
DOI 10.1140/epje/i2019-11906-8

Regular Article

Eur. Phys. J. E (2019) 42: 142 THE EUROPEAN
PHYSICAL JOURNAL E

Cubic and tetragonal liquid crystal phases composed of non-chiral
molecules: Chirality and macroscopic properties

Helmut R. Brand1,2,a and Harald Pleiner2,b

1 Department of Physics, University of Bayreuth, 95440 Bayreuth, Germany
2 Max-Planck-Institute for Polymer Research, POBox 3148, 55021 Mainz, Germany

Received 17 June 2019 and Received in final form 10 October 2019
Published online: 15 November 2019
c© The Author(s) 2019. This article is published with open access at Springerlink.com

Abstract. We discuss the symmetry properties as well as the macroscopic behavior of the cubic liquid
crystal phases showing large chiral domains of either hand in some non-chiral compounds reported recently
in the group of Tschierske. These phases are tricontinuous. While they have O or I432 symmetry in each
chiral domain, the overall symmetry is Im3̄m as there is no net chirality for compounds composed of
non-chiral molecules. It turns out that a rather similar type of phase has also been reported for triblock
copolymers. Here we analyze in detail the macroscopic static and dynamic behavior of such phases and we
predict, among other results, that they show the analog of static and dissipative Lehmann-type effects in
their chiral domains. A description of a cubic liquid crystalline phase of Th symmetry, which has not yet
been found experimentally, is also included. Suggestions for experiments are outlined to identify such a
phase. In addition, we discuss tetragonal liquid crystalline phases of D4h and D4 (I422) symmetry as they
have been reported last year experimentally in connection to the Q phase.

1 Introduction

Quite recently the group of Tschierske has described and
analyzed the observation of chiral domains in several bi-
continuous cubic phases composed of achiral molecules [1,
2]. The length scale on which these chiral domains are ob-
served is ∼ 500μm [1,3,4], meaning large compared to all
molecular length scales and therefore requiring a meso- or
macroscopic description of these collective phenomena.

To put the work presented here into a the broader con-
text of more frequent liquid crystalline phases we briefly
summarize first the symmetry properties and selected
macroscopic aspects of their behavior. For a more de-
tailed exposition we suggest, for example, the book by de
Gennes [5]. The most frequently investigated and physi-
cally well-understood liquid crystalline phase are uniaxial
nematic liquid crystals. These are anisotropic fluid sys-
tems with fluidity in 3 dimensions and one preferred di-
rection characterized by a unit vector, that does not dis-
tinguish between head and tail, the so-called director, ni,
which has length unity: n2

i = 1 with ni → −ni symme-
try. It characterizes quadrupolar orientational order and
renders all material properties of uniaxial nematics spa-
tially anisotropic including dielectric properties, electric
conductivity, thermal conductivity and viscous properties.
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The deformation energy of this soft material is character-
ized by three elastic constants for director deformations:
splay, twist and bend. Applied voltages of order 1V allow
deformations of the director field and have been at the
basis of applications in liquid crystal displays (LCDs).

When the molecules giving rise to a nematic phase are
replaced by chiral molecules and/or when chiral molecules
are added to the non-chiral molecules of a nematic phase,
a cholesteric liquid crystalline (LC) phase with a helical
superstructure with a characteristic repeat distance, the
pitch, P0, results. The cholesteric phase breaks parity sym-
metry, since in 3 dimensions it breaks mirror symmetry:
left- and right-handed helices are clearly distinguishable
from each other. On length scales large compared to the
pitch cholesteric LCs are uniaxial [6]. Since many com-
pounds arising in a biological context are chiral, the ques-
tion of cholesteric phases also naturally comes up in sys-
tems as, for example, DNA solutions. We mention in pass-
ing that for both, nematic and cholesteric phases, there is
a biaxial analogue with two rather than one preferred di-
rection for the orientational order: biaxial nematics [5] and
biaxial cholesterics [7].

Major other classes of liquid crystalline phases include
layered phases (smectic phases) with varying degree of
order within or from layer to layer, but always with posi-
tional order (denisty wave) in at least one direction and
columnar phases with density waves in at least two dimen-
sions. The simplest phase in this context is the smectic A
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phase with fluidity with isotropic fluidity in 2 dimensions.
Depending on the field (for example micellar or biological
systems) this type of phase is also called Lα or neat soap.

Approaching the liquid crystalline systems of interest
here we refer to cubic liquid crystalline phases of various
types including D phases [8], bicontinuous cubic phases
in a lyotropic and biological context [9,10] and cholesteric
blue phases [11–13]. The characteristic length scale of the
unit cell varies from about 10 nm (D phases) to about
300 nm (cholesteric blue phases) reflecting the fact that
the number of molecules in a unit cell is varying by about
five orders of magnitude.

The observations of Tschierske’s group are made for
bicontinuous cubic liquid crystals of three networks and
Im3̄m (Oh) symmetry. Within each chiral domain one
encounters I432 or O symmetry. On the other hand,
bicontinuous cubic liquid crystals of two networks and
Ia3̄d (Oh) symmetry do not show chiral domains and are
achiral [3, 4].

In retrospect1 it appears that also early work of about
two decades ago [14] shows chiral domains of three net-
works in a bicontinuous cubic liquid crystal phase.

In the field of ABC triblock copolymers [15–17] cu-
bic bicontinuous triblock copolymers have also been inves-
tigated (“double gyroid structures”) and a tricontinuous
double gyroid structure of I432 symmetry [17] has been
identified. We note2, however, that it appears not feasible
to observe macroscopic chiral domains in the presently
available triblock copolymer systems.

