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We show analytically that for ι−profiles similar to the one of the Wendelstein 7-X stellara-
tor, where ι is the rotational transform of the equilibrium magnetic field, a highly conduct-
ing toroidal plasma is unstable to kinetically mediated pressure-driven long-wavelength
reconnecting modes, of the infernal type. The modes are destabilized either by the elec-
tron temperature gradient or by a small amount of current, depending on how far from
unity is the average value of ι, which is assumed to be slowly varying. We argue that,
for W7-X, a broad mode with toroidal and poloidal mode numbers (n,m) = (1, 1) can
be destabilized due to the strong geometric side-band coupling of the resonant kinetic
electron response at locations where ι is rational for harmonics that belong to the mode
family of the (n,m) = (1, 1) mode itself. In many regimes, the growth rate is insensitive
to the plasma density, thus it is likely to persist in high performance W7-X discharges.
For a peaked electron temperature, with a maximum of Te = 5keV , larger than the ion
temperature, Ti = 2.5 keV, and a density n0 = 1019 m−3, instability is found in regimes
which show plasma sawtooth activity, with growth rates of the order of tens of kiloHertz.
Frequencies are either electron diamagnetic or of the ideal magnetohydrodynamic type,
but sub-Alfvenic. The kinetic infernal mode is thus a good candidate for the explana-
tion of sawtooth oscillations in present-day stellarators and poses a new challenge to the
problem of stellarator reactors optimization.

1. Introduction

The stellarator Wendelstein 7-X (Klinger et al. 2013, 2017) has been carefully designed
to reach long, steady discharges and avoid the operational issues of previous stellarators,
putting emphasis on good neoclassical transport properties. In this regard, the neoclas-
sical theory of transport has been, and still is, the cornerstone in the optimization of
confinement properties (Dinklage et al. 2018). Regarding plasma stability, on the other
hand, magnetohydrodynamics has always been the “non plus ultra” in stellarator design,
and good MHD behaviour is always sought in their optimization, as it was in W7-X
(Nührenberg & Zille 1987).

A particular kind of instability that is usually believed to be absent in modern stellara-
tors are reconnecting modes. Indeed, magnetic reconnection is often thought to be solely
driven by the gradient of the equilibrium current density. Since in carefully optimised stel-
larators there is virtually no, or very little, equilibrium current (even if magnetic islands
might be present and used by design), magnetic reconnection instabilities are usually not
seen as an issue of concern, especially for quasi-isodynamic and quasi-poloidally symmet-
ric stellarators. Novel experimental evidence challenges this simplistic view, however.

It is now an accepted fact that W7-X shows sawtooth oscillations similar to those first
observed in tokamaks (Zanini, M. et al. 2019). Since sawteeth are generally understood
invoking magnetic reconnection (Hastie 1997; Porcelli et al. 1996), a great effort was put
in the evaluation of the effect of the electron current drive in the modification of the
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Figure 1. Radial profile of 2 rotational transforms in W7-X, vacuum-like (green) and ECCD
distorted (red). Locations of resonances of n0/m0 = 1, and the side-band of the harmonics
n1/m1 = 6/6, and n2/m2 = 9/9, that is n1/(m1 + 1), and n2/(m2 +1). Notice that n1/m1 and
n2/m2 belong to the same mode-family of n0/m0 = 1, and thus couple to it (Nührenberg 1996).

ι-profile, to verify whether an ideal kink-like MHD instability would manifest itself just
before current crashes, for ι−profiles that posses resonant locations, that is ι = n/m,
with n and m integers. A typical ι profile for such discharges is in Fig. 1.

Extensive numerical studies have excluded the presence of ideal MHD instabilities for
such ι−profiles (Könies & Nührenberg 2019). While this is a positive sign regarding the
MHD properties of W7-X, instabilities enabled by non-ideal effects cannot be completely
ruled out when it comes to analyzing the true plasma behaviour beyond its basic design-
based properties. We are therefore motivated to consider magnetic reconnection as a
physical mechanism that can cause sawtooth-like oscillations in W7-X.

