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Key points

� Two groups of inexperienced brain-computer interface users underwent a purely mental
EEG-BCI session that rapidly impacted on their brain.

� Modulations in structural and functional MRI were found after only 1 h of BCI training.
� Two different types of BCI (based on motor imagery or visually evoked potentials) were

employed and analyses showed that the brain plastic changes are spatially specific for the
respective neurofeedback.

� This spatial specificity promises tailored therapeutic interventions (e.g. for stroke patients).

Abstract A brain-computer-interface (BCI) allows humans to control computational devices
using only neural signals. However, it is still an open question, whether performing BCI also
impacts on the brain itself, i.e. whether brain plasticity is induced. Here, we show rapid and
spatially specific signs of brain plasticity measured with functional and structural MRI after only
1 h of purely mental BCI training in BCI-naive subjects. We employed two BCI approaches
with neurofeedback based on (i) modulations of EEG rhythms by motor imagery (MI-BCI) or
(ii) event-related potentials elicited by visually targeting flashing letters (ERP-BCI). Before and
after the BCI session we performed structural and functional MRI. For both BCI approaches
we found increased T1-weighted MR signal in the grey matter of the respective target brain
regions, such as occipital/parietal areas after ERP-BCI and precuneus and sensorimotor regions
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after MI-BCI. The latter also showed increased functional connectivity and higher task-evoked
BOLD activity in the same areas. Our results demonstrate for the first time that BCI by means of
targeted neurofeedback rapidly impacts on MRI measures of brain structure and function. The
spatial specificity of BCI-induced brain plasticity promises therapeutic interventions tailored to
individual functional deficits, for example in patients after stroke.
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Introduction

A brain–computer-interface (BCI), proposed for the first
time by Vidal (Vidal, 1973), translates brain activity that
reflects the subject’s intention into control commands for a
device, bypassing the physiological motor output system.
An important component of BCIs is the neurofeedback
that users receive from the system. It allows participants to
modify their neural activity patterns to attain and improve
BCI control. Unlike other skills, a BCI system is controlled
by direct modification of brain signals, making BCI an
unusual cognitive experience.

Common types of BCI are based on sensorimotor
rhythms modulated by a motor-imagery task (MI-BCI),
or event-related-potentials (ERP) elicited by visual
paradigms. The modulation of the visual-evoked-
potential (ERP-BCI) is usually induced by observing and
counting flashing letters on a screen. Subjects rapidly
achieve good performance that typically does not increase
over time (Guger et al. 2009), but rather is modulated
by factors such as fatigue, habituation, or fluctuating
attention (Polich, 2007). In contrast, the modulation of
sensorimotor rhythms by imagining limb movements
(MI-BCI) (Pfurtscheller & Lopes da Silva, 1999) is a
more active and complex task where, if the system is
adequately tuned to the subject, increased performance is
often observed (Blankertz et al. 2010; Lorenz et al. 2014;
Sannelli et al. 2016). While there is a large fraction (about
30%) of MI-BCI users that are unable to gain control
(Guger et al. 2003), recent progress has been made to
drastically reduce this percentage by using co-adaptive
approaches, i.e. not only do the MI-BCI users modulate
their sensorimotor rhythms to gain BCI control, but the
algorithm also adapts to the user to increase the system’s
accuracy (Vidaurre et al. 2011a, Acqualagna et al. 2016).

There is an abundance of applications for BCI, including
assistive devices, computer gaming (Blankertz et al. 2016),
and also clinical aids and interventions (Millán et al. 2010).
While neurofeedback BCI tasks are associated with trans-
ient changes in brain activity during a task, it is not known
whether they also alter neural structure and function
beyond performance of the task. Such BCI-induced
neural plasticity could be especially relevant for potential

therapeutic applications of BCI. Using non-invasive
MR-imaging, it has become possible to identify short-term
and long-term brain plasticity, usually associated with
different types of learning in human subjects. For
example, task-based fMRI has been applied successfully
to show brain plasticity effects for motor and other types
of tasks (Karni et al. 1995; Poldrack et al. 1998; Fletcher
et al. 1999; Pleger et al. 2003; Limanowski et al. 2017).
Since task-based fMRI tends to be confounded by changes
in task performance, several studies have successfully
used task-free ‘resting-state functional connectivity fMRI’
to identify neural connectivity changes (Taubert et al.
2011; Zhang et al. 2014; Ge et al. 2015; Amad et al. 2017;
Mawase et al. 2017). Noteably, ‘structural’ MRI measures
(T1-weighted and diffusion-MRI) have also been shown
to identify signs of brain plasticity. After the seminal work
of Draganski and colleagues, who showed changes in
grey matter density (GMD) after 3 months of juggling
training, several other studies have also demonstrated
changes in GMD after different types of learning within
several days or weeks (Draganski et al. 2004; Taubert
et al. 2010; Zatorre et al. 2012). Recently, several MRI
studies successfully used ‘structural MRI measures’ to
detect cerebral modifications after only a few hours of
training or stimulation (Sagi et al. 2012; Hofstetter et al.
2013; Taubert et al. 2016; Schmidt-Wilcke et al. 2018),
consistent with animal studies that showed signs of brain
plasticity already within a few minutes of training (Xu
et al. 2009; Moczulska et al. 2013; Kuhlman et al. 2014).

The overarching goal of this study was to identify
potential brain plasticity effects of BCI. Motivated by the
above-mentioned previous results indicating rapid signs
of brain plasticity in MRI measures, we hypothesized that
such effects might be seen after only 1 h of purely mental
BCI. Particularly for the engaging motor imagery task,
where a performance increase during MI-BCI is usually
observed, we expected to find MRI signatures of plasticity.
We further hypothesized that the two types of BCI (MI-
and ERP-BCI) differentially impact on brain structure
and function by modulating the respective targeted areas,
namely sensorimotor areas associated with motor imagery
(MI-BCI) and areas associated with visual target detection
(ERP-BCI).

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Methods

Ethical approval and subject information

The study was designed and conducted according to
the Declaration of Helsinki (except for registration in
a database) and was approved by the local ethics
committee of the University of Leipzig (Reference no.
953). Twenty-three healthy subjects (11 females, mean age
26.7 years, SD = 4.1) participated in the motor imagery
BCI experiment (MI-BCI group). Two participants were
eliminated from the later analysis, as they failed at
performing the motor imagery task. Thus, 21 subjects were
included for further analysis. Nineteen healthy subjects (9
females, mean age 27.2 years, SD = 3.1) performed a visual
speller BCI experiment (ERP-BCI group). All participants
were right-handed and gave written informed consent to
participate in the experiment. Prior to the experiment,
all subjects underwent a neurological examination and
confirmed they were not taking any medication.