To describe cubic orientational order a fourth-rank
traceless symmetric tensor, Qijkl [18–20] (also called uni-
tary nonor [19]) has been introduced. For a detailed dis-
cussion of several of the physical properties and various
phase transitions involving achiral cubic phases we refer
to [18]. The implications of such an order parameter for
transient cubic orientational order above the glass transi-
tion have been addressed in [20]. The group theoretical as-
pects and their physical implications of phases with O and
Oh symmetry have been elucidated in refs. [21] and [22].

In contrast to other members of the cubic group
such as the tetrahedral phases with Td or T symme-
try [19, 22–27], the macroscopic structure of phases with
Oh and O symmetry do not break parity (inversion sym-
metry) [19, 21] via the presence of octupolar order. How-
ever, the O phase is chiral, possesses a pseudoscalar q0,
but does not show piezoelectricity. As has been noted in
ref. [19], the fourth-rank symmetric and traceless order pa-
rameter Qijkl is suitable for the description of the struc-
ture of the achiral Oh phase as well as for the chiral O
phase.

Motivated by the observation of macroscopic chiral do-
mains in cubic bicontinuous phases of I432 (O) symmetry,
we present in the bulk of this paper the macroscopic dy-
namics of such a chiral phase. We find that it allows for
the existence of static and dynamic Lehmann effects in
each chiral domain separately while the overall symmetry
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of the whole system is of Im3̄m symmetry and thus cubic,
but achiral.

The existence of a pseudoscalar quantity q0 in the O
phase of chiral cubic liquid crystals can be traced back
to the fact that one has three networks joined together,
microscopically. This gives rise to a chiral arrangement lo-
cally even for non-chiral molecules [1–4], which in turn can
lead to chiral domains of macroscopic size. This process
has been called “propagation of homochiral twist across
the entire networks through helix matching at network
junctions” in ref. [1]. In the case of three networks there
are two possibilities of joining them leading to either hand
microscopically, thus defining q0 and −q0 as pseudoscalar
quantities. A similar reasoning concerning the origin of
chirality applies to triblockcopolymers [15–17] (see foot-
note 2).

This situation should be contrasted to the type of
structural chirality encountered, for example, for bent-
core molecules in the smectic CB2 (B2) phase of bent-
core liquid crystals [28–30]. In this case the way bent-core
molecules are arranged macroscopically, i.e. the orienta-
tion of the polar direction and the tilt of the director with
respect to the smectic layers, leads to chirality of either
hand. This has been called “ambidextrous chirality” [30].

It is a hallmark of structurally chiral phases that both
types of handedness are equal in the sense that there is no
energetic preference for one or the other.

We also investigate the order parameter and the hydro-
dynamics of the Th phase, the fifth member of the group
of cubic phases (compare, for example, ref. [21]). The Th

phase is not breaking parity, and does not show any four-
fold axes of rotation. We will discuss how the order pa-
rameter of Th is different from Oh and suggest experiments
how to distinguish Oh and Th practically. We also mention
some aspects regarding the chiral T phase in relation to
the chiral O phase.

Among the tetragonal phases of interest are in partic-
ular D4h and D4, since phases of these symmetries have
been identified recently [31] in connection with the exotic
Q phase. Originally found several decades ago [32], for chi-
ral materials [32, 33], also a Q phase composed of achiral
molecules exists [31]. For chiral compounds its symmetry
has been identified as I422 (D4) in ref. [34]. In the case
of the Q phase of achiral components, it is shown exper-
imentally that there are domains of both handedness, q0

and −q0. Here, the chirality of D4 is brought out by the
microscopic model discussed in ref. [31].

The paper is organized as follows. In sect. 2 we discuss
in detail the symmetries and the hydrodynamic variables
of the Oh and O phases as well as their differences, fol-
lowed by the symmetry and the hydrodynamic variables
of Th and T in sect. 3 and of D4h and of D4 in sect. 4.
In sect. 5 we derive hydrodynamic equations focusing in
particular on the chiral O phase and its physical differ-
ences from the achiral Oh phase. In sect. 6 we discuss the
hydrodynamics of the Th (and partly the T ) phase and in
sect. 7 the hydrodynamics of the D4h and D4 phases. We
conclude in sect. 8 by a summary of the main results and
their connection to experiments.
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2 Symmetries and symmetry variables of the
Oh and the O phase

The Oh phase in cubic liquid crystals can be viewed as
a cubic biaxial nematic such that the (mutually orthogo-
nal) directors l,m,n are along the edges of the cube. As
directors they are normalized, e.g. n2 = 1, and show the
equivalence of, e.g., n → −n, etc. The three directors are
all equivalent. It should be noted that those directors are
not preferred directions in the nematic sense, since none of
them can be detected by optical inspection. For the cubic
order parameter our notation follows closely refs. [18,19].
Specifically, we have

Qijkl(r) = Q0[lilj lkll + mimjmkml + ninjnknl

−1
5
(δijδkl + δikδjl + δilδjk)] (1)

with the cubic triad li, mi ni and the normalization
Q2

0 = 5
6QijklQijkl. The four-fold symmetry axes are given

by l, m, n and l/m, m/n, and n/l are mirror planes.
The three-fold symmetry axes are the space diagonals of
the cube. It is not possible to construct out of Qijkl any
tensor of rank 3 or lower, except for the isotropic Kro-
necker symbol δij , thus excluding uniaxial nematic and
polar order.

