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Abstract: Leptogenesis induced by the oscillations of GeV-scale neutrinos provides a

minimal and testable explanation of the baryon asymmetry of the Universe. In this work

we extend previous studies invoking only two heavy neutrinos to the case of three heavy

neutrinos. We find qualitatively new behaviour as a result of lepton number violating os-

cillations and decays, strong flavour effects in the washout and a resonant enhancement

due to matter effects. An approximate global B− L̄ symmetry (representing the difference

of baryon and a generalised lepton number) can protect the light neutrino masses from

large radiative corrections, while simultaneously providing the ingredients for the resonant

enhancement of the lepton asymmetry due to thermal contributions to the heavy neu-

trino dispersion relations. This mechanism is particularly efficient for large heavy neutrino

mixing angles near the current experimental limits, a regime in which leptogenesis is not

feasible in the minimal scenario with two heavy neutrinos. In this new parameter regime,

low-scale leptogenesis is testable by the LHC and other existing experiments.
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1 Introduction

All elementary fermions with the exception of neutrinos are known to exist with both

chiralities, left-handed and right-handed, in the Standard Model (SM) of particle physics.

Right-handed neutrinos could, if they exist, explain a number of open puzzles in particle

physics as well as in cosmology, cf. e.g. [1] for an overview. Most importantly, they can

generate non-zero neutrino masses mi that explain the light neutrino flavour oscillations

via the type-I seesaw mechanism [2–7]. A key prediction of the seesaw mechanism is the

existence of heavy neutrino mass states Ni with masses Mi � mi and weak interactions

with the SM leptons `a (with a = e, µ, τ) which are suppressed by small mixing angles θai.

For Mi below the TeV scale, the Ni can be searched for experimentally. The experiments

ATLAS [8–10], CMS [11–13] and LHCb [14, 15] at the LHC currently perform such searches

in the mass range Mi > 5 GeV. For the Mi below the W gauge boson mass considered

in this work, the sensitivity is expected to improve significantly by using a wider range

of signatures and improved triggers [16–23]. Further improvement could be achieved with

additional detectors [24–26]. In the future, a lepton collider could offer an ideal tool to

search for heavy neutrinos with masses below the W mass [27–36]. Searches at smaller

masses Mi < 5 GeV are preformed at the NA62 experiment [37–39] as well as at T2K [40],

and in the future at SHiP [31, 41].

Further motivation for the existence of heavy neutrinos comes from cosmology. Their

Yukawa interactions Fai with the SM flavours a = e, µ, τ generally violate CP and can

potentially generate a matter-antimatter asymmetry in the primordial plasma that filled

the early Universe, which can be converted into a baryon asymmetry by weak sphaleron

processes [42]. This mechanism is known as leptogenesis [43] and provides an attractive

explanation for the baryon asymmetry of the Universe (BAU), which is believed to be the

origin of baryonic matter in the Universe at present time (cf. e.g. [44] for a discussion).

Leptogenesis can either be realised during the freeze-out and decay of the heavy neutri-

nos [43] (“freeze-out scenario”) or during their production [45, 46] (“freeze-in scenario”).

The freeze-in scenario is particularly interesting from a phenomenological viewpoint be-

cause it is feasible for masses Mi below the electroweak scale [47], which are within reach

of experiments [48].

The number n of right-handed neutrinos is not constrained by theoretical arguments

within the SM. However, in the context of many gauge extensions of the SM it should equal
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the number of SM generations (n = 3) to ensure the anomaly freedom of the theory. From

an experimental viewpoint n ≥ 2 is needed to explain the two observed light neutrino mass

splittings if the type-I seesaw is the sole origin of the light neutrino masses.

Most phenomenological studies of low-scale leptogenesis in the past have focused on

the minimal model with n = 2. This effectively also describes neutrino mass generation and

leptogenesis in the Neutrino Minimal Standard Model (νMSM) [46, 49], where the third

right-handed neutrino is a Dark Matter candidate, and the observational constraints on its

properties [50, 51] imply that it practically decouples. First estimates of the Ni properties

in the νMSM were made [52] shortly after the viability of the freeze-in mechanism in the

minimal setup had been shown [46]. Following a number of conceptual treatments [53–57],

the parameter space was first systematically studied in Refs. [47, 58, 59]. Following this,

several authors have investigated details of the problem, such as the momentum averaging

in the kinetic equations [60–62], the thermal production rates [61–69], the gradual sphaleron

freeze-out [70], lepton number violating (LNV) effects in the decay and scattering rates

[36, 61, 62, 71] and from mixing [72], the dependence on the initial conditions [73] and

the connection to neutrinoless double β decay experiments [74–76]. Recent parameter

scans of the minimal n = 2 model that have implemented some of this progress can be

found in Refs. [36, 74, 77–80] for the minimal seesaw and for its embeddings in inverse

and linear seesaw models [81, 82]. While this minimal model is extremely predictable and

in principle fully testable [74, 79], a key disadvantage is that the requirement to protect

the generated asymmetries in the early Universe from washout limits the feasibility of the

freeze-in leptogenesis mechanism to values of the mixing angles θai that are so small that

it will be very challenging to produce the particles in sizeable numbers at the LHC.

The scenario with n = 3 has a much larger parameter space, which makes a phe-

nomenological exploration more difficult. In Ref. [83] it has been pointed out that this

additional freedom can make leptogenesis with much larger mixing angles possible because

it allows to make strong hierarchies |Fai| � |Fbi| amongst the Yukawa couplings consis-

tent with light neutrino oscillation data [84]. This allows to protect the asymmetry in the

flavour a from washout while the coupling |Fbi| can be large enough to yield observable

event rates at the LHC. The numerical analysis in Ref. [83] is by now known to be in-

correct because it neglected the early equilibration of one of the interaction eigenstates,

see e.g. [75]. However, the physical argument can still be expected to be true. Further

studies of the model with n = 3 [77, 78, 83, 85–87] have not systematically explored the

parameter space, so that the range of heavy neutrino couplings that can be made consis-

tent with leptogenesis and with light neutrino oscillation data in this scenario is not yet

known. With the present work we want to address this issue and systematically scan the
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parameter space of the low-scale seesaw model with three right-handed neutrinos. While

we perform an agnostic scan of the entire parameter space, we pay special attention on

the region where the seesaw model approximately respects a generalised B − L symmetry

[88]. In this parameter region the symmetry protects the light neutrino masses in a way

that observable Ni production rates at colliders can be made consistent with the observed

neutrino oscillation data in a technically natural way [89].

Our systematic analysis demonstrates significant quantitative and qualitative differ-

ences with respect to the n = 2 scenario. On the one hand, we confirm that the parameter

space which simultaneously accounts for the neutrino oscillation data and the observed

baryon asymmetry of the Universe, projected onto experimentally accessible quantities

such as the active-sterile mixings and neutrinoless double beta decay effective mass, is

significantly enlarged, implying significant discovery space for experiments such as NA62,

T2K, Belle II and the LHC. On the other hand, we find qualitatively new dynamical pro-

cesses in the kinetic equations describing leptogenesis, such as a dynamically generated

resonant enhancement, providing new channels to generate the baryon asymmetry of the

Universe.

The remainder of the paper is organised as follows. In Section 2 we introduce our

setup, with a particular focus on the role of (approximate) global symmetries. The kinetic

equations governing leptogenesis are introduced in Section 3, emphasising the subtleties

associated with a temperature dependent mass eigenbasis. We come back to this point

in Section 4, where we discuss the different physical processes involved in the generation

of the lepton asymmetry both for n = 2 and n = 3. The details of our parameter scan

are given in Section 5, with the resulting experimental prospects discussed in Section 6.

We illustrate the different dynamical processes contributing to leptogenesis by means of

some representative benchmark points in Section 7 before concluding in Section 8. Further

technical details can be found in the three appendices.

2 The seesaw model

2.1 Review of the model and notation.

The most general renormalizable Lagrangian that contains only SM fields and n flavours

of right-handed neutrinos νRi reads

L = LSM+i νRi/∂νRi−
1

2

(
νcRi(MM )ijνRj + νRi(M

†
M )ijν

c
Rj

)
−Fai`Laεφ∗νRi−F ∗aiνRiφT ε†`La .

(2.1)

Here we have suppressed SU(2) indices; ε is the totally antisymmetric SU(2) tensor. The

Fai are Yukawa couplings between the νRi and the SM leptons `a, MM is a Majorana
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mass matrix for the singlet fields νRi.
1 In the following we work in the flavour basis where

MM is diagonal unless a different basis is explicitly specified. The breaking of electroweak

symmetry by the Higgs expectation value φ = (0, v)T (with v = 174 GeV at T = 0)

generates a Dirac mass term νLmDνR with mD = vF from the Yukawa interaction term

F`Lεφ
∗νR.

After electroweak symmetry breaking (EWSB), the complete neutrino mass term reads

1

2
(ν̄L ν̄cR)

δm1loop
ν mD

mT
D MM


︸ ︷︷ ︸

≡M

νcL
νR

 . (2.2)

Here we have added the 1-loop correction δm1loop
ν [90] since we aim to perform an analysis

that is consistent at second order in the Yukawa couplings F . The mass matrix (2.2) can

be diagonalised as

U†MU∗ =

mdiag
ν

Mdiag
N

 , (2.3)

where mdiag
ν and Mdiag

N are diagonal 3 × 3 matrices. It is convenient to parametrise U as

[91]

U =

 cos(θ) sin(θ)

− sin(θ†) cos(θ†)


Uν

U∗N

 , (2.4)

with

cos(θ) =

∞∑
n=0

(−θθ†)n

(2n)!
, sin(θ) =

∞∑
n=0

(−θθ†)nθ
(2n+ 1)!

. (2.5)

In the parameterisation (2.3) M is first block-diagonalised by a complex 3 × n matrix θ

that mediates the mixing between the active neutrinos νL and the sterile neutrinos νR. The

unitary matrices Uν and U∗N then diagonalise the 3×3 and n×n blocks mν and MN in the

upper left and lower right corners, respectively, as U †νmνU
∗
ν = diag(m1,m2,m3) ≡ mdiag

ν

and UTNMNUN = diag(M1,M2, . . . ,Mn) ≡Mdiag
N .

In the seesaw limit |θai| � 1, one can approximate

θ ' mDM
−1
M = vFM−1

M , cos(θ) = 1− 1

2
θθ† +O(θ4) , sin(θ) = θ +O(θ3) , (2.6)

1Here we use four-component spinor notation. Since spinors νR and `L are chiral, i.e., have only two

non-zero components (PRνR = νR and PL`L = `L), no explicit chiral projectors are required in the weak

interaction term (2.15).
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and

δm1loop
ν = FMdiag

N l(Mdiag
N )F T =

1

v2
θMMM

diag
N l(Mdiag

N )MMθ
T , (2.7)

mν = −θM̃θT , (2.8)

MN = MM +
1

2
(θ†θMM +MT

Mθ
T θ∗) , (2.9)

with [90, 92–96]

M̃ =
[
1− 1

v2
MMM

diag
N l(Mdiag

N )
]
MM , (2.10)

l(Mi) =
1

(4π)2

[
3ln[(Mi/mZ)2]

(Mi/mZ)2 − 1
+

ln[(Mi/mH)2]

(Mi/mH)2 − 1

]
. (2.11)

By splitting

mν = mtree
ν + δm1loop

ν , (2.12)

we can recover the well-known tree-level result

mtree
ν = −mDM

−1
M mT

D = −θMMθ
T . (2.13)

The spectrum of neutrino mass states is clearly separated into three light and n heavy

mass eigenstates which can be expressed in terms of the Majorana spinors

νi =
[
V †ν νL − U †νθνcR + V T

ν ν
c
L − UTν θ∗νR

]
i
, Ni =

[
V †NνR + ΘT νcL + V T

N ν
c
R + Θ†νL

]
i
,

(2.14)

respectively, with Vν = (1− 1
2θθ
†)Uν , VN = (1− 1

2θ
T θ∗)UN and Θ = U∗Nθ.

The mixing matrix Θ quantifies the misalignment of the mass eigenstates νi and Ni

with the original “active” and “sterile” neutrinos νL and νR. It leads to a θ-suppressed

weak interaction of the heavy mass eigenstates Ni,

L ⊃− g√
2
N iΘ

†
iaγ

µeLaW
+
µ −

g

2 cos θW
NiΘ

†
iaγ

µνLaZµ −
g√
2

Mi

mW
ΘaihνLaNi + h.c. . (2.15)

The first two terms represent the θ-suppressed interactions of the Ni via the weak currents.

Through these interactions the heavy neutrinos Ni replace ordinary neutrinos in all pro-

cesses if this is kinematically allowed, but with amplitudes suppressed by the angles Θai.

The third term represents the Yukawa coupling to the physical Higgs field h in the unitary

gauge. Here we have employed the relation mW = 1
2gv involving the weak gauge coupling

constant g. It is convenient to introduce the quantities

U2
ai = |Θai|2 , U2

a =
∑
i

U2
ai , U2

i =
∑
a

U2
ai , U2 =

∑
i

U2
i , (2.16)

which practically govern the event rates for processes involving the Ni.
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2.2 Approximate lepton number conservation.

