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Experiments at the interface of quantum-optics and chemistry have revealed that strong coupling
between light and matter can substantially modify chemical and physical properties of molecules
and solids. While the theoretical description of such situations is usually based on non-relativistic
quantum electrodynamics, which contains quadratic light-matter coupling terms, it is common-
place to disregard these terms and restrict to purely bilinear couplings. In this work we clarify the
physical origin and the substantial impact of the most common quadratic terms, the diamagnetic
and self-polarization terms, and highlight why neglecting them can lead to rather unphysical re-
sults. Specifically we demonstrate its relevance by showing that neglecting it leads to the loss of
gauge invariance, basis-set dependence, disintegration (loss of bound states) of any system in the
basis set-limit, unphysical radiation of the ground state and an artificial dependence on the static
dipole. Besides providing important guidance for modeling strongly coupled light-matter systems,
the presented results do also indicate under which conditions those effects might become accessible.

I. INTRODUCTION

Driven by substantial experimental progress in the field
of cavity-modified chemistry [1–11], theoretical methods
at the border between quantum-chemical ab initio meth-
ods and optics have become the focus of many recent
investigations [12–57]. The high complexity of a molec-
ular system, which can undergo, e.g., chemical reactions
or quantum phase-transitions, coupled strongly to pho-
tons makes the use of some sort of approximation strat-
egy necessary. A common approach is to use approxi-
mation strategies designed for atomic two-level-like sys-
tems in high-quality optical cavities [58–60] and to ap-
ply them to the quite different situation of molecular
systems. However, under the generalized conditions of
cavity-modified chemistry usually disregarded contribu-
tions in the theoretical description, e.g., quadratic cou-
pling terms between light and matter, can become im-
portant [15, 61, 62] and might even dominate the phys-
ical properties [13–16, 63]. While the existence of these
quadratic terms is well-known [64–71] their origin, in-
terpretation and consequences are less clear, and when
to include them has become the subject of recent in-
tense discussions [15, 40, 61, 72–79]. In this work we
will elucidate these terms for the most relevant setting
of cavity-modified chemistry, i.e., in Coulomb gauge and
in the long-wavelength limit, clarify their origins, phys-
ical interpretations and consequences as well as show
under which conditions and for which observables they
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become relevant. This will also highlight a domain
of applicability of common approximations that disre-
gard these quadratic terms and at the same time indi-
cates under which conditions substantial influence can
be expected [12], accessible with ab initio techniques
such as quantum-electrodynamic density-functional the-
ory (QEDFT) [12, 16, 22, 25, 80]. Before we do so, let
us briefly outline the theory we consider and collect a
set of fundamental conditions we deem important for a
reasonable theoretical description.

Any theory we employ to model coupled light-matter
systems should obey certain fundamental constraints.
Which ones these are often depends on the specific sit-
uation we consider. For instance, in the case of high-
energy physics an adherence to special relativity (physi-
cal laws should be Lorentz invariant) is paramount and
hence the use of Dirac’s equation becomes necessary to
capture the behavior of electrons. If we further want
to ensure that all interactions among the electrons are
local and our theory should stay invariant under local
phase transformations we find the Maxwell field coupled
to Dirac’s momentum operator in a linear (minimal) fash-
ion. However, the resulting theory - which, if quantized,
is called quantum electrodynamics (QED) and perfectly
describes high-energy scattering events - has many sub-
tle issues [81]. For low-energy physics a simplified ver-
sion, where instead of the relativistically invariant mo-
mentum the non-relativistic momentum is employed, has
been shown to be able to resolve many of these issues [71].
The resulting theory of non-relativistic QED (also some-
times called molecular QED [67, 70, 82, 83]) is ideally
suited to describe atoms, molecules or solids interacting
with the quantized light field [84–86]. The coupling be-
tween light and matter is, however, only defined up to
a phase and we need to make a specific choice for this
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phase, i.e., we need to fix a gauge. Changing the gauge
or performing a local unitary transformation should not
modify physical observables but merely affect their repre-
sentation in terms of canonical coordinates. While gauge-
independence is respected by non-relativistic QED, this
constraint is specifically challenging for dimensionally-
reduced, simplified models [15, 75, 78]. Beside gauge-
independence, non-relativistic QED guarantees a set of
further intuitive and essential conditions. For instance,
the physical observables are independent of the chosen
coordinate system (or in more quantum-chemical terms,
where a specific spatial basis is just one of many basis-set
choices, basis-set independent) and it also guarantees the
stability of matter, i.e., atoms and molecules are stable if
coupled to the vacuum of the electromagnetic field [71].
A direct consequence of this fundamental condition is
that the combined ground state of light and matter has a
zero transversal electric-field expectation value 1. If this
would not be the case the system could emit photons and
lower its energy. To summarize, a few basic constraints
we want a theory of light-matter interactions to adhere
to are: All physical observables should be independent of
the gauge choice and of the choice of coordinate system
(for instance, it would be unphysical that the properties
of atoms and molecules would depend on the choice of
the origin of the laboratory reference frame), the theory
should support stable ground states (else we could not
define equilibrium properties and identify specific atoms
and molecules) and the coupled light-matter ground state
should have a zero transversal electric field (else the sys-
tem would radiate and cascade into lower-energy states).