For the chiral O phase the mirror planes of the Oh

phase are removed and only the symmetry axes remain.
In the O phase the chirality is manifest by the existence
of a pseudoscalar quantity q0 that is of microscopic ori-
gin, either due to chiral molecules or due to local chiral
arrangements of achiral molecules as discussed in the In-
troduction. We will adopt the description of ref. [6], where
the hydrodynamics of the chiral state is that of the achiral
one amended by all possible contributions allowed by q0.
This is similar to the case of a cholesteric liquid crystal
arising from a nematic one, when molecular chirality is
added.

In the O and the Oh phase the three independent rota-
tions of the rigid structure are the hydrodynamic degrees
of freedom (Goldstone modes), like in any other phase
with spontaneously fully broken rotational symmetry, i.e.
biaxial nematic phases [35, 36] and the Td phase [26, 37].
In equilibrium Qijkl is constant. Changes of that struc-
ture, δQijkl, generally contain internal deformations, in
addition to the rigid rotations of the cubic structure. The
former are non-hydrodynamic and will not be considered
here. The latter are the symmetry variables given by

δΘi ≡
5

2Q2
0

Qpjkl εipq δQqjkl. (2)

The definition (2) applies to any 1st-order differential δ
and can be inverted, δQijkl = 2εiqpQpjklδΘq.

For infinitesimal rotations, where in the definition
eq. (2) Qpjkl can be replaced by its equilibrium value, the
three angles Θi, describing infinitesimal rotations about a
direction di, form an axial vector. In the general case of
finite rotations consequent rotations about different direc-

tions do not commute, and the conditions

(δ1δ2 − δ2δ1)Θi =
5

Q2
0

εipq(δ1Qpjkl)(δ2Qqjkl)

= 2εipq(δ1Θp)(δ2Θq) (3)

apply [35,38] indicating Θi not being a vector.
There is an alternative way of describing the hydrody-

namics of the Oh and O phase [36] by using the rotations
of the individual directors. One possible representation is

δΘi = εijk(ljδlk + njδnk + mjδmk), (4)

where the equivalence of the rotations of l, m, and n is ap-
parent. The expression (4) can only be used together with
the conditions that guarantee orthogonality among the di-
rectors. In order to discuss differences between an isotropic
state and the Oh phase, which is optically isotropic, the
use of δΘi, however, is more suitable.

3 Symmetry and symmetry variables of the
Th and the T phase

While the Oh-phase and more recently also the O-phase
have become of experimental relevance as symmetries in
the field of liquid crystals, the third phase of the cubic fam-
ily, which does not break parity symmetry, namely the Th

phase, has not been reported as yet experimentally. One
of the goals of the present paper is therefore to find out
how one could distinguish a liquid crystalline phase with
Oh symmetry from a phase with Th symmetry experimen-
tally. To do this we first analyze how the order parameter
for the Th phase must be different form the order param-
eter Qijkl used to characterize the O and the Oh phases
discussed above. The difference in symmetry is related to
the fact that Th has no 4-fold axes of rotations. We are
therefore looking for an order parameter which accounts
for this lower symmetry when compared to Oh and O,
but nevertheless has cubic symmetry and does not break
parity such as Td and T . Inspecting the structure of Qijkl

one realizes that one can construct easily the fourth-rank
tensor QT

ijkl

QT
ijkl = QT

0 [lilj(mkml − nknl) + mimj(nknl − lkll)

+ninj(lkll − mkml)]. (5)

Note that QT
klij is antisymmetric, when {kl} and {ij} are

interchanged.
By construction, QT

ijkl still has l, m, n as symmetry
axes, which are now twofold axes of rotation, rather than
fourfold ones, as they are for Oh. Thus we can reduce
the symmetry from Oh to Th by adding QT

ijkl as order
parameter in the Th phase. Therefore QT

ijkl can serve as
the order parameter for describing the Oh → Th phase
transition.

The order parameter QT
ijkl does not introduce any new

variables, and the three rotations of the cube of eq. (2)
can here be written as δΘi ∼ QT

pjkl εipq δQT
qjkl. Although
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the variables in the Oh and the Th phase are the same,
there are differences in the form of the material tensors,
regarding, e.g., Frank elasticity, and electro- and magne-
tostriction (for liquid crystalline elastomers and gels). The
terms electrostriction and magnetostriction refer to cou-
pling terms in the energy, which are linear in the strain
and quadratic in the electric or magnetic field. They are
of the form

εES = χE
ijklεijEkEl, (6)

where εij denotes the tensor of the strain field and Ei the
electric field. Thus electrostriction and magnetostriction
are associated with a fourth-rank material tensor, which
is symmetric in the first pair of indices (symmetry of the
strain tensor) as well as in he second pair of indices sepa-
rately. Applying an electric field thus leads to an elonga-
tion/shortening of the sample, which is quadratic in the
electric field.

If a Th phase gets chiralized, e.g., by the presence of a
pseudoscalar of microscopic origin, the mirror planes are
removed and the phase has T symmetry. The same phase
is obtained, when a tetrahedral Td phase gets chiralized.
The hydrodynamics of such a chiral T phase has been
described earlier [27, 37] and will not be repeated here.
Only a few remarks on the differences between the Th and
the T phase will be given.