In tokamaks, magnetic reconnection events that are associated with sawteeth generate
a displacement of a whole plasma “column”, enclosed by a surface of constant mag-
netic flux, within a larger flux surface.When magnetic flux surfaces get close enough
and small non-ideal scales start to matter, magnetic reconnection occurs. For a re-
sistive plasma, the typical scale governing the destabilization of a current-driven re-
connection instability is (Ara et al. 1978; Porcelli 1987; Zocco & Schekochihin 2011)

δη ∼
(

νeid
2
e/(vAa)

)2/3
a2/ρs, where vA = B/

√
4πmin0 is the Alfven speed, νei is the

electron-ion collision frequency, de = c/ωpe is the electron skin depth, with ωpe the elec-
tron plasma frequency, ρs = (Te/Ti)

1/2ρi is the sonic ion Larmor radius, Te and Ti are
the electron and ion temperatures, ρi the ion Larmor radius, and a is a macroscopic scale,
taken to be the average minor radius. For typical W7-X values, B = 2.5 104G, Ti = 2 keV,
Te = 5 keV (≈ 2keV at a resonant location), n0 = 1013cm−3, and a = 50 cm, we find
δη ≈ 5.5× 10−3cm. This scale is much smaller than the ion Larmor radius ρi ≈ 0.2 cm,
and, most importantly, the electron skin depth de ≈ 0.17 cm. We conclude that, owing to
its high temperature, collisional current-driven (kink) modes are negligible in W7-X, at
least in the plasma core. In the plasma edge, where the temperature is lower, we might
expect resistivity to be more effective, but we are not concerned with this problem here.

In order to develop our intuition on how magnetic reconnection behaves in W7-X
relevant regimes, we construct a model ι-profile that allows us to discriminate between
pressure-driven and current-driven ideal instabilities, the former being also important due
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to the small global shear. The ideal MHD analysis is carried out in cylindrical geometry.
While we are aware of the geometric limitations of such a model, the interplay between
ideal and kinetic instabilities for W7-X-like ι−profiles is by no means obvious, not even
in a cylinder, and will be clarified in this work.

The toroidal analysis of the pressure-driven ultra-flat-q (infernal)(Hastie & Hender
1988; Waelbroeck & Hazeltine 1988) mode of Brunetti et al. (2014) is then extended to
kinetic regimes, thus providing new insight on the possibility of driving kinetic magnetic
reconnection in W7-X. Our main findings are: in W7-X ι−profiles, in a cylinder, kink-like
instabilities are mostly pressure-driven, owing to the small global shear; the presence of
an ι(r) = 1 resonant location is crucial in determining the instability of either pressure-
driven kink modes or pressure-driven infernal modes, but in fact the character of the
instability is a hybrid of the two; in toroidal geometry, when ideal infernal modes are
stable, kinetic effects can destabilize a kinetic infernal mode, even in the absence of
an ι(r) = 1 resonance, when the plasma is ideally stable, and side-band resonances of
harmonics of the (m,n) = (1, 1) mode can be excited.

2. Setting and ideal MHD properties

As it will be seen shortly, for ideal instabilities that cause the displacement of the
plasma column, the pressure gradient competes with the current drive for β ∼ ǫ2, where
ǫ is the inverse aspect ratio, and can be neglected only for ultra-low β. However, for
most fusion experiments, this is not the case. It is also crucial to know that, while the
information about the ordering of β is useful, the effectiveness of the current drive for
these instabilities, when ι is mostly flat, is measured by the distance of the values of
the rotational transform from unity. It turns out that this fact introduces a subtlety
in the classification of pressure-driven ideal modes, which we would like to recall here.
Depending on the ι−profile, we can have two types of such modes. For a strongly varying
ι = q−1, that is when ŝ = rq′(r)/q(r) is significantly larger than unity, in the presence of
a rational surface ι = 1, we have the pressure-driven ideal kink mode (Newcomb 1960;
Goedbloed & Hagebeuk 1972; Rosenbluth et al. 1973), with growth rate γ ∼ βvA/a ∼√
n0Tvthi/(Ba), thus scaling with the square root of density. For a flat ι−profile [see the