Experimental design

The experiment consisted of three parts: ‘pre-MRI’,
‘EEG-BCI’ and ‘post-MRI’. The experimental procedure
was the same for both groups, only differing in the type
of BCI task (MI-BCI group vs. ERP-BCI group). An
MRI session including structural and functional scans
was performed before and after conducting the EEG-BCI
session. The ‘pre-MRI’ session started with a T1-weighted
anatomical scan followed by resting-state and functional
EPI scans. In the ‘post-MRI’ session, the T1-weighted
anatomical scan was measured at the end (see Fig. 1).
During MRI scanning, subjects were instructed to relax
with eyes open. Resting-state scans lasted 7 min each
and were collected to investigate the effect of the BCI
training on functional connectivity. ‘Functional blocks’
had durations of 2 × 10 min and consisted of a simple
motor imagery task without feedback. This task was the
same for both groups, as we wanted to compare the
impact of the two different BCI trainings on evoked BOLD

activity. Subjects were instructed to imagine movement of
the right hand, left hand, or feet, indicated by a visually
displayed arrow pointing right, left, or down, respectively.
The three conditions were randomly presented in a 20-s
block design, intermingled with 20 s of rest. In a 10-min
block, each condition was presented five times. After the
‘pre-MRI’ session, subjects were taken to the EEG room
and fitted with the EEG cap for the BCI experiment. Over-
all, the experiment lasted approximately 4 h.

MRI data acquisition

MRI data was acquired using a 3T Siemens Tim
Trio scanner (Siemens Medical, Erlangen, Germany)
equipped with a 32-channel head coil. T1-weighted
anatomical images were acquired using a 9-min 3D
MPRAGE sequence (scanning parameters: TR = 2300 ms,
TE = 2.96 ms, FA = 9°, FOV = 256 × 240 × 176 mm3,
voxel size of 1 × 1 × 1 mm3). fMRI images
(resting-state and functional scans) were acquired using
a T2∗-weighted EPI sequence (30 axial slices, in-plane
resolution = 3 × 3 mm2, slice thickness = 4 mm,
gap = 1 mm, FA = 90°, TR = 2000 ms, TE = 30 ms).
Resting-state scans consisted of 210 volumes (7 min),
functional scans of 300 volumes (10 min).

MRI data processing and statistical analysis

Analysis of T1-weighted images. T1-weighted images
were analysed using the DARTEL (Diffeomorphic
Anatomical Registration Through Exponentiated Lie
algebra) approach (Ashburner, 2007) as implemented
in the Statistical Parametric Mapping software version
8 (SPM 8, Wellcome Trust Centre for Neuroimaging,
University College London, London, UK), running in
Matlab 8.2 (Mathworks Inc., Natick, MA, USA). All images
were bias-field corrected and segmented according to
tissue probability maps incorporated in SPM8. Using
DARTEL, all images were registered to an average size
template generated from their own mean. The template

Figure 1. Experimental procedure and scanning order
The EEG-BCI session was conducted between two (pre and post) MRI sessions. One group underwent MI-BCI
(n = 21), the other ERP-BCI (n = 19), both lasting around 1 h (75 min including breaks).

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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was also used for registration to standard Montreal Neuro-
logical Institute (MNI) space. Finally, grey matter (GM)
images were modulated with the Jacobian determinants to
preserve the total amount of signal and smoothed using
a Gaussian kernel of 8 mm full width at half-maximum
(FWHM). For each T1-scan, this preprocessing produces
one map containing the probability (values between 0
and 1) of each voxel belonging to GM. To ensure that
further analysis was restricted to GM, threshold masking
was applied to the GM images by excluding all voxels
with probability below 0.2. For statistical analysis, we
first performed a within group paired t test contrasting
the GM images from pre- and post-MRI sessions for the
MI-BCI and ERP-BCI groups, respectively. Family-wise
error correction at cluster size level (P < 0.05) was used
to control for multiple comparisons. The between-group
comparison was performed by contrasting the difference
between T1-weighted GM maps (post-pre) of the two
groups in a two-sample t test. The resulting T-maps under-
went a multiple comparison procedure for significance
thresholding based on Monte Carlo simulations with 1000
iterations (vmulticomp, LIPSIA toolbox (Lohmann et al.
2001; Nierhaus et al. 2015)).

EPI data pre-processing. Pre-processing of the
resting-state and functional MRI data was performed
using the LIPSIA toolbox (Lohmann et al. 2001) including
head motion correction, slice time correction, high pass
filtering (at 1/100 s), and spatial smoothing (7 mm
kernel). All images were co-registered to the individual
T1-weighted structural image. For normalization to MNI
space we used the same non-linear deformation matrix
which resulted from the DARTEL analysis of the T1
weighted images. CompCor analysis was done using the
DPABI toolbox (toolbox for Data Processing & Analysis
of Brain Imaging, http://rfmri.org/dpabi) within the
CSF/white matter mask (Behzadi et al. 2007), and the first
four principal components together with six head motion
parameters were used as nuisance signals to regress out
associated variance.

Functional connectivity analysis. For analysing
functional connectivity, we first used eigenvector
centrality mapping (ECM) as a data-driven approach
that characterizes each voxel’s connectivity within the
whole-brain GM mask (Lohmann et al. 2010; Nierhaus
et al. 2012). One centrality map is calculated for each
resting-state block and Z-standard transform (i.e. for each
voxel, subtract the mean value of the whole brain then
divide by the standard deviation of the whole brain) was
performed on the individual ECM maps (Zuo et al. 2012).
Within-group comparisons of the resulting centrality
maps were performed using paired t tests (e.g. contrasting
RestPost2 and RestPost1 for MI-BCI and ERP-BCI group,
respectively). The between-group comparisons were

performed by contrasting the difference between ECM
images (e.g. RestPost3 – RestPre1) of the two groups
in a two-sample t test. All resulting T-maps underwent
a multiple comparison procedure for significance
thresholding based on Monte Carlo simulations with
1000 iterations (vmulticomp, LIPSIA toolbox; Lohmann
et al. 2001; Nierhaus et al. 2015).

The two results of the between-group comparisons
of (1) the difference T1-weighted maps and
(2) the corresponding difference ECM maps
(RestPost3 – RestPre1) showed overlapping effects
in the precuneus. This region of interest (ROI) was
used to perform a whole-brain seed-based functional
connectivity analysis for the ‘RestPost3’ and ‘RestPre1’
block. Custom-built MATLAB scripts were used to
calculate spatial correlation maps between the seed region
and all other voxels in the GM mask. Paired t tests
were used for within-group comparison of the resulting
spatial correlation maps. The between-group comparison
was performed by contrasting the difference between
correlation maps (RestPost3 – RestPre1) of the two groups
in a two-sample t test. Monte Carlo simulations with 1000
iterations were used to correct all resulting T-maps for
multiple comparisons.

