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Aiming to combine density functional theory (DFT) and wave-function theory, we study a mapping from
the many-body interacting system to an effectively interacting Kohn-Sham system instead of a noninteracting
Kohn-Sham system. Because a ground state of effectively interacting systems requires having a solution for the
correlated many-body wave functions, this provides a natural framework to many-body wave-function theories
such as the configuration interaction and the coupled-cluster method in the formal theoretical framework of
DFT. Employing simple one-dimensional two-electron systems—namely, the one-dimensional helium atom,
the hydrogen molecule, and the heteronuclear diatomic molecule—we investigate properties of many-body
wave functions and exact exchange-correlation potentials of effectively interacting Kohn-Sham systems. As
a result, we find that the asymptotic behavior of the exact exchange-correlation potential can be controlled
by optimizing that of the effective interaction. Furthermore, the typical features of the exact noninteracting
Kohn-Sham system, namely, a spiky feature and a step feature in the exchange-correlation potential for the
molecular dissociation limit, can be suppressed by a proper choice of the effective interaction. These findings
open a possibility to construct numerically robust and efficient exchange-correlation potentials and functionals
based on the effectively interacting Kohn-Sham scheme.
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I. INTRODUCTION

Density functional theory (DFT) is one of the most suc-
cessful approaches to describe the ground-state properties
of electronic systems [1,2]. A strong point of DFT is its
computational feasibility and often it offers the best com-
promise of accuracy and computational costs. The feasible
computational cost of DFT calculations can be achieved by
the mapping from a fully interacting problem to a noninter-
acting problem based on the Hohenberg-Kohn theorems. In
this mapping, all the complexities of the many-body problem
are absorbed in the unknown exchange-correlation functional.
Therefore, the accuracy of the DFT calculations essentially
depends on the approximation of the exchange-correlation
functionals. In the past decades, various exchange-correlation
functionals have been developed to realize accurate descrip-
tions of the electronic ground state such as local density
approximations (LDA) [3,4], generalized gradient approxi-
mations (GGA) [5,6], meta-GGA [7-9], and hybrid func-
tionals [10-12]. Furthermore, detailed studies have clarified
several exact properties of the exact exchange-correlation
functional and potential, such as asymptotic behavior of the
potential in Coulombic systems [5,13,14] and spiky features
in molecular dissociation [15-19]. However, the systematic
improvement of the exchange-correlation functionals and
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potentials is still a nontrivial task due to highly nonlinear and
nonlocal natures of the density functional [20,21].

In contrast to DFT, wave-function theories [22] such as
the configuration interaction and the coupled-cluster method
offer a formal possibility to straightforwardly improve the
accuracy up to the exact solution by increasing the size of
the search space, although the required computational costs
can easily become infeasible. Furthermore, in different fields,
various methods have been developed for accurate description
of the electronic structure, such as the GW method [23-26]
and the quantum Monte Carlo method [27-30]. However, such
accurate approaches require huge computational costs and
they become infeasible for large systems.

Because DFT and wave-function theory are based on dif-
ferent characteristics, the two approaches often have different
points of strength and weakness. For example, DFT with con-
ventional approximations tends to well capture the dynamical
correlation effect [31], which requires many Slater determi-
nants for accurate description of many-body wave functions,
while DFT suffers from dramatical failures in describing the
static correlation [17,32-34], which requires a few but more
than one Slater determinant for accurate description of many-
body wave functions. (The terms of static and dynamical
correlation are further explained in Sec. IV A.) On the other
hand, the wave-function theory can naturally capture the
static correlation effect through the configuration interaction.
Combining the two approaches, one may be able to realize
an overall accurate theoretical description for quantum many-
body systems.
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Several examples of combining DFT and wave-function
theory exist in the literature. The hybrid functional [10,11]
is one of the successful examples, and it includes a part
of nonlocal Fock-like exchange interaction based on wave-
function theory. Importantly, note that the hybrid functional
is beyond the theoretical framework of conventional Kohn-
Sham DFT, but it is based on the generalized Kohn-Sham
scheme [35], where interacting model systems are introduced
to take into account a part of the electron-electron interac-
tion but the systems are still represented by a single Slater
determinant. Thus, the generalized Kohn-Sham systems are
still described by fully uncorrelated wave functions. Another
successful example is a combination of the configuration
interaction method and DFT [36—41] where the Kohn-Sham
orbitals based on DFT are used to construct the configuration
interaction approach. Since the Kohn-Sham orbitals and their
orbital energies may take into account a substantial amount
of the dynamical correlation effect, the configuration inter-
action based on the DFT approach drastically improves the
description.