“Tokamak” case in Fig. 1], we have the ultra-flat-q internal (or infernal) mode (Hastie
& Hender 1988; Waelbroeck & Hazeltine 1988) with growth rate γ ∼ √

βvA/a ∼ vthi/a,
thus showing no scaling with density. The latter result is derived for a q = ι−1 profile
which is constant and larger than (but close to) 1 for 0 6 r 6 r∗, and increasing for
r∗ 6 r 6 a. This is the opposite of a W7-X profile, where q decreases for r∗ 6 r 6 a, and
we can have, as we will show, hybrid modes that share features common to the kink and
the infernal mode. Let us then introduce the following q−profile model

q(r) = − q0 − 1

rs − r∗
r +

q0rs − r∗
rs − r∗

, for r > r∗, (2.1)

and proceed with our initial cylidrical MHD analysis. Here q0 is a constant larger than
unity, rs is so that q(rs) = 1, (the radial location at which resonance occurs) r∗ is so that
q(r) = q0 for 0 6 r 6 r∗, (the radial location up to which q is constant) and 0 6 r 6 a.
Notice that in the following analysis we will use q rather than ι, for historic reasons.

For a radial plasma displacement ξ(r) cos (mθ + kzz) , the equation of the normal mode
is (Newcomb 1960)

d

dr

[

4πργ2 + (k ·B)
2
]

r3
dξ

dr
= g1ξ, (2.2)
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Figure 2. Example of the model q−profile of our analysis. The tokamak case is compared to
two W7-X cases, with and without q = 1 resonant surface.

where γ is the growth rate, ρ the plasma density,

g1 =
r2

R2

{

8π
dp

dr
+ 2

B2
z

R2
r

(

1− 1

q

)

+ r (k ·B)
2

}

, (2.3)

R is the length of the cylinder, we are considering m = n = 1, and we are taking r ≪ R.
It is easy to show that the tearing mode stability parameter is (Ara et al. 1978)

rs∆
′ =

[Bθ (rs) rrq
′(rs)]

2

1
8

∫ rs
0

g1dr
. (2.4)

The system is tearing-mode stable for ∆′ < 0, and tearing-mode unstable for ∆′ > ∆′
crit,

where ∆′
crit has been recently evaluated by Connor et al. (2019).

Since for 0 6 r 6 r∗ q is constant, we have Bθ(r) = (r/R)Bz/q0, where Bz is constant.
Furthermore, kθ = −1/r, and Eq. (2.2) becomes

d2ξ

dr2
+

3

r

dξ

dr
=

1

γ̂2 + δq2

q2
0

(

1

r

dβ

dr
+

2

R2

δq

q0

)

ξ, (2.5)

where β = 8πp(r)/B2
z , and δq = q0 − 1 > 0. This equation is particularly simple to solve

for parabolic pressure profiles. We thus take p(r) = p0(1− r2/L2
p), with p0 = n0(Te+Ti),

and find β′ = −18πp0r/L
2
pB

2
z . We consider the three possible scenarios proposed in Fig.

1. For a tokamak-like q-profile (ŝ > 0 for r∗ < r < a), the result of Goedbloed & Hagebeuk
(1972), reported by Waelbroeck & Hazeltine (1988), is found, and an unstable pressure
driven mode is derived by applying the boundary condition ξext(r∗) = 0, where ξext(r) =
(a/r)J1(κr/Lp), with κ2 = 2(γ̂2 + δq2/q20)

−1[β0 − (δq2/q20)L
2
p/R

2], β0 = 8πp0/B
2
z , and

γ̂ = γ/(vA/R). For the W7-X-like ι− profile (ŝ < 0), we use the solution just found as a
boundary condition at r = r∗ for the solution valid at r = rs. In the case in which q = 1 at
rs, for r ∼ rs, one finds (Rosenbluth et al. 1973) ξinner(r) = 2−1ξa[1−(2/π) arctan(r/rs−
1) |ŝ| /(q0γ̂)], where ξa is a constant. By imposing