In absence of any special structure in the matrices F and MM , the seesaw relation (2.13)

suggests that

U2
i ∼

√
∆m2

atm +m2
lightest/Mi < 10−10 GeV/Mi, (2.17)

which would imply unobservably tiny branching ratios in collider experiments. However,

the seesaw relation is a matrix valued equation, and the light neutrino mass squares m2
i

are the eigenvalues of the matrix m†νmν . If there are cancellations in m†νmν , then small

m2
i can be made consistent with arbitrarily large U2

ai. Constraints from experiments other

than neutrino oscillation ones are comparably weak in most of the mass range between

the kaon and W boson masses, cf. e.g. [84, 97] and Section 5.2, so that U2
ai ∼ 10−5 are

phenomenologically viable. The cancellations could either occur accidentally (which would

require a tuning of at least five orders of magnitude to achieve U2
ai near the current LHC

bounds [13]) or be owed to a symmetry. Indeed, if the Lagrangian (2.1) approximately

respects a generalised B − L̄ symmetry [88, 89, 98], then the cancellations in m†νmν occur

in a technically natural way because the light neutrino masses must be proportional to

small parameters that quantify the amount of B − L̄ violation. Here B denotes the usual

SM baryon number and L̄ is a generalised lepton number,

L̄ = L+ LνR , (2.18)

that is composed of the SM lepton number L and some charge associated with the νR (see

below). Specific models that realise an approximateB−L̄ symmetry include models withR-

parity violation [99–104], “inverse seesaw” type scenarios [105–109] (cf. also [110, 111]), the

“linear seesaw” [112, 113] (cf. also [114–116]), scale invariant models [86], some technicolor-

inspired models [117, 118], the νMSM [88] and other low-scale seesaw realisations [119–121].

Low-scale leptogenesis in connection to an approximate B − L̄ symmetry has previously

been studied in the framework of linear and inverse seesaw scenarios in Refs. [81, 82], while

the νMSM parameter space has been studied in Refs. [47, 52, 58, 59] and numerous follow

up publications (cf. references given in Section 1).

The B− L̄ symmetry enforces that the νRi must either i) decouple, ii) have vanishing

Majorana masses or iii) arrange themselves in pairs that form (pseudo-)Dirac spinors. For

the n = 3 case this can be made explicit with the parameterisation

MM = M̄


1− µ 0 0

0 1 + µ 0

0 0 µ′

 , F =
1√
2


Fe(1 + εe) iFe(1− εe) Feε

′
e

Fµ(1 + εµ) iFµ(1− εµ) Fµε
′
µ

Fτ (1 + ετ ) iFτ (1− ετ ) Fτ ε
′
τ

 . (2.19)
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In the limit εa, ε
′
a,µ,µ

′ → 0 the quantity B − L̄ is conserved. In terms of the original νRi,

one can make the following assignment of charges,

spinor L̄-charge

νRs ≡ 1√
2
(νR1 + iνR2) +1

νRw ≡ 1√
2
(νR1 − iνR2) −1

νR3 0

(2.20)

where the subscripts s, w indicate that the corresponding states νRs,w are strongly/weakly

coupled to the SM states in the high temperature limit, T � M̄ . We can now write the

Lagrangian in the form

L = LSM + ψN (i/∂ − M̄)ψN + νR3i/∂νR3 − F ∗aψNφT ε†`La − Fa`Laεφ∗ψN

−ε∗aF ∗aψcNφ
T ε†`La − εaFa`Laεφ∗ψcN − ε′aFa`Laεφ∗νR3 − ε

′∗
a F
∗
a νR3φ

T ε†`La

−µM̄ 1

2

(
ψcNψN + ψNψ

c
N

)
− µ′M̄νcR3νR3 , (2.21)

where we have introduced the (pseudo-)Dirac spinor ψN = 1√
2
(νRs +νcRw) and we sum over

multiple occurrences of the flavour index “a”.

The generalised lepton number L̄ is significantly violated by the oscillations amongst

the heavy neutrinos even if εa, ε
′
a,µ,µ

′ � 1. This means that it is in general not a suitable

quantity to describe the time evolution in the early Universe, at least not if the rate of the

oscillations is faster than the expansion of the Universe (T < (M0|M2
i −M2

j |)1/3) and faster

than the equilibration time scale of the heavy neutrinos (max(|(F †F )ij |)γavM2/3
0 /(M2

i −
M2
j )2/3 � 1) [75], where γav ∼ 10−2 is a generic numerical coefficient appearing in the

rate (3.6) and M0 ≡ mP (45/(4π3g∗))
1/2 = T 2/H can be interpreted as the comoving

temperature in a radiation dominated Universe with Hubble parameter H, mP = 1.22 ×
1019 GeV and g∗ counting the relativistic degrees of freedom in the thermal bath. In the

regime T � Mi the helicity states of the heavy Majorana neutrinos Ni practically act as

“particle” and “antiparticle” states. One can use this fact to define another generalised

lepton number

L̃ = L+ LN , (2.22)

that is approximately conserved even if the parameters εa, ε
′
a,µ,µ

′ are not small. Here

LN is a quantum number that can be assigned to the helicity states PhNi, where Ph =
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1/2× [1 + hγ0γiγ5(pi/|p|)] is the helicity projector with momentum p, as2

spinors L̃-charge

P+Ni, N̄iP+ +1

P−Ni, N̄iP− −1

(2.23)

It is indeed L̃ (not L or L̄, both of which are violated) that is usually being referred to

when distinguishing between “lepton number conserving” and “lepton number violating”

terms in the low-scale leptogenesis literature.

2.3 The LHC testable scenario.

The νMSM realises the B − L̄ conservation by choosing the seesaw scale Λ below the

electroweak scale and keeping all parameters εa, ε
′
a,µ,µ

′ tiny. In that model, εa,µ � 1

is required to make sizeable Fa consistent with light neutrino oscillation data and for

successful leptogenesis (which requires µ� 1 as only two heavy neutrinos participate in the

process). Regarding the third heavy neutrino, which serves as a Dark Matter candidate,

ε′a � 1 is required to ensure its longevity for any mass allowed by structure formation

considerations, while µ′ � 1 is in addition needed for consistency with indirect Dark

Matter searches if one assumes ε′a to be sizeable enough that the Dark Matter is produced

thermally via weak interactions, cf. e.g. [50, 51]. The parameter space of the νMSM is the

subject of many past and ongoing studies and will not be further addressed here because it

is, from the viewpoint of neutrino mass generation and leptogenesis, practically a scenario

with n = 2 due to the extreme smallness of the ε′a,µ
′ required for the stability of the

Dark Matter candidate. Instead we focus on scenarios where all three heavy neutrinos

have masses Mi of roughly the same magnitude. In this context it is worthwhile noting

that it is sufficient for the B − L̄ conservation that either µ′ = 0 or ε′a = 0 (as well as

εa = 0 = µ), since in this case the third right-handed neutrino either decouples or obtains

only a Dirac mass term. Hence, scenarios with moderately small ε′a and µ′ of order unity

are technically natural. It turns out that the choice εa, ε
′
a,µ � 1 with µ′ & 1 allows for

successful leptogenesis with |Fai| larger than the electron Yukawa coupling. This leads to

mixings U2
a1 and U2

a2 that are well within reach of current experiments.

2In the ultra-relativistic limit, positive (negative) helicity corresponds to right-handed (left-handed)

chirality.
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3 Kinetic equations for leptogenesis

3.1 Quantum kinetic equations.

The quantum kinetic equations for freeze-in leptogenesis [45] in the density matrix formal-

ism [122] read (see e.g. Refs. [46, 47, 60]):

dRN
dt

=− i [〈H〉, RN ]− 1

2
〈γ(0)〉

{
F †F,RN − I

}
− 1

2
〈γ(1b)〉

{
F †µF,RN

}
+ 〈γ(1a)〉F †µF+

− 1

2
〈γ̃(0)〉

{
MMF

TF ∗MM , RN − I
}

+
1

2
〈γ̃(1b)〉

{
MMF

TµF ∗MM , RN
}

+

− 〈γ̃(1a)〉MMF
TµF ∗MM , (3.1)

dµ∆a

dt
= − 9 ζ(3)

2ND π2

{
〈γ(0)〉

(
FRNF

† − F ∗RN̄F T
)
− 2〈γ(1a)〉µFF †+

+ 〈γ(1b)〉µ
(
FRNF

† + F ∗RN̄F
T
)

+〈γ̃(0)〉
(
F ∗MMRN̄MMF

T − FMMRNMMF
†
)
− 2〈γ̃(1a)〉µF ∗M2

MF
T

+〈γ̃(1b)〉µ
(
F ∗MMRN̄MMF

T + FMMRNMMF
†
)}

aa
, (3.2)

where the n×nmatrixRN encodes the density matrix of the three heavy neutrinos in kinetic

equilibrium normalised to the entropy density, (ρN (k, T ))ij = (RN (T ))ijfF (k/T ) with

fF denoting the Fermi-Dirac distribution with vanishing chemical potential, fF (k/T ) =

[1 + exp (k/T )]−1. The SM sector is taken to be in thermal equilibrium, and is thus fully

characterised by the chemical potentials

µa = µLa + µφ, (3.3)

where µLa are the flavoured left-chiral lepton chemical potentials and µφ is the Higgs

chemical potential, which appear in the corresponding distribution functions. These are

connected to the chemical potential associated with B − L, µ∆ =
∑

a µ∆a by the relation

µ = diag(µa) , µa = NDχabµ∆b , χ = − 1

711


257 20 20

20 257 20

20 20 257

 . (3.4)

µ∆ is invariant with respect to the SM B + L violating processes. 〈H〉 is the momentum

averaged effective Hamiltonian for the heavy neutrinos (see Appendix A),

〈H〉 = 〈H0 + VN 〉 =
π2

36 ζ(3)

(
diag(0,M2

2 −M2
1 ,M

2
3 −M2

1 )

T
+
T

8
F †F

)
, (3.5)
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while the terms involving coefficients 〈γ(i)〉 and 〈γ̃(i)〉 represent L̃-conserving and L̃-violating

dissipation rates, respectively. Note that we neglect the L̃-violating part of 〈H〉. ND = 2

is an SU(2) factor. The thermally averaged rates

〈γ(T )〉 =

∫
d3p γ(p, T )fF (p/T )∫

d3p fF (p/T )
, (3.6)

are given by [74] (cf. also [61, 63, 64, 66, 67]),

〈γ(i)〉 = Ai

[
c

(i)
LPM + y2

t c
(i)
Q + (3g2 + g′2)

(
c

(i)
V − ln(3g2 + g′2)

)]
, (3.7)

and [36]

〈γ̃(i)〉 = Aic
(i)
1→2 , (3.8)

where g, g′ denote the SM SU(2) and U(1) gauge couplings (which are temperature depen-

dent due to their renormalisation group running), yt is the top Yukawa coupling, and

A0 = 2A1a = −4A1b =
πT

2304 ζ(3)
. (3.9)

The numerical values of c
(i)
LPM,Q,V are reported in Table 1 of Ref. [74], while those of c

(i)
1→2

are determined following Ref. [36].3 Both c
(i)
Q and c

(i)
V are found to be T -independent, the

temperature dependence of c
(i)
LPM is so mild that we will neglect it in the following. Using

c
(i)
LPM (T = 104 GeV) as a reference value, this yields

c
(0)
LPM = 4.22 , c

(0)
Q = 2.57 , c

(0)
V = 3.17 , c

(0)
1→2 = 0.86/T 2 ,

c
(1a)
LPM = 3.56 , c

(1a)
Q = 3.10 , c

(1a)
V = 3.83 , c

(1a)
1→2 = 20.4/T 2 ,

c
(1b)
LPM = 4.77 , c

(1b)
Q = 2.27 , c

(1b)
V = 2.89 , c

(1b)
1→2 = 20.4/T 2 . (3.11)

The running of the SM gauge couplings (included in the L̃-conserving rates) is given by

g(Λ) =

(
1

g2
0

+
19

48π2
ln

Λ

mZ

)−1/2

, (3.12)

g′(Λ) =

(
1

(g′0)2
+

41

48π2
ln

Λ

mZ

)−1/2

, (3.13)

3 What was computed in Ref. [36] is in fact the quantity 〈γ̃(1b)〉 − 〈γ̃(1a)〉 that appears in front of the

term µFF † in Eq. (3.2) after rewriting

−2〈γ̃(1a)〉µFF † + 〈γ̃(1b)〉µ
(
FRNF

† + F ∗RN̄F
T
)

= 2
(
〈γ̃(1b)〉 − 〈γ̃(1a)〉

)
µFF † (3.10)

+〈γ̃(1b)〉µ
(
F (RN − 1)F † + F ∗(RN̄ − 1)FT

)
.

We extracted 〈γ̃(1b)〉 and 〈γ̃(1a)〉 from this by assuming that these coefficients have equal values. Practically

this means that we guessed the coefficient in front of the term µ(F (RN − 1)F † + F ∗(RN̄ − 1)FT ). We do

not expect this to have any phenomenological consequences because that term is small at all times: at early

times µ is small, and at late times the heavy neutrinos are close to equilibrium.
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where g0 = 0.652 and g′0 = 0.357 denote the values of the corresponding gauge couplings

at Λ = πT = mZ . For the purpose of our numerical scan, we find it convenient to switch

the time variable from cosmic time t to x = TEW/T , leading to the system of differential

equations (A.9) - (A.11). See Ref. [67] for further details.