In this work, we explore yet another possibility to accu-
rately and efficiently combine DFT and wave-function theory,
introducing a mapping between a fully interacting many-
body system and an effectively interacting Kohn-Sham system
instead of the noninteracting Kohn-Sham system. Fromager
et al. have achieved the connection between a fully interacting
system and a fictitious interacting system in terms of the
range separation in multiconfigurational density functional
theory [42]. Effectively interacting systems are not generally
described by a single Slater determinant but require a corre-
lated wave function. Therefore, wave-function theory may be
naturally introduced within the formal theoretical framework
of DFT. By optimally choosing the effective interaction, the
electronic correlation may be efficiently described by the
combination of DFT and wave-function theory. To explore
more in detail the properties of an effectively interacting
Kohn-Sham system, we investigate what the exact exchange-
correlation potential looks like for that correlated reference
Kohn-Sham system, employing one-dimensional two-electron
systems.

The paper is organized as follows. In Sec. II we first
introduce a mapping between a fully interacting system and
an effectively interacting Kohn-Sham system. Then, we de-
scribe the effective interactions that are used in this work.
In Sec. III, numerical methods to compute exact exchange-
correlation potentials of effectively interacting Kohn-Sham
systems are described. In Sec. IV, we investigate ex-
act exchange-correlation potentials and properties of effec-
tively interacting Kohn-Sham systems for one-dimensional
helium atoms, hydrogen molecules, and heteronuclear di-
atomic molecules. Finally, our findings are summarized
in Sec. V.

II. METHODS

We introduce a mapping from a fully interacting many-
body system to an effectively interacting Kohn-Sham system.
For this purpose, we first consider a fully interacting N-
electron system. The ground state of the electronic system is

described by the following Schrodinger equation:

TN, (D

with the nonrelativistic many-body Hamiltonian given by
(atomic units are used unless stated otherwise)

N
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where vex () is a one-body external potential and W (r) is the
electron-electron interaction.

Then, we introduce an effectively interacting Kohn-Sham
system that satisfies the following interacting Kohn-Sham
equation:

Hgs®xs(ri, . ... ry) = ExsPxs(rr, ..., ry), 3)
with the interacting Kohn-Sham Hamiltonian
A=Y [—1v? + va(r)} 23 Wl — 1)
=L 2 l l 2 i#j R
“)

where vks(r) is the one-body Kohn-Sham potential and
Wege(r) is an arbitrary effective interaction. Here, the Kohn-
Sham potential vgs(r) is introduced such that the ground-state
density of the fully interacting system is reproduced by that of
the Kohn-Sham system:

p(r) =N/dr2~~drN|\D<r,r2, P

=N/dr2-~-drN|<I>Ks(r,rz,...,rN)|2. 5)

Note that here the Kohn-Sham potential vgg () is not uniquely
constructed since a constant shift of the potential does not
affect the ground-state density. Furthermore, the reconstruc-
tion of the corresponding energy functional or exchange-
correlation functional is not trivial. Levy and Zahariev pro-
posed a simple way to evaluate the exact interacting ground-
state energy as a sum of orbital energies based on the arbitrary
constant term in the Kohn-Sham potential [43]. In this work,
we extend this idea to interacting Kohn-Sham systems and set
the arbitrary constant in the Kohn-Sham potential vgs(r) such
that the ground-state energy of the Kohn-Sham system Exg is
identical to that of the fully interacting system Ej;.

