling strengths compared to
the atoms outside the cavity (insets), calculated with dressed RDMFT.We see that the effect of the cavity is very different for both systems: The strong
localization of the electronic density for He indicates the suppression of electronic repulsion for all coupling strengths. For Be instead, we see
additionally local enhancement of the repulsion. The interplay of enhancement and suppression changes with increasing coupling strength.
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embedding the coupled matter-photon system in a higher-
dimensional auxiliary space. Specifically, we introduced for a
problem withN electrons coupled toM photon modes, (N− 1)
M auxiliary coordinates, which allowed us to “fermionize” the
coupled problem with respect to new polaritonic coordinates.
The resulting dressed fermionic particles are governed by a
Hamiltonian with only one-body and two-body terms and, thus,
can be applied to any standard electronic-structure method. The
extension is constructed in such a way that the auxiliary
dimensions do not modify the original physical system, and the
physical observables are easy to recover. Notably, besides the
possibility to study modifications of electronic systems due to a
cavity mode, dressed RDMFT offers also the possibility to
calculate purely photonic observables like the mode occupation
or fluctuations of the electric and magnetic field. We used this
framework to develop and implement dressed RDMFT in the
electronic-structure code Octopus88 and tested it with the
Hartree−Fock and Müller functional. For simple one-dimen-
sional models of atoms andmolecules, the obtained approximate
results were in good agreement with the exact results from the
weak to the deep-strong coupling regime. We then used our
method to show that the modifications due to strong matter−
photon coupling are far from trivial and depend on the detailed
electronic structure. For a molecular as well as an atomic system
we showed that strong coupling can locally enhance and
suppress the Coulomb-induced repulsion between electrons.
This behavior does not only depend on the strength of the
matter−photon coupling but also on the details of the matter
subsystem (e.g., the interatomic distance of the atoms of a
molecule). We showed that our method allows to predict the
structures accurately inside and outside of the cavity and
furthermore extends the well-established tools of natural orbitals
to analyze coupled light−matter systems.
Although the presented method is practical only for a few

photon modes, since the number of photon modes determines
the dimension of the involved dressed orbitals, it is exactly these
cases that are the most relevant in cavity and circuit QED
experiments. Since dressed RDMFT is nonperturbative and
seems to be accurate over a wide range of couplings, it is a
promising tool to investigate long-standing problems of
quantum optics, such as the quest for a super-radiant phase in
the ground state of strongly coupled matter−photon systems.24

Moreover, it is a very promising tool to investigate changes in the
ground-state due to matter−photon coupling that can possibly
modify chemical reactions.5 Recently, it has been shown that
charge-transfer processes can be considerably modified due to
strong coupling to a cavity mode.28 And although the presented
results were for reduced dimensionality, an extension to three
spatial dimensions is straightforward. We can rely here again on
an already existing implementation of RDMFT in Octopus.
Work along these lines is in progress. Besides such interesting
applications and fundamental questions of light matter-
interactions, there are many open questions to answer also in
the presented theory itself. For instance, how strong is the
influence of the hitherto negelected q-exchange symmetry? First
calculations for many particles indicate that it will become
important to enforce this extra symmetry to stay accurate when
going from the weak to the deep-strong coupling regime.
Furthermore, it might become beneficial to avoid the
“fermionization” that we employed, and then very interesting
mathematical questions about N-representability for coupled
fermion-boson systems need to be addressed. Here, the

understanding how to enforce the q-exchange symmetries in
the dressed formulation could be very useful.
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Schwarz, M. J.; Zueco, D.; Hümmer, T.; Solano, E.; Marx, A.; Gross, R.;