The final B−L asymmetry is obtained by evaluating the chemical potentials µ∆ at the

scale of electroweak symmetry breaking,

YB−L =
∑

Y a
B−L with Y a

B−L =
45ND

12π2gs
µ∆a , (3.14)

where gs = 106.75 denotes the effective number of degrees of freedom in the SM above the

EW phase transition. SM sphaleron processes only pick up the asymmetry in the active

sector, converting it to the baryon asymmetry we observe in the Universe today,

YB =
nB − nB̄

s
=

28

79
YB−L . (3.15)

Here nB,B̄ counts the number density of (anti-) baryons today, s denotes the entropy

density of the Universe and the baryon asymmetry of the Universe is measured to be

YB = (8.6 ± 0.01) × 10−11 [123]. For later reference we introduce also the asymmetry in

the heavy neutrino sector,

YN =
1

s

∫
d3k

(2π)3
fF (k)Tr[RN −RN̄ ] =

135 ζ(3)

8 gs π4
Tr[RN −RN̄ ] , (3.16)

which in the absence of L̃-violating processes is identical to YB−L. Note that the definition

(3.16) refers to quasiparticle occupation numbers and should therefore be applied in the

basis where the effective Hamiltonian H is diagonal, which does not necessarily coincide

with the flavour basis where MM or MN are diagonal, as discussed in the following.

3.2 Mass and interaction bases.

It is worthwhile to emphasise that some caution should be taken with respect to the flavour

basis in which the above equations are defined. In general, neither the basis where MM

nor the one where MN is diagonal correspond to the physical (quasi)particle mass basis.

On the one hand there is the O[θ2] correction in Eq. (2.9) from the Higgs expectation

value which affects the physical masses at temperatures below∼ 160 GeV [124]. In theB−L̄
symmetry protected regime the physical mass splitting at T = 0 (given by the eigenvalues

of MN ) can considerably deviate from the splitting between the eigenvalues of MM . This

effect, which was already pointed out in Ref. [52], can be crucial for the generation of late

time asymmetries (and hence DM production [125]) in the νMSM [47]. Recent discussions

of possible phenomenological implications can be found in e.g. Refs. [36, 79], where it is also

described how the v(T ) dependent term should be added to the effective Hamiltonian (3.5).
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Moreover, the mixing induced by the temperature dependent Higgs field value v(T ) can

have a significant impact on the generation of lepton asymmetries shortly before sphaleron

freeze-out [72]. We ignore both of these effects in the following because we expect that they

only lead to O[1] corrections in a limited part of the parameter region that we consider.

On the other hand there are corrections to the dispersion relations in a medium from

forward scatterings [126–128], known as thermal masses or matter potentials, that affect

the properties of SM particles [129] and heavy neutrinos [130]. These are responsible for

the term ∝ F †FT/8 in the effective Hamiltonian (3.5). The physical heavy neutrino quasi-

particles in the primordial plasma correspond to the eigenstates of the full Hamiltonian

(3.5), including the thermal correction. Since the relative size of the thermal and vacuum

masses changes with temperature, the physical quasiparticle mass basis rotates throughout

the evolution of the Universe. At high temperatures, when the thermal masses dominate, it

should be identified with the interaction basis where F †F is diagonal. At low temperatures

it coincides with the vacuum mass basis where MN is diagonal. It is important to note

that the interpretation of the diagonal elements of the density matrix RN as measuring

the corresponding number densities only holds if the density matrix is expressed in the

quasiparticle mass basis.

To which degree the rotation of the effective mass basis affects the generation of asym-

metries depends on the model parameters. It is only relevant if the heavy neutrinos have

reached sizeable occupation numbers while the temperature dependent contribution from

the “thermal masses” to the splitting of the eigenvalues in the effective Hamiltonian (3.5)

still dominates over the vacuum splittings M2
i −M2

j . This happens quite generically for

experimentally accessible heavy neutrinos because the approximate B−L̄ symmetry that is

required to make sizeable Fai consistent with light neutrino oscillation data implies that at

least two Mi are quasi-degenerate. We focus on this case in the following. For small mixing

angles finite temperature effects usually only lead to sub-dominant corrections because the

thermal masses are smaller and the mass splittings are in general larger.

At high temperatures the L̃-conserving rates 〈γ(i)〉 are parametrically larger than the

L̃-violating rates 〈γ̃(i)〉, and one can understand the behaviour in terms of the eigenvalues

and eigenvectors of the matrices F †F and M †MMM . In the B−L̄ conserving limit the matrix

F †F has three vastly different eigenvalues; one is roughly given by
∑

a |Fa|2 while the other

two are suppressed by ε2a and ε
′2
a . Hence, one interaction eigenstate (νRs, which is always

part of the pseudo-Dirac spinor ψN ) feels the full strengths ∼ Fa of the Yukawa interactions,

while the other two (νRw and νR3 or combinations thereof) practically decouple.

Unless µ′ is very close to unity (i.e. M3 ' M̄), the mixing and rotation mainly occur

between the components of the pseudo-Dirac spinor ψN because the thermal corrections to
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M2
3 are of orderO[(ε′aFa)

2]. We shall consider this case first and neglect νR3 for the moment.

In this case most of the discussion for the case n = 2 in Ref. [75] can directly be applied.

At high temperatures the states νRs and νRw defined in Eq. (2.20) are approximately both,

effective mass and interaction eigenstates. νRs picks up a large thermal mass ∼
∑

a |Fa|2T 2

and is produced at a large rate ∼
∑

a |Fa|2〈γ(i)〉, while the corrections to the mass of νRw

are only ∼
∑

a |εaFa|2T 2 and its production rate is only ∼
∑

a |εaFa|2〈γ(i)〉. Despite the

large thermal mass splitting, there are no rapid oscillations between the two states because

the effective heavy neutrino mass and interaction bases are almost aligned. If νRs comes

into equilibrium before the oscillations commence, then the BAU is generated in a single

overdamped oscillation in the strong washout regime (“overdamped regime”). This is in

contrast to the case of small mixing angles, where a large number of oscillations occur

before the sphaleron freeze-out in the weak washout regime (“oscillatory regime”), see

Ref. [75] for details. At late times the feebly coupled state is driven to equilibrium by the

overdamped oscillation and by the L̃-violating damping rates, which are ∝ F ∗F T and not

εa-suppressed.

If one considers all three heavy neutrinos, then the situation can be much more compli-

cated. For n = 2 there are practically only two relevant time scales in the heavy neutrino

sector: the time when the first heavy neutrino state reaches equilibrium (given by its ther-

mal damping rate) and the frequency of the oscillations (given by the mass splitting). On

the contrary, there are generally three equilibration and three oscillation time scales in

the system with n = 3. In the simplest scenarios all frequencies and damping rates are

well-separated, and no heavy neutrinos reach thermal equilibrium before the sphaleron

freeze-out. In that case the separation of scales allows to treat each of the oscillations sep-

arately in a simplified n = 2 model, similar to the treatment of light neutrino oscillations

in the Sun or in the atmosphere. However, for µ � 1 and µ′ ∼ 1 all three states can mix

with each other and complicated behaviour can arise. We illustrate this for a few example

points in Section 7.

Finally we note that the charge L̃ in Eq. (2.22) should be defined in the rotating quasi-

particle mass basis. The relation between this basis and the vacuum mass basis, however,

depends not only on temperature, but also on the model parameters. For simplicity we use

in the following the vacuum mass basis and the interaction basis as approximations for the

actual quasiparticle mass basis at very low and very high temperatures, respectively.

4 Most important new physical effects

The generation of a baryon asymmetry via the freeze-in mechanism is a complex nonequi-

librium process that involves an interplay between coherent oscillations and decoherent
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scatterings, both of which can occur in a L̃-conserving or L̃-violating manner. For n = 3

there is a large number of (possibly vastly different) times scales involved, and the phe-

nomenology of the leptogenesis parameter space is very rich. While our scan systematically

explores this parameter space numerically, a qualitative analytic understanding of the re-

sults is highly desirable.

4.1 Minimal n = 2 scenario without L̃-violation.

Let us first briefly review the case of only two heavy neutrinos, in order to highlight the

qualitative differences in the full three neutrino case studied in this paper. Moreover,

we neglect for the moment L̃-violating processes. In this case the system can be studied

by analytic methods [45, 46, 75, 81]. No CP-violation can arise in the heavy neutrino

oscillations [75], so that the CP-violation necessary to generate a lepton asymmetry must

arise in the active sector and/or in the mixing between the active and sterile sectors. In

particular, washout processes play a crucial role in the generation of a net L 6= 0. In the

weak washout regime4 an analytical expression for the lepton asymmetry was derived in

Refs. [45, 46] (see also [81]). It was found to be proportional to
∑

i,a(Fai)
†δaFai with

δa =
∑
i>j

Im

[
Fai

(
F †F

)
ij

(F †)ja

]
, (4.1)

which in particular vanishes in the flavour symmetric limit

|Fei| = |Fµi| = |Fτi| , ∀ i . (4.2)

In the strong washout regime an asymmetric coupling f � 1 to the active flavours is

typically necessary to protect the asymmetry from the strong washout processes in the

sterile sector, see e.g. the discussion in Refs. [75, 82], where

f ≡
∑
i

min|Fai|
max|Fai|

( ∑
b |Fbi|2∑
c,j |Fcj |2

)
' min|Fa|

max|Fa|
. (4.3)

The max and min are to be understood with respect to the index a, and the term between

parenthesis averages the sum with a weight proportional to the relative size of the Yukawa

couplings for the right-handed neutrino i. The approximate second equality holds only

4 For n = 2, one can parametrically distinguish a weak washout regime (or “oscillatory regime”) in

which the equilibration of both heavy neutrinos occurs after the freeze-out of weak sphaleron processes (i.e.

|(RN )ii|, |(RN̄ )ii| � 1 for all i and T > Tsph) and a strong washout regime (or “overdamped regime”) in which

the occupation numbers of one heavy neutrino interaction eigenstate reach equilibrium before sphaleron

freeze-out. For weak washout the BAU scales as ∝ (m2
P /|M2

i −M2
j |)2/3 [46], while the dependence in the

strong washout regime is rather complicated [75].

– 15 –



in the B − L̄ conserving limit, where Fa are the large entries in the parameterisation

(2.19). If one active flavour is coupled significantly weaker than the other generations, the

asymmetry in this flavour can be preserved for a considerable time even when the right-

handed neutrinos approach thermal equilibrium. For n = 2 the heavy neutrino mixing

pattern is strongly constrained by light neutrino oscillation data [39, 74, 79, 131, 132], and

in particular f > 5× 10−3 [39]. This imposes an upper limit on the maximal U2
i for which

leptogenesis is feasible: Leaving aside highly fine-tuned parameter choices, the two heavy

neutrinos necessarily form a pseudo-Dirac spinor ψN if their mixings are much larger than

the estimate (2.17). The larger Yukawa couplings Fa � εaFa in (2.21) then drive the

entire heavy neutrino sector towards equilibrium in an overdamped manner [75], and the

only way to protect the BAU from washout is a strong hierarchy f � 1. How strong this

hierarchy must be to ensure the survival of some asymmetry until sphaleron freeze-out

depends on the magnitude of the Yukawa couplings and masses (and hence U2
i ). As a

result, the experimental constraint on f from neutrino oscillation data imposes an upper

limit on U2
i for a given Mi.

4.2 n = 3 scenario without L̃-violation.

The situation is qualitatively different in the case of three right-handed neutrinos. One

can distinguish three different new physical effects:

1) Larger flavour hierarchies are allowed. A hierarchy in the couplings of the heavy

neutrinos to individual SM flavours (f� 1) can protect a part of the lepton asymmetry

from the washout even if the heavy neutrinos reach equilibrium (RN ' RN̄ ∼ 1) if f is

small enough to keep one of the washout rates below the Hubble rate. In the scenario

with n = 2 the requirement to reproduce the light neutrino oscillation data practically

requires f > 5 × 10−3 [39] (cf also [74, 79]). This hierarchy is not strong enough to

protect the asymmetry from washout [36] for mixings U2
i near the current LHC bounds

[13]. As already pointed out in Ref. [83], the relaxed lower experimental bound on f in

the scenario with n = 3 [84, 133] allows to protect the BAU from washout for much

larger U2
i if one SM flavour couples only very feebly to the pseudo-Dirac pair.

2) Asymmetry in the heavy neutrino oscillations. Contrary to the n = 2 case

discussed above, the n = 3 case allows for a generation of a net asymmetry L 6= 0

during the heavy neutrino oscillations (even if L̃-violating effects are neglected), without

requiring any flavour asymmetric Yukawa couplings. In Appendix B we explicitly derive

the corresponding source terms entering the quantum kinetic equations by means of a

perturbative expansion in the lepton asymmetries. We emphasise the presence of a new
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source term for the asymmetry in the heavy neutrino sector, which arises (for n ≥ 3

only) from the first term in Eq. (3.1). This allows for the generation of an asymmetry

even in the absence of (flavour asymmetric) washout processes, contrary to the situation

for n = 2 [75].

3) Resonantly enhanced asymmetry. The produced asymmetry strongly depends on

the heavy neutrino mass splitting and is resonantly enhanced if the splitting between

two of the heavy neutrino masses is very small [46]. In the primordial plasma the

effective quasiparticle masses are given by the eigenvalues of the effective Hamiltonian

(3.5). Due to the interplay between temperature dependent and independent terms

in the effective Hamiltonian, the effective mass splittings are time dependent. As a

result, a maximal resonant enhancement can be generated dynamically, even if the mass

spectrum in vacuum is only moderately degenerate.5 This is similar to the Mikheyev-

Smirnov-Wolfenstein (MSW) effect that affects light neutrino oscillations in matter.