The Hohenberg-Kohn theorems offer one-to-one corre-
spondence between the ground-state density p(r) and the one-
body external potential vex () once the interaction W (r) is
given [1]. Because the Hohenberg-Kohn theorems are not lim-
ited to the Coulomb interaction but are generally applicable
to arbitrary interactions, there is one-to-one correspondence
between the one-body potential vks(r) and the corresponding
ground-state electron density once the effective interaction
Wegr(r) is defined. Thus, once both interactions, W (r) and
Wete (r), are given, there is a one-to-one correspondence be-
tween vex(r) and vgs(r) through the common ground-state
density p(r), resulting in a one-to-one correspondence be-
tween the fully interacting many-body system and the effec-
tively interacting Kohn-Sham system. If the effective inter-
action is set to zero, W (r) = 0, this one-to-one mapping
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is reduced to the conventional Kohn-Sham mapping between
the interacting system and the corresponding noninteracting
Kohn-Sham system.

For later convenience, we decompose the Kohn-Sham po-
tential vgs(r) into the external potential vex (r), the residual
Hartree potential vg (), and the exchange-correlation poten-
tial vy (7). Here, we define the residual Hartree potential as

v (r) = / dr' AWies(r — F)p(r), ©)

where AW,gs(r) is the residual interaction defined as
AWes(r) = W(r) — Wee (r). Note that if the effective interac-
tion is set to zero, Weg(r) = 0, the residual Hartree poten-
tial vg.pg(r) is reduced to the conventional Hartree potential,
vp(r) = [dr'W(r — r)p(r'). Furthermore, if Wegr (r) = W (r),
the residual Hartree potential vanishes. Therefore, the residual
Hartree potential, Eq. (6), can be seen as a natural extension
of the conventional Hartree potential.

Then, we define the exchange-correlation potential as the
rest of the Kohn-Sham potential:

Ve () 1= vgs(F) — Vexi () — vR-H(P). @)

The exchange-correlation potential in Eq. (7) is reduced to the
conventional exchange-correlation potential of the noninter-
acting Kohn-Sham system if the effective interaction W (r)
is set to zero. Thus, Eq. (7) can be also seen as an extension
of the conventional exchange-correlation potential.

In this work, we investigate effectively interacting Kohn-
Sham systems and their exact exchange-correlation poten-
tials to explore a possibility to combine DFT and wave-
function theory. To practically elucidate the effectively
interacting Kohn-Sham systems, we consider the example
of one-dimensional spin-1/2 two-electron systems. As the
electron-electron interaction, we employ the one-dimensional
soft Coulomb potential

1
Vil o

where o is a softening parameter, which is set to 0.5 a.u.

As reference (interacting and noninteracting) Kohn-Sham
systems, we consider three kinds of systems in this work.
The first one is a noninteracting Kohn-Sham system, where
the effective interaction Wy (x) is set to zero. Note that this
choice is nothing but the conventional noninteracting Kohn-
Sham system or standard DFT [2]. The second one is a 1/4-
interacting system, where the effective interaction is set to
the quarter of the bare soft Coulomb interaction, Weg(x) =
W (x)/4. The third one is a long-range interacting system,
where Wi (x) = erf (v x% + 02 /ay)W (x) with the Bohr radius
ap. Thus, the short-range part of the Coulomb interaction is
ignored in the long-range interacting system.

W(x) = )

III. NUMERICAL DETAILS

Here, we describe numerical procedures to compute the
exact exchange-correlation potentials of the Kohn-Sham sys-
tems. For the noninteracting two-particle Kohn-Sham system,

one can easily compute the exact Kohn-Sham potential as

1 1 92
/P + Eg. ©)

vks(X) = 5 NGEE
For interacting Kohn-Sham systems, we employ the following
iterative scheme to obtain the exact Kohn-Sham potential that
reproduces the target ground-state density o€ (x).