GLM analysis. For each subject of both groups, the
first-level general linear model (GLM) contained the
three different motor imagination conditions of both
10-min scans (i.e., ‘left hand’, ‘right hand’, ‘feet’). For
each condition, one ‘imagination’ regressor was included
in the GLM. For each regressor, the imagination was
modelled with the boxcar function covering the 20 s cue
duration. These boxcar functions were convolved with
the standard haemodynamic response function (HRF)
as implemented in SPM 8. The long inter-trial inter-
vals of 20 s were not explicitly modelled with the first
level GLMs and hence represented an implicit baseline
measure. For each of the three imagination conditions
we computed individual β-maps. Functional sessions pre-
and post-BCI training were analysed separately. On the
second level (group) analyses, the main effect of each of the
three imagination conditions (i.e., ‘left hand’, ‘right hand’,
‘feet’) was visualized by applying the individual β-maps
(pre-BCI-training sessions of both groups together) to
one-sample t tests to compare them against the null
hypothesis. For the analysis of the pre, post and group
comparisons, we applied a flexible factorial design with
the factors ‘group’ (MI-BCI vs. ERP-BCI) and ‘time’ (pre
vs. post) within SPM8.

EEG set-up

EEG was recorded by 62 Ag/AgCl electrodes concentrated
on the central areas using a commercial EEG system
(BrainAmp, Brain Products, Germany). Mastoid

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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electrodes were used as reference and the ground
electrode was placed on the frontal part of the EEG cap.
Electrode impedances were less than 5 k� and the data
were downsampled to 100 Hz before processing. EEG was
measured in a noise-protected and electrically shielded
room while the users were sitting in an armchair in front
of a computer screen.

BCI session motor imagery group (MI-BCI group)

The MI-BCI experiment was designed based on a
co-adaptive approach, where system and user adapt to
each other in an online fashion (Müller et al. 2017). This
approach has been proven to provide good performance
results, especially for users with problems to attain BCI
control (Vidaurre et al. 2007, 2011b).

The MI-BCI experiment consisted of a 1 h BCI session
with four runs of 100 trials each. All users imagined right
hand versus feet motor imagery. The subjects were asked
to perform two different movements with the right hand
(feet) separately: the rotation of the wrist (ankles) or the
flexion/extension of the wrist (ankles). Then, they were
asked to focus on the sensations that the movements
caused on their hand, wrist and arm (feet, ankles and
legs). After that, they were asked to choose the movement
that caused more intense feelings on their body. Then,
they were asked to perform the selected movement several
times more. In order to quickly train the imagination
of movements, after each performance the participants
were asked to stay still and feel the movement as if they
were executing it, but without actually moving. Then,
the subjects were instructed to fixate on a cross in the
middle of the screen. Trials started with an arrow behind
the fixation cross, indicating the motor imagery task,
that is, an arrow pointing right or down for right hand
or feet motor imagery. For online classification, every
40 ms features were calculated as the log-variance of the
band-pass and spatially filtered data (Vidaurre et al. 2011a)
of the last 750 ms and classified by linear discriminant
analysis (LDA) classifier. Feedback for the subjects started
at t = 2s until t = 6s, that is, it lasted 4 s. Depending
on the result of the LDA, the fixation cross moved to the
right or down, updated every 40 ms (this is approximately
the speed at which the human eye perceives continuous
movement) (Vidaurre et al. 2011a). Performance in a trial
was ‘correct’, if the position of the fixation cross at the
end of a trial (t = 6s) corresponded to the direction
of the arrow. Between runs, users were asked to explain
the motor imagery strategy that they had followed in
the previous run to identify participants not complying
with the task. Two subjects reported trying to use eye
movements instead of imagining motor movements of
their limbs and were eliminated from further analysis.
The experimental paradigm consisted of three different

methodological adaptation levels as in (Vidaurre et al.
2011a,b) with run 1 belonging to the first level, runs
2 and 3 to the second, and run 4 to the third level. In
those experiments, we observed a significant increase in
BCI control in the group of users who found it difficult
to achieve BCI accuracy. Therefore, we chose the same
architecture for the present study, in which the subjects
undertook a BCI session for the first time, to induce fast
BCI learning.

The first level consisted of a simple BCI system where
the features were the logarithmic power values of fixed
mu and beta bands computed from small Laplacian
derivations over C3, Cz, and C4. The classifier was a linear
discriminant and was updated after every trial (Vidaurre
et al. 2011a). This simple system allowed fast and super-
vised adaptation over the two frequency bands of interest
for BCI (mu and beta bands). However, due to the lack
of data from the BCI subjects in this study, the initial
classifier of run 1 was subject-unspecific, i.e. did not
contain specific information from the subjects performing
the BCI experiment. Instead it was computed from pre-
vious datasets of 50 users whose performance was above
70% of accuracy in the class pair of interest, i.e. right hand
and feet motor imagery (Sannelli et al. 2019).

For the second level, the features were again logarithmic
band power, but they were spatially optimized using
CSP filters and changing Laplacian derivations, i.e. it
included spatial flexibility of the features. The classifier
was LDA with shrinkage of the covariance matrix and
was recomputed after each trial (Vidaurre et al. 2011a).
Level three consisted of logarithmic band power of fixed
CSP filters classified with LDA adapted in an unsupervised
manner (Vidaurre et al. 2011a), to be able to assess the BCI
control of the user.

