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ABSTRACT

We benchmark a selection of semiclassical and perturbative dynamics techniques by investigating the correlated evolution of a cavity-
bound atomic system to assess their applicability to study problems involving strong light-matter interactions in quantum cavities. The
model system of interest features spontaneous emission, interference, and strong coupling behavior and necessitates the consideration
of vacuum fluctuations and correlated light-matter dynamics. We compare a selection of approximate dynamics approaches including
fewest switches surface hopping (FSSH), multitrajectory Ehrenfest dynamics, linearized semiclassical dynamics, and partially linearized
semiclassical dynamics. Furthermore, investigating self-consistent perturbative methods, we apply the Bogoliubov-Born-Green-Kirkwood-
Yvon hierarchy in the second Born approximation. With the exception of fewest switches surface hopping, all methods provide a rea-
sonable level of accuracy for the correlated light-matter dynamics, with most methods lacking the capacity to fully capture interference

effects.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5128076

I. INTRODUCTION

Profound changes in the properties of cavity-bound molec-
ular systems can be achieved in regimes where the quantum
nature of light becomes important. A few notable examples are
the change in conductivity in semiconductors due to vacuum field
hybridization,' the appearance of mixed states due to strong cou-
pling,”” and multiple Rabi splittings caused by ultrastrong vibra-
tional coupling.” Although the forefront of the rapidly expanding
domain of cavity-modified chemistry has been strongly driven by

experiments, theoretical investigations have offered complementary
insights into the various possibilities opening up with this new field
of research.” '°

Describing chemical processes that are strongly correlated with
quantum light' """ requires an accurate and flexible, furthermore
computationally efficient, treatment of the light-matter interac-
tions. Thus, in order to meet the demand of developing an ab
initio theoretical description of cavity modified chemical systems,
extensions to the traditional theoretical toolkits for quantum optics
and quantum chemistry are required. In this paper, we focus on

J. Chem. Phys. 151, 244113 (2019); doi: 10.1063/1.5128076
Published under license by AIP Publishing

151, 2441131


https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5128076
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5128076
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5128076&domain=pdf&date_stamp=2019-December-26
https://doi.org/10.1063/1.5128076
https://orcid.org/0000-0001-8208-2545
https://orcid.org/0000-0002-8557-733X
https://orcid.org/0000-0003-2060-3151
https://orcid.org/0000-0002-4226-4069
mailto:norah-magdalena.hoffmann@mpsd.mpg.de
mailto:christian.schaefer@mpsd.mpg.de
mailto:nsakkinen@gmail.com
mailto:angel.rubio@mpsd.mpg.de
mailto:heiko.appel@mpsd.mpg.de
mailto:aaron.kelly@dal.ca
https://doi.org/10.1063/1.5128076

The Journal

of Chemical Physics

semiclassical dynamics methods, which due to the simplicity, effi-
ciency, and especially scalability, present an interesting alternative or
extension to existing quantum electrodynamical wavefunction’’*’
and density-functional (QEDFT) based approaches.'** *°

The semiclassical concept has the advantage of providing an
intuitive qualitative understanding of the dynamics through trajec-
tories in phase space. Furthermore, many semiclassical methods do
not exhibit an exponential scaling of the computational effort with
system size or simulation time. However, these methods can fail
to quantitatively, and sometimes even qualitatively, describe all of
the relevant physical features in a variety of nonadiabatic reactive
scattering and excited state relaxation processes, such as nuclear
interference and detailed balance.””* Hence, benchmark tests of
these approaches are needed in this particular regime of the prob-
lem in order to be able to verify their viability. In order to address
some of these challenges, we have recently shown the potential of
the Multitrajectory Ehrenfest (MTEF) method to capture the cor-
related dynamics of a one-dimensional QED cavity-setup with a
two-level atomic system coupled to a large set of cavity photon-
modes.”” Furthermore, we note that in contrast to recent work of
Subotnik and co-workers, who investigated light-matter interaction
with an adjusted Ehrenfest theory based method to simulate sponta-
neous emission of classical light," > we focus on the description of
quantized light fields.

Here, we broaden our scope by investigating the performance
of a comprehensive class of approximate quantum dynamics meth-
ods for simulating spontaneous emission in an optical cavity, includ-
ing Ehrenfest mean-field theory,””* Tully’s surface hopping algo-
rithm,” fully linearized™ and partially linearized’” semiclassi-
cal dynamics techniques, and a selection of approximate closures
for the quantum mechanical Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy. Through benchmark comparisons with
exact numerical results, we assess the accuracy and efficiency of
each method and highlight the possibilities and theoretical chal-
lenges involved with extending these approaches toward realistic
systems.

The remainder of this work is divided into four sections: Sec-
tion II gives a short overview of general quantum mechanical light-
matter interactions and a brief introduction of the class of model
systems used in this study. Section IIT contains a short introduc-
tion to each of the selected dynamics methods that we consider
in this work. In Sec. IV, we report the results of our benchmark
tests of the performance of these techniques in describing spon-
taneous emission, stimulated absorption, and strongly correlated
light-matter dynamics. In Sec. V, we offer some conclusions and
outlooks.

