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Abstract. Neutrino capture on beta-decaying nuclei is currently the only known poten-
tially viable method of detection of cosmic background neutrinos. It is based on the idea of
separation of the spectra of electrons or positrons produced in captures of relic neutrinos on
unstable nuclei from those from the usual β-decay and requires very high energy resolution
of the detector, comparable to the neutrino mass. In this paper we suggest an alternative
method of discrimination between neutrino capture and β-decay, based on periodic variations
of angular correlations in inverse beta decay transitions induced by relic neutrino capture.
The time variations are expected to arise due to the peculiar motion of the Sun with respect
to the CνB rest frame and the rotation of the Earth about its axis and can be observed in
experiments with both polarized and unpolarized nuclear targets. The main advantage of the
suggested method is that it does not depend crucially on the energy resolution of detection
of the produced β-particles and can be operative even if this resolution exceeds the largest
neutrino mass.
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1 Introduction

Standard cosmology predicts the existence of a sea of active left-handed neutrinos and their
right-handed antiparticles that decoupled from the cosmic plasma at temperatures T ∼ 2
MeV and have cooled down in the course of the expansion of the Universe [1–3]. At present,
these cosmic background neutrinos (CνB) are expected to have nearly Fermi-Dirac spectrum
with the temperature Tν0 ≃ 1.945K ≃ 1.676 × 10−4 eV and to be in states of definite mass
rather than in flavour states [4]. Together with data from neutrino oscillation experiments,
this, in particular, means that at least two relic neutrino species must be non-relativistic at
the present epoch. Because of their extremely low energies and the weak nature of neutrino
interactions, the relic neutrinos have not yet been directly detected. At the same time, they
should carry rich and important information about the very early stages of the evolution of the
Universe; their observation thus represents one of the main challenges of modern cosmology.
Detection of relic neutrinos may also shed light on some important neutrino properties, such
as their Dirac vs. Majorana nature and possible existence of light sterile neutrinos.

Several approaches to detecting the CνB neutrinos have been suggested to date, see e.g.
refs. [5–7] for reviews. Unfortunately, most of them either were based on flawed considerations
or are rather impractical. Out of all the suggestions put forward so far, only neutrino capture
on beta-decaying nuclei has a chance to bear fruit in a foreseeable future. As this process
is threshold-free, even neutrinos of extremely low energies can be captured with finite rate.
The approach is based on separation of the spectra of β-particles produced in capture of
relic neutrinos from those coming from the usual β-decay of the target nuclei. It was first
suggested by Weinberg back in 1962 in the context of massless relic neutrinos with large
chemical potential ξ [8]. However, current stringent limits on ξ rule out this possibility.

The idea of using neutrino capture on beta-decaying nuclei for detecting CνB neutrinos
was revived in a modern setting by Cocco et al. [9], who noted that, as the neutrinos
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are actually massive, the spectrum of β-particles produced in captures of relic neutrinos of
mass mν must be separated from the spectrum of the much more abundant electrons or
positrons coming from the usual β decay of the target nuclei by a gap ∼ 2mν (assuming
mν & Tν0). Then, if the β-particles are detected with the energy resolution better than mν ,
one can tell these two processes apart. Following this observation, various aspects of relic
neutrino detection through their capture on beta-decaying nuclei were studied in a number
of publications, see e.g. [10–20].

The necessity of separation of the spectra of β-particles produced in relic neutrino
capture from those coming from the usual β decay of the target nuclei puts extremely chal-
lenging demands on the energy resolution of the detection. Barring the existence of a light
predominantly sterile neutrino with a sizeable mixing to the electron flavour and significant
presence in CνB and assuming that the neutrino mass spectrum is hierarchical rather than
quasi-degenerate, one finds that the energy resolution of at least 0.05 eV is necessary. At
present, there is one experimental proposal for relic neutrino detection through their capture
on beta-decaying nuclei – the PTOLEMY experiment [21–23], which plans to use tritium as
the target. The collaboration has set an ambitious goal of achieving the energy resolution of
0.05 eV for electron detection. It should be noted, however, that in the case of normal neu-
trino mass ordering (which is currently preferred by the neutrino oscillation data at 3σ level
[24–26]) and very small mass of the lightest neutrino, even an order of magnitude smaller
energy resolution may be necessary [11, 17]. This is related to the fact that in this case the
heaviest neutrino with the mass m3 ≃ 0.05 eV has only a small electron neutrino compo-
nent |Ue3|2 ≃ 2.2 × 10−2. Alternatively, one would need a high enough statistics of the relic
neutrino capture events in order to compensate for the smallness of |Ue3|2.

In the present paper we suggest an alternative method of detecting CνB neutrinos,
based on observing angular correlations that are characteristic of beta processes. While
still exploiting neutrino capture on beta-decaying nuclei, it does not require discrimination
between the β-particles coming from relic neutrino capture and from the usual β decay by
separating their spectra. Instead, we suggest to employ time variations of the capture rate
of relic neutrinos on polarized or unpolarized nuclei arising due to the peculiar motion of the
Sun and the rotation of the Earth about its axis.

Neutrino capture on polarized nuclei exhibits several angular correlations, and in par-
ticular a correlation between the velocity of the incoming neutrinos and nuclear polarization.
Due to the peculiar motion of the solar system with respect to the CνB rest frame, relic neu-
trinos have a preferred direction of arrival at the Earth. At the same time, if the direction
of polarization of the target nuclei is fixed in the Earth-bound lab frame, the angle between
this direction and that of the preferred velocity of relic neutrinos varies during the day due
to the Earth’s rotation about its axis. One can therefore expect time variation of the relic
neutrino signal with the period equal to the sidereal day T0 ≃ 23h 56m 4s.1 No such time
variation is expected for the rate of the β decay of the target nuclei.

Relic neutrino capture on polarized nuclei, including possible time variations of the
signal due to the peculiar motion of the Sun and the rotation of the Earth, has previously
been considered by Lisanti et al. [18] with application to tritium target. However, the authors
of [18] discussed this process essentially as a method of obtaining additional information about
the properties of CνB neutrinos (such as anisotropies of their velocities and spin distributions)
within the usual approach to relic neutrino detection based on the separation of spectra of

1The sidereal day is the period of the Earth’s rotation about its axis with respect to the distant stars,
which is slightly shorter than the solar day because of the Earth’s orbital motion.
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electrons from neutrino capture and β decay. By contrast, we focus on using various angular
correlations in neutrino capture on polarized nuclear targets as a means of separation of the
relic neutrino signal from the background.

We also consider the possibility of using angular correlations for detecting relic neu-
trinos with unpolarized nuclear targets. This can in principle be done either by measuring
polarizations of final-state nuclei or by observing asymmetry of the produced β particles with
respect to the preferred direction of relic neutrino arrival at the Earth (β − ν correlation).
The latter should also give rise to a time-dependent signal if the β-asymmetry is studied with
respect to a direction that is fixed in the Earth-bound lab frame.

The amplitude of the time variation of the relic neutrino signal is expected to be small,
and the problem of reliably detecting this variation in the presence of a large background
is very challenging. The main difficulty comes actually not from the high average back-
ground level but rather from the fluctuations of the background. Fortunately, there are
well-developed methods of such signal-from-noise separation, which are especially efficient
when the signal has a known periodicity.

The main advantage of the proposed approach is that it does not depend crucially on
the energy resolution of detection of the produced β-particles. While good energy resolution
would help to suppress the background from the usual β decay by allowing one to work close
to the endpoint of the β-spectrum, the method can still work even if the resolution is relatively
large, provided that a sufficiently powerful method of separation of the weak periodic signal
from strong random noise is employed. At the same time, the approach based on separation
of the spectra will be merely inoperative if the energy resolution of the detection exceeds
the largest neutrino mass. One consequence of the fact that the requirements on the energy
resolution are less severe in the approach we suggest is that radioactive nuclei with larger Qβ

values may be preferable as target, as they lead to larger absolute detection rates.

In our discussion of relic neutrino capture on polarized nuclei we concentrate on pure
Gamow-Teller transitions, taking the allowed 1π → 0π nuclear transitions as an example. Our
results can, however, be readily extended to other Gamow-Teller transitions. One advantage
of pure Gamow-Teller transitions is that the effects of target polarization are in general more
pronounced in this case. On the other hand, pure Fermi transitions 0π → 0π (as well as
pure Gamow-Teller ones) may be useful when considering β − ν angular correlations in relic
neutrino capture on unpolarized nuclei. For mixed transitions the correlation coefficient may
be strongly suppressed. Another important advantage of pure transitions is that for such
transitions the angular correlation coefficients do not depend on nuclear matrix elements.