4 Symmetry and symmetry variables of the
D4h and D4 phase

Both, the D4h and the D4 phase are of tetragonal sym-
metry. Therefore both can be characterized by a preferred
direction, which we represent by a director ni. It is also
associated with uniaxial nematics and can be extracted
from the quadrupolar order parameter

Qij = S

(
ninj −

1
3
δij

)
. (7)

This observation allows us to use as invariants in both
phases, D4h and D4, the director ni and the transverse
Kronecker delta, δ⊥ij = δij−ninj . This is all what is needed
to describe the rank-2 material tensors.

For the rank-4 material tensors the four-fold symmetry
in the plane perpendicular to ni requires a suitable rank-4
order parameter. In principle, one could use Qijkl familiar
from the Oh, and O phases. A more specific and convenient
choice is the projection of the cubic order parameter onto
the plane ⊥ ni

Qtr
ijkl = Q0

[
lilj lkll + mimjmkml

−1/4
(
δ⊥ijδ

⊥
kl + δ⊥ikδ⊥jl + δ⊥il δ

⊥
jk

) ]
, (8)

where li and mi are directors describing a square in the
plane ⊥ ni with the normalization Q2

0 = 2Qtr
ijklQ

tr
ijkl. With

the help of the transverse directors, the transverse Kro-
necker delta can also be written as δ⊥ij = mimj + lilj ,
reflecting the tetragonal symmetry, i.e. invariance under
a transformation m → l ∧ l → −m.

While D4h, also called 4
m mm or 4

m
2
m

2
m , has horizon-

tal mirror planes, they are absent in the chiral D4 phase
(also called 422), due to the presence of a pseudoscalar q0.
Particularly, it is well known [22] that the D4 phase shows
piezoelectricity requiring a parity-breaking third-rank ten-
sor, which can be constructed using q0 and ninpεpjlδ

⊥
kl.

The piezoelectric effect is, in general, a static coupling
in the energy between the strain field and an electric field,
which takes the form

εp = ζp
ijkεijEk. (9)

It requires a ground state that breaks parity (inversion)
symmetry such as, for example, quartz [22]; ζp

ijk is sym-
metric in i and j due to the symmetry of the strain field.
In contrast to electrostriction, piezoelectricity is an effect
in an external electric field. Conversely, applying a strain
to a piezoelectric material generates an electric field. The
piezoelectric effect has no direct analogue in the energy in
the magnetic domain, since the magentic field is odd un-
der time reversal and even under parity, while the electric
field is even under time reversal and odd under parity.

The symmetry variables are the three rotations of the
rigid director structure, δΘi, eq. (4). Since there is a pre-
ferred direction, n, which is visible in the microscope, it
is appropriate to split the three rotation angles into two
rotations of, and one rotation about, n

δni ≡ εikj njδΘk and δΩ ≡ ni δΘi (10)

where the non-commutativity relations, eq. (3), apply to a
nonlinear theory with finite rotations, appropriately. Note,
both variables are odd under the replacement ni → −ni

and read in terms of the directors δni = δ⊥ijδnj and δΩ =
−liδmi + miδli.

5 Hydrodynamics of the Oh and O phases

5.1 Statics

We will concentrate on the hydrodynamic effects specific
to the Oh, and particularly the O phase, when compared
to the isotropic state.

The Gibbs relation, connecting changes of the total
energy density dε with those of all hydrodynamic variables
(entropy density σ, mass density ρ, momentum density gi,
concentration c, and the symmetry variables) [39, 40] can
be written as

dε = Tdσ+μdρ+vidgi +μcdc+hΘ′
i dΘi +ΨΘ

ij d∇jΘi (11)

thereby defining the conjugate quantities (temperature T ,
chemical potential μ, velocity vi, relative chemical poten-
tial μc, and the “molecular fields” hΘ′

i and ΨΘ
ij ) as partial

derivatives of the total energy.
Since rigid rotations of the cubic structure must not

cost energy, hΘ′
i is zero (in the absence of any orienting

field) and only gradients of Θi (space dependent rotations
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of the cube structure) enter the total energy. In the general
case the “molecular fields” can be combined into

hΘ
i = hΘ′

i −∇jΨ
Θ
ij − 2εiklΨ

Θ
kj∇jΘl, (12)

where the last contribution is due to relation (3).
The form of the quadratic, Frank-type gradient energy

of inhomogeneous rotations of the cube is not affected by
the chirality. Therefore, the expression for ordinary cubic
biaxial nematics [36, 41] is valid for the O phase, as well.
In our notation it has the form

εg =
1
2
Kijkl(∇jΘi)(∇lΘk) (13)

with Kijkl = K1δjlδik +K2(δjkδil + δlkδij)+K3Qijkl con-
taining 3 independent Frank parameters.

On the other hand, linear gradient terms, absent in
the Oh phase are possible in the O phase, due to the ex-
istence of q0 (as in the cholesteric phase) and we get one
contribution

dεlg = q0k2∇iΘi = q0k2εijk(ni∇jnk + mi∇jmk + li∇j lk).
(14)

This expression is the analogue of the well-known lin-
ear twist term of chiral uniaxial nematics (cholesterics).
There, the linear gradient term of the director results in a
helical director structure as defect-free energetic minimum
state. In biaxial cholesterics helical rotations of the differ-
ent directors are independent and lead to frustration [7].
In the O phase rotations of the directors are not indepen-
dent, but have to preserve the cubic structure. Therefore
eq. (14) is minimized by a single helical rotation of the cu-
bic structure about any of the directors —which one does
not matter, since all are indistinguishable. However, this
rotation of the cubic structure cannot be seen directly by
optical means. Only if the orientation of the cube matters
for a definite experiment, the helical structure might be
detected indirectly.