(ξ′inner/ξinner)r∗ = (ξ′ext/ξext)r∗ , (2.6)

we obtain an eigenvalue equation for an eigenfunction that has structure at r = rs, but
matches smoothly onto an infernal-like solution for r < rs (see Fig. 3).
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In order to verify the structure of the eigenfunctions in Fig. 3, we solve numerically
Eq. (2.2) with a shooting method, by introducing the smoothed q−profile, matching q0
to the q(r) of Eq. (2.1),

qS(r) =
q1(r) + q2(r)

q1(0) + q2(0)
q1(0), (2.7)

where q1(r) = (q0/π)[π/2 − arctan((r − r∗)/δr)], q2(r) = (q(r)/π)[π/2 + arctan((r −
r∗)/δr)], and δr ≪ 1 is a constant to be suitably chosen. For q0 = 1.1, r∗/a = 0.6,
rs/a = 0.65, R/a = 3, β0 = (0.04, 0.05), and δr = 10−3 we find two unstable sub-Alfvenic
modes γ̂ = (1.17, 1.58)×10−2. The plasma beta is therefore destabilizing, like the analytic
dispersion relation, Eq. (2.6), predicts. The numerical eigenvalues are somewhat smaller
than the analytical ones, due to the fact that the shooting code actually solves for the
full cylindrical problem for finite kz = n/R, and r/R. We are not interested in the search
of the asymptotic limits in which the two methods give quantitative agreement. What
is striking is the structure of the eigenfunctions [see Fig. (4)], which indeed are of a
hybrid type between those of the kink and infernal mode, for a W7-X-like q−profile.
This information will be useful in future W7-X investigations where the full geometry
will be considered. We now study the dependence of the growth rate with density, which
we scan for Bz = 2.5× 104G, R = 3, a = 1, Ti = 2keV, and Te = 5keV. Here r∗/a = 0.6,
and rs/a = 0.65 for “Tok-like” q−profiles, while r∗/a = 0.55, and rs/a = 0.65 for the
W7-X-like q−profiles. In the latter case r∗/a is chosen not too close to rs/a in order to
keep q(a) > 1/2. While a tokamak-like q−profile with no resonant q = 1 surface only
shows an infernal mode (with growth rate nearly independent of β for large density and
a sharp transition at marginality) [see “Tok-like” in Fig. (5)], the “Tok-like” q−profile
with a resonant q = 1 surface shows a persistent (current-driven) instability even for
small pressure drives. On the other hand, the W7-X-like q−profile shows an infernal
mode where instability is allowed below the critical β of the Tok-like q−profile with no
resonant q = 1.

Of the three q−profiles proposed in Fig 1, the most interesting case, from a kinetic
perspective, is the one for which there is no q = 1 surface by design, and ŝ < 0. This is
the one least prone to ideal MHD instabilities, but, as we shall see, kinetics can play a
major role in driving magnetic reconnection.

3. Kinetic Theory

We now present a kinetic theory for the W7-X ι−profile of the second type, that is
with no ι = 1 resonance. Here we consider the resonant response of the electron and ions,
by implementing in Brunetti’s theory (Brunetti et al. 2014) the layer response of Connor
et al. (2019), and of Ref. (Zocco et al. 2015). The analysis is valid in toroidal geometry,
but limited to axisymmetric shifted circular flux surfaces. This is still relevant if we focus
on the identification of the kinetic effects that will change the known viscous-resisitve
picture (Porcelli 1987; Brunetti et al. 2014) at the resonant locations. We therefore study
the ideal plasma response of the (m,n) mode for 0 6 r 6 r∗, coupled to the resonant
response of the side-band (m + 1, n) at r = rs. We will show that, for q(rs) = 7/6, and
q(rs) = 10/9, the (m,n) = (6, 6) and (m,n) = (9, 9) can be kinetically excited. In W7-
X, we expect this kinetic mechanism to excite the (m,n) = (1, 1) mode as well, due to
the strong geometric coupling of the harmonics of the same mode families (Nührenberg
1996).