Il. ELECTRON-PHOTON CORRELATED SYSTEMS

The total Hamiltonian for a coupled light-matter system can be
written as follows:

I:I:HA+H1:+HAF. (1)

The first term, Hy, is the matter Hamiltonian, which may be gener-
ally expressed in the spectral representation as follows:

I:IA = Zéﬂk)(k‘

k
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Here, {¢, |k)} are the energies and stationary states of the electron-
nuclei system in the absence of coupling to the cavity. The second
term is the Hamiltonian of the uncoupled cavity field Hr,

fp= 2 5B+ 0}Q2). 2)

The photon-field operators, Qa and P,, obey the canonical com-
mutation relation, [Qq, Par] = #iduq, and can be expressed using
creation and annihilation operators for each mode of the cavity

field,
Qu=1/ h (ah +a4), Pu=i h“’“(az—aa),
2w 2

where 4}, and 4, denote the usual photon creation and annihilation
operators for photon mode a. The coordinatelike operators, Q,x, are
directly proportional to the electric displacement operator, while the
conjugate momentalike operators, P,, are related to the magnetic
field.”"”*" The upper limit of the sum in Eq. (2) is 2N, as there are
(in principle) two independent polarization degrees of freedom for
each photon mode; however in the 1D cavity models presented here
only a single polarization will be considered.

The final term in Eq. (1) represents the coupling between
the electron-nuclei system and the cavity field. In Coulomb gauge,
and the dipole approximation,'™” this term can be written as

follows:
P 2N . ) 1 5
ar = ) (0uQu(ha- ) + 5 (e 1)7), 3)
a=1

where we denote /1 as the electronic plus nuclear dipole moment
and A, as the matter-photon coupling vector."***' The featured
methodologies can be generically applied to arbitrary complex mat-
ter systems.

With the demand for exact reference solutions, as part of the
benchmarking procedure, we are forced to restrict the Hilbert-space
of interest. Focusing on the evolution of the photonic degrees of
freedom, we restrict the matter part to a highly simplified few-
level atomic system trapped in a cavity'**”** as depicted in Fig. 1.
The fundamental limitations of the few-level approximation have
been presented in a variety of recent publications.'®*>****** While

Mirror

FIG. 1. Cavity-setup: Few-level approximated atomic system (green) trapped in a
cavity and coupled by coupling strength A, to 400 photon modes with their photonic
frequency wq, where a ={1, 2, . . ., 400}.
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this approximation results in a strongly simplified problem, it has
the advantage that exact numerical results, although nontrivial to
obtain, are still achievable with a reasonable computational effort.
In the case of a two-level approximation of the matter system, the
quadratic term (A, - #)* simply results in a constant energy shift
and hence can be discarded.”’ For simplicity, we also neglect this
term in the case of the three level model system, to remain consis-
tent across setups and previous publications.'****”® However, the
quadratic term is generally important to consider as it stems from
a proper definition of field observables, renders the system stable,
and is essential to retain gauge and translational invariance. Appli-
cations to realistic systems should of course consider this term; for
a detailed discussion of this topic, one may refer to Ref. 44, for
example.

In the case of a two-level atomic system, this corresponds to a
special case of the spin-boson model. With the position of the atom
fixed at rg = % in this study, half of the 2N cavity modes decouple
from the atomic system by symmetry. We adopt the same parame-
ters as in Refs. 14 and 45, which are based on a 1D Hydrogen atom
with a soft Coulomb potential (in atomic units): {e1, &} = {-0.6738,
~0.2798}, Aa(%) = 0.0103 - (~1)%, L =2.362- 10°, and 12 = 1.034.

For the three-level atom, we adopt all the same parameters for
the field and the atom-field coupling as for the two-level case. The
atomic energies for the three level model are {e1, &, €3} = {-0.6738,
—0.2798, —0.1547}, and as before the numerical parameters are based
on the 1D soft-Coulomb hydrogen atom. The dipole moment oper-
ator only couples adjacent states such that the only nonzero matrix
elements are {y12, p23} = {1.034, —2.536} and their conjugates.

Furthermore, with Ezgf‘g - = 12 1072 for the two-level sys-

tem and eag%z = 2.1 - 1072 for the three-level system, where

gij = W/ %A is the coupling strength for the resonant mode,
our system is beyond common perturbative approaches most illus-
tratively indicated by the appearances of a bound photon peak in
the intensity as consequence of counter-rotating components. Cav-
ity losses are not considered at this point but could be included in
future developments.