In the following we will restate the basic approximation
steps leading to non-relativistic QED in Sec. II, highlight
the physical implications of the associated transforma-
tions and further approximations that lead to the non-
relativistic QED in the long-wavelength limit in Sec. III,
and illustrate that the aforementioned fundamental phys-
ical conditions will not be retained when disregarding
quadratic components in Sec. IV. Finally we discuss im-
plications and perspectives in Sec. V.

II. FUNDAMENTAL COUPLING OF LIGHT
AND MATTER

Let us briefly explain how QED and its non-relativistic
limit can be set up starting from classical electrodynam-
ics. In vector-potential form 2 the microscopic descrip-

1 If we further assume that we are in free space and no external
static magnetic fields or currents perturb the system, also the
magnetic-field expectation value is zero.

2 We select here a field-theoretical convention where the four vec-
tor potential Aµ is given in Volts and the four charge-current
density jµ is given in Coulomb per meter squared per second.
By multiplying Aµ by 1/c we find the standard convention in
terms of Volt second per meter.

tion of the electromagnetic fields are given by

E(r, t) = − 1
c∂tA(r, t)−∇A0(r, t),

B(r, t) = 1
c∇×A(r, t).

For later reference we use the vacuum permeability µ0

and vacuum permittivity ε0, which are connected to the
speed of light by c = 1/

√
µ0ε0. If we then choose the

Coulomb gauge 3 condition ∇ · A(r, t) = 0, the energy
expression of the classical electromagnetic field is given
by [87]

Hem(t) =
ε0
2

∫
d3r

(
E2
⊥(r, t) + c2B2(r, t)

)
(1)

and the interaction among charged particles emerges via

Hint(t) = −1

c

∫
d3r j(r, t) ·A(r, t)︸ ︷︷ ︸
=Hint,⊥(t)

(2)

+
1

2c

∫
d3r j0(r, t)A0(r, t)︸ ︷︷ ︸

=Hint,‖(t)

.

Here we have used the decomposition of the electric field
in a purely transversal part (polarized perpendicular to
the propagation direction) E⊥(r, t) = − 1

c∂tA(r, t) and a
purely longitudinal part (polarized along the propagation
direction) E‖(r, t) = −∇A0(r, t). The electromagnetic
field is coupled to a charge current j(r, t) that obeys the
continuity equation 1

c∂tj
0(r, t) = −∇ · j(r, t). We there-

fore see that it is the moving charges via their combined
charge current that induce and modify the electromag-
netic fields.

The above decomposition is furthermore very conve-
nient to single out electrostatic contributions, which are
given exclusively in terms of E‖ and j0. With the Pois-

son equation in full space 4, which determines the zero
component of the electromagnetic vector potential

A0(r, t) =
1

c

∫
d3r′

j0(r′, t)

4πε0|r− r′| ,

the term Hint,‖(t) in Eq. (2) can be brought into the form

Hint,‖(t) =
1

2c2

∫ ∫
d3r d3r′

j0(r′, t)j0(r, t)

4πε0|r− r′| (3)

3 Although many gauge choices are possible, we here select the
Coulomb (also known as radiation or transversal) gauge since it
is the most convenient choice when considering non-relativistic
situations. The drawback of not being explicitly Lorentz invari-
ant [87] is not so severe since the non-relativistic electrons will
break this invariance anyway.