BCI session visual spelling task (ERP-BCI group)

Users conducted a 1 h BCI session of an ERP
(even-related potential)-based spelling task derived from
the Hex-O-Speller as in (Treder et al. 2011). They
performed one calibration run followed by three feedback
runs. The first two feedback runs consisted of copy spelling
the phrases ‘let your brain talk’ and ‘the summer comes’,
respectively. The last run was a free spelling recording
in which the users spelled a sentence of their choice,
which was communicated to the experimenter for the
later computation of the performance. The design of the
Hex-O-Speller consists of six discs arranged in a circle that
allows users to choose one out of 30 different symbols
(letters of the English alphabet, punctuation marks ‘.’
and ‘,’, a space symbol and a backspace symbol). It is a
two-stage speller, where a symbol group (e.g., ‘ABCDE’)
is selected at the first stage (Treder et al. 2011). The
symbols of the chosen group are then expanded on the

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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other discs so that, at the second stage, the target symbol
can be selected. For selection of a disc, the six discs are
subsequently intensified, that is, increased in size and at
the same time, they flash in a specific colour. The time
between subsequent onsets of intensifications was 200 ms
and each disc was intensified for 100 ms. Users were
instructed to silently count the number of times their
selected disc was intensified. The users’ focus on the target
led to a noticeable increase in the P300 amplitude that
could be extracted from the EEG (Treder et al. 2011).
For online and offline ERP classification, EEG data were
downsampled to 100 Hz and divided into overlapping
epochs ranging from −200 to 800 ms relative to the
onset of the stimulus (intensification). Baseline correction
was done on the 200 ms pre-stimulus interval and no
artifact rejection was performed. LDA with shrinkage of
covariance matrix was applied as classifier (Treder et al.
2011). As spatial features, all 62 electrodes except for
12 frontal and temporal electrodes (i.e. Fp1,2; AF3,4,7,8;
FT7,8; T7,8; TP7,8) were included. The signed square
of the point-biserial correlation coefficient (sgn-r2) was
used as a measure for the discriminability of targets vs.
non-targets. For temporal feature selection, between four
and seven temporal windows were automatically extracted
using a heuristic search for peaks in the sgn-r2 between
targets and non-targets. This yielded a feature vector with
50 spatial features times four to seven temporal features,
hence a total of between 200 and 350 spatio-temporal
features.

EEG data analysis and correlation with MRI data (for
MI- BCI group)

In order to find group effects on the power of brain signals
after MI-BCI training that would be candidates to perform
a correlation analysis with MRI data, a spectral analysis
employing subject-specific information was performed.
First, the inspection of all CSP patterns that were used
to deliver feedback in run 4 revealed that all subjects had
filters corresponding to the right-hand (left hemisphere).
Then, the trial-wise power on all channels of the left
hemisphere was extracted in the subject-specific frequency
band and time interval of run 4, and the signed square
of the point-biserial correlation coefficient (sgn-r2) of
each channel was computed. The sgn-r2 expresses to what
extent the tasks (right hand versus feet motor imagery)
are discriminable, and thus we could select the channel
with highest absolute r2. Then, a spectral analysis over
the complete frequency range of interest (5–30 Hz, thus
including mu and beta bands) on this selected channel was
performed for the first and last run and the result averaged
over all subjects. The discriminability over all frequency
bins was computed based again on sgn-r2 values.

Based on the results of the previous spectral analysis, the
EEG data was preprocessed as follows in order to obtain

values to correlate with MRI data: the EEG data was filtered
in the mu band between 8 and 12 Hz using a Butterworth
filter of order 5. Then, the logarithmic band power of
the signal in all channels was computed using the data
from the last run. From those values, the sgn-r2 coefficient
was calculated and the channel on the left hemisphere
exhibiting the most positive or negative sgn-r2 value was
selected. The sgn-r2 is a measure of discriminability of
univariate features, in this case, the ability of the mu band
power to discriminate between the two MI-BCI tasks, and
thus it is related to the classification performance.

Then the EEG data from the first and last runs in the
selected channel were again filtered between 8 and 12 Hz
and the sgn-r2 values of both runs in that channel were
computed. Finally, this resulted in one difference value
of sgn-r2 from the first to the last run for each subject,
and these values were correlated (on the second level)
with the change in the MRI data from pre- to post-BCI
training using Spearman’s correlation as implemented
in Matlab (corr.m). The correlation between the sgn-r2

difference and the MRI data difference was calculated for
each voxel, giving their respective correlation coefficients
and respective P (or t) values. To correct the statistical
T-maps for multiple comparison to the alpha-level,
Pcorr < 0.05, AlphaSim correction as implemented in
AFNI (Version 16.2.12; Cox, 1996) was applied within the
bilateral somatosensory-motor mask to identify clusters
of significant correlation between change in sgn-r2 values
and change in MRI parameters. As MRI parameters,
T1-weighted signal intensity (derived from the structural
scans) and eigenvector centrality were analysed separately.
For the correlation with ECM, we used the difference of
the two scans that were acquired directly before and after
the BCI training (RestPost – RestPre3).

Results

Two groups of naive BCI users performed either MI-BCI
or ERP-BCI in an EEG session that was embedded in two
(pre and post) MRI sessions (see Fig. 1). Below, we first
present the results of the EEG experimental part, then the
results of the MRI sessions.

BCI performance

The online BCI performance averaged across all users
shows an accuracy increase for the MI-BCI group over time
(left panel, Fig. 2), whereas the ERP-BCI group rapidly
achieved good performance, even in the first run (right
panel, Fig. 2). Each horizontal bar represents the mean
value for one run. For the MI-BCI group each point is
the mean value across 20 trials. Users are considered to
have control if they reach an average performance of 70%
in the last run, in accordance with the results of Kübler
et al. (2004) for a two-class BCI. For each user, binomial

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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tests on the hit/miss distribution of the last run were
performed and compared to the accuracy reached in the
first run. For the MI-BCI group there was a statistically
significant increase for fourteen users. Six participants
performed similarly well in the first and last run, and
one user performed worse in the last run. Only one
user performed significantly worse than 70% (criterion of
control) in the last run. For the ERP-BCI group, during the
last run six users significantly outperformed their expected
performance in run 1, nine performed similarly well, and
four performed significantly worse.

MI-BCI affects EEG power spectrum

The majority of the participants in the MI-BCI group
showed a significant performance increase, and all users
except one performed above the criterion of control
(70%) in the last run. This ‘accuracy improvement’ is
also a consequence of the algorithms used by the BCI
system and their ability to increase the separability of
the signals during the ongoing experiment. The use of
co-adaptive BCI systems implies that the algorithms
continuously change during the experimental session and
thus, in principle, an improvement could be entirely due
to a more efficient algorithm, that is, the performance
increase would only be due to the machine, not to the
user. Therefore, we tested for changes related to the user
by analysing feature shifts between the first and last runs.
For that, the features (individual logarithmic frequency
band power spatially filtered with subject-optimized CSP)
were projected on a subspace where the angles of the
original space were preserved. In this manner, we could
analyse the translation of the features in the space between
first and last runs. More details of these procedures are
available in Shenoy et al. (2006). In 19 of the 21 subjects,

a feature shift was observed. Additionally, an analysis
of the discriminability of EEG signals without using
classifier information was also carried out. This procedure
(see the Methods section) is a broad-band (5–30 Hz)
spectral analysis performed on subject-specific optimal
channels for discrimination of the two classes. The result
of grand-averaging the spectra of all participants is visible
in Fig. 3 (left). We could observe an improvement of
discriminability in the mu-band from first to last run
(Fig. 3, left panel). That is, the sgn-r2 value is larger in run
4 compared to run 1, indicating that the quality of the
signals, in terms of discriminability, had improved. The
mu band was therefore selected for subsequent correlation
analyses with MRI data. For more information, on the
right panel of Fig. 3, the number of selections of each
channel in the left hemisphere for the MI-BCI group is
depicted.