If there is a linear gradient term, there are also static
Lehmann-type energy contributions [42,43], bilinear in lin-
ear director gradients and variations of the scalar vari-
ables, S ∈ {σ, ρ, c}

dεF = q0(∇iΘi)
∑
S

KS(δS)

= q0 εijk (ni∇jnk + mi∇jmk + li∇j lk)
∑
S

KS(δS),

(15)

where the sum over S comprises all scalar variables. All
these terms are due to the chirality of the O phase.

Static Lehmann contributions are associated in general
with chiral phases for which either the building blocks
(for example, the molecules) are chiral [42], or for which
the chirality is due to the low symmetry of the spatial
arrangement of the units [43].

The other energy contributions regarding the scalar
variables in the Oh and O phase are the same as in the
isotropic state and comprise the appropriate (scalar) static
susceptibilities.

5.2 Dynamics

The dynamics is described by conservation laws for the
conserved variables and balance equations for the non-
conserved ones [35]. The former contain (the divergence
of) the currents (e.g., the stress tensor, σij , in the mo-
mentum conservation law, the heat and the concentration
current), while in the latter case a quasi-current balances
the temporal changes of the variable

∂Θi

∂t
+ vj∇jΘi − ωi + JΘR

i + JΘD
i = 0 (16)

with the vorticity ωi = εijk∇jvk. Both, currents and
quasi-currents, are additively split into a reversible (su-
perscript R) and a dissipative part (superscript D). The
irreversible part of the dynamics can be derived from the
dissipation function (or the entropy production R, which
acts as the source term in the entropy balance), while the
reversible part is non-potential, requires R = 0 (conserved
entropy), and often (but not always) follows from general
invariance principles [40].

The dissipative dynamics of the Oh and O phases is
similar to that of the isotropic phase regarding second-
rank material tensors (e.g., describing heat conduction,
diffusion, and thermo-diffusion) containing one material
coefficient each [36]. The viscosity tensor, relating the
stress tensor σij with symmetrized flow, 2Aij = ∇jvi +
∇ivj , has the same form as Kijkl in eq. (13) containing
three flow viscosities, one more than in the isotropic phase.
There is one rotational viscosity, γ1, describing relaxation
of inhomogeneous cube rotations, JΘD

i = (1/γ1)hΘ
i .

In addition, in the O phase there are dissipative
Lehmann-type terms due to chirality (as in cholesterics)

2RL = q0h
Θ
i

∑
P

ψP∇iP, (17)

where the sum over P comprises ∇kP ∈ {∇kT,∇kμc, Ek},
the thermodynamic forces related to the thermal degree
of freedom, the concentration and the electric field, with
one dissipative coefficient ψP for each force.

The dissipative parts of the Lehmann effect has been
modeled first by Leslie [44] for classical cholesterics in the
framework of a continuum-type description. Using the hy-
drodynamic approach [42] it became clear that such ef-
fects not only arise for cholesterics, but also for chiral
smectic liquid crystals. Dissipative Lehmann effects are
thus complementing the static Lehmann effects discussed
in sect. 5.1.

As a result there are contributions to the dissipative
quasi-current, JΘD

i = q0

∑
P ψP∇iP indicating rotations

of the cubic structure about the direction of, e.g., an ap-
plied temperature gradient, which in nematics is called
Lehmann rotation [42,43]. In the cubic O phase, however,
this rotation cannot be seen directly. Variational deriva-
tives of R with respect to ∇iP lead to, e.g. dissipative heat
current, jσD

i = q0ψT hΘ
i . In nematics, where the appropri-

ate force hn
i can be generated by an external rotating mag-

netic field, this is called the inverse Lehmann effect [45].
How to excite a finite hΘ

i and therefore a heat current will
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be discussed in the next section. In ref. [45] it has been
shown that measurements of the inverse Lehmann effect
and of the direct Lehmann effects discussed so far can be
combined to disentangle static and dynamci contributions
of the Lehmann effect.

The part of the reversible dynamics related to trans-
port (vj∇iΘi) or convection (−ωi) in eq. (16) is due to
general invariance principles, like Galilean invariance and
rotational covariance [39,40]. For biaxial nematics this has
been investigated in detail in ref. [35].

In many nematic phases there is a phenomenologi-
cal reversible coupling between director reorientation and
symmetrized flow known as “flow alignment” and “back
flow”. In general, flow alignment takes in the stress tensor
the form

σij = λijkhk (18)

where σij is the stress tensor and hk is the molecu-
lar field associated with variables characterizing sponta-
neously broken rotational symmetries, such as, for exam-
ple, deviations of the director from its preferred direction.
λijk does not lead to dissipation or the generation of heat,
since hk is even under time reversal [46,47].

In uniaxial nematics there is one phenomenological pa-
rameter (related to the flow alignment angle under shear
flow). In the Oh and O phases, however, there is none due
to the cubic symmetry [36].

5.3 External fields

Generally, external fields can orient liquid crystals. In uni-
axial nematics, electric fields Ei and magnetic fields Hi

reorient the nematic director either along the field or per-
pendicular to it, depending on the sign of the dielectric
or magnetic anisotropy. In cubic biaxial nematics (both,
in the Oh and in the O phase) there is no anisotropic
quadratic term in the energy due to the high symmetry of
the cubic phase. There are also no third-rank tensors. Nat-
urally anisotropic terms of fourth order in external fields
are possible for both, the Oh and the O phase; they are of
the structure ∼ EiEjEkEl, ∼ HiHjHkHl or ∼ EiEjHkHl

and are well documented in the literature for cubic liquid
crystalline systems [41,48,49].