In contrast to the MSW effect for light neutrinos it does not require the presence of

lepton chemical potentials because the Yukawa couplings can give different thermal

masses to the neutrinos (while the light neutrinos’ gauge interactions are flavour blind,

so that different effective masses can only be realised through chemical potentials). In

particular, an (avoided) level crossing necessarily occurs for µ′ > 1, i.e., if the state νR3

with couplings Fa3 ∼ ε′aFa has a vacuum mass M3 > M̄ larger than the pseudo-Dirac

spinor ψN with couplings ∼ Fa. This is because the component νRs of ψN defined in

(2.20) receives a comparably large thermal mass ∼ |Fa|2T 2, which necessarily exceeds

the effective mass of νR3 at sufficiently high temperature. If this crossing occurs during

the time when the asymmetry is generated, the resonant effect can maximally enhance

it, even if the vacuum masses are only moderately degenerate. In contrast, in the B− L̄
protected regime of the n = 2 case, the interaction and Majorana mass bases have to

be maximally misaligned to reproduce the small active neutrino masses, and hence any

avoided level crossing comes with a mass gap which is typically too large to resonantly

enhance the asymmetry. For n = 3 with µ′ > 1 the level-crossing temperature Tcrossing

can be estimated in the limit of approximate B − L̄ symmetry (|εa|, |ε′a|,µ � 1 in

Eq. (2.19)), yielding

Tcrossing ≈
2
√

2M̄
√
µ′2 − 1√∑

a |Fa|
2

= 2.8× 105 GeV

(
M̄

GeV

) √
µ′2 − 1√∑

a |(Fa/10−5)|2
. (4.4)

5This effect is well-known within the νMSM [52], where it is crucial [47] to ensure that the generation of

asymmetries can occur twice during the history of the Universe, before sphaleron freeze-out (for baryoge-

nesis [46]) and afterwards (to generate the asymmetries required for resonant sterile neutrino Dark Matter

production [134]) for the same parameters.
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4.3 Effects of L̃-violation.

In the weak washout or oscillatory regime, the BAU is generated at temperatures T �Mi.

In this case L̃ is in good approximation conserved during the heavy neutrino oscillations.

However, for U2
i that are large enough to be probed with the LHC, the couplings Fa are

generally large enough to drive part of the heavy neutrinos (in particular νRs) to equilibrium

before sphaleron freeze-out. In this strong washout or overdamped regime, the asymmetry

is often generated near the sphaleron freeze-out, and L̃ violating effects can in general not

be neglected. This leads to several new effects.

4) Direct L-generation in Higgs decays. The rates for L̃-violating processes (in par-

ticular Higgs decays) are suppressed by (Mi/T )2, but can directly generate a L 6= 0 at

order O[F 4
ai]. This is in particular important in the case n = 2, where the oscillations

themselves cannot generate a L 6= 0 (cf. point 2) ) and leptogenesis always relies on

the flavour asymmetric washout, so that the BAU is necessarily of order O[F 6
ai]. It has

been pointed out in Refs. [71, 135] that the L̃ violating source ∼ O[F 4
ai(Mi/T )2] can

exceed the L̃-conserving source ∼ O[F 6
ai] for certain parameter choices. For n = 3 we

expect this effect to be less relevant because a L 6= 0 can already be produced in the

oscillation in absence of L̃-violation, cf. Appendix B. This latter effect is ∼ O[F 6
ai] [75],

but not suffering from any Mi/T -suppression, it can be active over a much longer period

of time. We should stress that the above power counting only holds when the washout

is weak enough that there is a clear separation between the times when the heavy neu-

trinos start to oscillate and when they come into equilibrium (“oscillatory regime”). If

some heavy neutrino degrees of freedom reach equilibrium at early times (“overdamped

regime”), the parametric dependence is different [75].

5) Damping of νRw. In absence of L̃-violating processes the heavy neutrino damping rates

are approximately proportional to F †F . In the B−L̄ symmetric limit, one eigenvalue of

this matrix is much larger (∼ F 2
a ) than the other two (∼ ε2aF 2

a , ε
′2
a F

2
a ). This means that

the states νRw and νR3 approach thermal equilibrium very slowly. In particular, νRw is

primarily driven to equilibrium via the overdamped oscillation with νRs [75]. The heavy

neutrino damping rate due to L̃-violating processes is proportional to ∼ F TF ∗. This in

particular means that νRw is driven to equilibrium at a rate ∝ F 2
a (M̄/T )2, which can be

much larger than the L̃-conserving rate ∝ ε2aF 2
a , since the weakly coupled eigenstate of

F TF ∗ in general does not coincide with νRw. In contrast to that, the state νR3, which

is not part of the pseudo-Dirac system ψN , remains feebly coupled with equilibration

rate ∝ ε
′2
a F

2
a (unless M3 ' M̄ , in which case there can be significant mixing between

νR3 and the other two states).
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6) Washout efficiency. If the L̃-violating processes are neglected, the washout of the

helicity-based L̃ charges in the heavy neutrino sector enforces a simultaneous decrease

of the L̃ charges in the active sector, suppressing the SM lepton number asymmetry

L, i.e. YB−L. In the presence of L̃-violating processes this is not necessarily the case,

allowing for a sizeable asymmetry in the active sector even if the washout in the sterile

sector is effective. This results in a larger final BAU [36].

7) Equalising flavoured asymmetries. When some of the heavy neutrinos come into

equilibrium, the L̃-conserving processes wash out the flavoured asymmetries La, but

cannot erase the total SM asymmetry L (and hence the BAU) unless all charges in the

heavy sector have been erased. In this situation the washout of the total L is driven by

the L̃-violating processes. Since L is in equal parts composed of e, µ and τ asymmetries,

the direction in flavour space in which all La are equal is only slowly erased, while

deviations from Le = Lµ = Lτ are erased by the much faster L̃-conserving processes.

Therefore the asymmetries in all SM flavours tend to be equal in this situation, cf. e.g.

Fig. 4. Note that the total L would also be erased in absence of the L̃-violating processes

once the sterile charges are driven to equilibrium because the total L̃ vanishes for our

initial conditions.

8) Direct L-generation through active-sterile mixing. So far we have mainly consid-

ered L̃-violating decays in the symmetric phase of the SM (in particular Higgs decays).

Similar arguments apply if one includes L̃-violating scatterings in the symmetric phase

of the SM. There is, however, moreover a brief period between the moment when the

Higgs field develops a non-zero value v(T ) at T ∼ 160 GeV and the sphaleron freeze-out

at T ∼ 130 GeV. During this period the mixing between active and sterile neutrinos

directly violates L̃ [72]. We neglect this effect in the present work.

In summary, the dynamics governing leptogenesis in the n = 3 case is much more diverse

than in the n = 2 case. After quantifying the parameter space yielding successful leptoge-

nesis in Secs. 5 and 6, we will illustrate some of the effects described above by means of a

few exemplary points in Section 7.

5 Strategy for the parameter scan

5.1 General strategy.

Our goal is to perform a systematic parameter scan to identify the range of the heavy neu-

trino properties that are consistent with all experimental constraints and can reproduce the

observed BAU. A major obstacle is the high dimensionality of the parameter space. For n
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heavy neutrinos, the seesaw model contains 7n−3 free parameters in addition to those of the

SM. Only 5 of those (two mass splittings and three mixing angles) are constrained by light

neutrino oscillation data. For n = 2 it is possible to perform a complete parameter scan to

clearly identify the boundaries of the region where leptogenesis is possible [36, 47, 59, 79]

or perform a Bayesian analysis [74]. For n = 3 the dimensionality of the parameter space

is so high that even a systematic combination of all experimental constraints in the mass

region under consideration here (without leptogenesis) is numerically challenging [84]. If

one includes the computation of the BAU, which requires solving the coupled differential

equations (3.1) and (3.2) for each parameter choice and is numerically much more demand-

ing than imposing laboratory constraints, then it becomes practically impossible to explore

the entire parameter space. However, from a phenomenological viewpoint, one is mostly

interested in the projection of the viable parameter region on the Mi − U2
ai planes. In

Section 6 we present scatter plots in these planes which illustrate that, for masses Mi be-

low the electroweak scale, the leptogenesis region covers the entire experimentally allowed

range of mixings U2
ai. Since both, the BAU and experimental constraints, depend smoothly

on the model parameters that determine the U2
ai, it seems physically reasonable that the

entire region between the scattered points can be filled if the scan would run for infinitely

long. In the remainder of this section we explain how the parameter scan is performed.

It is well-known that leptogenesis is feasible in the n = 2 model with values of U2
i at

most four orders of magnitude above the estimate (2.17), i.e. U2
i < 10−6 GeV/Mi, for any

value of Mi in the range considered here [79]. Since the n = 2 parameter space is a subset

of the larger parameter space of the n = 3 model under consideration here (in the limit

ε′a → 0), the same must apply in the present model. We are therefore primarily interested

in studying leptogenesis with U2
i > 10−6 GeV/Mi. The strongest constraints on the Ni

properties come from the seesaw relation (2.13) and light neutrino oscillation data. The

requirements to reproduce the observed data without fine-tuning for U2
i > 10−6 GeV/Mi

practically enforces the B−L̄ symmetry discussed in Section 2.2. The parameterisation

(2.19) in principle is ideal to explore this region, but the preproduction of the light neutrino

parameters in a randomised scan is a search for the needle in the haystack due to the small

error bars of these parameters and the complicated relations between model parameters

and observables. To keep the numerical effort at a feasible level, we adopt a three-step

strategy that treats neutrino oscillation data different from other constraints:

1. For the generation of parameter points, we employ the Casas-Ibarra parameterisation

[136], see below. This parameterisation is not ideal to explore the B−L̄ symmetry

protected region, but guarantees consistency with light neutrino oscillation data at

the perturbative level.
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2. We then remove all points which are not consistent with the experimental constraints

described in Section 5.2.

3. For each remaining parameter choice we compute the BAU. We consider leptogenesis

feasible if the BAU deviates from the observed value by less than a factor five.6

To improve the numerical performance we rewrite the quantum kinetic equations

(3.1) and (3.2) as described in Appendix A. We furthermore only track the first ten

oscillations of the heavy neutrinos and then set off-diagonal elements of the density

matrix to zero. We explicitly check that this does not induce any discontinuity in

the evolution of the asymmetries. A similar procedure has been proposed in Ref. [58]

and has been analytically verified in Ref. [57].

Parametrisation. In order to reproduce the observed neutrino masses and lepton mixing

we adopt a generalisation of the Casas-Ibarra parameterisation [136], extended to include

1-loop corrections (2.12) to the light neutrino mass matrix [96]. For small θ we may

approximate the relation (2.10) by7

M̃ij 'Miδij

(
1− M2

i

v2
l(Mi)

)
≡ M̃diag , (5.1)

i.e., M̃ can be approximately expressed in terms of the entries of Mdiag
N . In this formal-

ism the Yukawa couplings are determined after having specified the low-energy neutrino

oscillation data, the right-handed neutrino masses and a 3-dimensional orthogonal matrix

R,

F =
i

v
Uν

√
mdiag
ν R

√
M̃diag

−1

MM . (5.2)

The matrix R can be parameterised as a product of three rotations,

R = V23(ω23) V13(ω13) V12(ω12), (5.3)

6The experimental uncertainty on the BAU is much smaller than this. The larger range for an acceptable

YB adopted here reflects theoretical uncertainties as well as the strong sensitivity of the final value of YB

on the model parameters - starting from a parameter point whose computed YB deviates from the observed

value by an O(1) factor we expect to be able to reproduce the observed value by minimally varying the

input parameters.
7If the splitting between two eigenvalues of MM is smaller than the light neutrino mass differences, then

the O[θ2] term in Eq. (2.9) can cause large deviations of UN from unity. However, in the B − L̄ symmetric

regime one still observes |(FUN )ai|2 ' |Fai|2 and hence |θai|2 ' |Θai|2 = U2
ai due to the structure of the F

and MM in Eq. (2.19).
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where the angles ωij are in general complex numbers and

V12(ω12) =


cos(ω12) sin(ω12) 0

− sin(ω12) cos(ω12) 0

0 0 1

 , (5.4)

and analogous definitions hold for V13 and V23. We work in the basis where the charged

lepton Yukawa couplings are diagonal, so that Uν can be identified with the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix UPMNS.

The full system is thus characterised by 13 real free parameters: 6 real numbers for

the three imaginary angles ωij , 3 heavy neutrino masses, 3 complex phases in the PMNS

mixing matrix (one Dirac δCP and two Majorana α1,2) and the overall light neutrino mass

scale. On the other hand, neutrino oscillation data fix (within experimental uncertainties)

the mixing angles in the PMNS matrix and the mass differences in the light neutrino

spectrum, although current data does not allow to disentangle between two possibilities for

the ordering of light neutrino masses (normal ordering (NO) and inverted ordering (IO)).

We note however that global fits of neutrino oscillation data currently show a preference for

NO at 3σ [137, 138], and current experiments are starting to constrain the value of the Dirac

phase δCP [139–141]. In our scan we randomly generate Yukawa couplings F accordingly to

the relation (5.2), using the ranges of input parameters reported in Table 1. For the heavy

neutrino mass splittings and the complex angles in R, we randomly alternate between

drawing our parameters from a linear versus a logarithmic distribution. This enables us

to effectively sample the different regions of the parameter space, including the B − L̄

protected regime as well as different flavour and mixing structures. The PMNS mixing

angles and light neutrino mass splittings (as well as the PMNS Dirac phase δCP) are allowed

to vary in the 3σ ranges as determined by the NuFIT collaboration [142].

Targeted scans. In order to efficiently explore the most interesting regions of the param-

eter space in a reasonable timescale, we run three different scans:

• generic scan: all the generated points complying with neutrino constraints and

reproducing the observed BAU value are collected;

• large mixing targeted scan: the BAU value is only computed for points featuring

a mixing U2 > 10−4 (GeV/M2)2. This region is especially interesting because it can

be probed by Belle II, LHCb, ATLAS and CMS;
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• low mass region targeted scan: we only generate solutions where the lightest of the

heavy neutrino masses (M1) is lighter than 0.35 GeV. This region can be probed in

the decay of kaons, for instance by T2K.