MI-BCI and ERP-BCI increase T1-weighted MR
intensity

The MRI sessions were conducted before (pre) and
after (post) the EEG-BCI session (see Fig. 1). When
comparing the post- with the pre-MPRAGE (T1-weighted
anatomical) scan, both groups (MI-BCI and ERP-BCI
group) show clusters with significant signal increases in
the grey matter in a paired t test for the respective group
(Fig. 4, upper plots, FWE cluster corrected, P < 0.05).

The ERP-BCI group shows two clusters bilaterally
extending over the middle occipital gyrus (MOG) and
inferior parietal cortex (IPC). The MI-BCI group shows
three significant clusters: one cluster bilaterally extending
over the precuneus, superior parietal lobule (SPL), cuneus,
and calcarine gyrus, the second cluster extending over the
left IPC, SPL and MOG, and the third cluster extending

Figure 2. BCI performance
Left: MI-BCI group. Dark green is for
adaptation level 1 (fixed laplacian channels
and adaptive classifier), light green for level
2, (adaptive channels and classifier), and
medium green for level 3 (fixed CSP
channels and unsupervised adaptation of
the classifier). Right: ERP-BCI group. Dark
green shows calibration (estimated
performance obtained by cross-validation
because no feedback was given), light
green shows copy spelling, and medium
green shows free spelling.
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over the left sensorimotor cortices (left pre- and post-
central gyrus, operculum, and IPC).

The between-group comparison (MI- vs. ERP-
BCI group) of the ‘difference images’ (post-
MPRAGE – pre-MPRAGE, Fig. 5, upper plot) revealed
increased T1-weighted MR intensity for the ERP-BCI
group in the bilateral MOG, right IPC, right middle
frontal gyrus, and right cerebellum (lobule VII), as well
as increased signal for the MI-BCI group in the bilateral
precuneus, right cuneus/calcarine gyrus, left cerebellum
(lobule IX), right insula, right inferior temporal/fusiform
gyrus and right thalamus (Fig. 5, upper plot).

BCI modulates eigenvector centrality

We used eigenvector centrality mapping (ECM) as
a data-driven analysis tool to describe whole-brain
functional connectivity changes between two resting-state
runs without any prior assumption. Comparing the
resting-state scans acquired directly before and after
the BCI session (RestPost1 vs. RestPre3, Fig. 4, 2nd
row) shows increased EC in left and medial sensori-
motor cortices (right hand and feet areas), as well as
decreased EC in the precuneus and prefrontal cortex for
the MI-BCI group, and increased EC in the left inferior
frontal gyrus, cerebellum and middle temporal gyrus, as
well as decreased EC in the occipital lobe and anterior
cingulate cortex for the ERP-BCI group. Comparison
of the resting-state scans performed alongside the

MPRAGE-anatomical scans (RestPost3 vs. RestPre1, Fig. 4,
3rd row) shows increased EC in the precuneus for the
MI-BCI group. For the ERP-BCI group this contrast
showed decreased EC in the precuneus and medial
sensorimotor cortex, as well as increased EC in the left
middle temporal gyrus and bilateral inferior frontal gyrus.
The corresponding between-group comparison (MI-BCI
vs. ERP-BCI group) for the ‘difference ECM images’
(RestPost3 – RestPre1) shows a significant cluster of larger
centrality for the MI-BCI group bilaterally extending over
the precuneus, cuneus and calcarine gyrus (Fig. 5, lower
plot). This cluster overlaps with the precuneus cluster
from the between-group comparison of the T1-weighted
analysis (Fig. 5, upper plot). This overlap was later used
as a ROI for an exploratory seed-based analysis of the
resting-state data.

In addition, for the MI-BCI group we found increased
centrality in the sensorimotor areas after performing
the motor imagery task in the scanner, but not for
the ERP-BCI group (Fig. 6). While the comparison
of RestPre2 – RestPre1 (before BCI session, Fig. 6,
left) shows only moderate changes in eigenvector
centrality for both groups, the group comparison of
RestPost2 – RestPost1 (after BCI session, Fig. 6, right)
shows increased EC for the MI-BCI group in the left
inferior parietal/superior temporal gyrus, left inferior
frontal gyrus and left SII/operculum (the latter also over-
laps with the T1-weighted effect found for the MI-BCI
group, Fig. 4, upper left plot).

Figure 3. Spectral analysis of MI data and selection of channel with best SMR discriminability
Left: spectral analysis on the optimal channel of the left hemisphere. The horizontal colour bars under the spectra
correspond to frequency specific sgn-r2 values (expressing discriminability of right hand vs. feet motor imagery) of
runs 1 and 4, respectively. Right: scalp plot showing the number of selections per electrode in the left hemisphere.
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Increased BOLD response after MI-BCI

When comparing the functional sessions pre vs. post
BCI, we found increased BOLD activation only for the
MI-BCI group in the left sensorimotor cortex (right hand
area) for the imagination condition ‘right hand’ (Fig. 4,
lower plots). The imagination conditions ‘left hand’ and
‘feet’ showed no significant BOLD activation and we did
not find significant differences for the ERP-BCI group.
Furthermore, there was no interaction effect of the factors
‘group’ × ‘time’, namely the difference in the functional
sessions from pre to post BCI was not significant for

the comparison between MI- and ERP-BCI group. The
main effects (BOLD activation) for the three imagination
conditions are shown in Fig. 7.