Ill. METHODS
A. Multitrajectory methods

In this section, we briefly review a selection of semiclassical
dynamics methods that are based on ensembles of independent tra-
jectories. These methods have been introduced traditionally to study
electron-nuclear systems, and they typically involve the use of the
Wigner representation for the non-subsystem degrees of freedom. In
this work, we extend the application of these methods to treat cou-
pled quantum mechanical light-matter systems, in which the degrees
of freedom of the photon field will be partially Wigner transformed.
The structural similarity allows for the trivial inclusion of nuclear
degrees of freedom. The general expression for the average value of
any observable, (B(t)), in the partial Wigner representation can be
written as follows:

(B(t)) = Trs f dXBuw (X, )pw (X, 1 = 0),

= f dXBYy (X, )i (X),

AN
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where the subscript W denotes the partial Wigner transform over
the photonic degrees of freedom, which are represented on the con-
tinuous phase space X = (R, P). The partial Wigner transforms for
an arbitrary operator B and the density matrix p are defined as
follows:**

A i, Z A Z
BW(R,P):/dZePZ<R—5|B|R+E>,

1 mz( zZ, Z)
[z _z =)
(Znh)ZN/de R=5 PR+

Thus, in order to assemble the average value a multitrajectory
method may be employed, which is essentially a hybrid Monte Carlo
molecular dynamics method in which initial conditions are sampled
from the initial Wigner distribution, and then an ensemble of molec-
ular dynamics trajectories is used to evaluate the time-evolution of
the property of interest.

pw(R,P) =

1. Ehrenfest mean-field theory

The Ehrenfest equations of motion may be derived by assuming
that the total density can be written as an uncorrelated product of
the atomic and field reduced densities at all times, and then taking
the appropriate classical limit,”””* or by starting with the quantum-
classical Liouville equation (QCLE), which is formally exact for the
class of systems studied here,”” and then making the uncorrelated
approximation, i.e.,

pw (X, t) = pa(t)prw (X, 1),
where the reduced density matrix of the atomic system is as follows:
pa() = Tre(pw(x,0)) = [ dxpw(X.1),

and the Wigner function of the cavity field is prw(X,t)
= Tra(pw (X, t)). The Ehrenfest mean-field equations of motion for
the atomic system are as follows:

depa(t) = —i[HA +ﬁAF,W(X(t)))ﬁA(f)]»

where Hr,w denotes the Wigner transform of the bilinear coupling
and H, the atomic Hamiltonian. The evolution of the Wigner func-
tion of the photon field can be represented as a statistical ensemble
of independent trajectories with .#’being the ensemble size, where
we select uniform weights w' = 1/.4]

pp,w(X, t) = 71/2 5(X —X](t)),
j=1

that evolve according to Hamilton’s equations of motion,

dQ. OHY, dp.  OHJ,
dt 0P, = dt  0Qu

The mean field photonic Hamiltonian is as follows:

= L3 (7 200,

24

where (1) = Tra (4 (0)A(1)).
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2. Fewest switches surface-hopping

In the following, we outline the fewest switches surface hop-
ping (FSSH) method for the electron-photon coupled system. FSSH
allows feedback between the classical and quantum subsystems,
which, however, requires the photons to always propagate on a
particular electronic adiabatic state, with hops between adiabatic
surfaces.”" '

Considering the mode displacement moving along some clas-
sical trajectory R(¢) = {Ra=1(2), ..., Ran(2)}, the effective electronic
Hamiltonian,

HER(1)] = Hia + Har[R(1)] + % gwiRa(t)z,

then becomes parametrically dependent on time through the pho-
tonic trajectory. Expanding the electronic wavefunction in the adia-
batic basis yields the following:

Y(r,R,t) = Z ci(t)¢i(r, R(t)),

where r denotes the collection of all electronic degrees of free-
dom and c;(t) are time-dependent complex expansion coefficients.
Assuming the photonic motion with the momentum P(f) to be
classical, the equation of motion is given by the following equation:

Orpy = —i ;(Hfé[z«r)]pk,- - piHE[R()])

- P(t)- Zk:( «[R(1)]py — pudiy[R(1)]),

with the photon mode & and p;j = ¢i(t)c; () being the correspond-
ing electronic density matrix. Furthermore, the movement of the
photon is given by moving along a single potential energy surface
except for some instantaneous switches. The probability for those
switches, jumping from the current state i to another state j, is
defined by the following:

bijAt
8ij = >
"op

i

where At is a time interval from ¢ to t + At and b;; = —2Re(p;; P(t) - djj),
with djj = (¢i(r, R(t))|Or¢;(r, R(t))) being the nonadiabatic coupling
vector.

a. Semiclassical mapping methods. Here, we briefly sketch two
semiclassical methods that are based on the mapping representation.
These approaches can be rigorously derived from the path-integral
formulation of the dynamics, or, for example, using the quantum-
classical Liouville equation (QCLE).” Originally, however, the lin-
earized semiclassical (LSC) approach has been developed through a
stationary-phase approximation to the full path-integral, and sub-
sequently applying a linearization approximation to the resulting
subsystem propagator.”

With the intention of providing only the essential information
about these techniques, we will briefly introduce the representa-
tion in a mapping basis and then simply give the expressions for
the corresponding equations of motion and expectation values. The

ARTICLE scitation.org/journalljcp

interested reader may refer to specific literature (e.g., Refs. 27, 37,
38, and 52-55 for example) for further information and technical
details.

In order to achieve a classical-like description of the quan-
tum subsystem, the Meyer-Miller-Stock-Thoss mapping represen-
tation’””" is used. Each subsystem state 1) is represented by a
mapping state |m, ), that is, an eigenfunction of a system of N fic-
titious harmonic oscillators, that have occupation numbers which
are constrained to be 0 or 1: [A) — |m)) =01, ..., 1), . ..ON).

