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Abstract: Several extensions of the Standard Model predict the existence of Long-

Lived Neutral Particles (LLNPs) with masses in the multi-GeV range and decay lengths

of O(100 m) or longer. These particles could be copiously produced at the LHC, but the

decay products cannot be detected with the ATLAS or CMS detectors. MATHUSLA is

a proposed large-volume surface detector installed near ATLAS or CMS aimed to probe

scenarios with LLNPs which offers good prospects for disentangling the physics underlying

two-body decays into visible particles. In this work we focus on LLNP decays into three

particles with one of them being invisible, which are relevant for scenarios with low scale

supersymmetry breaking, feebly interacting dark matter or sterile neutrinos, among others.

We analyze the MATHUSLA prospects to discriminate between two- and three-body LLNP

decays, as well as the prospects for reconstructing the underlying model parameters.
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1 Introduction

Some well motivated scenarios of Physics Beyond the Standard Model (BSM) predict the

existence of Long-Lived Neutral Particles (LLNPs) with masses in the multi-GeV range

and decay lengths longer than the size of the ATLAS or CMS detectors. If the lifetime is

longer than a few minutes, the late particle decays could have a significant impact on the

abundances of primordial elements [1, 2] or the shape of the energy spectrum of the cosmic

microwave background radiation [3, 4]. Conversely, the non-observation of statistically

significant differences in the data with respect to the predictions of the Standard hot Big

Bang scenario sets stringent limits on various BSM frameworks. Unfortunately, the current

LHC detectors have a limited sensitivity to scenarios with particles with a decay length

between ∼ 10 m and ∼ 107 m.

Recently, a number of experiments with an enhanced sensitivity to long-lived particles

have been proposed, i.e. MATHUSLA [5], FASER [6] or CODEX-b [7]. In particular the

MATHUSLA proposal aims for a high sensitivity to LLNPs decaying into two Standard

Model particles with a decay length of O(100) m [5], which is of great relevance for a large

range of new physics scenarios, notably scenarios with an exotic Higgs [8].

In this work we explore the capability of MATHUSLA to identify and study LLNP

decays into three particles, more specifically when one of these is invisible, such that the

final state contains only two visible particles. This decay topology is realized in frameworks

where the Standard Model is extended with a BSM sector, charged under a new unbroken

or mildly broken symmetry, and where the lightest BSM particle is a dark matter candidate

and the next-to-lightest BSM particle has sizable interactions with the Standard Model.

In this case, the next-to-lightest BSM particle could be copiously produced in collider

experiments and would generically decay into Standard Model particles and the dark matter

candidate. Concrete examples of this kind of models are supersymmetric frameworks with

R-parity conservation where the lightest neutralino decays into the gravitino and a fermion-

antifermion pair [9–12], or certain models of feebly interacting massive particle (FIMP) as

dark matter [13–15]. Alternatively, the signature can also arise in supersymmetry with
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R-parity violation where the lightest neutralino decays into a neutrino and a fermion-

antifermion pair [16, 17] or in models with sterile neutrinos [18–22]. A classification of

simplified models displaying displaced vertices and their signatures was recently presented

in [23].

2 Two-body vs. three-body decays

The capability of MATHUSLA to probe scenarios with LLNPs is currently being ex-

plored [8, 24, 25]. The experiment essentially consists of a large volume with a series

of tracking layers on top. Its proposed location is on the surface, i.e. ≈ 100 m above the

experimental cavern, close to one of the LHC interaction points. In our analysis we adopt

the benchmark proposal from [24] which consists of a 200 m × 200 m × 25 m hall located

100 m upstream of the CMS or ATLAS detector. The detector features five layers of track-

ing material with the first tracking layer at a height of 20 m and the other four tracking

layers placed above it with a separation of 1 m from each other. The spatial resolution

of this setup is limited by the size of the pixels in the tracking layer, which is currently

projected to be 1 cm2. With this set-up, the experimental signal consists of 2×5 hits in the

tracking system, which allows to reconstruct the direction of the daughter particles and the

location of the displaced vertex with an angular resolution of ∼ 2× 10−3 rad. It should be

noted that this detector set-up does not allow for the determination of the energy and/or

momentum of the final state particles. Therefore, new approaches must be developed in

order to disentangle the underlying Particle Physics model with the limited information

provided by MATHUSLA.