MI-BCI discriminability correlates with cerebral
changes

For the MI-BCI group, the change in the sgn-r2 values
(which expresses the discriminability of the two tasks in the
EEG) from start (run 1) to end (run 4) of the BCI session
shows a correlation with the change in EC from pre to post

Figure 4. Changes in structural and functional MRI parameters after 1 h of BCI for the MI-BCI and
ERP-BCI group, respectively
Upper plots: clusters of significantly increased T1-weighted MR intensity when comparing post-MPRAGE vs.
pre-MPRAGE scans (paired t test, glass brain illustration, FWE cluster corrected P < 0.05). See Fig. 5 for
between-group comparisons. Second row: significant clusters of modulated eigenvector centrality observed by
comparing the resting-state scans directly before and after BCI (RestPost1 − RestPre3). Third row: significant
clusters of modulated eigenvector centrality observed for the resting-state scans performed alongside the
MPRAGE-anatomical scans (RestPost3 vs. RestPre1). Warm colours indicate increased EC and cold colours indicate
decreased EC from pre to post BCI. See Fig. 6 for modulation of ECM by performance of the MI task in the scanner.
Lower plots: increased BOLD response in the functional sessions for the motor imagery condition ‘right hand’ (pre
vs. post BCI training, FWE cluster corrected P < 0.05). See Fig. 7 for the BOLD activation of the three imagination
conditions. L, left hemisphere.
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BCI (RestPre3 vs. RestPost1, Fig. 8, upper plot, red-yellow),
and a correlation with the change in T1-weighted MR
intensity from start to end (Fig. 8, upper plot, blue-green)
in the sensorimotor cortex. The sgn-r2 value is based on
the difference in mu-power between the two classes. The
change in the mu-power difference from run 1 to run
4 in the BCI also shows a significant correlation with
ECM and T1-weighted signal in the sensorimotor cortex
(Fig. 8, lower plot). This correlation is directly related to
the change in mu power over the left hemisphere during
the BCI session (compare Fig. 3).

In another analysis, we correlated the MRI data with
EEG data that contained more individual BCI-feedback
information. In particular, we calculated band power
features on the left hemisphere for BCI runs 1 and 4
in the same way as was done during the experiment,
i.e. we used the subject-specific spatial information and
frequency band, and thus the data were no longer restricted
to the mu-band. Similar to the previous analysis, we found
a significant correlation with the T1-weighted signal in the
right sensorimotor cortex, but no significant correlation
for the ECM data (data not shown).

Increased temporal correlation between the
precuneus and sensorimotor cortex after MI-BCI

While the ECM comparison between two resting-state
runs identifies the voxel for which the whole-brain
correlation is altered, it does not show which specific
connections are affected (Nierhaus et al. 2015; Antonenko

et al. 2018). In order to identify potentially differential
specific correlation changes between the MI-BCI versus
the ERP-BCI group, we performed a seed-based analysis
of the region that showed the strongest consistent contrast
in ECM and T1-weighted analysis between the two groups.
The overlap of the two ‘between-group-comparisons’
(MI-BCI vs. ERP-BCI group) for MPRAGE scans and
the corresponding ECM comparison (Fig. 5) reveals a
ROI in the precuneus that shows increased T1-weighted
signal and increased ECM for the MI-BCI group. This
ROI was used for a seed-based correlation analysis of the
resting-state data. The comparison of the resulting spatial
correlation maps for RestPost3 – RestPre1 shows increased
correlated activity between the precuneus and the bilateral
sensorimotor system for the MI-BCI group, but decreased
correlation between these areas for the ERP-BCI group
(Fig. 9).

Discussion

In two different types of BCI, we demonstrate changes in
functional and structural MRI after only 1 h of BCI. For
the visual ERP-BCI group, structural MRI shows increased
T1-weighted intensity of grey-matter in occipital/parietal
areas, for the MI-BCI group in left sensorimotor, medial
parietal and left occipital areas. Additionally, we find
increased eigenvector centrality (EC) in left sensorimotor
areas and precuneus for the MI-BCI group, and increased
EC in the inferior frontal gyrus as well as decreased EC
in precuneus, occipital cortex and medial sensorimotor

Figure 5. Between-group comparisons
A, clusters of significant differences in
T1-weighted MR intensity (post-
MPRAGE – pre-MPRAGE) when comparing
MI-BCI and ERP-BCI groups (two-sample t
test). B, significant difference in eigenvector
centrality (RestPost3 – RestPre1) for the
comparison between MI-BCI and ERP-BCI
groups. Warm colours indicate increased
effect for MI-BCI group and cold colours
indicate increased effect for ERP-BCI group.
L, left hemisphere. The overlap of both
maps shows increased T1-weighted
intensity and increased ECM for the MI-BCI
group in the precuneus. This ROI is used for
seed-based analysis of the resting-state
data.
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cortex for the ERP-BCI group. For the MI-BCI group,
we observed increased central background (mu) rhythm
activity, and the mu-rhythm change as well as the MI-BCI
task discriminability (sgn-r2 value measured in the EEG)
shows a strong correlation with T1-weighted and ECM
change in sensorimotor cortices. Furthermore, when using
the subject specific features of run 4 and run 1, we
observed a similar correlation with T1-weighted MRI data
in sensorimotor cortex, but no correlation for ECM.

We regard our findings as indicators of BCI-induced
brain plasticity and, as subsequently outlined, even the
very early time point of the observed changes seems
to be consistent with this notion: Confirming invasive
animal studies, an abundance of non-invasive MRI studies
have provided evidence that the adult human brain
is capable of functional and structural reorganization
(Draganski & May,2008). Cross-sectional studies have
indicated changes in grey-matter-density and/or volume
in certain brain regions presumably engaged in long-term
activities, such as increased hippocampus size in London
taxi drivers (Maguire et al. 2000), alterations in planum
temporale and corpus callosum of musicians (Schlaug
et al. 1995a,b), and in the striatum of professional athletes
(Taubert et al. 2015). The correlational evidence from
cross-sectional studies has been supported by causal

evidence from interventional studies using functional
MRI (Karni et al. 1995; Poldrack et al. 1998; Fletcher
et al. 1999; Pleger et al. 2003; Limanowski et al. 2017),
but also structural MRI (Draganski et al. 2004; Taubert
et al. 2010, 2012; Zatorre et al. 2012). While early inter-
vention studies employing structural MRI (T1-weighted)
reported ‘brain plasticity’ within weeks/months of training
onset (Draganski et al. 2004; Taubert et al. 2010), more
recent studies have reported changes within few hours
after task performance or sensory stimulation (Sagi
et al. 2012; Hofstetter et al. 2013; Taubert et al. 2016;
Schmidt-Wilcke et al. 2018). Interestingly, the locations
of these early changes are not necessarily the same as
for long-term effects (Taubert et al. 2016). It seems
that different brain areas and networks are involved
during different phases of learning (multiphase-model
of brain plasticity; Taubert et al. 2012). Furthermore,
(T1-weighted) MRI findings at different time points after
training onset probably do not reflect the same under-
lying neurophysiological/cellular processes. Long-term
plasticity changes are characterized by persistent structural
changes, i.e. increased number of axons, dendrites,
synapses, glial cells and vessels, as well as (perhaps)
neurogenesis in some areas (e.g. hippocampus, striatum).
These long-term neuroanatomical changes most likely