3. Linearized semiclassical dynamics

In the LSC method, the mapping version of an operator on the
subsystem Hilbert space, B, (X), is defined such that its matrix ele-
ments are equivalent to those of the corresponding operator, By (X).
For example, the mapping Hamiltonian can be written as follows:”’

- AL o\ A s
Bu(X) =Y B (X)ajay,
w
where the creation and annihilation operators on the subsystem

mapping states, &i and 4, satisfy the usual bosonic commutation

relation |ay,a,, | = o). Completin e Wigner transtorm over the
lation [a),4],] = 8. Completing the Wig fi th

subsystem, the mapping Hamiltonian can be written as a function of
continuous phase space variables (X, x) = (R, P, 1, p),

Bu(X) = 3 By (X) (v + papy = Su).
e
The LSC time-evolution of an arbitrary operator in the map-
ping representation, B,,(X), can be written as a classical-like dynam-
ics in the extended Wigner-mapping phase space,

%Bm(X,x,t) = {Hn(X,x),Bu(X, %, 1)} -
Due to the Poisson bracket structure of this equation, the density can
be obtained from the evolution of an ensemble of independent tra-
jectories, pm(X,t) = Va Z,Zl 0(X - Xi(t)), where X;(t) = (Ri(¢),
Pi(t)) are given by the solutions of the following set of ordinary
differential equations:*®

dr, _OH,  dp  OHn
G o d T on
dR OH,  dP _ OH,

dt 9P’ dt AR’

4. Partially linearized quantum-Classical dynamics

A less severe approximation to the QCLE’"" uses a partially
linearized approximation to the equations of motion for the cou-
pled system, using the mapping representation for the forward
and backward time-propagators separately. This doubles the num-
ber of mapping variables used to describe each subsystem state
but yields an efficient approximate solution to the QCLE in this
forward-backward mapping form. This forward-backward trajec-
tory solution (FBTS) describes a classical-like dynamics in the
extended phase space of the environmental and the mapping vari-
ables that represent the subsystem degrees of freedom. The effec-
tive Hamiltonian function that generates the FBTS evolution is as
follows:
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Ho(X,x,x) = %(HM(X,x) + Hu(X,X)),

where (X, x, x') = (R, P, r, ¥/, p, ).

The continuous trajectories that define the FBTS solution to
the quantum-classical Liouville equation can be represented by the
following Hamiltonian equations of motion:*®

dr,  OH.(X,x) dpy  OHn(X,x)
d - ap. At on
dry  OHw(X,x') dp,  OHu(X,X')
da - o9p, At o,
dR P dpr OH,(X,x,x")
dat M dat - 9R

In the FBTS simulation algorithm, the matrix elements of the
operator By () are approximated using the following expression:

BY (X,t) =% f dxdx’ §(x) (') (11 +ip2) (Fh — ip})
e

x BYY (X0) (ru(8) + ipu(D) (1 () = ipia (1)),

2 2
where ¢(x) = (7)"Ne” Z(u*) are normalized Gaussian distri-
bution functions, and evaluation of the integrals over the time-
independent ¢(x) functions is carried out by Monte Carlo sampling.

B. Quantum BBGKY-Hierarchy

In the following, we briefly describe the quantum mechanical
BBGKY-hierarchy, which is an exact reformulation of many-body
quantum dynamics. As such it can capture quantum interference
and fluctuations. In practice, some approximate closures for the
hierarchy have to be employed to reduce the computational cost
of this approach. For a system of interacting fermions and bosons
according to Eq. (3), where we focus on the explicit Pauli-spin
representation of the 2-level system, i.e.,

12N

N Ae , . A . .
H= -5 0t > (Pi + wﬁQi) +E(ra) 6%,
a=1
) . ) (4)
E(ra) = p2wada(ra) Qus
a=1

with Ae = & — ¢, the underlying equations of motion, known
as the quantum BBGKY-hierarchy™ °' follow from the Heisenberg
equations of motion for the Hamiltonian. Consistent with previ-
ous publications,(’1 we introduce the short-hand notation Xi4 = Qu,
Xoo = P, such that the correlation functions are given by the
following:

Aiajp = (XiaXip) — XiaXip»
AS;jOt = (thxéE) - XilXJ.D

with 4, j € {1, 2}, ¢ € {x, y, z}, and we chose to suppress the
time-arguments for brevity. In this work, we truncate the infi-
nite hierarchy of equations of motion at the doublets level for
the correlation functions,”’ resulting in an approximation con-
ventionally referred to as the second Born approximation.”*"’
This extends the Hartree-Fock-type approximation as presented in

ARTICLE scitation.org/journalljcp

Refs. 14 and 25 to the next higher consistent approximation level
of the hierarchy. With X = (Qq=1,-. ., Qa=(2ny> Pa=15 - - - ,Pa:(ZN))T
= (X, .. X1 ony Xats - .,XZ(ZN))T the normal coordinate aver-
ages satisfy

X = {X,Hq(0:X)},

where {-, -} denotes the canonical Poisson bracket. Furthermore, Hy
defines the classical Hamiltonian function, i.e., providing the classi-
cal equivalent to Eq. (4) B — (B). The spin-projection averages in
turn obey the following equations:

. = 2E(ra)oy + 205 - A,

0y = —Aeox — 2E(ra )0, — 205 AL

0x = Aoy,
where A = (wihi(ra)pizs .- - ,le(ZN)(rA)ylz)T represents the
effective light-matter coupling. Moreover, we introduced the vector
notation A, = (Agit,. - ANy Aeats - )As;Z(ZN))T for the cor-

relation functions. The dynamics of the correlation functions are
determined by

A = {Az, Hy(—10y — 0,02, Az) } + 2EA, +20,A - Aege(74),
Ay = {A), Ha(—10: — 0y0, —Ay) } — AeAy +2EA,

+ 20;A - Aeg(1a),
A= {AcHa(1- 07, As)} - AeA,

where the matrix A with the elements A;q jg is the covariance matrix
satisfying the following equation:

A=J - QA-A-Q-J-Aip- Al — A, 2%

Here, J is the standard symplectic matrix

0 1 0
; -1 0
“lo -1 0

and Q denotes a matrix such that Q10 = a)i, Qop2a = 1, and
otherwise zero.

Evolving the covariance matrix in time allows the field fluctu-
ations to dynamically respond to the polarizable matter. Deriving
the equation of motions from the many-body perturbation hier-
archy sets an implicit condition on the dynamic fluctuations as
the 2-particle reduced density matrix has to be identically zero to
guarantee that only a single electron is acting in our system. In
Sec. IV A 1, we will show that enforcing this condition cures
almost completely all nonphysical negative intensities that arise oth-
erwise and overall improves the performance of the second Born
approximation considerably.

C. Configuration Interaction expansion

To obtain accurate reference solutions, considered as exact
benchmarks for this low dimensional model, we truncate the Con-
figuration Interaction (CI) expansion such that we allow at most two
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photons per mode, featuring 400 modes, while retaining the full two
and three state representation for the atomic system,

¥(1)) = Ek: cko(1)]k) ® [0) + D2 D ci, ()[K) © 4}, 10)

k m
2N*+N o
+ 303 e (D) ® a),ay, |0). (5)
k npny

In line with the nature of CI expansions, the numerical cost expo-
nentially grows when increasing the number of allowed photonic
excitations. When exploiting the bosonic symmetry of the photons
in total 1 + 2N + 2N(2N — 1)/2 photon basis functions span the
zero-photon (vacuum), one-photon (1pt), and two-photon (2pt)
space. Combined with the low-dimensional matter system featur-
ing the eigenstates |k), it is computationally nontrivial but feasi-
ble to propagate this CI expanded wavefunction using the Lanczos
algorithm.”*”” We ensured that the above (vacuum + Ipt + 2pt)
CI basis is sufficient for the observables and parameters studied in
this work.”” Although spontaneous decay from the 2-level atomic
system will lead to at most a single observable photon, the pho-
tonic fluctuations can reach the 2pt state space which results in
the possibility to bind photon intensity at the atomic position (see
Fig. 6).

IV. RESULTS AND DISCUSSION

As in earlier work,”’ we note that the Wick normal ordered
form for operators (denoted : B: for some operator B) is used when
calculating average values in this study. The reason for using the
normal ordered form, in practice, is to remove the typically non-
measurable®®® effect of vacuum fluctuations from the results, which
ensures that both (E) = 0 and (I) = 0, irrespective of the number
of photon modes in the cavity field, when the field is in the vac-
uum state. In order to guarantee a distinct spatial resolution for the
dynamics of the photonic wave-packet in the cavity and to ensure the
inclusion of all possible inference effects we use 400 photon modes
to represent the cavity field that is coupled to a two or three energy-
level atomic system in all calculations shown below. We choose
the atom to be initially in the highest excited state and the cavity
field in the vacuum state at zero temperature. For our benchmark
numerical treatment, we solved the time-dependent Schrodinger
equation by using a truncated Configuration Interaction expan-
sion as introduced in Sec. I1I C. The atomic population operator is
given by 6;(t) = |ci(t)|*, where ¢;(t) denotes the time-dependent CI
coefficient for the corresponding atomic energy level. Furthermore,
we define the normal-ordered electric field intensity operator as
follows:

Ji(rt) = Ez(r, t):=2 ;wa(i(r)Qi(t) - ;Cj(’)

with
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A. 2-Level atom: One-photon emission process

In Fig. 2, we show a schematic sketch of the propagating
photon-field intensity along the axis of the cavity for four differ-
ent time snap-shots. As the spontaneous emission process evolves,
a photon wave-packet with a sharp front is emitted from the atom
[e.g., panel (a) of Fig. 2] and travels toward the boundaries [e.g.,
panel (b) of Fig. 2] where it is reflected, and then travels back to the
atom [e.g., panel (c) of Fig. 2]. The emitted photon is then absorbed
and re-emitted by the atom, which results in the emergence of inter-
ference phenomena in the electric field. This produces a photonic
wave-packet with a more complex shape [e.g., panel (d) of Fig. 2].
In Figs. 3 and 4, we plot this spontaneous emission process for the
different methods compared to the exact result (black dashed line).
Here, we observe that the essential differences among the methods
are (i) determining the correct amplitude of the wave-packet, (ii)
capturing the re-emission interference pattern, and (iii) resembling
the bound photon at the atomic position.