In this paper we will focus in the prospects of MATHUSLA to probe scenarios where

the LLNP decays into three particles, with one final state particle going undetected. As a

first step it is crucial to determine whether the two observed tracks are originating from a

two-body decay, from a three-body decay, or from background. To this end, it is convenient

to construct an observable quantity at MATHUSLA that can differentiate among them.

Let ~P be the LLNP momentum and ~pi the momenta of the daughter particles. The

directions of the particles are given by the normalized vectors, ~P/|~P |, ~pi/|~pi|. For the

two-body decay, momentum conservation requires ~P = ~p1 + ~p2. Consequently, the triple

product

T =
~P

|~P |
·
(
~p1
|~p1|
× ~p2
|~p2|

)
(2.1)

is identically zero. Strictly, the limited angular resolution of the experiment would lead to

a non-vanishing value for T , but given the level of precision expected for MATHUSLA, i.e.

an angular resolution of ∼ 0.002 rad, the deviation of T from zero is expected to be of this

order1.

1 In principle the interaction point is actually an interaction region and the position of the primary

vertex is not known exactly. However, the size of the interaction region is described to excellent precision

by a normal distribution with a standard deviation of ≈ 2 cm [26] in the beam direction, and less in the

perpendicular direction. The angular uncertainty introduced by the position of the primary vertex can

therefore be neglected.
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Instead, for a three body decay ~P = ~p1 + ~p2 + ~p3. Correspondingly, one finds

T =
~P

|~P |
·
(
~p1
|~p1|
× ~p2
|~p2|

)
=

~p3

|~P |
·
(
~p1
|~p1|
× ~p2
|~p2|

)
= cos θ sinφ , (2.2)

where θ denotes the angle between LLNP direction and the direction perpendicular to the

decay plane spanned by the two tracks, while φ is the opening angle of the two tracks.

Clearly, T will be in general different from zero. Note also that T is constructed from

angular variables defined in the laboratory frame, which in turn depend on the angular

distribution of the daughter particles in the rest frame (determined by the dynamics con-

trolling the decay) and on the Lorentz factor of the decaying particle (controlled by the

production mode at the LHC). In order to simplify our discussion we will assume in the

following that the three-body LLNP decay is isotropic in the rest frame, and focus on the

implications of different production modes.

To illustrate the impact of the LLNP production quantitatively we consider two repre-

sentative benchmark scenarios. In Scenario A the LLNP has mass mLLNP < mH/2 and is

produced in the decay of the Standard Model Higgs boson. In Scenario B the LLNP is the

neutral component of a SU(2) doublet, and is produced via the Drell-Yan process. 2 The

LLNP then decays into a lepton-antilepton pair and a light neutral stable particle (NSP)

which is not detected. We also assume for simplicity mNSP � mNNLP, motivated by super-

symmetric scenarios with gravitino as lightest supersymmetric particle and gauge mediated

supersymmetry breaking (such that the gravitino is predicted to be much lighter than the

other sparticles), supersymmetric scenarios with neutralino as lightest supersymmetric par-

ticle and R-parity violation (where the neutralino decays into a fermion-antifermion pair

and a neutrino), or sterile neutrinos (which decay into a fermion-antifermion pair and a

neutrino). In these simplified scenarios the phenomenology in the MATHUSLA detector is

completely determined by the LLNP mass.

We show in Fig. 1 the distribution of dilepton pair events as a function of the triple-

product parameter T for representative choices of the LLNP mass, mLLNP, assuming sce-

nario A (left panel) or scenario B (right plot). For scenario A, the typical LLNP Lorentz-

factor is mH/2mLLNP. Consequently, the momentum and angular distributions in the lab-

oratory frame (and accordingly the triple product parameter) depend strongly on mLLNP,

as apparent from Fig. 1. For the Drell-Yan process, on the other hand, the momentum

distribution peaks just above threshold, and for mLLNP � mZ the slope of the high energy

tail chiefly depends on the parton distribution functions at the relevant center of mass

energy. This leads to a comparatively mild dependence of the T -parameter distribution on

the LLNP mass. It follows from the figure that in both scenarios, one generically expects

a significant number of events with T & 0.001. Therefore, and in view of the distinct

T -distribution of the two- and three-body decays, one concludes that even a small sample

of events would suffice to discriminate between these two possibilities.