Figure 6. Modulation of ECM by performance of a MI task in the scanner before and after the BCI
training
Left: before training; RestPre2 − RestPre1. Right: after training; RestPost2 − RestPost1. Warm colours indicate
increased EC and cold colours indicate decreased EC from pre to post BCI training. Lower plots show the
between-group comparison (MI- vs. ERP-BCI), where warm colours indicate increased effect for MI-BCI group
and cold colours indicate increased effect for ERP-BCI group. L, left hemisphere.
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correspond to changes in T1-weighted MRI; however, they
occur only within days/weeks (Anderson et al. 2002; Kleim
et al. 2004) and thus are unlikely to underlie the very
early MR-signal changes. For rapid structural plasticity,
the direct link to the MR-signal is still poorly under-
stood. It is known that within the first hour of training,
new spines are already being generated (Xu et al. 2009;
Moczulska et al. 2013; Kuhlman et al. 2014). But due to
their extremely small size it is rather unlikely that this can
explain the ‘macroscopic’ MR-signal changes. However,
microglial invasion in the surrounding of new synapses
has been shown to be a very rapid early process (Sagi et al.
2012; Kettenmann et al. 2013; Tremblay et al. 2010). Also,
the motility of synapse-associated astrocytic processes
has been shown to be enhanced as early as 5 min after
stimulus-induced long-term potentiation (Perez-Alvarez
et al. 2014). As neuroglial transmission has been shown to
be fundamental in maintaining learning-induced cortical
stability (long-term potentiation) (Jammal et al. 2018),
such rapid neuroglial processes, together with local

Figure 7. Visualization of the main effect (BOLD activation)
for the three imagination conditions
T-values of one-sample t tests for all functional sessions pre
BCI-training of both groups (MI- and ERP-BCI) together. L, left
hemisphere.

increases in metabolism, seem likely to explain early
MR-signal changes.

Based on these considerations, we regard it as plausible
that our findings reflect this early phase of brain
plasticity, especially because potential confounders for
the interpretation of ‘structural MRI’ (i.e. influences of
blood flow, blood volume and/or tissue oxygenation on
T1-relaxation time) cannot explain our findings. We
have previously shown that rapid changes in T1-weighted
MR-intensity (induced after 1 h of balance training) are
not accompanied by major blood flow changes (Taubert
et al. 2016). But what about (minor) local changes in
blood flow or oxygenation? Recently, it has been shown
that a breathing-induced increase in the concentration of
oxygen decreases T1-relaxation time, the so-called tissue
oxygenation level-dependent (TOLD) contrast (Haddock
et al. 2013; Tardif et al. 2017), and likewise hypercapnia
decreases T1 (Tardif et al. 2017). These effects may
be due to changes in blood flow/volume and/or tissue
oxygenation. When performing straightforward analyses
of cortical thickness and grey-matter density, both hyper-
capnia and ‘breathing oxygen’ lead to ‘apparent increases’
(Tardif et al. 2017). Could such an effect explain our
findings? The post T1-weighted scan was performed more
than 1 h after the BCI-session and about 15 min after the
last functional MRI run. Since task-induced changes in
blood flow and oxygenation normalize after a few minutes
(Bandettini et al. 1997; Howseman et al. 1998), they are

Figure 8. Correlation of BCI-EEG with MRI data for the MI-BCI
group
Upper row: indicated areas show a significant correlation of sgn-r2

change (run 4–run 1), i.e. change in BCI discriminability, with ECM
change (red-yellow, RestPost1 − RestPre3) and with T1-weighted
(T1w) MR intensity change (blue-green). Lower row: correlation of
the change in mu power difference between the classes
(imagination ‘right hand’ vs. ‘feet’) from run 1 to run 4 with ECM
change (red-yellow, RestPost1 − RestPre3) and with T1-weighted
(T1w) MR intensity change (blue-green). L, left hemisphere.
Colour-coded correlation coefficients.
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unlikely to explain the persistent increase in T1-weighted
signal. Furthermore – keeping in mind that the ‘last
task 15 min before the structural MRI’ was a sensori-
motor task in all subjects – even if task-induced blood
flow/volume increases lasted longer than 15 min, there
should be sensorimotor related changes in both groups
(MI-BCI and ERP-BCI). However, the observed changes
were noted in visual areas for the ERP-BCI group and
sensorimotor areas for the MI-group, i.e. areas which are
specifically related to the BCI-task (more than 1 h before

Figure 9. Seed-based analysis of the resting-state data with
the seed region in the precuneus
A and B, clusters of significant differences in correlation to the seed
region, resulting from a paired t test contrasting correlation maps of
‘RestPost3 vs. RestPre1’ block within the MI-BCI (A) and ERP-BCI (B)
groups, respectively. C, significant difference when comparing
MI-BCI and ERP-BCI groups (two-sample t test, RestPost3 –
RestPre1). Warm colours indicate an increase and cold colours a
decrease in correlation to the seed region. L, left hemisphere. Please
note: this is an explanatory analysis given that the seed area showed
statistically significant changes in the ECM analysis. Thus, the
statistical values here are not valid but rather are meant to highlight
a qualitative difference.

the structural scan) but NOT related to the functional task
in the MR-scanner. It is therefore much more likely that
the increased T1-weighted MR-intensity, which we find
for the respective groups in different areas, reflects early
events of brain plasticity such as local accumulation of
microglia or long-lasting plasticity-associated increase in
metabolism induced by the BCI tasks.

For the MI-BCI group, we provide evidence that
this brain plasticity is related to modulation of back-
ground rhythms during the BCI session. The performance
increase during MI-BCI is related to ‘the adaptation of
the algorithm to the subject’ as well as ‘the subject’s
ability to modulate their sensorimotor rhythms’. Overall,
the co-adaptive set-up leads to a performance increase.
Additionally, subjects’ EEG data show increased back-
ground rhythm power at the end of the BCI session,
especially in the mu-frequency band over left central
areas. This synchronized oscillatory activity may reflect
BCI-induced recruitment of additional neurons that are
coherently involved in generating the oscillatory pattern
and, after some time, would strengthen their connections
(Ros et al. 2014). Furthermore, our finding of increased
BOLD activity in the left hemisphere after the MI-BCI
session hints at the recruitment of ‘more neurons’ during
imagination of right hand movements, in contrast to
the ‘left hand’ condition, which was not trained in
the BCI and thus does not show a change in BOLD
activity. Moreover, the modulation of sensory background
rhythms during BCI is directly related to BCI performance.
Thus, the correlation between changes in EEG-BCI data
(mu-rhythm increase as well as BCI discriminability
improvement) and changes in MRI data (T1-weighted
MR-intensity as well as ECM), which we found in sensori-
motor areas, is consistent with a role of the under-
lying background rhythm modulations in inducing brain
plasticity. These findings are in line with previous evidence
of homeostatic plasticity found after alpha suppression
trained by means of neuro-feedback (Ros et al. 2014,
2017). Among the two MR-correlates of BCI-induced
neural changes (T1, ECM), ECM changes seem to be more
closely related to mu-rhythm, as no significant correlation
was found when the EEG data are not restricted to the
mu-frequency band, whereas T1-weighted MRI changes
also showed for the subject-specific rhythms a strong
correlation in the sensorimotor cortex, similar to those
related to changes in mu-rhythm and BCI discriminability.