The paper is organized as follows. In section 2.1 we derive the expression for the differen-
tial cross section of neutrino capture on polarized nuclei in the case of allowed Gamow-Teller
1π → 0π transitions and discuss various angular correlations relevant to this process. In
section 2.2 we consider angular correlations in the case of neutrino capture on unpolarized
nuclei. In section 2.3 we compare the results of section 2.1 with those obtained for neu-
trino capture on polarized tritium [18]. In section 3 we consider effects of averaging over
the directions of relic neutrinos on angular correlations in neutrino capture on polarized and
unpolarized nuclei observed in the lab frame. In section 4 we discuss the problem of ex-
traction of weak periodic signals from large fluctuating backgrounds and its application to
relic neutrino detection. Our results are summarized and discussed in section 5. Appendix
A contains some technical details related to the averaging over angular distributions of relic
neutrinos. Electron angular asymmetries with respect to fixed directions in the lab frame in
experiments with unpolarized targets are considered in Appendix B.
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2 Neutrino capture in inverse β decay

We shall consider neutrino detection in the inverse β−-decay process

νj(q) +Ai(p) → Af (p
′) + e−(k) , (2.1)

where νj is the jth neutrino mass eigenstate, Ai and Af are the parent and daughter nuclei,
and the 4-momenta of the participating particles are indicated in the parentheses. Detection
of relic (anti)neutrino states in inverse β+ decays can be considered quite similarly.

At present, CνB neutrinos originally produced in the states of left-handed chirality
should be in left-handed helicity eigenstates in the CνB rest frame, and similarly for the
states of right-handed chirality and helicity [17]. Note that, in the Dirac neutrino case, only
neutrinos (which are left-helical now) can be captured in the β−-process (2.1), while right-
helical antineutrinos can be detected in inverse β+-processes. At the same time, if neutrinos
are Majorana particles, for non-relativistic neutrinos both left-helical and right-helical states
can participate in process (2.1) through their left-chirality components [17].

As helicity is not a Lorentz-invariant quantity, neutrinos that are in helicity eigenstates
in some frame K do not in general have definite helicity in a frame K ′ moving with respect to
K. Because the Earth moves with respect to the CνB rest frame, the spins of relic neutrinos
need not be aligned or antialigned with their velocities in the lab frame. We therefore consider
the differential cross sections of neutrino detection for arbitrary directions of the spins of the
initial-state neutrinos.

2.1 Gamow-Teller 1π → 0π transitions

For definiteness, we focus on the allowed 1π → 0π Gamow-Teller nuclear transitions, some
examples being the decays 32P→32S, 64Co→64Ni and 80Br→80Kr. We will initially consider
the parent nucleus, the incoming neutrino and the produced electron to be in definite spin
states, that is, no summation or averaging over their spins is performed. The differential
cross section of the process dσj multiplied by the neutrino velocity vj can then be found as

vjdσj =
G2

β

2
|Uej|2

1

(2π)2
(εµε

∗
νX

µν)

4EeEj
|MGT|2F (Z,Ee)Ee

√

E2
e −m2

e dΩe . (2.2)

Here Gβ ≡ GFVud, GF and Vud being the Fermi constant and the ud element of the CKM
matrix, Uej are the elements of the leptonic mixing matrix, εµ is the polarization 4-vector
of the parent nucleus, MGT is the nuclear matrix element, F (Z,Ee) is the Fermi function
which takes into account the interaction of the produced electron with the Coulomb field
of the daughter nucleus, and Ej and Ee are the neutrino and electron energies. Energy
conservation yields

Ee = Ej + E0 , (2.3)

where E0 is the total energy release in the corresponding β−-decay process, which is related
to the usually quoted Qβ-value of the process in the limit of vanishing neutrino mass by
E0 = Qβ +me. The leptonic tensor Xµν is

Xµν = [ūe(k)γ
µ(1− γ5)uj(q)][ūj(q)γ

ν(1− γ5)ue(q)] , (2.4)
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where ue(k) is the electron spinor and uj(q) is that of the neutrino mass eigenstate with mass
mj. For electron and neutrino in definite spin states we have

ue(k)ūe(k) =
1

2
(/k +me)(1 + γ5/Se) , (2.5)

uj(q)ūj(q) =
1

2
(/q +mj)(1 + γ5/Sj) , (2.6)

where me and mj are the electron and neutrino masses, and Sµ
e and Sµ

j are their spin 4-
vectors:

Sµ
e =

(~k ·~se
me

, ~se +
(~k ·~se)~k

me(Ee +me)

)

, (2.7)

Sµ
j =

(

~q ·~sj
mj

, ~sj +
(~q ·~sj)~q

mj(Ej +mj)

)

. (2.8)

Here ~se and ~sj are, respectively, the unit vectors in the direction of the electron and neutrino
spin in their rest frames. Introducing the 4-vectors

Aµ ≡ kµ −meS
µ
e , Bµ ≡ qµ −mjS

µ
j , (2.9)

we can write the squared amplitude εµε
∗
νX

µν in a very compact form:2

εµε
∗
νX

µν = 2
(

A0 − ~A·~sN
)(

B0 + ~B ·~sN
)

. (2.10)

Here ~sN is the unit vector in the direction of the spin of the initial-state nucleus. Defining

Ke ≡ 1− Ee

Ee +me
~ve ·~se , Kj ≡ 1− Ej

Ej +mj
~vj ·~sj , (2.11)

we can rewrite Aµ and Bµ as

Aµ = Ee

(

1− ~ve ·~se, Ke~ve −
me

Ee
~se

)

, (2.12)

Bµ = Ej

(

1− ~vj ·~sj, Kj~vj −
mj

Ej
~sj

)

. (2.13)

Substituting these expressions into eq. (2.10), we find

εµε
∗
νX

µν = 2EeEj

[

(1− ~ve ·~se)−Ke(~ve ·~sN ) +
me

Ee
(~se ·~sN )

]

×
[

(1− ~vj ·~sj) +Kj(~vj ·~sN )− mj

Ej
(~sj ·~sN )

]

. (2.14)

The above expressions give the differential cross section of neutrino capture on polarized
nuclei (in the particular case of allowed 1π → 0π Gamow-Teller transitions) without summa-
tion over the spin states of any of the involved particles or integration over the directions of

2 Note that, since the electron and neutrino spin 4-vectors satisfy the usual relations k · Se = q · Sj = 0
and S2

e = S2

j = −1, the 4-vectors Aµ and Bµ are lightlike: A2 = B2 = 0. When the vector ~sj is aligned or

antialigned with ~sN , for neutrinos that are in helicity eigenstates the vector ~B is also aligned or antialigned
with ~sN . In this case from B2 = 0 it follows that ~B ·~sN = ±B0. For ~sj ‖ ~sN we find ~B ·~sN = −B0, and the
transition amplitude vanishes. One can similarly show that it also vanishes when the emitted electron is in a
helicity eigenstate and its spin is antialigned with ~sN (see also section 5 below).
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their momenta. To our knowledge, no such expression has been previously derived. When
the summations over the spin states of the neutrino and the electron, or of the neutrino and
the parent nucleus, or the summation over the neutrino spin states and integration over the
direction of its momentum are performed, our results coincide with the corresponding results
found by Jackson et al. [27, 28].

The amplitude of the process under consideration depends on five vectors – ~ve, ~vj, ~se,
~sj and ~sN , from which one can form ten scalar dot-products:

~ve · ~se , ~ve · ~sN , ~se · ~sN , ~vj · ~sj ,
~ve · ~vj , ~ve · ~sj , ~vj · ~se , ~se · ~sj , ~vj · ~sN , ~sj · ~sN . (2.15)

Eq. (2.14) actually contains only on six of them: terms containing the quantities ~ve ·~vj , ~ve ·~sj ,
~vj · ~se and ~se · ~sj are absent from the squared amplitude of the process. They will, however,
arise if one averages over the directions of nuclear polarization ~sN , i.e. considers neutrino
capture on unpolarized nuclei (see eqs. (2.17)-(2.20) in section 2.2 below).

Out of the ten scalar dot-products in eq. (2.15), those in the first line are not useful for
discriminating between neutrino capture and neutrino emission in β decay. Indeed, the first
three of them do not depend on the neutrino variables, whereas the last one, ~vj · ~sj, is not
helpful because experiments on neutrino helicity measurements cannot distinguish between
absorption of a left-helical neutrino and production of a right-helical (anti)neutrino. The
term ~vj ·~sj, however, affects the total neutrino capture rate and may also play an important
role in studying Dirac vs. Majorana neutrino nature in captures of relic neutrinos (see [17, 19]
and section 3 below).