(i) Start from an initial guess of the Kohn-Sham potential,
vl((’szo)(x). In this work, we employ the external potential
Vext () as the initial guess.

(ii) Compute the ground-state density p”(x), solving the
interacting Kohn-Sham equation, Eq. (3), with the trial poten-
tial Vi (x).

(iii)) Then, evaluate the deviation from the target density
by

éftor = / dx|p?(x) = pHE )], (10)

(iv) If the error r{) is larger than a given threshold 7,
the trial Kohn-Sham potential is updated by the following
formula:

(i) __ target

(i+1) (i) p(x)—p (x)
vgs (X)) = vgg (V) + i pov— , D
pW(x) + pret(x) + €

where o; is a mixing parameter and € is a small positive
number. In this work, we set € to 10~® a.u. and choose the
mixing parameter «; such that the error of the updated density
r{i*1) in the next iteration becomes smaller than that of the
previous iteration r{)) . In practical calculations, we set the
initial value of &y = 0.1. In the iterative procedure, we employ
an acceptance-rejection procedure to determine the value of
o;. At each iteration, the initial guess of «; is evaluated as
a; = 1.1a;_;. If the computed error r{t1) is smaller than the
previous error r{) . the guess value of o; is accepted. If
the computed error is not smaller than the previous error, the
guess value of «; is rejected, and the new guess value is set as
half of the previous guess value. This procedure is recursively

repeated until 7{"'1) becomes smaller than r{i) .

(v) Repeat the above iterative procedure until the error
r{) becomes smaller than a given threshold 7. In this work,
we set the threshold 7 to 10~ a.u.

Note that similar iterative approaches to compute the exact
Kohn-Sham potential have been proposed [44,45]. However,
any stable approaches can be employed in this work because
the size of the problems is small, and the accurate results can
be obtained with reasonable computational costs.

IV. RESULTS
A. 1D helium atom

First, we investigate the effectively interacting Kohn-Sham
systems of the one-dimensional helium atom. To describe the
helium atom, we employ the following external potential:

2
/X2 ¥ o2
Figure 1(a) shows the exact ground-state density of the helium

atom, obtained by numerically solving the two-dimensional
Schrodinger equation with the conjugate gradient method.

H
vexet (x)=-—

12)
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FIG. 1. (a) The exact ground-state density p(x) of the one-
dimensional helium atom. (b) The exact exchange-correlation poten-
tials for the effectively interacting Kohn-Sham systems: the red solid
line shows the results for the noninteracting system, W (x) = 0; the
green dashed line shows the results for the 1/4-interacting system,
Werr(x) = 1/(4+/x% + 02); and the blue dotted line shows the long-
range interacting system, Wy(x) = erf(v/x2 + 02 /ag)/~/x* + o2.
(c) The force field —duvy.(x)/dx of each exchange-correlation
potential in panel (b).

Figure 1(b) shows the exact exchange-correlation potentials
with respect to the three different interacting Kohn-Sham
systems. The different effective interactions provide substan-
tially different exchange-correlation potentials. One may see
that the long-range tail of the exact exchange-correlation
potential of the long-range interacting system (blue dashed
line) decays faster than those of the noninteracting and the
1/4-interacting Kohn-Sham systems. To clearly compare the
exchange-correlation potentials of the different Kohn-Sham
systems, Figure 1(c) shows the exchange-correlation force
field, —dvx.(x)/dx. One can clearly see that the exchange-
correlation force field of the long-range interacting Kohn-
Sham system shows much faster decay than the other systems.
Furthermore, the long-range interacting system has the small-
est force field over the whole spatial region. These features
indicate a possibility to control the asymptotic behaviors of
the exchange-correlation potential by choosing a suitable ef-
fective interaction used to set the reference interacting Kohn-
Sham system.