Our findings of increased T1-weighted intensity and
EC in the precuneus, as well as the increased temporal
correlation of the BOLD signal time courses between
the precuneus and sensorimotor system for the MI-BCI
group, are in line with previous studies showing that
the precuneus plays an important role for visuospatial
integration, e.g. hand-eye coordination (Ferraina et al.
1997) and reaching (Caminiti et al. 1999). Also, increased
precuneus activation during motor imagery (vs. real motor
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execution) was shown for finger movements (Gerard
et al. 2000) and sequential finger tapping (Hanakawan
et al. 2003). An MEG study revealed precuneus dipole
activity for motor imagery that suggested a signal trans-
fer to supplementary motor areas (Ogiso et al. 2000). It
seems that the information exchange between precuneus
and sensorimotor areas is necessary for motor imagery,
independent of perceptual motor feedback. This might
explain our finding of enhanced functional connectivity
between these brain areas after MI-BCI, whereas visual
ERP-BCI seems not to depend on this connection.

Recently, modulation of resting-state functional
connectivity was demonstrated after 2 weeks of motor
imagery training, in terms of modulated default-mode
network connectivity (Ge et al. 2015), as well as increased
connectivity strength of the sensory-motor network in
the precuneus and fusiform gyrus (Zhang et al. 2014).
Interestingly, significantly increased connectivity in the
fusiform gyrus does not appear in our data, but we found
increased T1-weighted signal for the MI-BCI group in
this area. It seems that the fusiform gyrus is engaged
in the MI-BCI task, and thus the T1-weighted signal
is modulated in our data presumably due to persistent
changes in metabolism.

The increased T1-weighted MR-intensity in occipital
areas and increased EC in the inferior frontal gyrus
(IFG) that we found for the ERP-BCI group are probably
explained by the performance of the visual spelling task.
The middle occipital gyrus (BA18 – secondary visual
cortex) not only processes visual properties of shape
(Hegdè & Essen,2000) or orientation (Anzai et al. 2007),
but also activates with sustained (visual) attention (Le
et al. 1998) and, together with IFG, is involved in word
retrieval processes (Abrahams et al. 2003). The left IFG
especially is related to linguistic processes such as syntax
(Tyler et al. 2011), lexical search (Heim et al. 2005), or word
generation (Friedman et al. 1998). The right IFG seems to
be involved in target detection (Hampshire et al. 2009; de
Haan et al. 2015), but also contributes to language function
(Hartwigsen et al. 2013). The increased T1-weighted
MR-intensity that we find in left occipital areas for the
MI-BCI group might be due to the lateralization of the
MI-task (training right hand and feet associated with
cursor movement to the right and down, respectively), i.e.
‘successful’ imagination of right hand movement results
in a right-directed cursor movement on the screen (visual
stimulation in the right hemifield), thus involving left
occipital areas.

In conclusion, in young and healthy volunteers, our
study demonstrates rapid effects of purely mental BCI
tasks on MRI parameters that are thought to reflect
structural and functional brain plasticity. Future studies
need to identify how these early changes develop into
long-term neural reorganization, and how BCI-induced
brain plasticity may be therapeutically useful in patients

with brain disorders, as suggested by interesting pilot
studies using BCI in stroke patients (Varkuti et al. 2013;
Young et al. 2014). The spatial specificity of the BCI effects
that we observe in this study creates an opportunity for
tailoring BCI-based therapeutic approaches individually
to, for example, stroke patients, according to the individual
patient’s lesion location.
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Kübler A, Leeb R, Neuper C, Müller K-R & Mattia D (2010).
Combining brain-computer interfaces and assistive
technologies: State-of-the-art and challenges. Front Neurosci
4, 161.

C© 2019 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



16 T. Nierhaus and others J Physiol 00.0

Müller J-S, Vidaurre C, Schreuder M, Meinecke F, von Bünau P
& Müller KR. (2017). A mathematical model for the
two-learners problem. J Neural Eng 14, 036005.

Moczulska K, Tinter-Thiede J, Peter M, Ushakova L, Wernle T,
Bathellier B & Rumpel S (2013). Dynamics of dendritic
spines in the mouse auditory cortex during memory
formation and memory recall. Proc Natl Acad Sci U S A 110,
18315–18320.

Nierhaus T, Margulies DS, Long X, Villringer A (2012). fMRI
for the assessment of functional connectivity. In
Neuroimaging Methods, ed. Bright P. In Tech, Rijeka

Nierhaus T, Forschack N, Piper S, Holtze S, Krause T, Taskin B,
Long X, Stelzer J, Margulies D, Steinbrink J & Villringer A
(2015). Imperceptible somatosensory stimulation alters
sensorimotor background rhythm and connectivity. J
Neurosci 35, 5917–5925.

Ogiso T, Kobayashi K & Sugishita M (2000). The precuneus in
motor imagery: a magnetoencephalographic study.
Neuroreport 11, 1345–1349.

Perez-Alvarez A, Navarrete M, Covelo A, Martin ED & Araque
A (2014). Structural and functional plasticity of astrocyte
processes and dendritic spine interactions. J Neurosci 34,
12738–12744

Pfurtscheller G & Lopes da Silva FH (1999). Event-related
EEG/MEG synchronization and desynchronization: basic
principles. Clin Neurophysiol 110, 1842–1857.

Pleger B, Forster A, Ragert P, Dinsel H, Schwenkreis P, Malin J,
Nicolas V & Tegenthoff M (2003). Functional imaging of
perceptual learning in human primary and secondary
somatosensory cortex. Neuron 40, 643–653.

Poldrack R, Desmond J, Glover G & Gabrieli J (1998). The
neural basis of visual skill learning: an fmri study of mirror
reading. Cereb Cortex 8, 1–10.

Polich J (2007). Updating p300: An integrative theory of p3a
and p3b. Clin Neurophysiol 118, 2128–2148.

Ros T, Baars BJ, Lanius RA & Vuilleumier P (2014). Tuning
pathological brain oscillations with neurofeedback: a systems
neuroscience framework. Front Hum Neurosci 8, 1008.
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