Out of the six scalars in the second line of (2.15), only the last two enter into the squared
amplitude in eq. (2.14). They result in angular correlations between the nuclear polarization
and the directions of neutrino spin and velocity. Summing eq. (2.14) over the electron spin
states and averaging over the directions of the produced electrons, we find

∫

dΩe

4π

∑

se

εµε
∗
νX

µν = 4EeEj

{

(1− ~vj ·~sj) +
(

Kj~vj −
mj

Ej
~sj
)

·~sN
}

. (2.16)

If the direction of nuclear polarization is fixed in the Earth frame, this squared amplitude
will vary with time because of variations of the directions of the spin and velocity of the
incoming neutrinos. Therefore, in experiments with polarized nuclear targets one can study
time variations of the relic neutrino signal by merely measuring the total rate of electron
production. At the same time, as we shall see in section 2.2, measuring the angular and/or
spin distributions of the produced electrons will be useful in the case of experiments with
unpolarized nuclei.

In order to derive the expressions for the total capture rate of the CνB neutrinos as well
as for various angular correlations of interest, one has to multiply eq. (2.2) by the neutrino
velocity distribution function of the jth neutrino mass-eigenstate f(~vj), integrate or sum over
the relevant finite-state kinematic variables and sum the result over j.

2.2 Neutrino capture on unpolarized nuclei

Polarizing sufficiently large targets and maintaining (or renewing) their polarization during
extended intervals of time may pose substantial experimental difficulties. Can angular corre-
lations help discriminate between relic neutrino capture and β decay of the target nuclei in
experiments with unpolarized targets? One possibility is to make use of spin polarization of
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the daughter nuclei with J 6= 0. This polarization can be studied, for instance, by measur-
ing circular polarization of the de-excitation γ-quanta in β-transitions into excited states of
the daughter nuclei, as in the famous experiment of Goldhaber, Grodzins and Sunyar [29].
For the particular case of the allowed Gamow-Teller 0π → 1π transitions, the correspond-
ing squared amplitude can be obtained from the expressions in eqs. (2.10) or (2.14) by the
substitution ~sN → −~sN (assuming that the velocity of the recoil nucleus can be neglected).

Another, probably more practical, possibility is to study angular distributions of the
produced electrons or their spin states. For neutrino capture on unpolarized nuclei in allowed
Gamow-Teller 1π → 0π transitions the squared amplitude can be found by averaging εµε

∗
νX

µν

over the polarizations λ of the parent nucleus. Direct calculation gives

1

3

∑

λ

εµ(λ)ε
∗
ν(λ)X

µν = 2
[

A0B0 − 1

3
~A· ~B

]

. (2.17)

Note that the same result can be obtained by averaging eq. (2.10) over the directions of ~sN
(i.e. by taking

∫

(dΩ~sN /4π) of both its parts). Let us first consider the case when the spin
state of the produced electron is not measured. Summing eq. (2.17) over se, we find

1

3

∑

λ,se

εµ(λ)ε
∗
ν(λ)X

µν = 4Ee

(

B0 − 1

3
~B ·~ve

)

, (2.18)

or, in a more detailed form,

1

3

∑

λ,se

εµ(λ)ε
∗
ν(λ)X

µν = 4EeEj

[

1− ~vj ·~sj −
1

3
~ve ·~vj +

1

3

Ej

Ej +mj
(~vj ·~sj)(~ve ·~vj) +

1

3

mj

Ej
~ve ·~sj

]

.

(2.19)

Alternatively, one can consider the situation when the direction of the spin of the produced
electrons is observed, while the directions of their momenta are not. Then the relevant
squared amplitude is

∫

dΩe

4π

1

3

∑

λ

εµ(λ)ε
∗
ν(λ)X

µν = 2Ee

{

B0 +
1

9

(

1 + 2
me

Ee

)

(~se · ~B)
}

= 2EeEj

{

1−~vj ·~sj +
1

9

(

1+ 2
me

Ee

)[

~vj ·~se −
Ej

Ej +mj
(~vj ·~sj)(~vj ·~se)−

mj

Ej
~se·~sj

]}

. (2.20)

Eq. (2.19) describes anisotropies of electron emission with respect to the directions of
the velocity and spin of the incoming relic neutrinos ~vj and ~sj, which change with time in the
lab frame. The electron direction anisotropy with respect to a fixed direction in this frame
should therefore exhibit time variations. The same applies to the electron spin anisotropy
described by eq. (2.20). This in principle could be used to find out the direction of the
peculiar motion of the Sun with respect to the CνB rest frame.

In the case when neither the spin state nor the direction of the produced electron is
observed, the relevant squared amplitude is

∫

dΩe

4π

1

3

∑

λ,se

εµ(λ)ε
∗
ν(λ)X

µν = 4EeEj

(

1− ~vj ·~sj
)

, (2.21)

which is the usual inclusive squared amplitude for neutrino capture on unpolarized nuclei.
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2.3 Comparison with ν capture on polarized tritium (1/2+ → 1/2+)

It is instructive to compare our results obtained for pure Gamow-Teller 1π → 0π transitions
with those found by Lisanti et al. for neutrino capture on polarized tritium, which is the
mixed Fermi–Gamow-Teller 1/2+ → 1/2+ transition [18]. The authors calculated the squared
amplitude in the case when the spin states of the produced electron and daughter 3He are
not measured and found the angular correlation (in our notation)

1− ~vj · ~sj +A(1− ~vj · ~sj)~ve · ~sN +BKj~vj · ~sN −B
mj

Ej
~sj · ~sN + aKj~ve · ~vj − a

mj

Ej
~ve · ~sj . (2.22)

Here A, B and a are the standard angular correlation coefficients [27, 28], which can be
expressed through the ratios of the Fermi and Gamow-Teller nuclear matrix elements MF

and MGT. For the considered case of neutrino capture on polarized tritium their numerical
values are [18]

A ≃ −0.095 , B ≃ 0.99 , a ≃ −0.087 . (2.23)

To compare eq. (2.22) with our results, one has to sum our squared amplitude (2.14) over se.
The obtained angular correlation is

1−~vj·~sj−(1−~vj·~sj)~ve·~sN+Kj~vj·~sN−mj

Ej
~sj·~sN−Kj(~vj·~sN )(~ve·~sN )+

mj

Ej
(~ve·~sN )(~sj·~sN ) . (2.24)

One can see that the first five terms in eq. (2.22) have the same structure as the first five terms
in eq. (2.24); the two sets coincide with each other if one chooses A = −1 and B = 1 in (2.22).
At the same time, the last two terms in (2.22), which have the coefficient a as a factor, are
different from the last two terms in (2.24). The latter are bilinear in the polarization vector of
the parent nucleus ~sN , while eq. (2.22) contains only terms of zero and first power in ~sN . The
origin of this difference in the structures of eqs. (2.22) and (2.24) lies in the special nature
of the 1/2+ → 1/2+ transition, for which the tensor alignment ∝ [J(J + 1) − 3〈( ~J ·~sN )2〉]
vanishes [27]. It is interesting to note that upon averaging over the directions of ~sN the last
two terms in eq. (2.24) would reproduce those in eq. (2.22) with a = −1/3.

Although effects of angular correlations are in general more prominent in the case of pure
Gamow-Teller transitions than in the case of mixed Fermi–Gamow-Teller ones, the correlation
between the velocity (and/or spin) of the incoming neutrino and nuclear polarization in
neutrino capture on polarized tritium is quite substantial. This follows from the fact that the
coefficient B governing these correlations is close to unity (see eq. (2.23)). At the same time,
the β − ν correlation, which exists even for processes on unpolarized nuclei, is suppressed
in this transition due to the numerical smallness of the coefficient a. By contrast, this
coefficient is significant in the case of pure transitions: a = −1/3 for pure Gamow-Teller
allowed transitions and a = 1 for pure Fermi allowed or superallowed transitions 0π → 0π.

3 Implications for relic neutrino capture: lab frame

Standard cosmology predicts the existence of a background of nearly uniform and isotropic
cosmic neutrinos with the average density of nν0 ≃ 56 cm−3 per mass eigenstate and per
spin degree of freedom. Relic neutrinos are expected to be in helicity eigenstates in the CνB
rest frame, and therefore not only their velocities, but also their spin directions should be
distributed isotropically in that frame. As at least two relic neutrino species should now be
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non-relativistic, gravitational clustering may modify the local density of CνB at the Earth’s
location (see, e.g., [30] and references therein). Gravitational focusing by the Sun can also
modify local neutrino density and velocity distribution, leading to annual modulations of the
relic neutrino signal at the Earth [16]. These effects are, however, expected to be relatively
small in the case of hierarchical neutrino mass spectrum and will not be discussed here.