We consider the infernal mode dispersion relation (Brunetti et al. 2014, 2015) in the
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Figure 3. Inner layer (nearly constant for r . 0.6a) and MHD solutions for W7-X-like ι−profile,
with ι = 1 at a given r = rs, with r∗ < rs < a. Here R = 3a, Lp = a, r∗ = 0.6, rs = 0.65,
q0 = 1.1. For β0 = 0.04, γ̂ = 1.88 × 10−2, for β0 = 0.05, γ̂ = 3.27 × 10−2, where β0 and γ̂ are
defined in the text, and γ̂ is the solution of Eq. (2.6).
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Figure 4. Eigenfunctions for W7-X-like q−profiles with resonant surface as evaluated from a
shooting code. The hybrid nature between infernal and kink mode is evident and agrees with
the eigenfunction of Fig. 3, predicted by the analytical calculation.

flat density limit, which is often relevant in W7-X

ω2

ω2
A

− n2

1 + 2q20

(

δq2

q20
+ β2

pG0

)

= −
β2
p

rs∆′
G0 (B0 −A0) , (3.1)

where βp = p0q
2
0/(B

2
zǫ

2
∗)(a/Lp)

4, and ∆′ is the tearing mode stability parameter of the
m+1 mode at the q = m+1/n location expressed in terms of layer quantities. This will be
derived from the kinetic drift-tearing mode dispersion relation. The ∆′

m+1 evaluated from
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Figure 5. Eigenvalues for three types of q−profiles with and without resonant surface as evalu-
ated from a shooting code as a function of the plasma density. Here r∗/a = 0.6, and rs/a = 0.65
for “Tok-like” q−profiles, while r∗/a = 0.55, and rs/a = 0.65 for the W7-X-like q−profiles. In the
latter case r∗/a is chosen not too close to rs/a in order to keep q(a) > 1/2. Other parameters
are Bz = 2.5× 104G,R = 3,a = 1,Ti = 2keV, and Te = 5keV.

the ideal limit of the equation for the m+1 harmonic drops from the picture since we are
considering the rs∆

′ ≫ 1 limit of the result derived by Brunetti et al. In this case ∆′
m+1

cancels exactly and, in Eq. (3.1), ∆′ is a quantity solely determined by layer physics.
Indeed, resistive infernal modes are observed to be unstable close to ideal marginality,
δq2/q20 ≈ β2

p |G0| , with G0 < 0, even if ∆′
m+1 < 0 (Brunetti et al. 2015). We then see

that the ∆′ ≫ 1 limit is appropriate, since layer effects are important only for ∆′δ ∼ 1,
where δ is the width of the linear reconnecting mode, and δ/rs ≪ 1. The quantities
G0 = ǫ2∗ŝ∗/[(ŝ−2)(m+1)(m+2)], and B0−A0 = 8(m+1)3C̄/[C2

1 +2(m+1)C1], contain
the ideal MHD information. All the quantities with an asterisk are evaluated at r∗. Hence
(m+ 1)(m+ 2)G0 = ǫ2∗ŝ∗/(ŝ∗ − 2) ≈ −ǫ2∗ŝ∗/2 > 0, for |ŝ∗| ≪ 1 and ŝ∗ < 0, which is our
case. Notice that if we set to zero the term that couples kinetics to the infernal mode, via
∆′, on the RHS of Eq. 3.1, for G0 > 0 the system is ideally stable. This is consistent with
the ideal MHD analysis of the monotonic vacuum-like ι−profiles of W7-X, which show no
ideal instability. We will then consider G0 > 0 always. The sign of the quantity B0 −A0

depends on the value of δq. Indeed, since C̄ = Γ2(1−Λ)(r∗/rs)
2(m+1) > 0, for any Λ real

