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We explore the frustrated spin- 1
2

Heisenberg model on the star lattice with antiferromagnetic (AF) couplings

inside each triangle and ferromagnetic (FM) inter-triangle couplings (Je < 0), and calculate its magnetic and

thermodynamic properties. We show that the FM couplings do not sabotage the magnetic disordering of the

ground state due to the frustration from the AF interactions inside each triangle, but trigger a fully gapped

inversion-symmetry-breaking trimerized valence bond crystal (TVBC) with emergent spin-1 degrees of free-

dom. We discover that with strengthening Je, the system exhibits a universal scaling behavior either with or

without a magnetic field h: the order parameter, the five critical fields that separate the Je-h ground-state phase

diagram into six phases, and the excitation gap obtained by low-temperature specific heat, all depend exponen-

tially on Je. Our work implies that the spin-1 VBCs can be stabilized by introducing small FM couplings in the

geometrically frustrated spin- 1
2

systems.

PACS numbers: 75.10.Jm, 75.10.Kt, 75.60.Ej, 05.70.Ln

I. INTRODUCTION

Two-dimensional (2D) spin-1/2 frustrated magnetic sys-
tems are currently of great interest1,2, because they may
realize exotic quantum states that do not possess any semi-
classical spin ordering3, such as quantum spin liquids (QSLs)
or valence bond crystals (VBCs). Leading candidates for real-
izing such states are spin- 12 Heisenberg models with com-
peting interactions on, e.g. square, honeycomb and kagomé
lattices4–20. A particularly promising QSL system that
has been argued to have experimental realizations is the
kagomé Heisenberg antiferromagnet (KHAF)21–27. However
the nature of its ground state, i.e., a gapped Z2 spin liquid4–8

versus a gapless U(1) Dirac spin liquid9–13, is still under de-
bate.

Another frustrated 2D quantum system of great potential in-
terest is the Heisenberg model on star lattice (Fig. 1). The star
lattice is an Archimedean lattice with all sites equivalent. It is
also known as the (3-12) lattice, the Fisher lattice, the decor-
ated hexagonal or expanded kagome lattice, and the triangle-
honeycomb lattice, which are well summarized in Ref. [28].
Its physics is arguably even richer than that of the KHAF, for
several reasons: (a) similar to the kagome lattice, the star lat-
tice bears a high geometrical frustration due to its triangle
structure; (b) the star lattice possesses a lower coordination
number than the kagome lattice, implying stronger fluctu-
ations; (c) the star lattice naturally involves two inequivalent
bonds, which can lead to exotic quantum phases; (d) vari-
ous QSLs, such as the non-Abelian chiral spin liquid and the
double semion spin liquid, have been found in several models
on a star lattice, e.g., the Kitaev model and the quantum dimer
model28–30; (e) a number of organic iron acetates have been
synthesized in experiments31, which can be described by the

Heisenberg model on a star lattice.

However, the Heisenberg model on a star lattice has not
been fully explored yet. Recent research using the large-N ap-
proximation and a Gutzwiller projected wave-function32 only
investigated the ground state for antiferromagnetic (AF) inter-
triangle couplings (Je > 0), where a Je-dimer VBC and a√
3 ×

√
3 VBC phase33 were found (Fig. 1). However, the

ground and thermal properties of the system for the ferromag-
netic (FM) Je < 0 are still unexplored. Recently, studying
the effects of the FM couplings on 2D frustrated many-body
systems has drawn lots of interests34,35. One of the issues
we would like to address is whether the FM couplings can
be adiabatically connect the spin-1/2 star model to the spin-1
kagomé model36–38.

The intrinsic importance of 2D frustrated many-body sys-
tems is matched by the great technical challenges involved in
studying them. One such challenge is calculating thermody-
namic properties, such as the specific heat and susceptibility.
Most of the existing simulations of such systems are focused
on the ground states. To compare with experiments, accur-
ate simulations at finite temperature are strongly motivated,
which are, however, scarce owing to the difficulties of such
calculations39–41.