Taking, e.g., the magnetic field energy

εH = −χHQijklHiHjHkHl (19)

it is easy to see that the energetic minimum for χH > 0
is obtained, when the cube is oriented with one of its
edges along the field (l, m, or n), while for χH < 0
the field is along the space diagonal of the cube. For
deviations from the equilibrium orientation, a finite en-
ergy occurs giving rise to a torque on the cube hΘ

i =
(|χH |/3)εiqpQpjklHqHjHkHl using the inverse of eq. (2).

For the inverse Lehmann effect, a magnetic field rotat-
ing with angular velocity ω (e.g., in x/y plane) drags the
cube also into a rotation in this plane. There is, however,
a time lag, Δ, due to the rotational viscosity γ1, ensur-
ing that the orientation of the cube (for χH < 0) is never
in the equilibrium position parallel to the field. For the

time lag we get sin(4Δ) = −(12/|χH |H4
0 )γ1ω, which leads

to a heat current jσD
z = q0ψT hΘ

z = −q0ψT γ1ω indepen-
dent of the magnetic field strength, similar to the nematic
case [43]. Although the cube rotation cannot be seen di-
rectly, the heat current due to this inverse Lehmann effect
is detectable by standard means.

In a gel with O or Oh symmetry, permanent or tran-
sient elasticity is prone to electro- and magnetostriction,
when external fields are present. This effect is governed
by a fourth-rank tensor of the structure, eq. (13), with 3
independent material coefficients.

6 Hydrodynamics of the Th phase

The hydrodynamic variables in Th phases are the same as
for the Oh and O phase, respectively: three independent
rotation of the cubic structure, eq. (2).

In the following we will focus on the changes of the
hydrodynamics in the Th phase when compared to the
hydrodynamics of the Oh phase.

For the static behaviour related to director deforma-
tions we find one additional Frank constant, which is as-
sociated with the contribution

εTh
= K4Q

T
ijkl(∇iΘk)(∇jΘl). (20)

Thus instead of having three Frank constants as for
Oh, eq. (13), we have now four for Th.

There exists a third-rank tensor,

dijk ≡ εipqQ
T
qjpk = Q0

(
ni[ljmk + lkmj ]

+mi[ljnk + lknj ] + li[njmk + nkmj ]
)

(21)

which is symmetric in j, k and is invariant under spatial
inversion. By its definition it is clear that dijk fulfils all
symmetry requirements of the Th phase, since QT

ijkl does.
In the representation in terms of directors one has to take
into account that l is a shorthand for n×m thereby lead-
ing to expressions that are manifestly symmetric under
n → −n and m → −m. This tensor allows to describe
flexoelectricity

εfl = e1dijkEi∇jΘk (22)

containing one flexoelectric coefficient. Flexoelectric con-
tributions are, in general, static contributions coupling
electric fields to gradients of the variables associated with
spontaneously broken rotational symmetries. They have
been introduced first for uniaxial nematics by Meyer [50]
under the notation of “piezoelectricity”.

All static material properties associated with second-
rank tensors are the same as for Oh and contain one pa-
rameter each due to the cubic symmetry.

For liquid crystalline gels and elastomers, where elas-
ticity is described by the strain tensor uij , there are two
other static material properties associated with fourth-
rank property tensors, which differ in the Th phase from
the Oh phase, namely electrostriction and magnetostric-
tion, for which we have one additional contribution each

εThEM = QT
ijklukl(χEEiEj + χHHiHj). (23)
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This contribution comes in addition to the usual three
contributions from the Oh phase (compare ref. [22] for
solid state physics). It can be investigated experimen-
tally, for example by applying an electric field in the x-
direction. Then the strain fields induced in the two direc-
tions perpendicular to the electric field, namely the y- and
z-directions, would be different. It is easily checked that
in this case the strain difference

uyy − uzz ∼ QT
0 χEE2

x (24)

arises.
Other static fourth-rank property tensors are identi-

cal in the Oh and Th phase, [22], in particular those as-
sociated with the energetic contributions χE

ijklEiEjEkEl,
χH

ijklHiHjHkHl, and the Hookean elasticity, cijkluijukl,
since the antisymmetric QT

ijkl = −QT
klij cannot contri-

bute. On the other hand, χEH
ijklHiHjEkEl has a fourth

coefficient due to QT
ijkl.

In the dynamics there is, in the Oh and the Th phase,
one rotational viscosity and three flow viscosities, the lat-
ter because the viscosity tensor has the same symmetry as
the elastic one. In contrast to the Oh phase, there is flow
alignment and back flow in the Th phase

JΘR
i = λT dijkAjk, (25)

σR
ij = −λT dkijh

Θ
k , (26)

indicating e.g. orientation of the cubic structure by shear
flow, which is, however, difficult to detect optically.

When the Th phase is chiralized, a chiral T phase re-
sults. It shows piezoelectricity εp ∼ q0dijkEiujk and non-
linear dielectric orientation εd ∼ q0dijkEiEjEk, but also
characteristic reversible dynamic couplings between flow
and ∇kP ∈ {∇kT,∇kμc, Ek}, e.g. σR

ij ∼ q0dkij∇kT and
jσR
i ∼ q0dijkAjk. The full hydrodynamics of the T phase

has been presented before in refs. [27, 37], in a slightly
different language.

7 Hydrodynamics of the D4h and D4 phases

We focus on the hydrodynamics of the symmetry variables
δni and δΩ and their couplings to other variables involving
various material tensors.