(which we do not need to define here), and C1 = (m + 1)r∗ι
′
∗/[(m + 1)ι∗ − n], we find

that B0 − A0 > 0 if δq < (1 + |ŝ| /2q0)/n. Thus, when all kinetic effects are negligible,
and the quantity ∆′ is real, Eq. (3.1) implies that what would give an unstable resistive
mode at r = rs (∆′ > 0) has a destabilizing effect on the ideally stable infernal mode
(G0 > 0) for B0 − A0 > 0, that is, when δq < (1 + |ŝ| /2q0)/n. Vice versa, what would
give an unstable resistive mode (∆′ > 0) has a stabilising effect on the infernal mode if
δq > (1 + |ŝ| /2q0)/n. Notice that, since in the derivation of Eq. (3.1) δq ∼ β0 ≪ 1 is
assumed, the condition δq > (1+ |ŝ| /2q0)/n would always break the underlying ordering
of δq for mode numbers of physical interest, n ≪ β−1

0 . We therefore exclude the case
δq > (1 + |ŝ| /2q0)/n from our analysis. In the kinetic case, ∆′ is a complex quantity,
but the result must be kept consistent with our fluid considerations, for negligibly small
kinetic effects.

We now replace in the dispersion relation the ∆′ written in terms of the layer quantities
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at the resonant location(Zocco et al. 2015), which is evaluated from

δ

ρi
B(ω̂) =

2

π
Ieω̂

2C(ω̂), (3.2)

where

B(ω̂) =
∆′ρi

πβ̂T

− ω̂2 Z/τ

[Z/τ + 1]
2

1√
π
log

ρi
δ
+ ω̂2Ī(τ)

≡ ρi

πβ̂T

[∆′ − (∆′

FLR +∆′

diam)] ,
(3.3)

C(ω̂) = 1− β̂T∆
′ρi

π
ω̂2I(τ), (3.4)

I(τ) =

∫ ∞

0

dq

{

F

G
− Z/τ

Z/τ + 1
+

Z/τ√
π(Z/τ + 1)2

1

1 + q

}

,

with Ī(τ) =
∫∞

0 dqF/(q2G), F (q) = (Z/τ)(Γ0(q) − 1), G(q) = F (q) − 1, Γ0(q) =

I0(q/2) exp(−q2/2), where I0 is the modified Bessel function, β̂T = 0.5βeL
2
s/L

2
T , ω̂ =

ω/ωT , ωT = ω∗eLn/LT , ω∗e = 2−1mvtheρe/(Lna) is a local approximation of the elec-
tron diamagnetic frequency, with ρe the electron Larmor radius, L−1

n = n−1
0 dn0/dr,

L−1
s = q−1dq/dr ≈ ŝ/a, τ = Ti/Te, and Z the ion charge number. Depending on the

magnitude of ∆′, different kinetic effects are involved at the resonant location. Before Eq.
(3.3) applies, for marginally stable kinetic drift-tearing modes, the relevant expression
for the critical ∆′

crit, which takes into account ion Landau damping, gives (Connor et al.

2019)

1

∆′
crit

= 2
ρi
βi

(

ω∗e

ω

Ln

Ls

)1/2
1

I(a)
, (3.5)

where a = (ω/ω∗e)(Ls/2Ln). The quantity I(a) is complex, and its imaginary part is
negative (Connor et al. 2019). If one now considers an ideally stable infernal mode,
G0 > 0, from Eq. (3.1) we find, to leading order, two stable MHD modes

ω = ±(n/
√
3)

(

δq2/q20 + β2
pG0

)1/2 ≡ ω±.

We choose the frequency that connects to the drift-tearing mode for larger ∆′. This gives
a mode rotating in the electron diamagnetic direction ωω∗e > 0, with ω∗e > 0. Then, since
ℑ[I(a)] < 0, we see that ion Landau damping on drift-tearing modes has a stabilizing
effect on the infernal mode. In toroidal geometry, the ion Landau damping effect will
compete with the critical ∆′

G evaluated by Glasser et al., set by geometry (Glasser et al.