In this work, we perform a comprehensive study of the
spin- 12 Heisenberg antiferromagnet on the star lattice with FM
inter-triangle couplings (Je < 0), calculating its ground state
and thermodynamic properties. We show that the FM inter-
triangle couplings do not sabotage the magnetic disordering of
the ground state that arises due to frustration generated by AF
intra-triangle couplings, but, remarkably, trigger a trimerized
valence bond crystal (TVBC) with emergent spin-1 degrees of
freedom, that breaks spatial inversion symmetry. We determ-
ine the phase diagram of the system in a magnetic field and

http://arxiv.org/abs/1508.03451v2


2

−∞ ∞3 3×

J
eJ

t

Figure 1: (Color online) The ground-state phase diagram of the star

Heisenberg model. For Je > 0, previous studies show various pos-

sible VBCs and spin liquids, where one recent work found a
√
3×

√
3

VBC and a Je-bond VBC32,33. The phase boundary Jc
e has not been

settled yet. For Je < 0, we show that the system is in a trimer-

ized valence bond crystal (TVBC) phase, where a triplet appears at

each Je bond and the inversion symmetry of up and down triangles

(marked by blue and yellow, respectively) is broken.

identify six phases. We uncover a magnetization cusp on the
boundary between the inversion-symmetry-breaking and the
non-inversion-symmetry-breaking phases. We calculate the
temperature dependence of the specific heat and determine a
non-magnetic gap by analyzing accurate results for the low-
temperature behavior of the specific heat. A scaling behavior
versus |Je| is uncovered, evidenced by the large-Je depend-
ence of a range of physical quantities, such as the TVBC “or-
der parameter”, five critical fields and the non-magnetic gap.

II. MODEL AND METHODS

The Hamiltonian of the star Heisenberg model reads

H = Je
∑

〈ij〉∈Je

Si · Sj + Jt
∑

〈lm〉∈Jt

Sl · Sm − h
∑

n

Ŝz. (1)

The first summation runs over all inter-triangle bonds, the
second over all intra-triangle bonds, and the third over all sites
giving the magnetic field.

Four different state-of-the-art algorithms are employed,
including the SU(2) density matrix renormalization group
(DMRG)42 on a cylindrical geometry of finite size, the
simple updates with and without non-Abelian SU(2) sym-
metry implemented43–45 in the thermodynamic limit, and the
network contractor dynamics (NCD)40 for the thermodynam-
ics. These algorithms are designed for different purposes,
and therefore operate differently. Overall consistency across
these methods evidences a numerically unbiased, accurate,
and comprehensive study.

We employ tensor network (TN)45 and DMRG42 methods
to simulate the ground state on the infinite lattice and cyl-
indrical geometries, respectively. To be specific, the TN rep-
resentation of the ground state [inset of fig. 2(b)] can be writ-

ten as

|ψ〉 =
∑

{s}

Tr{a}∈TN[
∏

j

(T (j)sj,1sj,2sj,3aj,1aj,2aj,3
|sj,1, sj,2, sj,3〉)],(2)

where T (j) is a (d3 × D3) tensor residing on the j-th tri-
angle with physical dimension d and ancillary bond dimen-
sion D, containing all parameters of the TN state. The an-
cillary bonds {aj,n} (n = 1, 2, 3) carry the entanglement of
the state and Tr{a}∈TN denotes a contraction of all shared
{aj,n}. The physical bonds {sj,n} (n = 1, 2, 3) represent
the three spins inside the j-th triangle with local basis |sj,n〉.
Such a TN ansatz is called a projected entangled-pair state
(PEPS)43. The simple update algorithm45 provides an efficient
way to optimize the PEPS by minimizing the energy per site
E0 = 〈ψ|H |ψ〉. The simple update has shown great efficiency
and accuracy for simulating gapped systems. The observables
such as magnetization can then be calculated with the PEPS.

The method for finite-temperature simulations are imple-
mented in a similar way. Each local tensor in the TN possesses
two physical bonds that corresponds to the bra and ket space
of the thermal state. We use the NCD approach40 to optimize
the TN. The basic idea of NCD is to approximately encode
the TN contraction problem into local self-consistent eigen-
value problems that can be efficiently solved. NCD shares
a similar spirit with the simple update. Their mathematical
background is the rank-1 decomposition that gives the op-
timal Bethe approximation of the corresponding TN46. The
performance of such kind of approximation scheme is related
to the speed of convergence to the fixed point when solving
rank-1 decomposition, which is closely related to the value of
gap. Thus, the algorithms show nice efficiency and accuracy
for the gapped systems. The positions of the critical points
that separate gapped phases can also be well determined due
to the good performance within the gapped phases. At the
critical points, however, it is still unclear how to optimize the
tensors while keeping the criticality (such as the divergence
of the correlation length) of the ansatz. Extracting critical in-
formation (e.g., critical exponents) is still a challenging task.