Then, we investigate details of the asymptotic behavior
of the exchange-correlation potentials. Figure 2 shows the
long-range behavior of the exact exchange-correlation poten-
tials shown in Fig. 1(b). In Fig. 2(a), vy (x) of the nonin-
teracting system is shown as the red line, while an analytic
curve, —1/x 4+ ¢ with ¢ = —0.661 a.u., is described by the
red circles. Thus, v.(x) of the noninteracting system has
—1/x asymptotics. This behavior is known as the asymptotic
behavior of the exchange-correlation potential of a Coulom-
bic system [5]. In Fig. 2(b), vk.(x) of the 1/4-interacting
system is shown as the green line, while the analytic curve,
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-0.25 j,

FIG. 2. Asymptotic behaviors of the exact exchange-correlation
potentials for (a) the noninteracting, (b) the 1/4-interacting, and
(c) the long-range-interacting Kohn-Sham systems.

—f—x + ¢ with ¢ = —0.498 a.u., is described by the green
circles. Therefore, vy (x) of the 1/4-interacting system has

—% asymptotics, which is different from the conventional

asymptotics of the exchange-correlation potential. The —%
asymptotics corresponds to the asymptotic behavior of the
residual interaction of the 1/4-interacting system, AW(x) =
W (x) — Wep(x) = 3/(44/x% + 02). Therefore, the asymptotic
behavior of vy (x) of an effectively interacting Kohn-Sham
system can be characterized by that of the residual interac-
tion. In Fig. 2(c), vy (x) of the long-range-interacting sys-
tem is shown as the blue line, while the analytical curve,
aexp[—bx] + ¢, is described by the blue circles. Here, the
parameters are set as follows: a = —9.41 a.u.,, b=2.7 au.,
and ¢ = —0.2175 a.u.

One sees that the asymptotic decay of vy is slower than
that of the residual interaction, AWs(x) = W(x) — Wegr(x) =
erfc(v/x2 + 02/ag)/~/x2 + o2. This fact can be understood
by the asymptotic behavior of the electron density: The resid-
ual interaction decays so fast that the asymptotics of vy (x) is
dominated by that of the electron density in order to correctly
remove the self-interaction error due to the local density.
This feature may indicate that the local density approximation
for the exchange-correlation functional may work well for
the long-range interacting Kohn-Sham system because the
exchange-correlation potential vanishes once the density van-
ishes and the nonlocality in the exchange-correlation potential
is expected to be milder than that of the noninteracting Kohn-
Sham system.

Due to effective interactions W, (x), the ground-state wave
function of interacting Kohn-Sham Hamiltonian in Eq. (3) is
not generally described by a single Slater determinant, but it
requires multi-Slater determinants for the accurate descrip-
tion. Therefore, in the interacting Kohn-Sham system, the
electronic correlation can be treated separately: A part of
the correlation can be treated as the explicit correlation in
the many-body Kohn-Sham wave function, while the other
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FIG. 3. Distribution of natural occupation over a few tens of
natural orbitals. The results of the fully interacting system (red
circle), the 1/4-interacting system (green square), and the long-range
interacting system (blue triangle) are shown.

part can be implicitly treated in the exchange-correlation
potential, vy (x), or the corresponding density functional
Ei.[p(x)]. This separation enables one to combine DFT and
wave-function theory in order to efficiently describe the elec-
tronic correlation. For example, the static correlation may
be efficiently treated by the multiconfiguration interaction as
the explicit correlation in the correlated wave function, while
the dynamical correlation may be treated by DFT through the
exchange-correlation functional. To explore such a possibility,
we next investigate the explicit correlation in the effectively
interacting Kohn-Sham wave functions. For this purpose, we
consider the eigendecomposition of the one-body reduced
density matrix

pirom (X, x) = 2/61)62‘1’1(5()6,)62)‘1’;5()6’,)62)
=D mgi ()P (), (13)
i=1

where eigenvectors ¢;(x) are known as natural orbitals [46]
and eigenvalues n; are seen as their occupations. Here, we
assume that the occupation numbers are arranged in decreas-
ing order, n; > n;4;. Since we treat the spatial part of the
spin-singlet wave function Wgg(x, x"), natural occupations are
restricted as 0 < n; < 2.