The Sun is expected to have a non-zero peculiar velocity with respect to the CνB rest
frame, therefore there should exist a “wind” of relic neutrinos at the Earth, i.e. they should
have a preferred direction of arrival in the Earth’s rest frame. Although the speed and
the direction of the peculiar motion of the Sun are model-dependent and thus not precisely
known, it is expected that the peculiar velocity u is rather small, O(10−3). The daily rotation
of the Earth about its axis means that direction of the neutrino “wind” changes during the
day in the lab frame, which should lead to modulations of various angular correlations in
relic neutrino capture on both polarized and unpolarized nuclei. Our goal is to study if these
modulations can be used to distinguish neutrino capture from the usual β-decay of target
nuclei. Our discussion of the effects of anisotropy of relic neutrinos will differ from that in
ref. [18] in two important respects:

• While the authors of [18] concentrated on non-relativistic relic neutrinos, we consider
the general case, since in the case of the normal neutrino mass ordering currently
preferred by the data the lightest neutrino mass eigenstate ν1 (which has the largest
contribution of the electron flavour |Ue1|2 ≃ 0.66) may still be relativistic.

• We consider angular correlations in neutrino captures on both polarized and unpolarized
nuclear targets. In particular, the β − ν angular correlation can be quite sizeable for
unpolarized pure Gamow-Teller or pure Fermi transitions though it is suppressed for
the mixed Fermi–Gamow-Teller one studied in [18].

We want to find the neutrino differential capture rate in an Earth-bound lab frame
which moves with respect to the CνB rest frame with the velocity −~u with u ≡ |~u| ≪ 1.
To this end, we consider the effects of the Lorentz boost on the neutrino variables to first
order in the boost velocity u. Let us denote neutrino variables in the lab frame with primed
quantities, whereas the unprimed variables will refer to the CνB rest frame. For the energy,
momentum and velocity of the jth neutrino mass eigenstate in the lab frame we then have

E′
j = Ej + ~u·~q , ~q ′ = ~q + ~uEj , ~v ′

j = ~vj(1− ~u·~vj) + ~u . (3.1)

We will be mostly interested in the regime u ≪ vj, which in the standard 3-flavour neutrino
picture corresponds to hierarchical neutrino mass spectrum with the largest neutrino mass
of order 0.05 eV. In this limit for the unit vector in the direction of the neutrino velocity in
the Earth frame we find

~v ′
j

v′j
=

1

vj

{

~vj +
[

~u− (~u·~vj)
v2j

~vj
]

}

≡ 1

vj

(

~vj + ~u⊥j

)

, (3.2)

where ~u⊥j is the component of the boost velocity ~u orthogonal to ~vj .
The neutrino spin requires a special consideration. The spin 4-vector Sµ

j in eq. (2.8) can

be obtained from the rest-frame vector S
(0)µ
j = (0, ~sj) by a Lorentz boost. The corresponding

4-vector in the Earth frame, S′µ
j , is then obtained by another boost, with velocity ~u. The
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result will have the form similar to that in eq. (2.8), with all the quantities in it replaced by
the primed ones. Note that in general ~s ′

j 6= ~sj; this is related to the fact that a sequence
of two boosts with non-collinear velocities is equivalent to a boost and a rotation (called
the Wigner rotation) rather than to a single boost. The general expression for ~s ′

j is rather
involved, but to first order in u one finds a simple result3

~s ′
j = ~sj +

(~q ·~sj)~u− (~u·~sj)~q
Ej +mj

. (3.3)

Assume now that in the CνB rest frame neutrinos are in the exact helicity eigenstates, i.e.

~sj = λj
~vj
vj

, (3.4)

where λj = ±1, with the upper (lower) sign corresponding to right-helical (left-helical) neu-
trinos. Then

~s ′
j = λj

{~vj
vj

+ vj
Ej

Ej +mj
~u⊥j

}

. (3.5)

It is interesting to note that, even though helicity is not a Lorentz-invariant quantity, in the
regime u ≪ vj of main interest to us and to first order in the boost velocity u the neutrino
helicity in the lab frame is the same as in the CνB rest frame. This follows from the fact that
for small boosts the correction to ~sj (i.e. the second term in the curly brackets in eq. (3.5))
is of order u and orthogonal to ~vj , and in the limit u ≪ vj the correction to the unit vector
of the neutrino velocity in eq. (3.2) is orthogonal to ~sj, which is collinear with ~vj. Therefore,
the correction to ~sj · ~vj/vj is quadratic in u in this limit and can be neglected.4

Next, we will consider the consequences of the fact that CνB is isotropic in its rest frame
for the average characteristics of relic neutrinos in the lab frame. In the CνB rest frame we
have 〈~vj〉 = 0, 〈~sj〉 = 0 (hereafter the angular brackets will denote averaging over the angular
distributions of the CνB neutrinos but not over the absolute values of the neutrino velocities
vj). Therefore, for the quantities in the lab frame we get

〈E′
j〉 = Ej , 〈~q ′〉 = ~uEj , 〈~v ′

j〉 =
(

1−
v2j
3

)

~u . (3.6)

Further discussion of the effects of averaging over the directions of CνB neutrinos on neutrino
observables in the lab frame can be found in Appendix A.

3.1 Polarized targets

Let us consider now CνB detection by capture on polarized targets in the lab frame. For the
squared amplitude of the allowed 1π → 0π transition one finds (see Appendix A)

〈εµε
∗
νX

µν

4EeE′
j

〉

=
1

2Ee

(

A0 − ~A·~sN
)

{

1− λjvj +
(

1− 2

3
λjvj −

v2j
3

)

~u·~sN
}

. (3.7)

3It can be readily obtained by applying the Lorentz boost to linear order in the boost velocity ~u to the
4-vector Sµ

j and requiring that in the primed variables it have the same form as eq. (2.8).
4 Note that this would not be in general correct for u & vj (which corresponds to neutrino mass mj & 0.5

eV), even if u is small. In particular, for vj ≪ u ≪ 1 we would have ~v ′

j ≃ ~u, ~s ′

j ≃ ~sj and ~s ′

j ·~v
′

j/v
′

j ≃ ~sj · ~u/u,
which is different from λj for all boost velocities ~u that are not parallel or antiparallel to ~vj .
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The part of this expression relevant to our discussion is the last factor on the right hand side.
As the direction of ~u in the lab frame changes during the day because of the rotation of the
Earth, this factor gives rise to periodic variations of the signal, provided that the nuclear
polarization vector ~sN is not oriented along the Earth’s rotation axis. The amplitude of the
time variations is maximal when ~sN is orthogonal to this axis.5 Let us now examine the
effects of these time-dependent angular correlations.

Let Fj(λj) denote the expression in the curly brackets in eq. (3.7). For left-helical
neutrinos we have

Fj(λj = −1) = 1 + vj +
(

1 +
2

3
vj −

v2j
3

)

~u·~sN . (3.8)

For right-helical neutrino states we have to distinguish between Dirac and Majorana neu-
trinos. In the Dirac case, right-helical states are antineutrinos which cannot be detected in
inverse β−-decay processes, that is, one has to set Fj(λj = 1) = 0 in that case. For Majorana
neutrinos we have

Fj(λj = 1) = 1− vj +
(

1− 2

3
vj −

v2j
3

)

~u·~sN . (3.9)

In the limit vj → 1 this expression vanishes, in accord with the fact that ultra-relativistic
Dirac and Majorana neutrinos are essentially indistinguishable.

Assuming that CνB contains equal numbers of left-helical and right-helical neutrinos
and summing over the helicities, we find

Fj ≡
∑

λj=±1

Fj(λj) =











1 + vj +
(

1 + 2
3vj −

v2j
3

)

~u·~sN , Dirac neutrinos ,

2
[

1 +
(

1− v2j
3

)

~u·~sN
]

, Majorana neutrinos .

(3.10)

In the limiting case of non-relativistic neutrinos this gives

Fj ≃







1 + vj +
(

1 + 2
3vj

)

~u·~sN , Dirac neutrinos ,

2
(

1 + ~u·~sN
)

, Majorana neutrinos .
(3.11)

For highly relativistic neutrinos we obtain

FDir
j ≃ FMaj

j ≃ 2
(

1 +
2

3
~u·~sN

)

. (3.12)

Let us consider more closely the regime of non-relativistic neutrinos, in which the results
for Dirac and Majorana neutrinos differ. Dropping in (3.11) the term proportional to ~u·~sN ,
we recover the result of [17] obtained for neutrino absorption by unpolarized nuclei: the
detection cross section for Majorana neutrinos is about twice as large as that for Dirac
neutrinos, which means that detection of relic neutrinos could in principle shed light on
neutrino nature. This is, however, complicated by the fact that the local CνB density at
the Earth may differ from nν0 due to gravitational clustering effects and so is not precisely
known. Because the detection rate of relic neutrinos is proportional to their local density, by
measuring only the absolute CνB detection rate one may not be able to determine neutrino
nature unambiguously.