2 Scenario B can be in particular identified with a gauge mediated SUSY framework where the LLNP

is a pure Higgsino, that decays into a gravitino and a lepton-antilepton pair with a small width suppressed

by the scale of SUSY breaking.
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Figure 1. Distribution of events as a function of the triple product parameter T assuming LLNP

production via Standard Model Higgs decay (left plot) or via Drell-Yan (right plot). The black

solid, red dashed and blue dotted lines correspond in the left plot to mLLNP = 50, 25 and 12.5 GeV

respectively, and in the right plot to mLLNP = 800, 600 and 400 GeV.

MATHUSLA aims to be a zero-background detector. If the design goal is achieved,

the observation of 4 events will be sufficient to ensure a 3σ detection. The probability to

observe an event depends on the geometric coverage and the decay probability, i.e. the

lifetime in the detector frame. Here and in the following we define an observable event as

follows: we require that the LLNP decays inside the MATHUSLA volume and that both

final state leptons pass through the tracker layers on top of the volume (we neglect in our

analysis the possibility that a lepton traverses the trackers escaping detection). In addition,

we require that the opening angle of the lepton pair is ≥ 1◦, to ensure that the individual

leptons are clearly separated and that the displaced vertex can be reconstructed to good

precision. We simulate the production and decay of the LLNPs with CalcHEP [27] and

select events which fulfill all geometric requirements. The discovery reach, defined by the

cross section leading to 4 observable events, is shown in figure 2 both for scenario A (left

panel) and for scenario B (right panel). The left panel also shows, for reference, the Higgs

decay branching ratio into two LLNPs leading to the corresponding LLNP production cross

section [28, 29], and the right panel, the Drell-Yan production cross section for the specific

example of the Higgsino as LLNP [30–32], in both cases at the LHC running at
√
s = 14

TeV.

As can be seen, MATHUSLA is sensitive to σ & 1 fb both for scenario A and for

scenario B, with a maximum sensitivity when the decay-length is cτ ∼ 100 m. Even for

a decay length of 5000 m a production cross section σ & 10 fb can be probed. Note that

the discovery reach is comparable to the one expected for scenarios with two-body LLNP

decays [5], although one observes a slight degradation of the expected sensitivity as the

LLNP mass increases, due to the different kinematics of the two- and the three-body decays.

The discovery reach could be affected by the existence of backgrounds. Possible sources

of background in MATHUSLA are cosmic ray muons, high energy muons produced at

the LHC and atmospheric neutrinos [5]. Muon events can be efficiently rejected using

timing cuts (as most atmospheric muons are down-going) and using a scintillator veto

layer surrounding the detector. On the other hand, background rejection of neutrino-
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Figure 2. Discovery reach as a function of the proper LLNP decay-length cτ assuming LLNP

production via Standard Model Higgs decay (left plot) or via Drell-Yan (right plot), for the same

LLNP masses as in Fig. 1. The solid line correspond to an optimistic scenario where all the

background can be removed, while the dashed line, to a conservative background model (see text

for details). We also show in the left panel the Higgs decay branching ratio into two LLNPs leading

to the corresponding LLNP production cross section, and in the right panel, as dotted lines, the

LLNP production cross section via Drell-Yan for the corresponding LLNP masses, for the specific

case of the Higgsino as LLNP.

induced events is more involved. About 60 neutrino events with a proton in the final state

are expected per year [5]. Most these events will only contain non-relativistic protons

but ≈ 10% of them are expected to have a fast moving proton in the final state [33].

Consequently, one expects that six events per year will feature a fast moving proton and a

charged lepton in the final state. These events will then produce two tracks in the detector

and will mimic a signal event. It has been argued that this source of background could be

suppressed by requiring that the reconstructed LLNP trajectory points towards the LHC

interaction point. However, this geometric veto implicitly assumes that the LLNP decays

into two visible particles (producing the tracks) and cannot be straightforwardly applied

to scenarios where the LLNP decays into three particles, one of them being invisible.