1. Finite size corrections to the BBGKY hierarchy

By partially summing the infinite series of perturbative dia-
grams that arise as a consequence of the Heisenberg equation of
motion using Hamiltonian (4), we intrinsically introduce spurious
interaction between physically nonexistent particles as we consider
that more diagrams than particles are present in the physical system.
This is a well-known subject of interest in electronic structure the-
ory.””’° Specifically for our problem, this can result in such funda-
mental violations as producing negative atomic state occupations or
photon field intensities (see Fig. 3). Enforcing the correct fermionic
truncation of the many-body hierarchy acts to cure most of the
nonphysical features that appear, i.e., negative intensities after the
re-emission and strong oscillations around the exact solution. This
restriction to the single electron subspace (lefsc) is performed by

enforcing that the two-particle reduced density matrix be identically
() 1)

zero, pj = 0. For one-body reduced density-matrices p;;’, the clus-
ter expansion on the exchange-only level pfjil) ~ pl.(ll) pj(l) - pfkl ) Pj(zl)
guarantees this if pi(jl) is idempotent.

Mirror Atom Mirror

(b) J
-— —
° A N
— -«
(d) A/\ /\A
- —
-« '

Cavity Length

FIG. 2. A schematic sketch of the photon-field intensity propagating through the
cavity for four time snap-shots: (a) t = 100 a.u., (b) t = 600 a.u., (c) t = 1200 a.u.,
and (d) t =2100 a.u.
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FIG. 3. Intensity of the emitted (normal-ordered) photon field using
different finite-size corrections at three different time snapshots: (a)
t =100 a.u., (b) t = 1200 a.u., and (c) t = 2100 a.u.; no correction, single-
photon correction (1pfsc), single-electron correction (1efsc), and single-photon
and single-electron correction (1fsc) for the BBGKY hierarchy within the second
Born approximation. The arrow indicates the direction of the wave-packet.

A further correction is possible in the photonic subspace,
i.e, enforcing at most a single photon in the cavity for the
two-level system (Ipfsc). This is achieved by substituting higher
correlation matrices with lower order expansions such that the
equation of motion does not connect to higher excitations
and corrects the bound photon intensity to excellent accuracy.
Employing both restrictions at the same time (Ifsc) leads to
the overall best performance, and we focus on those results in
Sec. IV. For multiple electrons and photonic excitations, such
corrections will become less relevant and less straightforward to

apply.
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FIG. 4. Time-evolution of the average field intensity for the one-photon emission
process, at three different time snapshots: (a) t = 100 a.u., (b) t = 1200 a.u.,
and (c) t = 2100 a.u. Exact solution (black-dashed), FSSH (purple), MTEF (red),
LSC (orange), FBTS (blue), and (1fsc) BBGKY (green). The arrow indicates the
direction of the wave-packet.

2. Trajectory-based semiclassical methods

To perform numerical simulations using the semiclassical
dynamics methods, we first employ Monte Carlo sampling from the
Wigner transform of the initial density operator of the photon field,
prw(X,0), to generate an ensemble of initial conditions for the tra-
jectory ensemble (Q}(0), P, (0)). The Wigner transform of the zero
temperature vacuum state is given by the following:

| P;

prw (X,0) = H — exp [—“ - waQi].
a=1 T W

We then evolve each initial condition independently according

to the corresponding equations of motion to produce a trajectory.

Average values are then constructed by summing over the entire
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trajectory ensemble and normalizing the result with respect to .4
the total number of trajectories. We use an ensemble of .4 = 10°
independent trajectories for the MTEF, FSSH, LSC, and FBTS cal-
culations, sampled from the Wigner transform of the initial field
density operator. This level of sampling is sufficient to converge
the atomic observables to graphical accuracy, while the field inten-
sity would require a slightly larger trajectory ensemble for graphical
convergence.

In order to illustrate the comparison more accurately, a zoom-
in of Fig. 4 is depicted in Figs. 5 and 7 in the same coloring. We
find that the shapes of the (2B-1fsc) BBGKY-method and the FBTS-
method nicely agree with the exact wave-packet shape for time 100
a.u., while the MTEF and LSC simulations are qualitatively accu-
rate but miss the correct wave-packet amplitude. We find that FSSH
performs rather poorly, as it fails to capture the qualitative struc-
ture of the outgoing wave-packet. Furthermore, we observe at time
2100 a.u. that the FSSH-method has broken down completely as it
fails to reproduce the wave-packet structure in addition to exhibit-
ing a time-delay. As a consequence of the ad hoc nature of the FSSH
approach, we do not have a controlled and well-defined error term,
and it is nontrivial to obtain an educated guess for the failure of this
approach. Considering the other trajectory-based methods, we find
that MTEF is not able to reproduce the photon re-emission due to
the lack of capturing interferences within mean-field methods. On
the other hand, FBTS and LSC predict a substantial amount of inter-
ference in the form of a second maximum, however shifted to earlier
times in relation to the exact solution. As seen previously, the cor-
rected second Born truncation of the BBGKY hierarchy is in very
good agreement with the exact simulation; nevertheless, it still devel-
ops very small unphysical negative intensity values in between the
first and second wave-packet maxima.