5In the geocentric spherical coordinates we have ~u ·~sN = u[cos θu cos θN + sin θu sin θN cos(φu(t) − φN )]
with φu(t) = (2π/T0)t+ φ0, T0 being the sidereal day. As the declination θu of the vector ~u is fixed, the time
dependence of ~u·~sN is maximized when sin θN = 1, i.e. when ~sN is orthogonal to the Earth’s rotation axis.
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As can be seen from eq. (3.11), this degeneracy between unknown local relic neutrino
density and Dirac/Majorana neutrino nature can in principle be lifted by measuring time-
dependent angular correlations in relic neutrino capture. This follows from the difference of
the dependences of Fj on ~u·~sN in the Dirac and Majorana cases, which cannot be absorbed
in the overall normalization of Fj . In practice, however, making use of this difference will be
very difficult because it contains an extra factor vj compared to the main ~u·~sN term.

3.2 Unpolarized targets

Let us now turn to angular correlations in the case of relic neutrino capture on unpolarized
targets. By averaging eq. (3.7) over the polarizations of the parent nuclei we find

〈1

3

∑

λ

εµ(λ)ε
∗
ν(λ)X

µν

4EeE′
j

〉

=
1

2Ee

{

A0(1− λjvj)−
1

3

(

1− 2

3
λjvj −

v2j
3

)

~u· ~A
}

. (3.13)

Consider this expression in two special cases. If the spin state of the produced electron is
not measured, summing over se we obtain

〈1

3

∑

λ,se

εµ(λ)ε
∗
ν(λ)X

µν

4EeE′
j

〉

= 1− λjvj −
1

3

(

1− 2

3
λjvj −

v2j
3

)

~u·~ve . (3.14)

If the electron direction is not observed but its spin state is, we find

∫

dΩe

4π

〈1

3

∑

λ

εµ(λ)ε
∗
ν(λ)X

µν

4EeE
′
j

〉

=
1

2

{

1−λjvj +
1

9

(

1+2
me

Ee

)(

1− 2

3
λjvj −

v2j
3

)

~u·~se
}

. (3.15)

Through the terms proportional to ~u · ~ve and ~u · ~se, these expressions exhibit angular corre-
lations between the directions of the electron’s velocity or spin and the preferred direction
of relic neutrino arrival ~u which changes in the lab frame during the day. Therefore, the
probability of electron emission with its momentum (or spin) pointing in a certain direction
in the lab frame will in general exhibit periodic time variations. The variations are absent for
the directions collinear with the Earth’s rotation axis and are maximized for the orthogonal
directions (see Appendix B).

Note that the right hand side of eq. (3.14) can be formally obtained from Fj(λj) by the
replacement ~u · ~sN → (−1/3)~u · ~ve, and similarly that of eq. (3.15) is obtained from Fj(λj)
by replacing ~u · ~sN → (1/9)[1 + 2(me/Ee)]~u · ~se and multiplying the whole expression by
1/2. Therefore, the discussion of the summation over the neutrino helicities, non-relativistic
and ultra-relativistic neutrino limits and the differences between the Dirac and Majorana
neutrino detection rates in the unpolarized case is quite similar to that for neutrino capture
on polarized targets in section 3.1 and will not be repeated here.

4 Separation of periodic signal from large fluctuating background

The amplitude of periodic variations of the angular correlations in relic neutrino captures on
beta-decaying nuclei is expected to be only a small (∼ 0.1%) fraction of the signal itself. In
addition, except in the case of very high energy resolution, the overall relic neutrino signal
is going to be very small compared with the background coming from the usual β decay of
the target nuclei. Indeed, the ratio of neutrino capture rate to the rate of the competing β
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decay with production of electrons in the energy window δ just below the endpoint of the
β-spectrum is [9, 10]

Γc

Γd
≃ 6π2nν

δ3
≃ nν

56 cm−3

2.54× 10−11

[δ (eV)]3
, (4.1)

independently of the Qβ-value of the process. Thus, e.g., for nν = 56 cm−3 and δ = 0.1 eV
the ratio is about 2.5×10−8. Clearly, in looking for the time dependence of the relic neutrino
signal one would face a very difficult task of extracting a weak periodic signal from large
fluctuating backgrounds.

The problem of separation of signals from noisy backgrounds is actually well studied.
It is routinely encountered in astronomy, acoustics, radiodetection, engineering, medical ap-
plications such as electrocardiography, magnetic resonance imaging, etc. There exists an
enormous literature on the subject. Here we shall consider a simple approach to signal-from-
noise separation based on the Fourier analysis and filtering in the frequency domain.

We are interested in observing small periodic variations of the detection rate of electrons
produced in neutrino capture on polarized nuclei in the presence of a large background of
electrons coming from the usual β decay and possibly from other background sources. We also
include in our definition of the background a (small) contribution coming from the average
neutrino capture rate. The periodic component of the signal is thus defined to have zero time
average. The background will be considered to be time-independent, except for the usual
statistical fluctuations due to the quantum nature of the underlying processes.6

In extracting periodic signals from large backgrounds the main problem comes from the
fluctuations of the background rather than from its average. We therefore subtract the mean
rate of the background events from the overall signal and consider

f(t) = s(t) + n(t) , (4.2)

where s(t) is the periodic signal and the n(t) is the “noise” which represents statistical
fluctuations of the background. This is actually the form usually considered in the signal
processing theory. Since by their definition both the signal s(t) and the noise n(t) have zero
time averages, their strengths are characterized by their variances, s(t)2 and n2(t).

In our treatment we will consider the periodic signal of the sinusoidal form

s(t) = A0 sin(ω0t+ ϕ) (4.3)

with the period T0 = 2π/ω0 and constant amplitude A0 and phase ϕ.7 The statistical prop-
erties of signal and noise are usually described in the time domain by their autocorrelation
functions, Rss(τ) and Rnn(τ), and in the frequency domain by their power spectra [31–36].
Let us first consider the limit of infinite total observation time T and infinite measurement
bandwidth. The autocorrelation function for the signal is defined as

Rss(τ) = s(t)s(t+ τ) ≡ lim
T→∞

1

T

∫ T/2

−T/2
s(t)s(t+ τ)dt , (4.4)

6 For large overall observation time T comparable to the mean lifetime of the target nuclei one should
take into account the exponential decrease with time of both the amplitude of the periodic signal and the
background. In this case the mean background to be subtracted from the signal in order to ensure that it has
zero average should be represented by a time-dependent moving average.

7 For neutrino capture on polarized nuclei, A0 is only constant when the degree of polarization of the
target nuclei does not change with time. Depolarization effects will lead to a decrease of A0 with time, and
re-polarization of the target nuclei in the course of the experiment (or between the runs) may be necessary.
Possible time dependence of A0 can be readily incorporated in the statistical treatment of the signal.
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and similarly for the noise. The signal and noise power spectra S(ω) and N(ω) are the
Fourier transforms of the corresponding autocorrelation functions:

S(ω) =

∫ ∞

−∞

dτ e−iωτRss(τ) , N(ω) =

∫ ∞

−∞

dτ e−iωτRnn(τ) . (4.5)

If the power spectra are known, the autocorrelation functions can be obtained as inverse
Fourier transforms:

Rss(τ) =

∫ ∞

−∞

dω

2π
eiωτS(ω) , Rnn(τ) =

∫ ∞

−∞

dω

2π
eiωτN(ω) . (4.6)

Note that the power spectrum of the signal can also be found as

S(ω) = lim
T→∞

1

T
|s̃(ω)|2 , (4.7)

where s̃(ω) is the Fourier transform of the time-dependent signal s(t):

s̃(ω) =

∫ ∞

−∞

dt e−iωts(t) . (4.8)

This can be readily shown by substituting Rss(τ) from (4.4) into the first equation in (4.5).
The autocorrelation function of a periodic function of period T0 is itself a periodic

function of the time lag τ with the same period. In particular, for the sinusoidal periodic
signal (4.3) we find

Rss(τ) =
A2

0

2
cosω0τ . (4.9)

The power spectrum of such a signal consists of two discrete lines corresponding to the
frequencies ω = ±ω0:

S(ω) =
π

2
A2

0

{

δ(ω − ω0) + δ(ω + ω0)
}

. (4.10)

The autocorrelation functions of random time distributions take their maximum values at
τ = 0 and tend to zero as τ → ∞. In the case of interest to us, the noise n(t) is due to the
fluctuations of the background event rate. As the values of these fluctuations at different
times are completely statistically independent, all the frequencies contribute to the power
spectrum of the noise with the same weight, i.e.

N(ω) = N0 = const. (4.11)

Such random time distributions with flat power spectrum are called white noise. The corre-
sponding autocorrelation function

Rnn(τ) = N0δ(τ) (4.12)

vanishes for all τ 6= 0.
Within this approach it would be formally possible to separate arbitrarily weak periodic

signal from noise: it would be sufficient to consider their autocorrelation functions at any non-
zero time lag τ satisfying ω0τ 6= π/2 + πn. The noise autocorrelation function (4.12) would
then vanish, while the signal autocorrelation function Rss of eq. (4.9) would remain finite.
This, however, would have only been the case for infinite T , whereas all experiments have
finite duration. Another indication of the oversimplified nature of the above consideration is
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that the total noise power obtained by integrating the flat power spectrum of eq. (4.11) over
the whole frequency interval (−∞, ∞) is infinite. The resolution comes from the observation
that any realistic measurement actually has a finite bandwidth, i.e. is characterized by a finite
interval of frequencies. We therefore turn now to the realistic case of finite total observation
time T and finite measurement bandwidth.