The occupation distribution deeply links to the number
of configurations that is required to accurately describe a
correlated electronic wave function [22,46]. If only a small
number of orbitals have substantial occupations and the others
have negligible occupations, the correlated system can be de-
scribed by a small number of Slater determinants. In contrast,
if a larger number of orbitals have substantial occupations,
a larger number of configurations are required. Electronic
correlation in the first case is called static correlation, while
that in the latter case is called dynamical correlation.

Figure 3 shows the distribution of the occupations n; of the
correlated ground-state wave function of the one-dimensional
helium atom. The red circles show the occupation distribu-
tion of the fully interacting system, the green squares show

that of the 1/4-interacting Kohn-Sham system, and the blue
triangles show that of the long-range interacting Kohn-Sham
system. As seen from the figure, the occupations of the
higher natural orbitals are significantly suppressed in the
effectively-interacting Kohn-Sham systems, compared with
the fully interacting problem. Thus, a large part of the elec-
tronic correlation is transferred from the explicit correlation
in the many-body wave function to the exchange-correlation
functional. Furthermore, in Fig. 3, the long-range interact-
ing system shows the rapid decrease of the occupations of
the higher natural orbitals. This fact indicates that, in the
long-range interacting Kohn-Sham system, the significant part
of the dynamical correlation is transferred to the exchange-
correlation functional, while the static correlation is treated
as the explicit correlation in the reference correlated wave
function. Importantly, we note that the long-range interact-
ing Kohn-Sham system has the weakest exchange-correlation
potential with the fastest asymptotic decay among all the
investigated Kohn-Sham systems (see Fig. 1). Therefore, this
fact clearly demonstrates that a proper choice of the effective
interaction enables one to efficiently decompose the electronic
correlation into the exchange-correlation functional part and
the explicit wave-function correlation part, resulting in an
efficient description of the electronic correlation based on a
combination of DFT and wave-function theory.

Note that the results presented in this section do not sig-
nificantly depend on the choice of the softening parameter o .
The exact exchange-correlation potentials for o = 1 a.u. bear
no qualitative difference to those presented in Fig. 1.

B. 1D H, molecule

Next, we investigate the effectively interacting Kohn-Sham
systems of the one-dimensional hydrogen molecule. To de-
scribe the hydrogen molecule, we employ the following exter-
nal potential:

vl () = — ! — ! , (14)

I

where R is the distance of the hydrogen atoms. In this work,
we set Rto 5 a.u.

Figure 4(a) shows the exact ground-state electron density
of the one-dimensional hydrogen molecule, obtained by nu-
merically solving the two-dimensional Schrodinger equation
with the conjugate gradient method. At the center of the two
hydrogen atoms, the electron density becomes close to zero.
Figure 4(b) shows the exact exchange-correlation potentials of
the noninteracting and the effectively interacting Kohn-Sham
systems. The exact exchange-correlation potential of the non-
interacting system (red solid line) shows a spiky structure at
the center. This spiky structure was investigated in the pre-
vious works for the strongly correlated system [17,18,47,48].
One sees that the peak structure is strongly suppressed in the
1/4-interacting Kohn-Sham system (green dashed line). Fur-
thermore, the exchange-correlation potential of the long-range
interacting Kohn-Sham system (blue dotted line) shows a very
smooth feature around the central region. This fact indicates
that while the strong correlation effect is encoded in the
spiky structure in the noninteracting Kohn-Sham system, that
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FIG. 4. (a) The exact ground-state density p(x) of the one-
dimensional hydrogen molecule. (b) The exact exchange-correlation
potentials for the effectively interacting Kohn-Sham systems. The
results for the noninteracting system (red solid line), the 1/4-
interacting system (green dashed line), and the long-range interacting
system (blue dotted line) are shown.