In addition, we implement SU(2) symmetry in TN states
and related algorithms by using QSpace techniques44: we im-
pose SU(2) symmetry in every single tensor index, retain the
symmetry during imaginary time evolutions and other tensor
manipulations, and keep track of multiplets (instead of indi-
vidual states) on the bonds. We only need to optimize the re-
duced tensors (instead of full tensors), andnthus reduce both
the memory and CPU time dramatically36,44.

We compare the ground-state energy obtained by differ-
ent methods. In Fig. 2(a), we show the energy obtained by
plain and SU(2) PEPS calculations, which both converge to
the same results. Note that for comparable number of states
D, a lower ground state energy can be obtained by plain PEPS
as compared to SU(2) PEPS, since it is allowed to break sym-
metries and hence has access to a larger variational parameter
space. However, the results converge towards the same value
for large D, suggesting that as expected, the tensors eventu-
ally converge to tensors that respect symmetries. This justifies
the exploitation of symmetries at significantly reduced overall
numerical cost.
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Figure 2: (Color online) (a) The ground-state energy E0 of the star

Heisenberg model for Je = −1 and Jt = 1 obtained by the plain and

SU(2) simple update algorithm, where E0 converges versus number

of states (D) and number of multiplets (D∗ red solid dots), respect-

ively, with clearly superior performance of the SU(2)-based calcu-

lations. For comparison only, we also translate the number of mul-

tiplets D∗ into the corresponding actual number of states D (black

lines and symbols). Taking a fixed D∗, D of different virtual bonds

may vary, according to the SU(2) fusion rules and the specific set

of multiplets associated with each bond. We show the minimum,

maximum and average value of D over the three virtual bond in-

dices of a tensor. (b) E0 versus Je, obtained by SU(2) simple up-

date and DMRG simulations, which show very good agreement with

each other in the whole parameter range. The inset sketches the local

tensors of the TN state.

In Fig. 2(b) we plot the energy obtained from SU(2) TN
simulations and cylindrical DMRG for −10.0 ≤ Je ≤ 3.0,
which shows an excellent agreement in the whole region.
Moreover, the appearance of a cusp in the energy curve at
Je = 0 indicates a first-order phase transition.

III. SPONTANEOUS INVERSION SYMMETRY

BREAKING

We now study the ground state of the star-lattice model,
which is found to possess spontaneous inversion symmetry
breaking (SISB). It can be characterized by the energy differ-
ence between the two kinds of triangles δ ≡ |E△−E▽| where
we have E△(▽) = 〈ψ|∑〈ij〉∈△(▽)Hij |ψ〉 per triangle with

the summation running over all local interactions Hij inside
the up (down) triangles. We use DMRG to calculate the cyl-
inder system with the geometry shown in Fig. 3 (denoted by
YC4). To break the inversion symmetry between the up and
down triangles, we take the couplings inside the up triangles
on the open boundaries as Jpin = 2Jt (Jt is the coupling con-
stant for all other triangles).

Then, we measure the decaying behavior of δ from the
boundary to the bulk. As shown in Fig. 4(a), we find that
δ decays quite slowly for large −Je, implying a large decay
length. We checked that different values of Jpin give the same
decay length. Since the decay length for δ keeps increasing
with increasing −Je, our DMRG calculations imply that the
SISB of the ground state might survive on a wider or even
infinite-size system. Based only on the DMRG results, how-
ever, it is difficult to determine whether the symmetry break-

ing persists in the thermodynamic limit. With decreasing |Je|,
δ decays faster. For small values of |Je|, the SISB is too weak
to identify on a small cylinder. To provide more solid evid-
ence, we thus employ the TN simulations on the infinite-size
system.

The TN calculations, too, find a strong TVBC order for
large |Je| [Fig. 4(b)], consistent with DMRG results. By fit-
ting the order parameter δ with −Je ≫ 0, we find that δ ful-
fills an exponential behavior with Je as

δ = δ̃(1− eµJe), (3)

where we have µ = 0.28 and δ̃ = 0.1. It indicates that the
large |Je| couplings project each corresponding spin- 12 pair
into an effective S = 1 spin, and stabilize a TVBC. Inter-
estingly, for the small |Je| region, the TN simulations show
that the inversion symmetry is broken for any small Je < 0,
while such a symmetry is found to be intact for Je > 0. To
be specific, for −Je → 0, δ satisfies the algebraic relation
δ = 0.03J2

e , as shown in the inset of Fig. 4 (b). Our res-
ults not only support the TVBC ground state for the spin-1
kagomé model36–38, but also further show that such a TVBC
is robust in the spin- 12 star model for any finite strength of the
FM Je interactions. In other words, the TVBC survives with
the fluctuations caused by the finiteness of Je. In contrast to
the spin-1 model, two spin- 12 ’s in our system are not strictly
projected into the spin-1’s, especially for small |Je|.