1975). Which one prevails is a question that bears on the marginal stability properties
of the m+ 1 mode, and this is not of great importance in our discussion.

For very large tearing stability parameters, ∆′ρi ∼ β−1L2
T /L

2
s, the drift-tearing mode

enters the ion-kinetic regime (Pegoraro et al. 1989), and couples to a kinetic Alfven wave
(Connor et al. 2012). In this case, Eq. (3.2) is dominated by its RHS, and we have

∆′ ≈ ∆′

KI =
1

ρi

2πL2
T

βeL2
s

ω2
T

ω2I(τ)
, (3.6)

where I(τ) is a real positive quantity (Zocco et al. 2015), and we are considering the
flat density limit, in accordance with the experimental profiles. By replacing Eq. (3.6)
in (3.1), one sees that ion Larmor radius kinetic effects reduce the growth rate of an
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unstable ideal infernal mode (β2
pG0 > δq2, with G0 < 0), but cannot destabilize the

ideally stable one, G0 > 0.
When the tearing mode parameter is above the critical value of Antonsen & Coppi

(1981), ∆′
crit,AC = ∆′

FLR + ∆′

diam, but below ∆′
KI , the layer physics is dominated by

electron dynamics. Then (Coppi et al. 1979; Drake 1978; Zocco et al. 2015)

∆′ ≈ ∆′

DT =
βe

δ

L2
s

L2
T

Ie(
ω

ωT
)
ω2

ω2
T

, (3.7)

where

Ie ≈ 1

2

∫ ∞

0

ds

[

1

s
Z ′

(

1

s

)

+
1

2ω̂
Z ′′

(

1

s

)]

= −i

√
π

2

(

1− 1

2ω̂

)

,

(3.8)

and Z is the plasma dispersion function. Notice that in Eq. (3.7) there is no dependence
on the sign of ŝ. We now replace Eq. (3.7) in Eq. (3.1), neglect numerical factors, and
obtain

ω

vthe/a
Ie(ω)

[

ω2

ω2
A

− 1

3

(

δq2

q20
+ β2

pG0

)]

=

− |ŝ| (m+ 1)β2
pG0(B0 −A0)

d2e
a2

,

(3.9)

where we used δ = ω/((m + 1)vthe/2a)a/ŝ. Equation (3.9) describes the destabilisation
of the kinetic infernal mode (KIM). It tells us that, for negligible magnetic reconnection
(de → 0), we have two decoupled branches: a stable ideal MHD mode, with frequency
ω0 = ±ω±; and a stable drift-tearing mode, with frequency ωDT = ωT /2.

Both modes can be destabilized resonantly. We show this by solving the KIM mode
equation (3.9) in a subsidiary low de/a expansion, for infinitesimally small drive. We seek
a root ω = ω0 + δω. To leading order we have

(

ω0 −
ωT

2

)

[

ω2
0

ω2
A

− 1

3

(

δq2

q20
+ β2

pG0

)]

= 0. (3.10)

Thus, for the drift-tearing branch ω0 = ωT /2, we find

ℑ[δωDT ] =
2√
π

vthe
a

β2
pG0(B0 −A0) |ŝ| (m+ 1)

1
3

(

δq2/q20 + β2
pG0

)

− ω2

T

4ω2

A

d2e
a2

, (3.11)

which is then unstable for δq2/q20 + β2
pG0 > 3ω2

T /(4ω
2
A), when B0 − A0 > 0, thus δq <

(1 + |ŝ| /2q0)/n.
For the MHD branch ω2

0 = ω2
A(δq

2/q20 + β2
pG0)/3 ≡ ω2

inf , and we have

ℑ[δωMHD ] =
2√
π

ω2
A

ω2
0

β2
pG0(B0 −A0) |ŝ| (m+ 1)

ωT

2ω0

− 1

d2e
a2

vthe
a

. (3.12)