Parameter Description Range of values Distribution

mlightest Lightest neutrino mass
[
10−10, 0.12

]
eV Log

M1 1st heavy neutrino mass [0.1, 50] GeV Log

M2 2nd heavy neutrino mass Random choice


[M1, 50 GeV]

M1
2+∆
2−∆

Log

Log on ∆

M3 3rd heavy neutrino mass Random choice


[M2, 50 GeV]

M2
2+∆
2−∆

Log

Log on ∆

∆ Relative heavy neutrino mass splitting
[
10−10, 2

]
Log

Reωij Real component of R angles Random choice


[0, 2π][

10−10, 2π
] Linear

Log

Imωij Imaginary component of R angles Random choice


± [0, 13]

±
[
10−10, 13

] Linear

Log

δCP Dirac PMNS phase
[144◦, 374◦] (for NO)

[192◦, 354◦] (for IO)

Linear

αi Majorana PMNS phases [0, 2π] Linear

Table 1: Range of values and distribution of the free parameters sampled in the numerical scan. Random

choice means that, in the generation of each point, one of the described alternatives is randomly chosen.

The heavy neutrino masses Mi are labelled following M1 < M2 < M3.

5.2 Further experimental constraints.

The realisations of the seesaw mechanism constructed as outlined in Section 5.1 (by con-

struction compatible with the neutrino oscillation data) are compared to the following

experimental constraints (cf. e.g. Ref. [84] for a more detailed discussion):
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• The sum of light neutrino masses must remain below
∑

imi < 0.12 eV, as determined

by the Planck collaboration [143].

• The neutrinoless double β decay effective mass must remain below mββ < 0.165

eV, as determined by the KamLAND-Zen collaboration [144]. The computation

includes the contribution of the light active as well as of the heavy sterile neutrinos

(see [74, 76, 78, 97, 111, 145–148]).

• We impose constraints on the deviation from unitarity of the PMNS mixing matrix,

as determined in [84, 149].

• We impose bounds from direct searches of heavy neutral leptons relevant in the

considered mass range (i.e. [0.1, 50] GeV), constraining the mixing of the new sterile

neutrinos with the light active ones in the electron [13, 28, 150–162], muon [13, 28,

150–155, 157, 159, 160, 162–169] and tau [28, 155, 157, 159, 160, 170, 171] flavours.

• We require an upper bound on the lifetime, requiring the sterile neutrinos to not

be too long-lived in order to not spoil predictions from Big Bang Nucleosynthesis

(BBN). We set a conservative upper bound of 0.1 seconds, cf. Ref. [172].

5.3 Theoretical considerations: parameter volume and tuning.

In addition to the experimental constraints listed above we apply a number of theoretical

arguments.

• Perturbative unitarity. We require for each state that the corresponding decay

width does not exceed half of the particle’s mass [173–178].

• Perturbativity. Although the parameterisation in Eq. (5.2) allows for an efficient

exploration of the parameter space, the complex angles ωij cannot acquire arbitrary

values: the magnitude of the Yukawa couplings F grows exponentially with the mod-

ulus of the imaginary parts Im ωij , and too large couplings are excluded, either

because they break the perturbative expansion leading to Eq. (2.8), thus rendering

the full parameterisation unreliable, or because they give rise to a strong dynamics.

In our scan we allow for sizeable values of the imaginary angles, and explicitly diago-

nalise the full 6× 6 mass matrix (including 1-loop corrections) in order to verify the

agreement with experimental data, excluding realisations that do not comply with

them; moreover we require each entry in |F | to be smaller than 4π.

• Fine-tuning. In the exploration of the parameter space we do not impose any

symmetry, but we allow the underlying parameters in the theory to vary as reported
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in Table 1, in order to generate symmetry protected as well as generic solutions. We

then quantify a posteriori the level of fine-tuning for each solution, by defining the

following quantity

f.t.(mν) =

√√√√ 3∑
i=1

(
mloop
i −mtree

i

mloop
i

)2

, (5.5)

where mloop
i are the light neutrino masses computed at 1-loop level, while mtree

i

are the same observables computed neglecting loop corrections. The parameter

f.t. in Eq. (5.5) quantifies the importance of the loop corrections for reproducing

the observed neutrino mass spectrum: the smaller it is the more neutrino masses

are stable under radiative corrections, suggesting the presence of an underlying

symmetry if Yukawa couplings are sizeably larger than the naive seesaw scaling

|F | . 10−7
√
M̄/GeV.

6 Results

In this section we discuss the results obtained performing the parameter scan described

in Section 5. Projecting the high-dimensional data set consisting of all parameter points

meeting the experimental constraints (including the requirement of successful leptogenesis)

on to different physically meaningful two-dimensional planes, we illustrate the qualitative

new features arising in the n = 3 case of “ freeze-in leptogenesis”.

6.1 The range of allowed mass and mixing.

Figure 1 depicts the allowed range of active-sterile mixing after imposing all experimental

constraints as a function of the heavy neutrino mass. We find that large mixing angles

U2
ai right up to the current experimental bounds are allowed in the n = 3 case across

the entire mass range we consider. This is in contrast to the model with n = 2, where

a gap of one order of magnitude was reported in [36] for Mi ∼ 5 GeV that grows to

about three orders of magnitude for Mi ∼ 50 GeV. Moreover, we find points with very

low fine-tuning (according to the criterion of Eq. (5.5)) in the entire viable parameter

space projected on to the mass-mixing plane. This provides rich prospects for ongoing and

planned experiments searching for sterile neutrinos in the GeV range. In particular, in

contrast to the n = 2 scenario, searches for prompt decays of Ni at the LHC [9, 13, 15] and

Belle II [162, 179] can probe the viable leptogenesis parameter space for n = 3. Moreover,

in the region of large mixings and for Mi below ∼ 20 GeV, displaced vertex searches

at the LHC [9, 17, 18, 22, 23, 180, 181] could see thousands of events, assuming that

displacements in the mm range can be resolved. This would allow for a determination of
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the heavy neutrino flavour mixing pattern [35, 36], which is crucial to test the hypothesis

that these particles are responsible for leptogenesis [74, 79]. For n = 2 the sensitivity of

such searches could barely touch the viable leptogenesis parameter space [48], and it seems

unlikely that the flavour mixing pattern can be measured at a level that allows to draw

any conclusions. Hence, the perspectives to test low-scale leptogenesis are much better in

the scenario with n = 3.

A few comments on the distribution of the points in the scatter plots in Fig. 1 are

in place. The main purpose of these plots is to illustrate that leptogenesis is feasible in

the entire mass-mixing plane without fine-tuning in the sense of Eq. (5.5). The density

of points within the allowed area should not be misinterpreted as a measure for any the-

oretical or experimental preference for particular values. Instead, it is primarily a result

of the parameterisation (5.2) and the randomisation procedure described in Section 5.1.

In particular, some of the most prominent features in the distribution of points appear

because we performed a number of targeted scans as described on page 22. In addition to

the variation in the density of points within the allowed region, there are also parts of the

mass-mixing planes that appear to be empty. This does not necessarily imply that there

are no viable parameter choices in these regions, but may also simply indicate that our scan

failed to fully exploit these regions. For instance, the distribution of points above Mi = 2

GeV suggests that leptogenesis is feasible for mixings all the way up to the experimental

upper limit on the individual U2
ai, but not all the way up to the experimental upper limit on

the total U2
i . We suspect that the reason is that it is difficult to find points where all three

mixings U2
ai are maximal for one of the Ni within the parameterisation (5.2), while there

is no reason why such points would not exist. Similarly, it is very difficult to explore the

region of large U2
τi below Mi = 2 GeV, while there is evidence that, at least from the point

of view of neutrino mass generation, this region is experimentally allowed for n = 3 [84].

This is in contrast to the n = 2 model, where the results presented in Ref. [79] indicate

that this region is indeed ruled out by the combination of different constraints. Finally,

a similar problem arises in the determination of the lower bound on the mixings. While

the light neutrino oscillation data and the requirement for the Ni to decay before BBN

both impose lower bounds on the U2
i that depend on mlightest [84, 133], neither of them

can impose a lower bound on the individual U2
ai for n = 3. The BBN constraint can always

be avoided if the Ni decays into a SM final state of different flavour, while the neutrino

oscillation data can always be explained if another heavy neutrino provides the required

mixing with the flavour a.

Relative mass degeneracy. Fig. 2 shows the parameter points of Fig. 1 projected onto a
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f.t.

10
-4

10
-2

1

Figure 1: Active-sterile mixing for the viable BAU solutions as a function of the heavy neutrino mass, for

a normal (left) and an inverted (right) ordering in the light neutrino mass spectrum. From top to bottom:

electron U2
ei, muon U2

µi, tau U2
τi and summed U2

i mixings. The grey region is excluded by direct searches of

heavy neutral leptons (cf. Section 5.2), the lines show the expected sensitivities for the ongoing experiments

T2K [182], NA62 [39], Belle II [183], LHCb [180] with an integrated luminosity of 380 fb−1, and for ATLAS

and CMS with an integrated luminosity of 300 fb−1. The latter include different proposed searches: [22]

(continuous line), [17] (dashed line), [21] (dotted line).
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Figure 2: Relative mass splittings for the viable BAU solutions in the model, for a normal (left panel) and

inverted (right panel) ordering in the light neutrino mass spectrum. Colour coding as in Fig. 1.

plane spanned by the two mass splittings among the heavy neutrinos. As discussed above,

the density of the points carries little physical meaning. It is however remarkable that we

find viable leptogenesis points in the entire parameter plane, for all possible hierarchies

of the heavy neutrino masses, and covering a wide range of values for the physical mass

differences. The regions along the top and right axes correspond to a situation with one

pair of very degenerate neutrinos and a third neutrino with at least an O(1) hierarchy. This

can be realised in the B−L̄ symmetry protected regime for µ� 1 and µ′ ∼ 1 or physically

equivalent configurations in which the labels of the Ni are permutated. This region contains

effective n = 2 models if the third neutrino decouples. In the upper right corner both, µ

and µ′, are sizeable, and there is no protecting symmetry for the neutrino masses.. On

the other hand, the central and bottom left area of Fig. 2 is characterised by three very

degenerate neutrinos, with in general all three of them contributing to leptogenesis. The

low value of the fine-tuning (according to the criterion of Eq. (5.5)) indicates that again this

is a B−L̄ protected region. Finally, in the top right corner we find the fully non-degenerate

Ni spectra, which can accommodate leptogenesis only at the cost of fine-tuning.

A further important difference between the n = 2 and the n = 3 case appears in

the flavour structure, i.e. in the relative coupling strength of a given Ni to the 3 active

flavours, U2
ei/U

2
i : U2

µi/U
2
i : U2

τi/U
2
i . For n = 2, the requirements of successful neutrino

mass generation and leptogenesis limit the allowed values of these ratios, see Refs. [36,

74, 79]. On the contrary, for n = 3 we find parameter points yielding successful neutrino

mass generation and leptogenesis in the entire parameter space. This provides a further

interesting possibility to test these leptogenesis mechanisms.
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6.2 Effect on neutrinoless double β decay.

It is well known that the exchange of Ni with masses below the electroweak scale can

make a significant contribution to the rate of neutrinoless double β decay [111, 145–147]

in the region where freeze-in leptogenesis is feasible [74, 76, 78, 97, 148]. The decay rate is

proportional to the quantity

mββ =

∣∣∣∣∣∑
i

(Uν)2
eimi +

∑
i

Θ2
eiMifA(Mi)

∣∣∣∣∣ , (6.1)

where the first term comes from light neutrino exchange and the second one from Ni

exchange. Here

fA(M) ' p2

p2 +M2
, (6.2)

where p is the momentum exchange in the decay and depends on the isotope, cf. e.g. [147].

In our analysis we use the numerical value p = 125 MeV, resulting from an average over

different decaying nuclei (see e.g. [146]). Using the estimate (2.17) one would generically

expect that the relative size of the two contributions is roughly given by fA(Mi). Since we

found viable parameter points for which U2
i exceeds the estimate (2.17) by several orders

of magnitude, one may wonder whether leptogenesis with large mixing angles generally

predicts that mββ greatly exceeds the standard contribution,

mν
ββ =

∑
i

(Uν)2
eimi , (6.3)

from light neutrino exchange. However, large U2
i can only be achieved without fine-tuning

if the light neutrino masses mi are protected by the B − L̄ symmetry. This symmetry

automatically suppresses mββ and sets the rate of neutrinoless double β decay (as well as

the light neutrino masses) to zero if the symmetry is exact. It is instructive to study how

much “tuning” is required to obtain a large decay rate if the symmetry violating parameters

are not exactly zero. To see this explicitly we bring Eq. (6.1) into the form

mββ =

∣∣∣∣∣mν
ββ + fA(M̄)

∑
i

MiΘ
2
ei +

∑
i

MiΘ
2
ei[fA(Mi)− fA(M̄)]

∣∣∣∣∣
=

∣∣∣∣∣[1− fA(M̄)]mν
ββ + (δm1loop

ν )eefA(M̄) +
∑
i

MiΘ
2
ei[fA(Mi)− fA(M̄)]

∣∣∣∣∣ , (6.4)

by using the unitarity relation
∑

imi(Uν)2
ai +

∑
iMiΘ

2
ai = (δm1loop

ν )aa (see Eq. (2.3)).