All methods are capable of describing the remaining intensity at
the atomic position. This intensity corresponds to the bound photon
intensity, which emerges from beyond rotating-wave approxima-
tion (RWA) effects. More precisely, in Fig. 6, we show the photon
field intensity for the exact reference solution calculated in four

12

6.1 5.5 5.8 6.1

Intensity [a.u-1073]

Cavity Length [um]

FIG. 5. Zoom-in onto the wavefronts of Fig. 4 (same color code) at time ¢ = 100
a.u. (upper panels) and t = 2100 a.u. (lower panels).
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FIG. 6. Photon field intensity for the exact reference solution at time 600 a.u. for
blue: including two-photon states (2pt) and no RWA, cyan: including two-photon
states (2pt) with RWA, red: including only one-photon states (1pt) and no RWA,
and orange: including only one-photon states (1pt) with RWA.

different ways according to Eq. (5). First including all two-photon
states (2pt) without RWA (blue) and then performing the same cal-
culation within RWA (cyan). Here, we find that using the RWA
erases the bound photon state. Furthermore, we find that only
including the one-photon states (1pt) is also not sufficient to cap-
ture this higher-order effect, as in both cases without RWA (red)
and with RWA (orange) no bound photon is observed. Therefore,
those results show that all methods are indeed capable of describing
effects beyond the perturbative regime such as bound photon states.
In Fig. 7, we depict this signature feature of the bound photon state
for time 1200 a.u.. Here, we find that BBGKY and MTEF perform
best, as FBTS, LSC, and FSSH overestimate the amplitude for the
remaining intensity. Without single photon correction, the BBGKY
amplitude is comparable to that of FBTS, i.e., finite size corrections
in both, fermionic and photonic subspace, are important to obtain
excellent results.

In Fig. 8, we plot the atomic adiabatic state population in the
same color code as in Fig. 4. Here, BBGKY leads to excellent accu-
racy while among the trajectory methods LSC performs best. The
initial decay, which is connected to the shape of the wavefront, is,

-
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FIG. 7. Left: Zoom-in on the bound photon state of Fig. 4 (same color code). Right:
Zoom-in on the bound photon state of Fig. 3 (same color code).
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Atomic Population

Time [a.ul

FIG. 8. Time-evolution of the atomic state population in the same color code as
Fig. 4. The solid lines represent the atomic ground state, and the dashed lines
represent the excited state.

however, superior in FBTS with the drawback of an incomplete de-
excitation. While MTEF is capable of qualitatively describing the
process, it fails on quantitative scales and even worse is FSSH which
not even qualitatively resembles the process.

B. 3-Level atom: Two-photon emission process

Let us turn our attention to the slightly more complex three-
level system where we focus on the most promising approaches with
respect to extrapolations toward realistic systems in mind. We thus
exclude FSSH due to its relatively poor performance and BBGKY
due to its high computational effort, which we will later discuss in
more detail.

In Fig. 9, we show the intensity of the cavity field during the
two-photon emission process for MTEF, LSC, and FBTS compared
to the exact solution. Furthermore, in order to allow a more quan-
titative and accurate comparison, a zoom-in of Fig. 9 is depicted
in the same color-code in Figs. 10 and 11. Here, similar dynamics
are observed compared to the two-level case. However, due to the
additional intermediate atomic state, we now observe a double-peak
feature in the emitted photonic wave-packet. This feature corre-
sponds to the emission of two photons, as the excited atom initially
decays to the first excited state emitting one photon and then fur-
ther relaxes to the ground state, emitting a second photon. We find
in accordance with the two-level case that the shape of the FBTS-
method is in a good agreement with the exact wave-packet shape for
time 100 a.u., while the MTEF and LSC-simulation are qualitatively
in line, but underestimate the wave-packet amplitude. Furthermore,

ARTICLE scitation.org/journalljcp

9
R “k
)
o I
%] o I|
c = YY) —_—
R L L S
c i
[ -:N\’;‘-‘;::-/d\“u‘ e
1 1.5 2 2.5 3 3.5
(c)
— A
JM‘W::;—--];«_-“- S
3 3.5 4 4.5 5 5.5

Cavity Length [um]

FIG. 9. Time-evolution of the average field intensity for the two-photon emission
process, at three different time snapshots: (a) t = 100 a.u., (b) { = 1200 a.u., and
(c) t = 2100 a.u. Exact solution (black-dashed), MTEF (red), LSC (orange), and
FBTS (blue). Please note that in this plot, the amplitude of the bound photon state
for the FBTS simulation is reduced in order to improve the illustration of the results.
Explicit quantitative results for the bound photon state can be found in Fig. 11. The
arrow indicates the direction of the wave-packet.

we observe that at time 2100 a.u., none of the methods sufficiently
captures the complex re-emission structure while overestimating the
bound photon peak in Fig. 11.