The MHD branch is then unstable for large enough temperature gradients 3ω2
T/(4ω

2
A) >

δq2/q20 + β2
pG0, when δq < (1 + |ŝ| /2q0)/n. In our nomenclature, “DT” stands for drift-

tearing, and “dest. MHD” refers to an MHD mode kinetically destabilized, and not MHD
unstable. By using the expression found for δω, one can now check a posteriori that the
layer correction on the RHS of Eq. (3.1) is of the same order of the infernal mode drive
on the LHS.
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Far from marginality, let us consider ω = ωr + iγ, with γ ≫ ωr an take this limit in
Eq. (3.9). Then, we find

γKIM ∼
(

ω2
A

vthe
a

)1/3

β2/3

(

de
a

)2/3

∼ n0, (3.13)

and

ωr ∼
ωT

6
< γKIM . (3.14)

Notice that both frequency and growth rate show no scaling with the density, a fact
consistent with the phenomenology of the ideal infernal mode shown in the previous
section, and with the resistive result (Charlton et al. 1989). If we now take Te = 3.5keV,
Ti = 2keV, n0 = 1013cm−3, a = 50 cm, B = 2.4×104G, then β = 3.55×10−3 vA = 1.72×
109cm/s, with ωA = 5vA/(3a), we obtain vthe = 4.19× 107T

1/2
e cm/s = 2.45× 109 cm/s,

de = 0.17 cm, which give γKIM ∼ 29× 103sec−1, ωr ∼ 9× 103sec−1. Then, γKIM/ωr ∼
3 > 1, and our approximation is marginally satisfied. From a practical point of view, this
result has direct implications in the determination of operation scenarios. Future high-
performance plasmas in W7-X will have higher densities than those achieved in present-
day experiments. Then, the fact that the growth rate of the instability is insensitive
to density would seem good, in the sense that a density increase will not exacerbate
the instability. However, the destabilisation mechanism renders such modes virtually
unavoidable, if the heating system acts on the electrons increasing their temperature
gradient. We must bear in mind, though, that a temperature increase only would not
cause instability, this being enabled by the specific shape of the ι−profile. Experimentally,
independence on density is a striking physical property that can be investigated via
density scans. Scans in ι can also clarify the role of the excitation of side-band modes
that belong to the family of the (m,n) = (1, 1) mode.

4. Conclusions

In this article we have explored the possibility of obtaining pressure-driven reconnecting
modes in devices with a profile of the rotational transform similar to that of the stellarator
W7-X. For cylindrical geometries, we have shown, both analytically and numerically, that
a nearly flat ι-profile, with an ι = 1 surface in the region of small negative magnetic shear,
generates unstable modes of the hybrid type between internal pressure-driven kink and
infernal. In toroidal axisymmetric geometry, we have extended to kinetic regimes previous
work on the viscous-resitive infernal mode. We have found that ion Landau damping has a
stabilizing effect; full Larmor radius effects can suppress the infernal mode; the resonance
of passing electrons can generate electron-inertia-mediated magnetic reconnection. For a
W7-X-like ι-profile, the kinetic resonance can occur at radial locations where side-band
harmonics of modes belonging to the family-mode of the (m,n) = (1, 1) are excited. Thus,
we can argue that the action of such resonant mechanism in the “true” W7-X can cause
the instability of the (m,n) = (1, 1) mode, due to strong geometric coupling. Kinetic
infernal modes are of the diamagnetic and magnetohydrodynamic type, depending on
their real frequency. They can be seen as either electron-pressure-driven or current-driven,
depending on which branch is considered and how close is ι to unity in the region where ι
is nearly flat. The condition sufficient for instability is δq = ι−1−1 < (1+|ŝ| /(2q0))/n. Far
from marginality, for typical W7-X parameters, the mode shows a growth rate of tens of
kiloHertz, with no explicit scaling on the plasma density. The KIM is an unexpected new
ingredient of modern stellarator physics, it is a candidate to explain sawtooth oscillations
and poses new challenging questions in the field of optimization of stellarator reactors.
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