Note that in the Je → −∞ limit, each two spin- 12 ’s con-
nected by a ferromagnetic coupling are strictly mapped to the
triplet states, i.e. a spin-1. Each antiferromagnetic coupling
between two spin- 12 ’s is then exactly mapped to the antiferro-
magnetic coupling of two spin-1’s. The Hamiltonian of our
star model becomes identical to that of the spin-1 antiferro-
magnetic Heisenberg model on kagome lattice.

IV. GROUND-STATE PHASE DIAGRAM IN MAGNETIC

FIELDS

In a magnetic field, frustrated magnetic systems usually
exhibit distinct features in the magnetization curve such as
cusps47 and plateaus48, which reveal the exotic structure of the
energy spectrum and distinguish different phases. We study
the field dependence of the ground-state magnetization per

site Mz =
∑

n〈ψ|Ŝz
n|ψ〉/N and the energy difference δ, as

shown in Fig. 5. Interestingly, we find a zero plateau corres-
ponding to a finite spin gap, a cusp representing the restoration
of inversion symmetry, and a 1/3-plateau in the magnetization
curve.

In the zero plateau region, h < hc1, both Mz and δ re-
main unchanged, indicating that there is a finite spin gap pro-
tecting the TVBC state. With increasing h, the spin gap de-
creases and eventually closes at h = hc1. For h > hc1,
Mz becomes nonzero and δ starts to decrease. At h = hc2,
a cusp appears in Mz and δ vanishes, separating the SISB
phase from the Mz 6= 0 normal phases. A magnetization
cusp has also been observed in some one-dimensional frus-
trated magnetic systems having ground states that break lat-
tice symmetry, reflecting the novel energy dispersion of the
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Figure 3: (Color online) The bond correlation 〈Si · Sj〉 versus distance x from the pinned boundary (using Jpin = 2) on a YC4-36 cylinder

for Je = −4 calculated by DMRG keeping 2000 SU(2) multiplets. The thickness indicates the strength of the bond energies.
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t
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Figure 4: (Color online) (a) Log-linear plot of the inversion sym-

metry breaking parameter δ as function of the distance x from the

boundary for the YC4-36 cylinder with boundary pinning. (b) The Je

dependence of δ obtained from SU(2) simple update simulations. As

long as Je < 0, the system has a non-zero δ. We find by fitting that

for approximately −Je ≫ 4, δ fulfills the relation δ = δ̃(1− eµJe),

where µ = 0.28 and δ̃ = 0.1 that gives the value of δ for Je → −∞.

In contrast, for small |Je|, we find δ = 0.03J2
e for Je → 0 (see in-

set).

low-lying excitations47. A first shoulder in the magnetization
occurs consistently around M ≃ 1/30. By further increas-
ing the field, we find a 1/3-plateau corresponding to a gapped
solid state48. Based on the behaviors of Mz and δ we ob-
tain the quantum phase diagram in the Je-h plane, shown in
Fig. 5(c).

We find that the critical fields hci (i = 1, 2, · · · , 5) also
converge exponentially for large |Je|,

hci = h̃ci(1 − αie
νiJe), (4)

as shown in Fig. 5(c), with coefficients given in Table I. The
scaling behavior of the critical fields strongly implies that
the star Heisenberg model approaches the effective spin-1
model in an exponential manner, suggesting that the large
|Je| represents a gapped system, consistent with the existing
works36–38.

M
z

Figure 5: (Color online) The field-dependence of (a) the magnetiz-

ation Mz and (b) the TVBC order parameter δ. Five critical fields

hci (i = 1, 2, · · · , 5) is determined by Mz and δ, which determine

six phases in the Je-h diagram as shown in (c). For 0 ≤ h < hc1,

Mz = 0 and δ is intact. For hc1 < h < hc2, Mz increases, and δ
starts to diminish and vanishes at h = hc2, where the inversion sym-

metric and symmetry-breaking phases are separated and one always

has Mz = 1/30. For hc3 < h < hc4, the system is in a conventional

1/3-plateau solid phase. Here, we use the simple update algorithm

of PEPS with D ∼ 30.

V. SPECIFIC HEAT

The calculation of specific heat is important for compar-
ing with the experiments, where it can be directly measured
by mature techniques, e.g. a thermal relaxation calorimeter.
Thermal properties reflects not only the ground state, but also
different physics at different temperature/energy scales.