Further using Eq. (2.7) and the fact that Θ ' θ in the B − L̄ conserving regime, we can

recast this as

mββ =

∣∣∣∣∣[1− fA(M̄)]mν
ββ +

∑
i

Miθ
2
ei

[
fA(Mi)− fA(M̄)

(
1− M2

i

v2
l(Mi)

)]∣∣∣∣∣ . (6.5)
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Figure 3: Neutrinoless double β decay effective mass values for the viable BAU solutions in the model

as a function of the lightest neutrino mass (top panels) and of the lightest heavy neutrino mass (bottom

panels), for a normal (left panels) and inverted (right panels) ordering in the light neutrino mass spectrum.

The most prominent voids in the distribution of points inside the horizontal bands in the lower panel are

the result of constraints on the U2
ei from direct experimental searches. Note that for normal ordering the

SM model contribution mν
ββ can be arbitrarily small, which is reflected by the blue band in the top left

panel extending downwards at m1 ∼ few× 10−3 eV. The low density of points in this region is a result of

the sampling in our scan. Colour coding as in Fig. 1.

The first term in this equation is always smaller than the standard prediction, so large

contributions can at most come from the second term.8 The contribution from N3 is

proportional to θ2
e3 = (v/M̄)2 × F 2

e (ε′e/µ
′)2. A priori this term looks potentially large in

low-scale seesaw models because of the factor (v/M̄)2 and because of the second power

of µ′ in the denominator, which threatens to cancel the suppression from the ε′e in the

numerator. However, there are also at least two powers of µ′ in the numerator, one from

M3 = µ′M̄ and one from expanding the fA(Mi) − fA(M̄) in the tree-level contribution

(the loop contribution comes with a prefactor (M3/v)2 = µ
′2(M̄/v)2 anyway). What

remains is a contribution ∝ F 2
e ε
′2
e v

2/M̄ ×fA(M̄)2M̄2/p2, which should be compared to the

contribution ∝ F 2
e ε
′2
e v

2/(µ′M̄) that N3 makes to the neutrino masses. The current upper

8 It is straightforward to show that all eigenvalues of mν vanish if the parameters εa, ε
′
a and µ in Eq. (2.19)

are set to zero, which implies that also mν
ββ exactly vanishes in this limit.
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limit on the sum of neutrino masses [143] is comparable to the limit on mββ [184], hence a

large contribution to the decay rate could only be achieved at the cost of cancellations in mν

and/or mββ that are not explained by the B − L̄ symmetry. For µ′ � 1 the contributions

from N1 and N2 are individually large because of the much larger mixing angle. However,

due to the B− L̄ symmetry, they interfere destructively, which is manifest in the imaginary

unit i in Eq. (2.19). To estimate their contribution, we expand to linear order in the B− L̄
violating parameters

mββ =

∣∣∣∣∣[1− fA(M̄)]mν
ββ + 2M̄fA(M̄)

[
µF 2

e

(
v2

p2
fA(M̄)− l(M̄)

2
− M̄

2

∂l(M̄)

∂M̄

)
+ εeF

2
e l(M̄)

]∣∣∣∣∣ .
(6.6)

This may again be compared to the contribution ∝ 2F 2
e (−2εe + µ)v2/M̄ that N1 and N2

make to neutrino masses through their mixing with νLe. The term ∝ εeF 2
e in mββ is always

smaller than its counterpart in mν for M̄ < v, while the term ∝ µF 2
e is parametrically

of comparable size. Hence, for generic choices of the parameters that are not dictated by

the symmetry, the current neutrino oscillation data clearly disfavours large contributions

to mββ from the heavy neutrinos. Using the expression (6.3) for mν
ββ and the numerical

values of the mixing (Uν)ei, the same argument suggests that the contribution from the Ni

exchange to mββ is comparable or smaller than that from light neutrinos. Based on this,

one can estimate that mββ should not greatly exceed the standard prediction |mν
ββ | unless

the model parameters are either highly tuned to cause accidental cancellations amongst

the contributions involving different SM flavours in mν , or there exist additional flavour

structures/symmetries that lead to such cancellations. There is, however, one way to avoid

this conclusion that has already been discussed for n = 2 in Refs. [74, 76, 78]: large

deviations from mν
ββ can be obtained in a technically natural way if the Mi are of the

same order as p. This results from the combination of two factors. On the one hand

the contribution of heavy neutrinos is maximal if their masses are comparable with the

exchanged virtual momentum p, cf. Eqs. (6.1, 6.2); on the other hand loop corrections to

the light neutrino parameters are proportional to the heavy neutrino masses, cf. Eq. (2.7).

This is confirmed by the results shown in Fig. 3. The plot confirms the claim from

Ref. [78] that leptogenesis in the n = 3 low-scale seesaw model is compatible with both, a

rate of neutrinoless double β decay that is much larger or much smaller than the standard

prediction |mν
ββ |. However, a much larger rate tends to require a considerable tuning in

the sense of Eq. (5.5). The lower panels in Fig. 3 confirm that sizeable contribution from

the heavy neutrinos to mββ can be achieved together with a low fine-tuning (in the sense

of Eq. (5.5)) for masses of order O(100 MeV).
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7 Benchmark points

Figures 1-2 illustrate the larger viable parameter space with n = 3 compared to n = 2. Due

to the effects 1) - 8) listed in Section 4, the range of parameters for which both, the BAU

and light neutrino oscillation data, can be explained increases in all possible directions.

• Both, larger and smaller mixings U2
i can be made consistent with baryogenesis and

neutrino mass generation, cf. Fig. 1. In the entire mass range studied here, the upper

limit on U2
i is practically given by experimental constraints. That is, for any value of

U2
i that is allowed by experiments, one can find a set of model parameters for which

baryogenesis is feasible. This considerably improves the perspectives for current and

planned experiments to test the mechanism of baryogenesis. At the same time, there

is no lower bound on the individual U2
i . This is in contrast to the case with n = 2,

where the estimate (2.17) practically acts as a “floor” for experimental searches.

• The constraints on the heavy neutrino mass spectrum are relaxed. In particular, no

mass degeneracy is needed to generate the BAU.

• The constraints on the flavour mixing pattern, i.e., the relative size of the heavy

neutrino couplings to different SM flavours, are relaxed.

Some of these effects have been predicted in the past. For instance, in Ref. [83] it was argued

that the relaxed constraints on the flavour mixing parameter f should allow for baryogenesis

with much larger U2
i than for n = 2. The fact that baryogenesis with n = 3 is feasible for

non-degenerate heavy neutrino spectra was discussed in detail in Ref. [85]. Different aspects

of the L̃-violation have been discussed in Refs. [36, 61, 62, 71, 72, 80]. However, it turns

out that the behaviour for n = 3 in general is much richer than anticipated in these works.

In general, the evolution of charges is governed by a complex interplay of several amongst

the effects 1) - 8) in Section 4, and one cannot uniquely relate the viability of a particular

parameter choice to any individual of these mechanisms. It is nevertheless instructive to

illustrate some of the most important physical effects for a few selected benchmark points.

The parameters of these points are summarised in Table 2.

Benchmark point I): Resonant enhancement due to level crossing. The first

parameter point we consider is given by the choice

F =


(−2.0− i 7.9)× 10−5 (7.9− i 2.0)× 10−5 (1.8− i 9.5)× 10−8

(2.7− i 1.3)× 10−5 (1.3 + i 2.7)× 10−5 (4.6− i 2.8)× 10−8

(−2.9− i 0.4)× 10−5 (0.4− i 2.9)× 10−5 (−4.0 + i 1.0)× 10−8

 , (7.1)
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M̄ = 2.70 GeV, µ = 5.59× 10−10, µ′ = 1.02 . (7.2)

It features a degenerate heavy neutrino mass spectrum (c.f. Eq. (2.19)) and couples the

heavy neutrinos with roughly the same strength to all SM flavours, f = 0.36. The level

of fine-tuning in the sense of Eq. (5.5) is very low, f.t.(mν) = 7.7 × 10−5, thanks to an

approximate B − L̄ symmetry (|εa| ≤ 4.1 × 10−7, |ε′a| ≤ 1.3 × 10−3). Due to the small

mass splitting amongst all three Ni, the generation of the BAU occurs in the overdamped

regime, i.e., the flavour eigenstate νRs reaches thermal equilibrium before the heavy neutrino

oscillations start (cf. e.g. [75] for a detailed discussion). The BAU is resonantly enhanced

by an (avoided) level crossing in the eigenvalues of the effective Hamiltonian, i.e., effect 3)

in Section 4. This can be seen in the right panel of Fig. 4. The precise moment of the

resonance well agrees with the simple estimate (4.4), xcrossing ≈ 1.4× 10−2. The resonant

production of asymmetries is clearly visible in the middle and left panels of Fig. 4, as well

as in the off-diagonal elements of the density matrix in Fig. 5. In the middle panel of

Fig. 4 one can identify the moment when L̃-violating processes kick in as the point where

the orange and blue lines start to deviate from each other. As explained in point 7), the

asymmetries in the SM flavours are rapidly equalised by L̃-conserving processes and are

then protected from washout as long as L̃-violating processes are inefficient.

Benchmark point II) : Flavour hierarchy and resonant enhancement. Next we

consider the parameter choice

F =


(2.8− i 0.4)× 10−5 (0.4 + i 2.8)× 10−5 (0.4− i 1.3)× 10−8

(−3.0− i 0.8)× 10−7 (0.8− i 3.0)× 10−7 (−3.9 + i 5.7)× 10−8

(−4.9 + i 0.4)× 10−5 (−0.4− i 4.9)× 10−5 (−3.4 + i 5.0)× 10−8

 , (7.3)

M̄ = 5.20 GeV, µ = 6.16× 10−5, µ′ = 1.08 . (7.4)

This point is similar to the first one in the sense that there is also an approximate B − L̄
symmetry and the masses of all three heavy neutrinos are quite degenerate. The fine-tuning

is somewhat higher, but with f.t.(mν) = 3.2×10−2 still small. It also leads to overdamped

behaviour and exhibits two avoided level crossings between the state that corresponds to

νRs at high T and the two other states.9 The first one resonantly enhances the asymmetry

9The temperature of the stronger level crossing agrees with the the estimate (4.4), xcrossing ≈ 1.8×10−3.
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Figure 4: Benchmark point I). Left: asymmetries in the individual active flavours. Center: sum of asym-

metries in the active (blue) and sterile (orange) flavours. Right: eigenvalues of the effective Hamiltonian

〈H〉. Continuous (dashed) lines indicate positive (negative) values.
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Figure 5: Entries of the density matrix for benchmark point I) in the basis where MM is diagonal.

Note that this basis does not correspond to the physical quasiparticle mass basis, c.f. Section 3.2, and the

interpretation of the diagonal elements as physical quasiparticle occupation numbers is only valid if the

effective masses are dominated by MM , i.e. at low temperatures.

production, while the second one is much weaker and occurs when L̃-violating processes

are already relevant and two of the heavy neutrinos have reached equilibrium. The main

difference, however, lies in the strongly hierarchical flavour structure, f = 6.2× 10−3. This

prevents the equalising of all SM flavours by effect 7) because the muon flavour couples

only very feebly to the other charges. This helps to avoid washout in spite of the fact

that two heavy neutrino degrees of freedom reach equilibrium around x ' 0.02 as a result
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〈H〉. Continuous (dashed) lines indicate positive (negative) values.
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Figure 7: Entries of the density matrix for benchmark point II).

of effect 5) by the L̃-violating processes. Both level crossings lead to a re-distribution of

charges, which is visible in the left panel of Fig. 6, but only the second one leads to a sign

change in the sterile charges. It is worthwhile noting that the zero crossing of the total

sterile charge caused by the second level crossing does not enforce a zero crossing of the

total active charge L due to effect 6).
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Benchmark point III): Large mass splittings. The final point that we consider is

given by

F =


(−3.2− i 4.5)× 10−8 (−1.1− i 1.7)× 10−7 (−2.4 + i 1.6)× 10−7

(1.7− i 5.9)× 10−7 (0.6− i 2.1)× 10−6 (−2.9− i 0.8)× 10−6

(4.4− i 3.0)× 10−7 (1.5− i 1.1)× 10−6 (−1.5− i 2.1)× 10−6

 , (7.5)

M̄ = 1.85 GeV, µ = 5.49× 10−1, µ′ = 2.34 . (7.6)

Loop corrections remain comparably small, f.t.(mν) = 0.14, in spite of the fact that the

parameters µ and µ′ are not small. There is a moderate flavour hierarchy f = 9.5× 10−2.

The evolution of charges corresponds to the standard mild washout scenario. The point

serves as an example that leptogenesis can be realised with O(1) mass splitting without

resorting to extreme fine-tuning.

Benchmark I II III

Ordering Inverted Normal Normal

mlightest
ν 6.93× 10−7 eV 1.32× 10−9 eV 1.01× 10−3 eV

Re ω12 2.95× 10−1 5.84 5.80

Im ω12 7.36 7.72 −5.09× 10−8

Re ω13 1.05× 10−6 2.83 1.48× 10−9

Im ω13 −2.65× 10−2 −1.53× 10−1 4.81× 10−6

Re ω23 2.87× 10−8 4.43× 10−8 1.81

Im ω23 −8.93× 10−1 4.05× 10−4 −4.46

δCP, α1, α2 193◦ , 148◦ , 78◦ 198◦ , 300◦ , 74◦ 285◦ , 33◦ , 36◦

Table 2: Input parameters for the discussed benchmark points.
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Figure 8: Benchmark point III). Left: asymmetries in the individual active flavours. Center: sum of asym-

metries in the active (blue) and sterile (orange) flavours. Right: eigenvalues of the effective Hamiltonian

〈H〉. Continuous (dashed) lines indicate positive (negative) values. The dashed vertical lines indicates the

points in time when the oscillations among the heavy neutrinos are switched off, see main text.
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Figure 9: Entries of the density matrix for benchmark point III). The off-diagonal elements of the density

matrix are set to zero (i.e. oscillations are switched off) after 10 completed oscillations; we checked that

this has no significant effect on the asymmetries because they “average out” at later times.