In experiments with time-dependent signal, quite often time binning of the data is
invoked, either because of the experimental conditions or basing on some statistical consid-
erations. For the bin length ∆t, the signal will then represent a finite discrete time series,
similar to those obtained by sampling continuous signals with the sampling rate 1/∆t. The
bin length, however, cannot be too large: the lossless reconstruction of a signal is in general
only possible if the sampling rate exceeds twice the maximal linear frequency contained in
the signal [31–36]. For a simple periodic signal of period T0 this means that the sampling
interval ∆t must be below T0/2.

For a time series with a uniform sampling interval ∆t the bandwidth is limited by |ω| ≤
ωm, where the maximal frequency ωm is related to the Nyquist linear frequency fN ≡ (2∆t)−1

by

ωm = 2πfN =
π

∆t
. (4.13)

This is essentially the highest frequency about which there is information, because ∆t is the
shortest time interval spanned. In the case of uneven sampling, when the lengths of the
sampling intervals vary, a generalized Nyquist linear frequency can be introduced, defined as
(2∆t)−1 with ∆t being the mean sampling interval [36]. In experiments allowing real-time
detection of the signal, binning of the data is not necessary and may actually be detrimental
to detection of time-dependent signals [37], as any binning leads to information loss. In such
real-time detection experiments ∆t can be taken to be the mean time interval between two
consecutive events, i.e. the reciprocal of the mean event rate.

Let us now consider the signal-to-noise ratio and its improvement by frequency-domain
filtering, taking into account that the total observation time T is finite. In what follows we will
be assuming ∆t ≪ T and for simplicity will replace the summation over the event detection
times by integration, which corresponds to the limit ∆t → 0. The finite actual length of ∆t
will only be reflected in that the integration in the frequency domain will be limited by the
interval [−ωm, ωm]. More refined approach would be to estimate the signal power spectrum
by calculating periodograms based on discrete Fourier transform [35, 36]; however for our
purpose of obtaining simple estimates the approach we adopt is quite adequate.

Let us first calculate the signal power spectrum. It can be shown that S(ω) has the
same form as that in eq. (4.7) except that no limit T → ∞ is taken and s̃(ω) is now the
finite-interval Fourier transform of s(t). Direct calculation with s(t) from eq. (4.3) yields

s̃(ω) =

∫ T/2

−T/2
dt e−iωts(t) = A0

{

− ieiϕ
sin

[

(ω − ω0)
T
2

]

ω − ω0
+ ie−iϕ sin

[

(ω + ω0)
T
2

]

ω + ω0

}

. (4.14)

The power spectrum of the signal is then

S(ω) =
A2

0

T

{sin2
[

(ω − ω0)
T
2

]

(ω − ω0)2
+
sin2

[

(ω + ω0)
T
2

]

(ω + ω0)2
−2

sin
[

(ω − ω0)
T
2

]

ω − ω0

sin
[

(ω + ω0)
T
2

]

ω + ω0
cos 2ϕ

}

.

(4.15)
It contains two main peaks with the centers at ω = ±ω0 (see fig. 1). The widths of each peak
can be characterized by the distance between the two zeros nearest to the peak position;
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Figure 1. Schematic representation of the power spectra of the signal S(ω) (red solid curve) and
noise N(ω) (blue dashed line).

this corresponds to the intervals ±2π/T around the centers of the peaks. Since the distance
between the centers of the two main peaks 2ω0 is much larger than the width of the peaks
4π/T ,8 the peaks are practically non-overlapping, and one can safely neglect the cross-product
term (the last term in the curly brackets) in eq. (4.15). The interval [−2π/T, 2π/T ] around
the center of each peak contains about 90% of its strength (see eq. (4.19) below). In the limit
T → ∞ we recover the result in eq. (4.10).

It was pointed out above that the signal and noise strengths can be characterized by
their variances, s(t)2 and n2(t). As follows from (4.4) and the similar definition of Rnn(τ),
these variances coincide with the values of the corresponding autocorrelation functions at
the origin, which in turn are given by the integrals of the signal and noise powers over the
bandwidth Ω of the measurement:

s(t)2 = Rss(0) =

∫

Ω

dω

2π
S(ω) , n(t)2 = Rnn(0) =

∫

Ω

dω

2π
N(ω) . (4.16)

As the power spectrum of the background fluctuations N(ω) is essentially constant through-
out the bandwidth of the experiment [−ωm, ωm], we have

n(t)2 ≡ σ2
0 =

∫ ωm

−ωm

dω

2π
N(ω) ≃ ωm

π
N0 . (4.17)

In the case under consideration, the noise is due to the statistical fluctuations of the back-
ground related to quantum nature of the underlying processes and discrete nature of the
detected particles; this is a special case of white noise called shot noise [34]. The flat power
spectrum of such a noise is given by the number of events per unit time (see e.g. [38] for a
simple derivation). Thus, the quantity N0 in eq. (4.17) is just the mean background event
rate.

We will now make use of the fact that the signal is concentrated in the narrow intervals
in the frequency domain (which become narrower as the total observation time increases),
whereas the noise power is constant per unit bandwidth. To improve the signal-to-noise
ratio, we therefore integrate the signal and noise power spectra over the intervals ∆ω =

8We assume that the total observation time T is much larger than the period of the sidereal daily variations
of the signal 2π/ω0 ≃ 24 h.
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[−2π/T, 2π/T ] around the points ω = ±ω0. Since the regions around these two points give
identical contributions to the signal power as well as to the noise power, for the ratio it is
sufficient to consider only one such region. We therefore define the improved signal-to-noise
ratio as

ρ =

∫

∆ω
dω
2πS(ω)

∫

∆ω
dω
2πN(ω)

. (4.18)

With the expression for S(ω) from eq. (4.15) and N(ω) = N0 we find

∫

∆ω

dω

2π
S(ω) ≃ A2

0

4π

∫ π

−π

sin2 x

x2
dx =

A2
0

4

2Si(2π)

π
≃ A2

0

4
· 0.9028 , (4.19)

∫

∆ω

dω

2π
N(ω) ≃ 2N0

T
. (4.20)

Substituting this into eq. (4.18) yields

ρ ≃ 0.9028A2
0T

8N0
. (4.21)

This quantity essentially coincides (up to about a factor of 1/2) with the ratio of the peak
value of the signal power to the (flat) value of the noise power. Comparing this result with
the original signal-to-noise ratio s(t)2/n(t)2 that may be found by integrating the signal and
noise power spectra over the full interval [−ωm, ωm], we find that the improvement factor
due to the passband filtering is about 0.225N0T . As N0T is the number of background events
detected over the total observation time T , this factor can be quite large.

An alternative interpretation of the obtained result can be given by comparing it with
the signal-to-background ratio rather than with the “un-filtered” signal-to-noise one. To this
end, let us rewrite eq. (4.21) as

ρ ≃ (A0/
√
2)T

N0T
·
[

0.225(A0T/
√
2)
]

. (4.22)

Here the quantity (A0/
√
2)T is the root mean square number of the “signal events” (i.e. of

the events caused by the periodic component of the neutrino capture signal) over the time
interval T . The first factor in eq. (4.22) is therefore essentially the signal-to-background
ratio. The expression in the square brackets is the enhancement factor, which increases with
increasing signal statistics (A0/

√
2)T .

From eq. (4.22) it can be seen that, though the noise reduction by simple frequency-
domain filtering considered here will greatly improve the signal-to-noise ratio, it will not
be sufficient for a reliable signal detection unless the total number of the detected signal
events is very large. Indeed, for δ ∼ 0.1 eV and u ∼ 10−3 the signal-to-background ratio
is expected to be of order 2.5 × 10−11. Thus, with the simple frequency-domain filtering
discussed above, an unrealistically large number of signal events (& 2.5 × 1011) would be
necessary in order to detect the CνB signal. Therefore, more sophisticated methods of noise
reduction must be invoked. As an example, the signal-to-noise ratio can be further improved
by measuring the noise power spectrum in the frequency regions where the signal is essentially
absent (i.e. away from the neighborhoods of ω = ±ω0) in order to predict its value in the
regions where the signal is concentrated and cancel (subtract) it there [39]. The cancellation
will, however, be incomplete as the noise spectrum is in reality only approximately flat.
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Preliminary estimates show that such noise cancellation may reduce the requisite number of
signal events to about 104. Other methods of noise suppression can also be used, such as
e.g. studying cross-correlation of the observed data with test functions in the form of the
expected time-dependent signal, as it is currently done in gravitational wave detection.