In Fig. 12, we show the time evolution of the atomic state popu-
lations. As before, the emitted photonic wave-packet moves through
the cavity, is reflected at the mirrors, and returns to the atom. The
first and second excited states are then repopulated due to stimulated
absorption. A second spontaneous emission process ensues, and the
emitted field again takes on a more complex profile due to interfer-
ence. While MTEF features the pronounced incomplete emission,
LSC and especially FBTS quite accurately capture the short-time
decay dynamics. Each method provides a qualitative indication of
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FIG. 10. A zoom-in onto the wavefronts of Fig. 9 (same color code) for time t = 100
a.u. (upper panel) and ¢t = 2100 a.u. (lower panel).

the reabsorption and consecutive emission with LSC and FBTS per-
forming clearly superior, suffering from a diminished incomplete
(de-)excitation in relation to MTEF.

C. Computational effort and scaling

Regarding the BBGKY-method, the computational cost for
this specific model is similar to the exact time-propagation for a
two-photon subspace. This makes BBGKY, also in relation to the
highly accurate results it provides, the most rigorous method for
the model when considering the finite size corrections. Depend-
ing on the selected approximation and numerical details such as
sparsity, it, however, features a rather unfavorable high-order poly-
nomial scaling which restricts this method to comparably small
systems.

In terms of the other semiclassical approaches, we have found
that different numbers of trajectories are needed to converge dif-
ferent observables to the same statistical accuracy. In particular,
for subsystem observables like the atomic populations, the FSSH
and MTEF data are relatively well converged with 10°-10* trajec-
tories, while LSC and FBTS require 10*-10°. However, for observ-
ables related to the photon field, such as the intensity, the observable

6.1 6.2 63 6.4 6.1 6.2 63 6.4
Cavity Length [um]

Intensity [a.u-10"3]

FIG. 11. A zoom-in on the bound photon state of Fig. 9 (same color code).
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FIG. 12. Time-evolution of the atomic state population in the same color-code as
Fig. 9. The solid lines represent the atomic ground state, the dashed lines rep-
resent the first excited state, and the dotted lines represent the second excited
state.

remains rather noisy for all the trajectory-based simulation methods
with 10° trajectories.

As all the independent trajectory based methods employ a
Monte Carlo sampling procedure, their statistical error is propor-
tional to the inverse square-root of the number of trajectories in
the ensemble. However, as shown in this work, we have observed
that more trajectories are required to converge photon-field (envi-
ronmental) quantities compared to atomic (subsystem) quantities to
within the same relative error. Furthermore, as the trajectories are
not coupled during their time evolution, the corresponding algo-
rithms can be implemented in a highly parallel manner to reduce
the total run-time.

V. CONCLUSION

In this work, we have adapted and benchmarked a variety
of approximate quantum dynamics methods, i.e., multitrajectory
Ehrenfest (MTEF), linearized, and partially linearized semiclassical
mapping (LSC and FBTS) methods, Tully’s fewest switches surface
hopping (FSSH), as well as a set of finite size corrected second Born
BBGKY truncations, to treat correlated electron-photon systems.
We have applied these methods to model QED cavity bound atomic
systems in order to simulate the one and two photon spontaneous
emission and interference processes and to analyze the performance
of these approaches.

Consistently for the one- and two-photon emission processes,
we find that MTEF, LSC, and FBTS are able to qualitatively char-
acterize the correct dynamics. The initial spontaneous emission, the
associated atomic occupations, and the emitted photon wave-packet
improve from qualitative agreement within MTEF, to slightly bet-
ter agreement while overestimating the decay-rate in LSC, to almost
quantitative agreement using FBTS. However, these methods per-
form poorly when interference patterns emerge in the reabsorbed
and re-emitted photonic wave-packet; MTEEF totally fails to capture
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any of the interference effects associated with the excitation and re-
emission processes, while LSC and FBTS qualitatively recover some
of the characteristics of the outgoing intensity. The FSSH-method
in contrast is not capable of properly resembling the wavefront of
the photonic wave-packet, and, furthermore, exhibits an incorrect
time delay in the re-emitted wave-packet. Consequentially, this tech-
nique performs rather poorly compared to the other trajectory based
methods. It is possible, however, that improved versions of this algo-
rithm may offer improvement over these initial results. The self-
consistent perturbative expansion form of the BBGKY-hierarchy
behaves exceptionally well when restricted to the physical subspace
although some unphysical effects such as negative photon intensities
can result. Finally, all methods investigated here can, in fact, cap-
ture the bound photonic state. Here, MTEF and BBGKY present the
best performance while LSC and FBTS consistently overestimate the
amplitude of this feature.

For the two-photon emission process, we focused on the
most promising approaches considering the balance between per-
formance and computational scalability. Here, we find in accor-
dance with the two-level system that MTEF, LSC, and FBTS are
able to qualitatively characterize the correct dynamics of this pro-
cess; however, they suffer from quantitative drawbacks, especially
pronounced for interference features.

Moreover, as experimental advances drive the need for realistic
ab initio descriptions of light-matter coupled systems, trajectory-
based quantum-classical algorithms emerge as a promising route
towards treating more complex and realistic systems, more precisely
extending to molecular systems beyond the few-level description
and incorporating nuclear dynamics. In particular, combining the
ab initio light-matter coupling methodology recently presented by
Jestadt et al.”’ with the multitrajectory approach could provide a
computationally feasible way to simulate photon-field fluctuations
and correlations in realistic three-dimensional systems, and work
along these lines is already in progress.
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