8 Conclusions

The ARS mechanism [45] for “freeze-in leptogenesis” is a remarkable and testable idea

to implement leptogenesis within a minimal extension of the Standard Model by adding

heavy neutrinos with masses below the electroweak scale. In this paper we perform the first

systematic investigation of the ARS mechanism with three right-handed neutrinos (n = 3),
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extending previous analyses which encompassed only two right-handed neutrinos actively

participating in leptogenesis (n = 2). For n = 2 there are only two characterstic time scales

associated with the heavy neutrinos - the oscillation period of the two neutrinos, set by

their mass difference, and the thermalisation rate, set by their coupling to the SM. On the

contrary, for n = 3, a much richer phenomenology arises. As we show in this work, this does

not only enlarge the parameter space, enhancing the possibility of a detection in present

collider experiments due to a large mixing with the SM neutrinos (as anticipated in [83]),

but moreover we find qualitatively new mechanisms to generate the lepton asymmetry,

which do not have a counterpart in the n = 2 analysis.

The most striking of these qualitatively new effects is a resonant generation of a lepton

asymmetry associated with an (avoided) level crossing of the effective mass eigenvalues

of the three heavy neutrinos. As is well known from the analysis of the n = 2 case, the

generation of a lepton asymmetry is enhanced for a small mass splitting within the neutrino

pair. In the case of three neutrinos, a tiny mass splitting can occur dynamically through

thermal corrections to the mass eigenstates, which induce a level crossing in the eigenvalues

of the effective Hamiltonian. If this occurs when the respective heavy neutrinos have already

been produced in significant numbers, but have not yet reached full equilibrium, then the

lepton asymmetry is resonantly enhanced. This enables successful leptogenesis with only a

mild degeneracy in the vacuum masses of the heavy neutrinos and without any fine-tuning

in the flavour mixing pattern.

Moreover, compared to the n = 2 case, we find richer flavour structures leading to

successful leptogenesis. With only two right-handed neutrinos, successful leptogenesis with

mixing angles that may be accessible with the LHC prefers a hierarchical flavour structure,

where the generated asymmetry can be protected from washout when stored in a very

weakly coupled SM flavour, whereas the requirement to reproduce the observed neutrino

oscillation data sets an upper bound on the flavour hierarchy. This tension forbids large

mixings between the heavy and the SM neutrinos, making experimental tests challenging.

In the case of three heavy neutrinos, these constraints are relaxed in two ways. Firstly, the

additional parameter freedom due to the additional state allows to comply with the neutrino

oscillation data while simultaneously allowing for a large flavour hierarchy. Secondly, we

demonstrate that contrary to the n = 2 case, a lepton asymmetry can be generated even

with flavour democratic couplings, due to a new term in the kinetic equations which only

arises for n ≥ 3. Consequently, and again contrary to the n = 2 case, we find large mixing

between the heavy and the SM neutrinos, right up to the current bounds, to be compatible

with both neutrino oscillation data and successful leptogenesis.

We point out that this large mixing, as well as the formation of pseudo-Dirac pairs of
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right-handed neutrinos, is natural in the context of an approximate global B − L̄ symme-

try, where B denotes the SM baryon number and L̄ denotes a generalised lepton number

under which also the right-handed neutrinos are charged. With this in mind, we define

‘fine-tuned’ solutions as parameter points for which the radiative one-loop contributions to

the light neutrino masses are large compared to the tree-level contributions. In this sense,

we find that experimentally accessible large mixing is possible without any fine-tuning,

whereas an enhancement of the neutrinoless double β decay rate is possible only at the

cost of fine-tuning unless the heavy neutrino masses are rather close the the momentum

exchange in the process. Furthermore, the resonant generation of a lepton asymmetry due

to a level crossing of the mass eigenvalues occurs quite generically in the regime protected

by the B − L̄ symmetry, since one state of the pseudo-Dirac pair receives large thermal

corrections whereas the quasi decoupled third right-handed neutrino does not. Moreover,

the participation of the quasi decoupled heavy neutrino automatically protects the gener-

ated asymmetry from subsequent washout. All this renders the B− L̄ symmetry protected

regime particularly interesting for ARS leptogenesis.

At high temperatures far above the heavy neutrino mass scale, the different helicities of

the right-handed neutrinos are conserved quantum numbers. Approaching the EW phase

transition, this approximation breaks down, allowing for ‘lepton number violating’ (L̃-

violating) processes. Although active for only a fairly short period of time, these processes

can significantly alter the predicted lepton asymmetry. We highlight the different physical

processes at work, showing that they can both enhance or reduce the final asymmetry.

In summary, we find that leptogenesis invoking the oscillations of three right-handed

neutrinos just before the EW phase transition comes with some qualitative and quantitative

differences to the well-studied n = 2 case. New channels of leptogenesis lead to an enhanced

lepton asymmetry. The viable parameter space, reproducing both the observed neutrino

oscillation data and the baryon asymmetry of the Universe, projected onto the mass versus

active-sterile mixing plane shows promising opportunities for ongoing experiments, such

as NA62, T2K, Belle II and the LHC. This calls for a more detailed study of some of the

effects that we have neglected here. These include effects of the electroweak transition

(temperature dependent Higgs field value, gradual sphaleron freeze-out, particle masses

generated by the Higgs mechanism and the L̃-violation due to the active-sterile mixing), the

full momentum dependence of the equations, a fully systematic perturbative computation

of the L̃-violating rates, as well as, a verification of the validity of the gradient expansion

(which justifies the usage of the density matrix equations) during the level crossing.
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A Notation for the quantum kinetic equations

We provide in this appendix additional details on the system of differential equations used

in our numerical scan to compute the baryon asymmetry, starting from the original set of

Boltzmann equations given in Eqs. (3.1) and (3.2), see Ref. [82] for more details.

Let us consider first the equation for the abundances of the heavy neutrinos, described

by RN and RN̄ . Their oscillation processes are described by the term proportional to[
〈H〉, RN,N̄

]
where the Hamiltonian H can be split as H = H0 +VN with VN denoting the

effective potential and H0 denoting the vacuum Hamiltonian,

H0 =
1

2k
diag(M2

1 ,M
2
2 ,M

2
3 ) 7→ 1

2k
diag(0,∆M2

12,∆M
2
13) , VN =

ND

16

T 2

k
F †F , (A.1)

where ∆M2
ij = M2

j − M2
i , and in the last expression we have dropped the part of the

matrix proportional to the unity matrix, since it drops out in the commutator of Eq. (3.1).

Thermal averaging yields

〈H0〉 =
π2

36 ζ(3)T
diag(0,∆M2

12,∆M
2
13) , (A.2)

〈VN 〉 =
π2ND

288 ζ(3)
TF †F . (A.3)

For the numerical solution of the system of Boltzmann equations it is convenient to adopt

x = TEW/T as new time variable. The change of variables is described by the relation

dt =
M0

T 2
EW

x dx with M0 = 7.12× 1017 GeV . (A.4)

It will be convenient to introduce a new parameterisation of the effective potential,

WN =
M0

T 2
EW

x 〈VN 〉 =
π2

144 ζ(3)

M0

TEW
F †F , (A.5)
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and analogously,

WN,LNV =
π2

144 ζ(3)

M0

TEW
MF †FM , (A.6)

oµ =
π2

144 ζ(3)

M0

TEW
F †µF , (A.7)

oµ,LNV =
π2

144 ζ(3)

M0

TEW
MF †µFM . (A.8)

The analogous terms for the equations for RN̄ are obtained by setting F → F ∗ and µ→ −µ.

Performing the change of variables t→ x also in the equations for the chemical potentials

µ∆a , we finally obtain the system:

dRN
dx

= i [RN ,WN ] + 3ix2 [RN , r]− φ(0) {RN ,WN} − φ̃(0) {RN ,WN,LNV }

+ 2φ(0)WN + 2φ̃(0)WN,LNV + φ(1a)oµ − φ̃(1a)oµ,LNV

+
1

2
φ(1b) {oµ, RN} −

1

2
φ̃(1b) {oµ,LNV , RN} , (A.9)

dRN̄
dx

= i
[
RN̄ ,W

T
N

]
+ 3ix2 [RN̄ , r]− φ(0)

{
RN̄ ,W

T
N

}
− φ̃(0)

{
RN̄ ,W

T
N,LNV

}
+ 2φ(0)W T

N + 2φ̃(0)W T
N,LNV + φ(1a)oµ̄ − φ̃(1a)oµ̄,LNV

+
1

2
φ(1b) {oµ̄, RN̄} −

1

2
φ̃(1b) {oµ̄, RN̄} , (A.10)

dµ∆a

dx
=

1

32

M0

TEW

[
−φ(0)

(
FRNF

† − F ∗RN̄F T
)
aa

+ φ(1a)
(
FF †

)
aa
µa

+
φ(1b)

2

(
FRNF

† + F ∗RN̄F
T
)
aa
µa

+ φ̃(0)
(
FMRNMF † − F ∗MRN̄MF T

)
aa
− φ̃(1a)

(
FM2F †

)
aa
µa

− φ̃(1b)

2

(
FMRNMF † + F ∗MRN̄MF T

)
aa
µa

]
, (A.11)

where the functions φ(i) are related to the thermally averaged rates 〈γ(i)〉 by:

φ(0) =
144 ζ(3)

NDπ2T
〈γ(0)〉 (A.12)

=
1

16πND

[
c

(0)
Q h2

t + c
(0)
LPM + (3g2 + g 2)

(
c

(0)
V + log

(
1

3g2 + g′ 2

))]
,

φ(1a) ≡ 144 ζ(3)

π2T
〈γ(1a)〉

=
1

32π

[
c

(1a)
Q h2

t + c
(1a)
LPM + (3g2 + g 2)

(
c

(1a)
V + log

(
1

3g2 + g′ 2

))]
, (A.13)

φ(1b) ≡ −144 ζ(3)

π2T
〈γ(1b)〉

=
1

64π

[
c

(1b)
Q h2

t + c
(1b)
LPM + (3g2 + g 2)

(
c

(1b)
V + log

(
1

3g2 + g′ 2

))]
. (A.14)
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The coefficients c
(i)
X are given in Eq. (3.11). The corresponding expressions for φ̃(i) are

obtained by replacing 〈γ(i)〉 by 〈γ̃(i)〉.
The two terms [RN ,WN ] and [RN , r] in Eq. (A.9) (and the corresponding terms in the

equation for RN̄ ) represent the terms originating from the potential VN and the vacuum

Hamiltonian H0, respectively, with

r ≡ diag(0, r3
2, r

3
3) , ri ≡

TL,i
TEW

, TL,i ≡
(

π2

108 ζ(3)
M0∆M2

1i

)1/3

, (A.15)

where TL,i denotes the typical leptogenesis temperatures associated to the oscillations be-

tween the “1st” and “ith” (i = 2, 3) heavy neutrino eigenstate.

B Perturbative expansion

In this Appendix we perform a perturbative expansion of the system of Boltzmann equa-

tions in terms of the chemical potentials in the active sector µa, following the procedure

outlined in [82] for n = 2. This allows us to gain an analytical understanding of some of

the main processes involved in the n = 3 ARS leptogenesis and to identify the qualitative

differences with respect to the case of a single pair of quasi mass-degenerate neutrinos.

In particular, we will discover an additional (leading order) source term for the lepton

asymmetry, enabling successful leptogenesis in the absence of flavour asymmetric Yukawa

couplings (see point 2) on page 16).

While we do not employ this formalism for the main parameter scan of this paper, we

have confirmed for a range of parameter points that it accurately reproduces the results of

the full equations. For simplicity and in order to facilitate the comparison with the results

of [82], we will omit in this appendix the L̃-violating terms.

B.1 0th order in the chemical potential

To leading order in µa Eq. (3.1) reads,

dR
(0)
N

dt
= −i

[
〈H〉, R(0)

N

]
− 1

2
〈γ(0)〉

{
F †F,R

(0)
N − I

}
, (B.1)

with 〈H〉 = 〈H0〉 + 〈VN 〉 introduced in Appendix A. Performing unitary rotations of this

equation we will in the following identify the different physical effects involved in the

generation of a lepton asymmetry.10 The first step consists in defining an ‘oscillation’ basis,

in which the neutrino oscillations driven by the vacuum Hamiltonian H0 are removed. This

10These ‘basis changes’ obtained by unitary rotations of the density matrix should not be confused with

the different basis discussed in Section 2, which are obtained by rotating the spinors (νi, Ni).
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is done by performing a rotation of the form R̃N = E†RNE with E(t) defined as [58]

E(t) ≡ exp

(
−i
∫ t

t0

〈H0〉dt′
)

= diag
(

1, e−ir
3
2x

3
, e−ir

3
3x

3
)
, (B.2)

with the typical oscillation temperatures encoded in the parameters ri, see Eq. (A.15).