To be able to make a more definitive statement on the possibility of noise suppression,
one would need to perform signal and noise simulations in the conditions of a particular
experiment.

5 Discussion

We have suggested an alternative method of detection of CνB through neutrino capture on
beta-decaying nuclei, based on observation of time variations of the total detection rates or of
various angular correlations characteristic of β-processes. The time dependence should come
about because of the peculiar motion of the Sun with respect to CνB and rotation of the Earth
about its axis. The variations of total CνB detection rate can be observed in experiments with
polarized nuclear targets, whereas the observation of modulated β− ν angular correlation or
of the correlation between the neutrino direction and the spin of the produced electron does
not require target polarization. As an example, we considered neutrino detection through
allowed Gamow-Teller 1π → 0π β-transitions; however, our results can be readily generalized
to arbitrary allowed Gamow-Teller transitions Jπ → Jπ ± 1.

One advantage of pure Gamow-Teller transitions is that the effects of the target po-
larization are more prominent in this case. Consider e.g. pure Gamow-Teller Jπ → Jπ − 1
transitions (of which the 1π → 0π process we have studied is an example). In this case the
detection cross section will be exactly zero if the incoming neutrino is in a helicity eigenstate
and its spin is aligned with that of the parent nucleus. Indeed, in this case the total angular
momentum of the initial state (incoming neutrino + parent nucleus) is J+1/2; due to angular
momentum conservation, such a system cannot decay into a daughter nucleus with spin J−1
and electron. Likewise, the probability of the process vanishes if the produced electron is in
a helicity eigenstate with its spin antialigned with the polarization of the parent nucleus. It
is easy to see that our squared amplitude (2.10) satisfies these conditions (see footnote 2).
The case of pure Gamow-Teller Jπ → Jπ + 1 transitions can be considered quite similarly.

On the other hand, pure Fermi transitions 0π → 0π may be useful for observing β − ν
angular correlations in relic neutrino capture on unpolarized nuclei, as they are characterized
by a sizeable correlation coefficient a = 1. An important advantage of pure transitions is
that for them the angular correlations coefficients do not depend on nuclear matrix elements.

For the non-relativistic component of CνB, the coefficients of angular correlations in
relic neutrino capture are different for Dirac and Majorana neutrinos, and so one might hope
that observing these correlations would help establish neutrino nature. Unfortunately, this
would be extremely difficult, as the differences between the correlation coefficients for Dirac
and Majorana neutrinos are additionally suppressed by the small factor vj.

The suggested method of CνB detection is obviously prone to difficulties. One of them
is related to the expected smallness of the amplitude of the periodic variation of the relic
neutrino signal. It will therefore be necessary to extract a weak periodic signal from a large
fluctuating background of electrons or positrons from the usual β-decay. In experiments
with polarized nuclear targets one will also have to face experimental problems related with
the requirement of polarization of the target nuclei and maintaining this polarization for an
extended period of time (or renewing it in the course of the experiment).
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On the other hand, there are well-developed powerful methods of signal-from-noise
separation, which are especially efficient when the signal is of known periodicity and which
therefore may be helpful in solving the problem of detecting relic neutrinos through time
variations of their signal. The CνB detection may also be facilitated by the fact that there
exist several independent angular correlations which are expected to exhibit time variations
of the same periodicity. It is also worth noticing that the the angular correlations in the relic
neutrino capture may be enhanced in the presence of non-standard neutrino physics, such as
relatively large neutrino magnetic moments [18].

The main advantage of the approach suggested in this paper is that it does not in
principle require extremely high energy resolution of the detector. Good energy resolution
would certainly be helpful, as it would allow one to suppress the background of electrons
or positrons coming from the competing β decay by working close to the endpoint of their
spectrum. However, the method can still be operative even for relatively large energy res-
olution, if sufficiently potent method of separation of the weak periodic signal from strong
random noise is employed. This is in contrast with the situation with the usually considered
method of relic neutrino detection based on the separation of the spectra of β-particles from
neutrino absorption and β decay. The latter would not work if the energy resolution of the
detector exceeds the largest neutrino mass. The fact that the requirements on the energy
resolution are less severe in the approach suggested here, in particular, means that radioac-
tive nuclei with relatively large Qβ values may be preferable as target, because they lead to
larger absolute detection rates.

Much work has yet to be done to establish if the approach to CνB detection suggested
in this paper is actually feasible, including selection of suitable nuclides (taking into account,
among other aspects, their availability, lifetime, type of β transition, (neutrino capture)/(β
decay) rate ratio and feasibility of target polarization in the case of experiments with polarized
nuclei). Extensive simulations of the signal and background will also be necessary to clarify if
the proposed CνB detection method is actually viable and is competitive with the approach
based on the separation of the spectra of β-particles from relic neutrino capture from those
produced in β decay of target nuclei.
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A Angular averaging

We will consider here the effects of averaging over the angular distributions of relic neutrinos
on the angular correlations of interest in the lab frame. We will be assuming that in the
CνB rest frame neutrinos have isotropic velocity distribution and are in the exact helicity
eigenstates; therefore their spins are also distributed isotropically. As in section 3, we will
use the unprimed notation for the neutrino variables in the CνB rest frame, whereas the
primed quantities will refer to the lab frame, moving with the velocity −~u with respect to
the cosmic one. We will consider the effects of Lorentz boost from the CνB rest frame to the
lab frame to first order in u. The neutrino energy, momentum and velocity in the lab frame
are given in eq. (3.1). The expressions for neutrino spin in the lab frame are given in eq. (3.3)
in the general case and in eq. (3.5) for neutrinos that are in helicity eigenstates in the CνB
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rest frame. It was demonstrated in section 3 that in the case vj ≫ u of main interest to us
neutrinos that were in states of definite helicity in the CνB frame will remain in the same
helicity states in the lab frame up to corrections O(u2) which we neglect.

From eqs. (3.1) and (3.5) we find

~v ′
j ·~s ′

j = λjvj

{

1 + (~u·~vj)
1− v2j
v2j

}

. (A.1)

For the quantity Kj that enters into the expression for the neutrino vector Bµ we then obtain
in the lab frame

K ′
j = 1− E′

j

E′
j +mj

(~v ′
j ·~s ′

j) = 1− Ej

Ej +mj
λjvj

(

1 +
~u·~vj
v2j

mj

Ej

)

. (A.2)

This gives
1

E′
j

~B′ = K ′
j~v

′
j −

mj

E′
j

~s ′
j = (1− λjvj)

{

~u− (1− ~u·~vj)λj
~vj
vj

}

. (A.3)

Consider now the effects of averaging over the angular distributions of relic neutrinos on
neutrino variables, taking into account that neutrino velocity and spin distributions in the
CνB rest frame are isotropic. Denoting the averaging over the directions by angular brackets
and taking into account that 〈~vj〉 = 0 and 〈~sj〉 = 0, for the quantities in the lab frame we
find

〈E′
j〉 = Ej , 〈~q ′〉 = ~uEj , 〈~v ′

j〉 =
(

1−
v2j
3

)

~u , (A.4)

〈~v ′
j

v′j

〉

=
2

3

~u

vj
, (A.5)

〈~s ′
j〉 = λjvj

2

3

Ej

Ej +mj
~u ,

〈

~v ′
j ·~s ′

j

〉

= λjvj =
〈

~vj ·~sj
〉

. (A.6)

This yields
〈 1

E′
j

B0′
〉

= 1− 〈~v ′
j ·~s ′

j〉 = 1− λjvj , (A.7)

〈 1

E′
j

~B′
〉

=
〈

K ′
j~v

′
j −

mj

E′
j

~s ′
j

〉

=
(

1− 2

3
λjvj −

v2j
3

)

~u . (A.8)

With these relations, one readily obtains the expressions for the squared amplitude of the
process given in sections 3.1 and 3.2.

B Electron asymmetry with respect to a fixed direction in the lab frame

As discussed in section 3.2, the angular correlation between the direction of the produced
electron and the preferred direction of the neutrino arrival in the case of relic neutrino capture
on unpolarized nuclei can be written as

const.(1 + α~u· ~ve) , (B.1)
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where α is the correlation coefficient (see eq. (3.14)). We want to find the time-dependent
forward-backward asymmetry of electron emission with respect to a fixed direction in the lab
frame specified by a unit vector ~ξ. It is easy to see that the asymmetry would not depend
on time for ~ξ collinear with the rotation axis of the Earth and its time dependence will be
maximized for orthogonal directions. We therefore choose ~ξ to lie in the plane orthogonal to
the Earth’s rotation axis. In the geocentric spherical coordinates we have

~u = u
(

cosφu(t) sin θu , sinφu(t) sin θu , cos θu
)

, (B.2)

~ve = ve
(

cosφe sin θe , sinφe sin θe , cos θe
)

, (B.3)

~ξ =
(

cosφξ , sinφξ , 0
)

, (B.4)

where

φu(t) =
2π

T0
t+ φ0 (B.5)

and T0 ≃ 24 h is the sidereal day. From B.2 and B.3 we find

~u·~ve = uve
[

cos θu cos θe + sin θu sin θe cos[φu(t)− φe]
]

. (B.6)

Straightforward calculation then gives for the forward-backward asymmetry of the electron
emission with respect to ~ξ

A ≡ σ↑ − σ↓
1
2 [σ↑ + σ↓]

= αuve sin θu cos[φu(t)− φξ] . (B.7)

The electron spin asymmetry with respect to a fixed direction in the lab frame can be
considered quite similarly.