A detailed analysis of the backgrounds in MATHUSLA is beyond the scope of this

paper.3 However, one can estimate the impact of the neutrino background on the MATH-

USLA discovery reach for three-body decays by noting that the flux of atmospheric neutri-

nos is isotropic. Therefore, there is no preferred incoming direction and, correspondingly,

the angle between the vector joining the LHC detector with the point where the two tracks

intersect, and any vector perpendicular to the plane formed by the two track directions,

also follows an isotropic distribution. We show in Fig. 3 the distribution in the angle be-

tween the LLNP direction and the vector perpendicular to the plane spanned by the two

tracks, cos θ, for representative choices of the LLNP mass, assuming scenario A (left panel)

or scenario B (right panel); the atmospheric neutrino induced events are shown as gray

dashed line. It is apparent from the figure that background events and signal events have

a different cos θ-distribution, thus allowing to subtract background events. Let us note

that the T -parameter depends not only on cos θ but also on the opening angle between

3 We note in particular that the T -distribution could be used to reject potential backgrounds in a search

for new physics from two-body decays.
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Figure 3. Same as Fig. 1, but as a function of the cosine of the angle between the LLNP direction

and the perpendicular to the decay plane spanned by the two tracks. The expected distribution

from atmospheric neutrino induced events is indicated by the gray dashed line.

the observed tracks, sinφ in Eq. (2.2). Therefore, we expect that the T -distribution would

allow an even stronger discrimination between background and signal events. In this paper,

and since a detailed understanding of the sinφ dependence of the neutrino-induced track

events is still lacking, we will use the cos θ distribution to estimate a conservative discovery

reach of three-body decays in MATHUSLA.

To determine the discovery reach we employ the test statistics on the cos θ distribution.

The binned Poisson likelihood L is given by [34]:

−2 logL(x) = 2
∑
i

[
Ri(x)−Ni +Ni log

Ni

Ri(x)

]
, (2.3)

where i runs over the number of bins, Ni denotes the number of events observed in bin

i while Ri(x) is the expected number of signal and background events as a function of

the theory parameters x. We perform 2500 pseudo-experiments and follow the approach

described in [35] to determine the lowest cross-section leading to a 3σ discovery in 90%

of the pseudo-experiments. The result is shown in Fig. 2 as dotted lines for scenario A

(left plot) and for scenario B (right plot). As expected, the sensitivity to new physics gets

reduced when including the background. Yet, even with our very conservative assumptions

for the background modeling, the discovery cross section increases by at most a factor

≈ 3 for light LLNPs, and by a factor ≈ 10 for heavy LLNPs (note that heavier LLNPs

move more slowly, and correspondingly the decay products are emitted widely separated,

resembling more and more a background event).

Let us stress that our assumptions for the background modeling are very conservative

and that not many neutrino-induced events are expected to have the same characteristics as

a three-body LLNP. Given the large LLNP production rate in Higgs decays or in Drell-Yan

expected at the HL-LHC, the forecast number of signal events can be potentially huge, thus

opening the possibility of disentangling the fundamental parameters of the BSM Lagrangian

from observations. We will address this issue in the next section.
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Figure 4. Relative precision of the measured mass as a function of the observed number of events

for a 25 GeV LLNP produced via Standard Model Higgs decays (black, solid) and a 600 GeV LLNP

produced via Drell-Yan (red, dashed).

3 Reconstruction of model parameters

In this section we will study the potential of the MATHUSLA detector to extract infor-

mation about the underlying model parameters for the scenarios A and B. We conduct

1000 pseudo-experiments to reconstruct the best fit mass employing a maximum likelihood

method. We impose the full geometric cuts of the MATHUSLA detector with the design

parameters described in Sec. 2 and we require that the opening angle between the two

leptons is larger than 1◦, to ensure that the directions of both leptons and the position of

the displaced vertex are measured with high accuracy. We also assume an optimistic case

when all backgrounds can be removed.