of the effectively interacting Kohn-Sham systems is directly
taken care of through the explicit correlation of the reference
wave function. Therefore, by properly choosing the effective
interaction of the Kohn-Sham system, one can transfer the
electronic correlation effect from the exchange-correlation
functional or potential to the explicit correlation in the wave
function in order to reduce the complexity for developing ac-
curate approximations for the remaining exchange-correlation
functionals and potentials.

C. 1D heteronuclear diatomic molecule

Finally, we investigate the effectively interacting Kohn-
Sham systems of the one-dimensional heteronuclear diatomic
molecule. In order to describe the heteronuclear diatomic
molecule, we employ the following external potential:

1—-6 14+46
M) = — - + . (15

T ey Jer e

where R is the distance of the hydrogen atoms and & is the
charge imbalance between the two nuclei. In this work, we set
Rto5au, and é to 0.2 a.u.

Figure 5(a) shows the exact ground-state electron den-
sity of the one-dimensional heteronuclear diatomic molecule,
obtained by numerically solving the two-dimensional
Schrodinger equation with the conjugate gradient method.
Reflecting the charge imbalance between two nuclei, the
electron density p(x) is not symmetric. Figure 5(b) shows
the exact exchange-correlation potentials of the effectively
interacting Kohn-Sham systems. The exchange-correlation
potential of the noninteracting Kohn-Sham system (red solid
line) approaches different values in the positive and negative
x regions. The energy difference of the asymptotic values
reflects the difference of the ionization potentials of the two
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> 04r¢ |
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FIG. 5. (a) The exact ground-state density p(x) of the one-
dimensional heteronuclear diatomic molecule. (b) The exact
exchange-correlation potentials for the effectively interacting Kohn-
Sham systems. The results for the noninteracting system (red solid
line), the 1/4-interacting system (green dashed line), and the long-
range interacting system (blue dotted line) are shown. The horizontal
black dotted lines show values of each potential vy.(x) evaluated at
x=8au.

atoms. This feature is known as a step of the exact exchange-
correlation potential in heteroatomic molecules [17].

Note that, far from the molecule, the exact exchange-
correlation potential approaches the same asymptotic value on
both the left and the right sides [18].

As seen from Fig. 5(b), the exchange-correlation potentials
of the 1/4-interacting Kohn-Sham system (green dashed line)
and those of the long-range interacting Kohn-Sham system
(blue dotted line) show the a step feature weaker than that
of the noninteracting system (red solid line). To quantify the
size of the step feature, we evaluate the difference of the po-
tential atx = —8 and 8 a.u., Ay = ve(x = —8a.u.) — v (x =
8 a.u.). The step size of the noninteracting Kohn-Sham system
is Ay = 0.47 a.u., and that of the 1/4-interacting Kohn-Sham
system is Ay = 0.39 a.u. The long-range interacting Kohn-
Sham system provides the smallest step size, Ay = 0.15 a.u.
Thus, one can clearly conclude that the effectively interacting
Kohn-Sham systems significantly reduce the step feature of
the exchange-correlation potential by transferring a part of the
electronic correlation from the exchange-correlation potential
to the explicit correlation in the reference wave function.
Consistent with the above findings, the long-range interacting
Kohn-Sham system has the largest reduction of the complex
feature of the exchange-correlation potential. Thus, effective
interaction based on the range separation is suggested to
be a key to achieving an efficient description of static and
dynamical correlation with the combined theory of DFT and
wave-function theory.