With this,

dR̃N
dt

= Ė†RNE + E†ṘNE + E†RN Ė

= i[〈H0〉, R̃N ] + E†
dRN
dt

E

= −i[〈ṼN 〉, R̃N ]− 1

2
〈γ0〉{F̃ †F , R̃N − 1} , (B.3)

and Eq. (B.1) can be written as

dR̃N
dx

= −i[W̃N , R̃N ]− φ(0){W̃N , R̃N}+ 2φ(0)W̃N , (B.4)

with W̃N = E†WNE and φ(0) introduced in Eq. (A.12). It will be convenient to introduce

a third basis, which we refer to as ‘interaction’ basis, in which W̃N is diagonal. This is

accomplished by means of the unitary matrix U ,

U †W̃NU =
π2

144 ζ(3)

M0

TEW
(FEU)†FEU = diag(y1, y2, y2) ≡ Y . (B.5)

Since E and U are unitary, the eigenvalues yi of W̃N are proportional to those of F †F ,

and in particular time-independent and real. Motivated by this we construct the time

independent part Uc of U as

Uc = E U ⇒ U = E†Uc = diag(1, eir
3
2x

3
, eir

3
3x

3
)Uc . (B.6)

To switch between the oscillation and flavour basis we introduce

U †
dU

dx
=
(
E†Uc

)†(dE†
dx

Uc

)
= x23iU †c diag(0, r3

2, r
3
3)Uc ≡ x2D , (B.7)

where we note that the matrix D is anti-hermitian and time-independent. Denoting the

leading order density matrix of the right-handed neutrinos in the interaction basis by S0
N ,

S0
N = U †R̃NU , we finally find

dS0
N

dx
= −x2[D,S0

N ]− i[Y, S0
N ]− φ(0){Y, S0

N}+ 2φ(0)Y (B.8)

= S0
N (x)((i− φ(0))Y + x2D)− ((i+ φ(0))Y + x2D)S0(x) + 2φ(0)Y , (B.9)

as in the case of two right-handed neutrinos.
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To obtain the corresponding equation for SN̄ we need to replace the Yukawa coupling

by its complex conjugate, F 7→ F ∗. Denoting the quantities in the SN̄ equation with

overbars, this implies

Ȳ = Y , Ē = E , Ūc = EŪ = E∗U∗ = U∗c , D̄ = DT . (B.10)

Here the first equality follows since Y contains the real eigenvalues of W̃N ∝ E†F †FE.

The second is trivial since no powers of F are involved in the definition of E, and the third

follows from

Y ∝ Ū †(E†F TF ∗E)Ū = (Ū EF †FE∗Ū∗)T = (U †E†F †FE U)T . (B.11)

Finally the fourth equality in Eq. (B.10) follows from D̄ = Ū †(dŪ/dx) with Ū = E†U∗c .

Note that in the case of two right-handed neutrinos the matrix D is symmetric11 and hence

D̄ = DT = D. For n > 2, D is anti-hermitian but not symmetric, so this simplification

does not apply. With this, the equation for the opposite helicity (N̄) neutrinos reads

dS0
N̄

dx
= −x2[DT , S0

N̄ ]− i[Y, S0
N̄ ]− φ(0){Y, S0

N̄}+ 2φ(0)Y (B.13)

= S0
N̄ (x)((i− φ(0))Y + x2DT )− ((i+ φ(0))Y + x2DT )S0(x) + 2φ(0)Y . (B.14)

Defining

S0 =
1

2
(S0
N + S0

N̄ ) , ∆S0
− = S0

N − S0
N̄ , (B.15)

and noting that D is anti-hermitian, DT = −D∗, implying

([D,SN ]−
[
DT , SN̄

]
) = [Re(D), S+] + i [Im(D),∆S−] , (B.16)

we find

dS0

dx
= −ix2[Im(D), S0]− i[Y, S0]− φ(0){Y, S0}+ 2φ(0)Y − 1

2
x2[Re(D),∆S0

−] , (B.17)

d∆S0
−

dx
= −2x2[Re(D), S0]− ix2[Im(D),∆S0

−]− i[Y,∆S0
−]− φ(0){Y,∆S0

−} . (B.18)

11 Consider a general unitary 2× 2 matrix

U = e−iϕ/2

 eiϕ1 cos θ eiϕ2 sin θ

−e−iϕ2 sin θ e−iϕ1 cos θ

 . (B.12)

An explicit computation shows that the quantity D ∼ iU†diag(0, 1)U has purely imaginary, symmetric

off-diagonal elements if and only if ϕ1 = ϕ2. Since there is a free phase in each column of U , this condition

can always be met. In the case of 3 right-handed neutrinos, this freedom of choosing the phases of the

columns is not sufficient to make D symmetric for a generic 3× 3 unitary matrix U .
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We highlight two crucial differences to the case of only two right-handed neutrinos. Firstly,

in the case of two right-handed neutrinos the freedom of phase rotations allows us to impose

DT = D and hence the equations for N and N̄ in the interaction basis at leading order

are identical (cf. Eqs. (B.8) and (B.13)). Consequently, in this case the first term on the

right-hand side of Eq. (B.18) is absent, and ∆S0
− = 0 is a solution to Eq. (B.18). This

reflects that for appropriate initial conditions, the reduced number of CP -violating phases

for n = 2 impedes the generation of asymmetries in the sterile sector (see also Appendix D

of Ref. [75]). On the contrary, in the case of three right-handed neutrinos this is no longer

the case, leading to ∆S0
− 6= 0 already at leading order. Secondly, in the case of two right-

handed neutrinos, the last term in Eq. (B.17) is absent. One might be tempted to discard

this term, since it is proportional to a (small) asymmetry, however at early times when

the oscillations are large, the off-diagonal terms of ∆S0
− can in fact be rather large. We

note that in particular in the case of (mildly) hierarchical Yukawa couplings this term can

be crucial to obtain the correct thermalisation time scales of the different right-handed

neutrino species.

B.2 1st order in the chemical potentials

Sterile sector

In the oscillation basis, Eq. (3.1) reads

dR̃N
dt

= −i
[
〈̃VN 〉, R̃N

]
− 1

2
〈γ(0)〉

{
F̃ †F , R̃N − 1

}
− 1

2
〈γ(1b)〉

{
F̃ †µF , R̃N

}
+ 〈γ(1a)〉F̃ †µF ,

(B.19)

where as above X̃ = E†XE. Using Eq. (A.4), as well as the functions φ(i) and the oµ, ōµ

defined in Appendix A, this becomes

dR̃N
dx

= −i
[
W̃N , R̃N

]
− φ(0)

{
W̃N , R̃N

}
+ 2φ(0)W̃N +

1

2
φ(1b)

{
õµ, R̃N

}
+ φ(1a)oµ . (B.20)

Switching to the interaction basis, SN = U †R̃NU with U introduced in Eq. (B.5), this

yields

dSN
dx

= −
[
x2D,SN

]
+ U †

R̃N
dx

U

= −x2 [D,SN ]− i [Y, SN ]− φ(0) {Y, SN}+ 2φ(0)Y +
1

2
φ(1b)

{
U †õµU, SN

}
+ φ(1a)U †õµU ,

(B.21)

and

dSN̄
dx

= −x2
[
DT , SN̄

]
− i [Y, SN̄ ]− φ(0) {Y, SN̄}+ 2φ(0)Y +

1

2
φ(1b)

{
Ū † ˜̄oµŪ , SN̄}+ φ(1a)Ū † ˜̄oµŪ .

(B.22)
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We now switch variables to

S+ = SN + SN̄ = 2S0 + ∆S+ , S− = SN − SN̄ = ∆S− , (B.23)

with S0 determined by Eq. (B.9). The equation for ∆S− reads

d∆S−
dx

= −ix2 [Im(D),∆S−]− i [Y,∆S−]− φ(0) {Y,∆S−}

−x2 [Re(D), S+] +
1

2
φ(1b) {Oµ, S0}+ φ(1a)Oµ , (B.24)

where we have dropped the subleading term proportional to µ∆S− in the φ(1b) term and

O+
µ ≡ U †c oµUc + UTc oµU

∗
c . (B.25)

As indicated above, in the context of our perturbative expansion, the leading order term

driving the asymmetry in the sterile sector is the first term in the second line in Eq. (B.24),

which is present already at 0th order but is absent for n = 2.

To good approximation, we may set S+ ' 2S0 in the first term of the second line of

Eq. (B.24). In this approximation, the equation of motion for ∆S+ decouples, and the

equations of motion describing the sterile sector are (B.17) and (B.24). In the case of only

two sterile neutrinos, this is in fact an exact result to first order in µa. For completeness,

we give here also the equations for ∆S+:

d∆S+

dx
= −ix2 [Im(D),∆S+]− i [Y,∆S+]− φ(0) {Y,∆S+}

−x2 [Re(D),∆S−] +
1

2
φ(1b)

{
O+
µ , S0

}
+ φ(1a)O+

µ . (B.26)

Note that contrary to Eq. (B.24) (see also discussion below Eq. (B.18)), the equation for

∆S+ has no source term in the limit ∆S−, µa → 0, justifying the approximation S+ ' 2S0

above.

Active sector

The starting point for the equation of the active sector is Eq. (3.2). Replacing the 〈γ(i)〉
with φ(i) and using Eq. (A.4), this can be rephrased as

16ND
TEW
M0

dµ∆a

dx
=

[
−ND

2
φ(0)(FRNF

† − F ∗RN̄F T )+φ(1a)µF †F

+
1

2
φ(1b)µ(FRNF

† + F ∗RN̄F
T )

]
aa

. (B.27)

With RN = UcSNU
†
c , RN̄ = U∗c SN̄U

T
c we may write

FRNF
† = FUc(S0 +

1

2
∆S−)U †cF

† , (B.28)

F ∗RN̄F
T = F ∗U∗c (S0 −

1

2
∆S−)UTc F

T . (B.29)
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Both these expressions are hermitian matrices, implying that the diagonal components are

real, i.e.

(FRNF
† − F ∗RN̄F T )aa = Re

[
FUc(2 iIm[S0] + Re[∆S−])U †cF

†
]
aa

(B.30)

(FRNF
† + F ∗RN̄F

T )aa = 2 Re
[
RUcRe[S0]U †cF

†
]
aa

+O(∆S−) . (B.31)

Defining

Saux = 2 i Im[S0] + Re[∆S−] , (B.32)

we obtain

16ND
TEW
M0

dµ∆a

dx
=

[
−ND

2
φ(0)(FUcS

auxU †cF
†)+φ(1a)µF †F + φ(1b)µ(FUcRe[S0]U †cF

†)

]
aa

.

(B.33)

Note that the asymmetry in the sterile sector sources an asymmetry in the active sector

through Saux. More precisely, in the absence of L̃-violating terms, the final asymmetries

in the active and sterile sectors are of equal magnitude but opposite sign.

In summary, all processes relevant for ARS leptogenesis involving three right-handed

neutrinos are well described by the system of differential equations (B.17), (B.24) and

(B.33). The results obtained from this simplified system agree up to percent-level with

the results obtained by solving the original system (3.1) and (3.2) in the absence of LNV

processes.

C Approximate analytical solution describing the level crossing

In this Appendix we present the approximate solution to the leading order right-handed

neutrino number density evolution, Eq. (B.1), in the B− L̄ symmetric limit. We introduce

the notation

∆H = WN + 3x2r , Γ = φ(0)WN , (C.1)

for the effective Hamiltonian term and the production term, respectively. After approxi-

mately diagonalising the pseudo-Dirac block, the equilibration matrix takes the form:

WN ≈
π2

144ζ(3)

M0

TEW
|Fa|2


1 0 ε′∗a

0 |εa|2 εaε′∗a

ε′a ε
′
aε
∗
a |ε′a|2

 . (C.2)
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For µ� |µ′2 − 1|, the effective Hamiltonian term can be approximated by:

r =
π2

108ζ(3)T 3
EW

M0


0 0 0

0 0 0

0 0 M̄2(µ′2 − 1)

+O(µ) . (C.3)

Assuming that the off-diagonal correlations are either oscillating quickly, or over-

damped, their mean value approaches:

RN ij ≈
∆Hii −∆Hjj + i

2(Γii + Γjj)

(∆Hii −∆Hjj)2 + (Γii + Γjj)2/4

[
∆Hij(RN ii −RN jj) +

iΓij
2

(RN ii +RN jj − 2)

]
+O(RN k,l),

(C.4)

with k 6= l 6= i 6= j. In principle, the Yukawa couplings Fa can be large enough to cause

early equilibration of the sterile neutrinos. In that case, the diagonals of the density matrix

RN are approximately given by:

RN ss = 1 +
|∆Hs3 + i

2Γs3|2

(∆Hss −∆H33)2 + (Γss/2)2
(RN 33 − 1) +O(ε)3 , (C.5)

RN ww = O(x2µ2) +O(ε2) ,

where we have neglected the equilibration through mixing of the pseudo-Dirac pair. Note

that the equations are given in the interaction basis, where the subscript s corresponds to

the strongly coupled state νRs and w to the weakly coupled one νRw. The number density

of the heaviest right-handed neutrino is governed by the equation:

dRN 33

dx
= −(RN 33 − 1)

[
Γ33 + Γ11

|∆H13|2 − |Γ13|2

(∆H11 −∆H33)2 + (Γ11/2)2
+ (C.6)

+ (∆H11 −∆H33)
Re (∆H13Γ∗13)

(∆H11 −∆H33)2 + (Γ11/2)2

]
.
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[74] P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, Testable Baryogenesis

in Seesaw Models, JHEP 08 (2016) 157 [1606.06719].

[75] M. Drewes, B. Garbrecht, D. Gueter and J. Klaric, Leptogenesis from Oscillations of Heavy

Neutrinos with Large Mixing Angles, JHEP 12 (2016) 150 [1606.06690].

[76] T. Asaka, S. Eijima and H. Ishida, On neutrinoless double beta decay in the νMSM, Phys.

Lett. B762 (2016) 371 [1606.06686].
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