ACS Photonics Article

DOI: 10.1021/acsphotonics.9b00648
ACS Photonics 2019, 6, 2694−2711

2710

http://dx.doi.org/10.1021/acsphotonics.9b00648


et al. Circuit quantum electrodynamics in the ultrastrong-coupling
regime. Nat. Phys. 2010, 6, 772−776.
(60) Bayer, A.; Pozimski, M.; Schambeck, S.; Schuh, D.; Huber, R.;
Bougeard, D.; Lange, C. Terahertz Light-Matter Interaction beyond
Unity Coupling Strength. Nano Lett. 2017, 17, 6340−6344.
(61) Gilbert, T. L. Hohenberg-Kohn theorem for nonlocal external
potentials. Phys. Rev. B 1975, 12, 2111−2120.
(62) Müller, A. M. K. Explicit approximate relation between reduced
two- and one-particel density matrices. Phys. Lett. A 1984, 105, 446.
(63) Goedecker, S.; Umrigar, C. J. Natural orbital functional for the
many-electron problem. Phys. Rev. Lett. 1998, 81, 866−869.
(64) Sharma, S.; Dewhurst, J. K.; Shallcross, S.; Gross, E. K. U.
Spectral density and metal-insulator phase transition in mott insulators
within reduced density matrix functional theory. Phys. Rev. Lett. 2013,
110, 1−5.
(65) Coleman, A. J. Structure of Fermion Density Matrices. Rev. Mod.
Phys. 1963, 35, 668−686.
(66) Klyachko, A. A. Quantum marginal problem and N-
representability. J. Phys.: Conf. Ser. 2006, 36, 72.
(67) Mazziotti, D. A. Structure of Fermionic Density Matrices:
Complete N-Representability Conditions. Phys. Rev. Lett. 2012, 108,
263002.
(68) Nielsen, S. E. B.; Schaf̈er, C.; Ruggenthaler, M.; Rubio, A.
Dressed-Orbital Approach to Cavity Quantum Electrodynamics and
Beyond. arXiv preprint arXiv:1812.00388 2018, na.
(69) Grynberg, G.; Aspect, A.; Fabre, C. Introduction to quantum
optics: from the semi-classical approach to quantized light; Cambridge
University Press, 2010.
(70) Rokaj, V.; Welakuh, D. M.; Ruggenthaler, M.; Rubio, A. Light−
matter interaction in the long-wavelength limit: no ground-state
without dipole self-energy. J. Phys. B: At., Mol. Opt. Phys. 2018, 51,
034005.
(71) Spohn, H. Dynamics of charged particles and their radiation field;
Cambridge university press, 2004.
(72) Power, E. A.; Thirunamachandran, T. Quantum electrodynamics
in a cavity. Phys. Rev. A: At., Mol., Opt. Phys. 1982, 25, 2473−2484.
(73) Shahbazyan, T. V.; Stockman, M. I. Plasmonics: theory and
applications; Springer, 2013.
(74) Giesbertz, K. J. H.; Ruggenthaler, M. One-body reduced density-
matrix functional theory in finite basis sets at elevated temperatures.
Phys. Rep. 2019, 806, 1−47.
(75) Bonitz, M. Quantum Kinetic Theory, 2nd ed.; Springer: Berlin,
2016.
(76) van Leeuwen, R.; Stefanucci, G. Nonequilibrium Many-Body
Theory of Quantum Systems; Cambridge University Press, 2013.
(77) Coleman, A. J.; Yukalov, V. I. Reduced density matrices: Coulson’s
challenge; Springer Science & Business Media, 2000; Vol. 72.
(78) Coulson, C. Present State of Molecular Structure Calculations.
Rev. Mod. Phys. 1960, 32, 170−177.
(79) Rokaj, V.; Penz, M.; Sentef, M. A.; Ruggenthaler, M.; Rubio, A.
Quantum Electrodynamical Bloch Theory with Homogeneous
Magnetic Fields. Phys. Rev. Lett. 2019, 123, 1−6.
(80) Watson, J. K. Simplification of the molecular vibration-rotation
Hamiltonian. Mol. Phys. 1968, 15, 479−490.
(81) Piris, M. Global Method for Electron Correlation. Phys. Rev. Lett.
2017, 119, 1−5.
(82)Mazziotti, D. A. Two-electron reduced density matrix as the basic
variable in many-electron quantum chemistry and physics. Chem. Rev.
2012, 112, 244−262.
(83) Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys.
Rev. 1964, 136, B864.
(84) Theophilou, I.; Lathiotakis, N. N.; Marques, M. A.; Helbig, N.
Generalized Pauli constraints in reduced density matrix functional
theory. J. Chem. Phys. 2015, 142, 154108.
(85) Lieb, E. H. Variational principle for many-fermion systems. Phys.
Rev. Lett. 1981, 46, 457.
(86) Buijse, M. A.; Baerends, E. J. An approximate exchange-
correlation hole density as a functional of the natural orbitals.Mol. Phys.
2002, 100, 401−421.

(87) Frank, R. L.; Lieb, E. H.; Seiringer, R.; Siedentop, H. Müller’s
exchange-correlation energy in density-matrix-functional theory. Phys.
Rev. A: At., Mol., Opt. Phys. 2007, 76, 1−16.
(88) Andrade, X.; et al. Real-space grids and the Octopus code as tools
for the development of new simulation approaches for electronic
systems. Phys. Chem. Chem. Phys. 2015, 17, 31371−31396.
(89) Piris, M.; Ugalde, J. M. Iterative Diagonalization for Orbital
Optimization in Natural Orbital Functional Theory. J. Comput. Chem.
2009, 30, 2078−2086.
(90) Ruggenthaler, M.; Bauer, D. Rabi oscillations and few-level
approximations in time-dependent density functional theory. Phys. Rev.
Lett. 2009, 102, 2−5.
(91) Fuks, J. I.; Helbig, N.; Tokatly, I. V.; Rubio, A. Nonlinear
phenomena in time-dependent density-functional theory: What Rabi
oscillations can teach us. Phys. Rev. B: Condens. Matter Mater. Phys.
2011, 84, na.

ACS Photonics Article

DOI: 10.1021/acsphotonics.9b00648
ACS Photonics 2019, 6, 2694−2711

2711

http://dx.doi.org/10.1021/acsphotonics.9b00648