In Fig. 4 we show the expected relative error in the determination of the LLNP mass as

function of the number of observed events for one representative case in each of the scenarios

of LLNP production under consideration. In the case of a mLLNP = 25 GeV produced

through the Higgs portal, a 10% accuracy determination of the mass can be achieved with

less than 20 events, improving up to a 3% accuracy if 200 events are observed. MATHUSLA

will then allow a fairly good determination of the LLNP mass provided the Higgs decay

branching fraction into two LLNPs is & 10−4. For mLLNP = 600 GeV produced by the

Drell-Yan process, the mass reconstruction is poorer, as can be anticipated from the mild

dependence of the T -distribution on the LLNP mass, and even 200 events would not allow

a mass determination with an accuracy better than a 10%. Given that the production cross

section of a 600 GeV Higgsino is just 5.8 fb [30] an accurate determination of the mass

based on the T parameter does not seem feasible, unless additional production channels

contribute substantially to Higgsino production at the LHC.

Finally, we would like to stress that this analysis is far from being exhaustive and

should be regarded only as a first step towards the exploration of three-body decays in
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MATHUSLA. Generalizations to other kinematics of the decays, i.e. on-shell resonances in

the three-body decay or a non-negligible mNSP mass, may require a more elaborated treat-

ment, as the mapping between the angular observables and the theory parameters becomes

in this case more complicated. We also expect that the inclusion of more observables in the

analysis will lead to a better parameter reconstruction and possibly to an eventual iden-

tification of the underlying model. For instance, a coordinated effort between the surface

and the underground detectors may lead to the observation of large amounts of missing

transverse momentum at ATLAS/CMS and the correlated observation of track events in

MATHUSLA, thus allowing to further suppress backgrounds and to tag the LLNP from

the production point to the decay point. In particular, this would allow to determine the

LLNP lifetime in the laboratory frame, and from the distance traveled, the LLNP velocity.

Furthermore, the LLNP momentum could be determined from the missing transverse mo-

mentum (putatively carried by the LLNP) and from the angle between the LLNP direction

and the LHC beam axis. In this way the LLNP mass could be reconstructed from the

momentum and the velocity.

4 Conclusions

MATHUSLA is a proposed large-volume surface detector installed near ATLAS or CMS

with a high capability of detecting two-track events and in reconstructing the track direc-

tions. These events can originate in the decay of a LLNP into two visible particles, or in

the decay of a LLNP into three particles (two visible and one invisible) or from the charged

current interaction of a neutron in the detector with an energetic neutrino of atmospheric

origin. Previous works have shown that MATHUSLA offers excellent prospects to discrim-

inate over the expected backgrounds signals of new physics when the LLNP decays into

two Standard Model particles and the decay length is between ∼ 1 m and ∼ 107m.

In this paper we have focused on scenarios where the LLNP decays into two visible

and one invisible particle, possibly the dark matter particle. This scenario arises, e.g. in

models with low scale supersymmetry breaking (where the lightest neutralino decays into

a lepton-antilepton pair and a gravitino), R-parity non-conservation (where the lightest

neutralino decays into a lepton-antilepton pair and a neutrino), feebly interacting dark

matter, or sterile neutrinos.

We have proposed the triple product of the two track directions and the direction be-

tween the decay point and the LHC production point as an efficient measure to discriminate

between two-body, three-body and background events. We have analyzed two benchmark

scenarios where the LLNP is produced via Drell-Yan and where it is produced via Stan-

dard Model Higgs decay, and we have shown that, in a zero-background experiment, LLNP

three-body decays could be detected and discriminated from two-body decays and from

background provided the decay length is sufficiently short (smaller than a few tens of kilo-

meters). We have also estimated that in the presence of backgrounds the discovery reach is

reduced, but by a factor smaller than ≈ 3 for light LLNPs and smaller than ≈ 10 for heavy

LLNPs. Finally, we have briefly addressed the prospects of reconstructing the LLNP mass

with MATHUSLA.
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Our results encourage more detailed analyses of the backgrounds in MATHUSLA, of

the complementarity with possible correlated signals of new physics at ATLAS or CMS,

and applications to concrete particle physics models.
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