Since both, the D4h and the D4 phase do not have a
polar direction, there are no non-vanishing property ten-
sors of first rank. Second-rank property tensors in both,
the D4h and the D4 phase take typically the uniaxial form

ξij = ξ‖ninj + ξ⊥δ⊥ij , (27)

where ni denotes the director associated with the preferred
direction. Property tensors of this type include the dielec-
tric tensor and the tensor of magnetic susceptibilities, in
hydrostatics and in dissipative dynamics the tensors of
heat conduction, electric conductivity, and diffusion.

For fourth-rank property tensors, the differences to the
case of uniaxial nematics can all be traced back to the

existence of the additional variable δΩi, and of the or-
der parameter Qtr

ijkl, which is characteristic for tetragonal
symmetry. For the analogue of Frank’s free energy of de-
formations of the orientational order,

εg =
1
2
Kikjl(∇ink)(∇jnl) + K7δ

tr
ikεlij(∇lΩ)(∇jnk)

+(K5ninj + K6δ
tr
ij )(∇iΩ)(∇jΩ). (28)

There are four Frank-type orientational elastic coefficients
related to distortions of the director, i.e. one more than
in uniaxial nematics, since Kijkl contains additionally
K4Q

⊥
ijkl, totaling the number of coefficients to seven.

Similarly, there are seven coefficients for the electro-
and magnetostriction tensor (in the case of gels). Another
class of rank-4 tensors are the viscosity tensor ηijkl and
the elastic tensor cijkl (in the case of gels), which have six
coefficients. This is one more than in the uniaxial case [39,
46] and the additional coefficient, e.g. η6Q

⊥
ijkl again is due

to the tetragonal transverse order. Thus, the number of
coefficients in rank-4 tensors in the D4h and D4 phase
is the same as in the D2d phase [26, 37], in accordance
with [22].

There is no rank-3 tensor, which is odd under the
n → −n transformation. Therefore, the flexoelectric en-
ergy εfl = fijkEi∇jnk has the same form as in the uniax-
ial nematic phase [5] and contributions of the form Ei∇iΩ
are ruled out. Similarly in the dynamics of the symmetry
variables

∂

∂t
ni + vj∇jni + (ω × n)i − λijkAjk + Xi = 0, (29)

∂

∂t
Ω + vj∇jΩ − niωi + Y Ω = 0, (30)

the flow alignment tensor, λijk, is as in the uniaxial ne-
matic case [46], and there is no flow alignment regarding
Ω.

All features discussed above apply to the D4 phase
as well, but there are additional chiral effects, which we
will discuss in the following. First we inspect linear gradi-
ent terms in the generalized energy as well as static and
dissipative Lehmann-type contributions. For these the ar-
guments for the D4 phase are quite in parallel to those for
the O phase, with differences originating in the different
symmetries, tetragonal and cubic, involved.

For deformations of the director fields we find two lin-
ear gradient terms

dεlg = q0(εijkk⊥ni∇jnk + k‖ni∇iΩ). (31)

Minimizing the first contribution leads to a helical rotation
of n about any of the two (indistinguishable) transverse
preferred directions, m or l, while the second one gives a
helical rotation of the transverse structure about n. This
latter type of helical state actually arises, if |k‖| > |k⊥|.

For the static Lehmann contributions we have, with
P ∈ {σ, ρ, c} denoting all the scalar variables,

dεF = q0

∑
P

δP
(
KP

⊥εijkni∇jnk + KP
‖ ni∇iΩ

)
(32)

again with two coefficients for each variable δP .
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Table 1. We summarize the physical properties of the various phases considered here. We have also included the Td and
T phases, which show octupolar order for comparison purposes. The macroscopic physical properties listed include chirality,
Lehmann effects, number of electrostrictive coefficients, piezoelectricity and flow alignment.

Phase Parity Chiral Lehmann Electrostriction Piezoelectric Flow alignement

O (432) −1 yes yes 3 no no

Oh (m3m) +1 no no 3 no no

Th (m3) +1 no no 4 no yes

Td (43m) −1 no no 3 yes no

T (23) −1 yes yes 4 yes yes

D4h ( 4
m

mm) +1 no no 7 no yes

D4 (422) −1 yes yes 7 yes yes

For the corresponding dissipative Lehmann contribu-
tions in the D4 phase we get

2RL = q0

∑
S

(∇kS)
(
ψS
⊥hn

k + ψ‖h
Ω
k

)
, (33)

where the thermodynamic forces ∇iS ∈ {∇iT,∇iμc, Ei}
and the conjugates, hn

i and hΩ
i , follow from the appropri-

ate part of the energy density

ε = hn′
i dni +Ψn

ijd∇jni +hΩ
i d∇iΩ+Tdσ+μcdc+ . . . (34)

In the absence of external fields there is hn′
i = 0, but in

the general case the full conjugate of dni can be written
as

hn
i = hn′

i −∇jΨ
n
ij + 2nkΨn

kj∇jni (35)

where the last contribution is due to non-commutativity
of finite rotations, eq. (3). There is no external field that
couples to δΩ and only gradients of Ω enter the energy.