In Fig. 6(a), we plot the calculated specific heat curves
for various Je. Changing Je from zero to −∞, we ob-
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Table I: Values for the fitting parameters h̃ci, αi and νi of the critical

fields [see Eq. (4)]. Note that as hc5 = 1.5 is a constant, we have

α5 = 0 and any ν5.

hc1 hc2 hc3 hc4 hc5

h̃ci 0.07 0.132 0.34 0.81 1.5

αi 1 1 1 -0.85 0

νi 0.5 0.65 0.7 0.6 ∗

serve that the low-temperature peak of the specific heat C
moves to higher temperature and merges with other peaks.
From the inset, one can see that below the low-temperature
peak, lnC depends linearly on the inverse temperature 1/T
as lnC = −∆/T + const., indicating a finite gap ∆ that
is consistent with the gapped TVBC ground state. The Je-
dependence of ∆ is given in Fig. 6(b). We observe again the
exponential scaling behavior on ∆ as

∆ = ∆̃(1− eκJe), (5)

where a fit yields κ = 0.5 and ∆̃ = 0.17±0.02 corresponding
to the gap for Je → −∞. Incidentally, simulations on the
spin-1 kagome model also show a spin singlet gap ∆̃ = 0.1 ∼
0.249.

In principle, ∆ is obtained from the low-temperature C,
and should give the gap of the lowest excitation. In the given
context, we expect ∆ ∼ hc1. Comparing with the critical
fields, however, we find ∆ ∼ hc2, which should give the
gap protecting spatial inversion symmetry of the up and down
triangles. We provide the following scenario to explain our
observations. The gaps for the excitations with S ≥ 1 nor-
mally satisfy a linear relation as ∆(S) ∼ S, which leads to a
non-zero magnetization when h becomes larger than the spin
gap. However, this linear relation may not be always true. Ex-
ceptions have been found when the system has ferromagnetic
interactions51. This means it is possible that non-zero mag-
netization appears at the h smaller than the spin gap. In our
model at h = 0, the lowest excitation is the S = 1 triplet state
with the spin gap ∆ ∼ hc2 (this gap also protects the spatial
inversion symmetry). Then non-zero magnetization appears
with h < hc2, say at hc1 in our case, and the first excitation
gap should be hc2 at h = 0.

On the other hand, we cannot completely exclude another
possibility, where ∆ ∼ hc2 may be just a coincidence, caused
by the computational error. We are unable to give a conclus-
ive answer here due to the lack precision of the existing meth-
ods. Developing new approaches with higher accuracy for 2D
models especially at the low temperatures would be necessary.
But in any case, we would like to stress that this issue causes
no harm to our main achievement, which is the TVBC with an
exponential scaling behavior.
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Figure 6: (Color online) (a) The temperature-dependence of specific

heat C for various Je, where multi-peak structures are observed. We

use the NCD algorithm with D = 12. The position of the low-

temperature peak moves to the higher temperature as −Je increases.

Inset: the curve of lnC versus inverse temperature 1/T . Below the

low-temperature peak, one can see that the specific heat decays ex-

ponentially with 1/T as lnC = −∆/T + const, where ∆ is the

(Je-dependent) excitation gap. (b) By fitting specific heat, the ex-

citation gap ∆ for different Je is obtained and shown to fulfill the

relation ∆ = ∆̃(1− eκJe). The error bars are given by the linearity

of lnC at the low temperatures50. By fitting the ∆ − Je curve, we

have ∆̃ = 0.175 that gives the excitation gap in the Je → −∞ limit

and the constant κ = 0.5.

VI. CONCLUSIONS

In this work, we discover an emergent spin-1 TVBC with
spontaneous lattice inversion symmetry breaking in the spin- 12
star Heisenberg model with FM inter-triangle couplings, and
study its ground-state and thermodynamic properties. We em-
ploy four different algorithms including SU(2) DMRG, simple
update of the TN state with and without SU(2) symmetry,
and NCD. Rich properties that define the exotic TVBC phase
are revealed, including fruitful phases in a magnetic field, the
magnetic cusps at Mz ≃ 1/30 and the universal exponen-
tial scaling behavior. Our work implies that spin-1 VBCs
can be stabilized in the geometrically frustrated spin- 12 star-
lattice systems with an arbitrary strength of the FM interac-
tions. Moreover, our calculations of the specific heat provide
useful data at finite temperatures which can be compared dir-
ectly with the future experiments.
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