V. SUMMARY AND OUTLOOK

In order to explore a possibility to combine DFT and
wave-function theory, we investigated a mapping from a fully
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interacting problem to an effectively interacting problem in-
stead of the conventional mapping to the noninteracting Kohn-
Sham system. To elucidate such mapping, we considered three
kinds of effectively interacting Kohn-Sham systems. One is
the usual noninteracting Kohn-Sham system. The second one
is the 1/4-interacting Kohn-Sham system, where the effective
interaction is set to the quarter of the full interaction. The last
one is the long-range interacting Kohn-Sham system, where
the short-range part of the full interaction is ignored.

To practically investigate the properties of the effectively
interacting Kohn-Sham system, we first investigated the ex-
act exchange-correlation potentials of the one-dimensional
helium atom. As a result, we found that the asymptotic
behavior of the exchange-correlation potential is determined
by that of the residual interaction, which is defined as the
difference of the full and the effective interactions. This fact
further indicates a possibility to construct a good local density
approximation for an effectively interacting Kohn-Sham sys-
tem by optimally choosing a short-range residual interaction
because the exchange-correlation potential vanishes as density
vanishes and the nonlocal density dependence is expected be
suppressed.

Next, we evaluated the occupation distribution of the natu-
ral orbitals of the ground-state wave function of the effectively
interacting Kohn-Sham systems. As a result, we found that
the occupations of the higher natural orbitals are significantly
suppressed in the effectively interacting Kohn-Sham systems,
especially in the long-range interacting Kohn-Sham system.
This fact indicates that the effectively interacting Kohn-Sham
systems offer an efficient decomposition of the electronic
correlation into the dynamical correlation in the DFT part and
the static correlation in the wave-function part.

Then, we investigated the exact exchange-correlation po-
tentials of the one-dimensional hydrogen molecule. Consis-
tently with the previous works [17,18,47,48], we observed the
spiky feature of the exchange-correlation potential. Once the
effective interaction is turned on, the spiky feature is strongly
suppressed. Furthermore, in the long-range interacting Kohn-
Sham system, the spiky feature completely vanishes and the
exchange-correlation potential becomes smooth at the center
of the molecule.

Finally, we investigated the exact exchange-correlation
potentials of the one-dimensional heteronuclear diatomic
molecule in order to study the step feature of the exchange-
correlation potential, which reflects the different ionization
potentials of the two atoms [17]. Consistently with the above
analysis, we found that the difficult step feature is significantly

reduced in the effectively interacting Kohn-Sham systems,
compared with the noninteracting Kohn-Sham system. Espe-
cially, the long-range interacting Kohn-Sham system shows
the smallest step feature, indicating the effectiveness of the
concept of the range separation in the effectively interacting
Kohn-Sham systems.

Based on the above findings, we can conclude that the
effectively interacting Kohn-Sham approach can open a way
to efficiently describe the electronic correlation effect by the
combination of DFT and wave-function theory, decomposing
the electronic correlation effect into the DFT part and the
wave-function theory part.

Another important fact is that the interacting Kohn-Sham
scheme can be reduced to the hybrid functional, applying
the Hartree-Fock approximation to the interacting Kohn-
Sham equation, Eq. (3). Therefore, the interacting Kohn-Sham
scheme offers a possibility to improve the hybrid functional
approximation within the formal theoretical framework of
DFT, by adding the explicit correlation in the many-body
Kohn-Sham wave functions.

In this work, we limited ourselves to the theoretical
analysis of one-dimensional two-electron systems in order
to investigate the exact properties of the interacting Kohn-
Sham systems. However, importantly, the above findings can
be straightforwardly extended to multidimensional many-
electron systems and open a possibility to construct robust
and efficient density functionals. For example, based on the
weak nonlocality of the exchange-correlation potential of
the interacting Kohn-Sham system, an accurate LDA may
be constructed from the homogeneous electron gas with a
suitable effective interaction. Furthermore, inspired by the
GW method and the screened hybrid-functional approach, a
screening effect can be incorporated in an effective interaction
of the Kohn-Sham system, and an accurate description of
solid-state materials may be realized. These extensions of the
present work to multidimensional many-electron systems are
under way.
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