References

[1] A. D. Dolgov, “Neutrinos in cosmology,” Phys. Rept. 370 (2002) 333 [hep-ph/0202122].

[2] J. Lesgourgues and S. Pastor, “Massive neutrinos and cosmology,” Phys. Rept. 429, 307 (2006)
[astro-ph/0603494].

[3] C. Quigg, “Cosmic neutrinos,” arXiv:0802.0013 [hep-ph].

[4] T. J. Weiler, “Relic neutrinos, Z–bursts, and cosmic rays above 1020 eV,” in Proc. Beyond the

Desert 99, Tegernsee, Germany, 1999, edited by H. Klapdor-Kleingrothaus and I. Krivosheina,
IoP Publishing, Bristol, 2000 [hep-ph/9910316].

[5] G. B. Gelmini, “Prospect for relic neutrino searches,” Phys. Scripta T 121 (2005) 131
[hep-ph/0412305].

[6] A. Ringwald, “Prospects for the direct detection of the cosmic neutrino background,” Nucl.
Phys. A 827 (2009) 501C [arXiv:0901.1529 [astro-ph.CO]].

[7] P. Vogel, “How difficult it would be to detect cosmic neutrino background?,” AIP Conf. Proc.
1666 (2015) no.1, 140003.

[8] S. Weinberg, “Universal neutrino degeneracy,” Phys. Rev. 128 (1962) 1457.

[9] A. G. Cocco, G. Mangano and M. Messina, “Probing low energy neutrino backgrounds with
neutrino capture on beta decaying nuclei,” JCAP 0706 (2007) 015 [hep-ph/0703075].

[10] R. Lazauskas, P. Vogel and C. Volpe, “Charged current cross section for massive cosmological
neutrinos impinging on radioactive nuclei,” J. Phys. G 35 (2008) 025001 [arXiv:0710.5312
[astro-ph]].

– 21 –



[11] M. Blennow, “Prospects for cosmic neutrino detection in tritium experiments in the case of
hierarchical neutrino masses,” Phys. Rev. D 77 (2008) 113014 [arXiv:0803.3762 [astro-ph]].

[12] A. G. Cocco, G. Mangano and M. Messina, “Low energy antineutrino detection using neutrino
capture on EC decaying nuclei,” Phys. Rev. D 79 (2009) 053009 [arXiv:0903.1217 [hep-ph]].

[13] Y. F. Li, Z. z. Xing and S. Luo, “Direct detection of the cosmic neutrino background including
light sterile neutrinos,” Phys. Lett. B 692 (2010) 261 [arXiv:1007.0914 [astro-ph.CO]].

[14] M. Lusignoli and M. Vignati, “Relic antineutrino capture on 163-Ho decaying nuclei,” Phys.
Lett. B 697 (2011) 11 Erratum: [Phys. Lett. B 701 (2011) 673] [arXiv:1012.0760 [hep-ph]].

[15] A. Faessler, R. Hodak, S. Kovalenko and F. Simkovic, “Beta decaying nuclei as a probe of
cosmic neutrino background,” arXiv:1102.1799 [hep-ph].

[16] B. R. Safdi, M. Lisanti, J. Spitz and J. A. Formaggio, “Annual modulation of cosmic relic
neutrinos,” Phys. Rev. D 90 (2014) no.4, 043001 [arXiv:1404.0680 [astro-ph.CO]].

[17] A. J. Long, C. Lunardini and E. Sabancilar, “Detecting non-relativistic cosmic neutrinos by
capture on tritium: phenomenology and physics potential,” JCAP 1408 (2014) 038
[arXiv:1405.7654 [hep-ph]].

[18] M. Lisanti, B. R. Safdi and C. G. Tully, “Measuring anisotropies in the cosmic neutrino
background,” Phys. Rev. D 90 (2014) no.7, 073006 [arXiv:1407.0393 [astro-ph.CO]].

[19] E. Roulet and F. Vissani, “On the capture rates of big bang neutrinos by nuclei within the
Dirac and Majorana hypotheses,” JCAP 1810 (2018) no.10, 049 [arXiv:1810.00505 [hep-ph]].

[20] J. Y. Lee, Y. Kim and S. Chiba, “New targets for relic antineutrino capture,” arXiv:1811.05183
[hep-ph].

[21] S. Betts et al., “Development of a relic neutrino detection experiment at PTOLEMY:
Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield,”
arXiv:1307.4738 [astro-ph.IM].

[22] M. G. Betti et al. [PTOLEMY Collaboration], “Neutrino physics with the PTOLEMY
project,” arXiv:1902.05508 [astro-ph.CO].

[23] E. Baracchini et al. [PTOLEMY Collaboration], “PTOLEMY: A proposal for thermal relic
detection of massive neutrinos and directional detection of MeV dark matter,”
arXiv:1808.01892 [physics.ins-det].

[24] P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola and J. W. F. Valle, “Status of neutrino
oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity,” Phys. Lett.
B 782 (2018) 633 [arXiv:1708.01186 [hep-ph]].

[25] F. Capozzi, E. Lisi, A. Marrone and A. Palazzo, “Current unknowns in the three neutrino
framework,” Prog. Part. Nucl. Phys. 102 (2018) 48 [arXiv:1804.09678 [hep-ph]].

[26] I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz,
“Global analysis of three-flavour neutrino oscillations: synergies and tensions in the
determination of θ23, δCP , and the mass ordering,” JHEP 1901 (2019) 106 [arXiv:1811.05487
[hep-ph]].

[27] J. D. Jackson, S. B. Treiman and H. W. Wyld, “Possible tests of time reversal invariance in
beta decay,” Phys. Rev. 106 (1957) 517.

[28] J. D. Jackson, S. B. Treiman and H. W. Wyld, “Coulomb corrections in allowed beta
transitions,” Nucl. Phys. 4 (1957) 206.

[29] M. Goldhaber, L. Grodzins and A. W. Sunyar, “Helicity of neutrinos,” Phys. Rev. 109 (1958)
1015.

[30] P. F. de Salas, S. Gariazzo, J. Lesgourgues and S. Pastor, “Calculation of the local density of
relic neutrinos,” JCAP 1709 (2017) no.09, 034 [arXiv:1706.09850 [astro-ph.CO]].

– 22 –



[31] L. A. Wainstein and V. D . Zubakov, Extraction of Signal from Noise, Dover, New York, 1970.

[32] J. G. Proakis and D. G. Manolakis, Digital Signal Processing, Prentice Hall, 1996.

[33] D. R. Brillinger, Time Series. Data Analysis and Theory, SIAM, Philadelphia, 2001.

[34] A. Papoulis and S. U. Pillai, Probability, random variables, and stochastic processes, 4th ed.,
McGraw-Hill, New York, 2002.

[35] N. R. Lomb, “Least - squares frequency analysis of unequally spaced data,” Astrophys. Space
Sci. 39 (1976) 447.

[36] J. D. Scargle, “Studies in astronomical time series analysis. 2. Statistical aspects of spectral
analysis of unevenly spaced data,” Astrophys. J. 263 (1982) 835.

[37] E. Lisi, A. Palazzo and A. M. Rotunno, “Unbinned test of time dependent signals in real time
neutrino oscillation experiments,” Astropart. Phys. 21 (2004) 511 [hep-ph/0403036].

[38] X. Chen, “On Schottky noise and shot noise,” arXiv:1805.12207 [physics.ins-det].

[39] J. Samsing, “Extracting periodic transit signals from noisy light curves using Fourier series”,
Astrophys. J. 807 (2015) 65, arXiv:1503.03504 [astro-ph.EP].

– 23 –


	1 Introduction
	2  Neutrino capture in inverse  decay
	2.1 Gamow-Teller 10 transitions
	2.2 Neutrino capture on unpolarized nuclei
	2.3 Comparison with  capture on polarized tritium (1/2+1/2+) 

	3  Implications for relic neutrino capture: lab frame
	3.1 Polarized targets
	3.2 Unpolarized targets

	4 Separation of periodic signal from large fluctuating background
	5 Discussion
	A Angular averaging
	B  Electron asymmetry with respect to a fixed direction in the lab frame