Piezoelectricity has a rather specific form in the D4

phase [22]. Taking the preferred direction n as the z-axis,
and applying a transverse electric field in the x-direction,
leads to a strain in the y-z plane, while a field in y-
direction leads to a strain of opposite sign in the x-z plane.
Defining sijk = ninpεpjk we can write the piezoelectric en-
ergy as

εpiezo =
1
2
q0ζp(sijk + skji)Ejuik (36)

which has one piezocoefficient ζp, since the strain tensor
uik is symmetric. The other rank-3 tensor s⊥ijk = δ⊥ipεpjk

does not lead to an additional contribution in the sym-
metrized case, eq. (36). The sign of ζp is not fixed (instead
of sijk one could have defined a s̃ijk with the opposite
sign), but the two contributions for E‖l and E‖m always
come with opposite signs.

There is a third-order orienting energy, linear in the
electric field, E, and quadratic in the magnetic one, H,

εcub
f =

1
2
q0ζ

cub
f (sijk + skji)EjHiHk (37)

of the same form as piezoelectricity. Taking E ⊥ H, the
electric field orients one of the transverse directions and
the magnetic fields defines a direction tilted 45◦ to the

second transverse direction and 45◦ to n. This fits to a
negative dielectric anisotropy that favours n ⊥ E, but is
always in conflict with the diamagnetic anisotropy that
favours either n ⊥ H or n‖H.

There are no physical effects in D4h related to the
parity-conserving and n-symmetric tensor sijk.

The fourth-order field energies are, for D4h and D4,
of the same form as for the O and Oh phase, eq. (19),
when Qijkl is replaced by Qtr

ijkl. They allow to orient
m or l, when the appropriate coefficient is positive, and
(1/

√
2)(m ± l) if it is negative.

8 Summary

In this paper we have analyzed cubic and non-polar tetra-
gonal liquid crystals and gels, which do not possess oc-
tupolar order, in contrast to the systems reviewed in
ref. [37]. Systems of interest therefore included O, Oh

and Th from the cubic class and D4 and D4h from
the tetragonal class of symmetries. The physical prop-
erties of these phases including Lehmann effects, piezo-
electricity, flow alignment and number of electrostric-
tive/magnetostrictive coefficients is summarized in ta-
ble 1. For completeness as well as for comparison purposes
we have also included in this table the cubic phases Td and
T , which have octupolar order.

We have investigated the symmetry properties and the
macroscopic behavior of cubic liquid crystals with O and
Oh symmetry as they have been found recently experi-
mentally for bicontinuous cubic liquid crystalline systems
with three networks. Since the domains with one hand can
reach up to 1mm in size [1], our prediction that static and
dissipative dynamic Lehmann type should be observable
in these chiral domains in the O phase. In particular, the
inverse Lehmann effect can be tested experimentally: A
rotating magnetic field drags along the cubic structure to
also rotate. Although the latter rotation is not visible in
the microscope, the temperature gradient induced by this
rotation due to the inverse Lehmann effect is detectable.

For the Th phase, which has no longer four-fold axes
of rotation, in contrast to the Oh phase, we predict
the occurrence of additional electrostrictive and mag-
netostrictive effects associated with the static coupling
terms linear in the strain and quadratic in the external
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fields. For example, when an electric field is applied
parallel to an axis of the cube, there is a strain difference
induced in the two directions perpendicular to the applied
field. The experimental detection of such an effect would
help to identify the cubic Th phase, which has not yet
been reported in the field of liquid crystals. As a reversible
dynamic effect not present in the O and Oh phases, we
find that flow alignment, reflecting the coupling between
the director orientation and extensional flow involving
symmetrized velocity gradients, is possible in Th phases.
We also find that, when a Th phase is chiralized, a
phase of T symmetry, which breaks parity symmetry, in
contrast to the Th phase, results.

We emphasize that all cubic phases discussed (O, Oh

and Th) are optically isotropic just like an isotropic liquid
phase. While in some cases one can see experimentally the
growth habits of a cubic phase growing in the isotropic
liquid phase, our analysis provides additional possibilities
to distinguish the cubic phases from the isotropic phase
as well as methods to identify the three cubic phases O,
Oh and Th separately.

Comparing the macroscopic properties of the D4h and
the D4 phase, it emerges that for the chiral D4 phase
static and dynamic Lehmann effects are expected to be
detectable experimentally provided the domain size of
domains of either hand can be made sufficiently large. It
should be noted that there two types of helical structures
are possible in D4, either the preferred direction is
helical, or one of the transverse direction winds about
the (constant) preferred direction. The former case is
detectable in the microscope, while the latter is not
and such a domain looks like an achiral D4h one. In
crossed magnetic and electric fields the orientation of the
preferred direction is always frustrated due to a cubic
field-orienting energy. For liquid crystalline gels of D4

symmetry a rather specific piezoelectric effect —the static
cross-coupling between strain and electric fields, which is
linear in the electric field— is predicted: taking the z-axis
as the preferred direction, and applying a transverse
electric field in the x-direction, leads to a strain in the
y-z plane, while a field in y-direction leads to a strain of
opposite sign in the x-z plane.

It thus emerges that cubic and non-polar tetragonal
liquid crystalline systems can be rather varied in mecha-
nisms generating mesoscopic and macroscopic chiral do-
mains in systems composed of achiral molecules. For chi-
ral domains generated in optically isotropic systems made
of achiral molecules only one such mechanism has been
suggested so far [51]. In addition, interesting electro- and
magneto-mechanical effects emerge.

Open Access funding provided by Max Planck Society. It is
a pleasure to thank Carsten Tschierske and Volker Abetz for
stimulating discussions and correspondence. Partial support of
the work by HRB and HP through the Schwerpunktprogramm
SPP 1681 “Feldgesteuerte Partikel-Matrix-Wechselwirkungen:
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