4 We point out that if we are not in vacuum on all of R3 but
instead have, e.g., boundaries with certain boundary conditions,
the Coulomb kernel −∇2 1

4π|r−r′| = δ3(r − r′) changes accord-

ingly. This also changes the Coulomb interaction among charged
particles, e.g., for cavity situations it can lead to the inclusion of
mirror-charges, depending on the selected gauge [88].
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and thus corresponds to the longitudinal Coulomb inter-
action, typically dominating the electronic structure of
condensed matter. Further, due to the Coulomb-gauge
condition, the first term on the right-hand side of Eq. (2)
is merely coupling to the transversal part of the charge
current and can thus be rewritten as

Hint,⊥(t) = −1

c

∫
d3r j⊥(r, t) ·A(r, t). (4)

We have therefore divided the interaction due to cou-
pling with a charge current into a purely longitudinal
(electrostatic) and a purely transversal one. To quan-
tize the theory we need to promote the classical vector
potential to a quantum field Â(r), which is basically a
sum of quantum harmonic oscillators [25, 87] (see also
Eq. (6)) 5, and we need to promote the classical charge

current to the conserved charge-current operators ĵ(r)

and ĵ0(r) = cn̂(r) of the non-interacting matter subsys-
tem [25, 87]. In this way the total charge current of the
quantized particles generates the quantized electromag-
netic field, and at the same time the photon field modifies
the movement of the quantized particles. Hence QED
becomes a self-consistent theory of light and matter, and
equilibrium is reached when a force balance among the
constituents is reached.

This clear procedure holds true if we consider QED
with Dirac particles and thus the Dirac current. If we,
however, take the non-relativistic limit for the particles
and thus also for the conserved charge current, a sub-
tlety arises with important consequences. By express-
ing the positronic degrees of freedom to first order in
1/mc2 in terms of the electronic components, a term
quadratic in the vector potential appears [25, 89]. This
means that in Eq. (4), if we use the conserved current
j(r, t) = jp(r, t) + jd(r, t) that consists of the paramag-
netic current jp plus the diamagnetic current jd [90], a
correction term of the form − 1

c

∫
j0(r, t) q

2mc2A
2(r, t) has

to be added [25]. This leads to the appearance of the
first quadratic coupling term that we encounter. This
quadratic term renders the coupling defined by Eq. (4)
consistent with the minimal coupling prescription also in
the non-relativistic limit (see the usual minimal-coupling
form of Eq. (7)). Indeed, this extra term is due to the
explicit appearance of the diamagnetic current contribu-

tion ĵ
d
(r) = − q

mc n̂(r)Â(r) [25, 70, 87] that in the Dirac
current arises only implicitly as can be seen by the Gor-
don decomposition [25, 89]. This quadratic coupling term
captures the effective photon-photon interaction due to
the discarded positronic degrees of freedom. A direct
beneficial consequence of this explicit diamagnetic term
is that it removes the infrared divergence of relativistic

5 Note that to retain the transversal character of the fields, i.e.,
the gauge condition and Gauss law, the usual commutation re-
lations to quantize the theory employ the transversal delta dis-
tribution [87].

QED [71]. This can be best understood by considering
the Heisenberg equation of motion, analogue to the in-
homogeneous microscopic Maxwell’s equation,(

1
c2 ∂

2
t −∇2

)
Â(r, t) = µ0ĉj⊥(r, t) (5)

Here ĵ⊥(r) is the transversal part of the physical cur-

rent operator ĵ(r) = ĵp(r) + ĵd(r). Grouping the dia-
magnetic current with the vector potential on the left-
hand side shows that the mere existence of charged par-
ticles will modify the frequency of the bare fields (see also
Sec. IV for the dipole case). This leads to the diamag-
netic shift [91] of the bare modes and introduces a lowest
allowed frequency [92] which then removes the infrared
divergence [71]. It is therefore not a drawback to have
this term [72] but is besides also responsible for diamag-
netism [90] and hence implies very important physical
processes, such as the famous Meissner effect. Recent
theoretical [14, 92, 93] and experimental [74] studies fo-
cused on the ultra-strongly coupled light-matter dynam-
ics as well as the prediction of enhanced electron-phonon
coupling [63, 94] present the non-negligible influence of
the collective diamagnetic shift.

Only when longitudinal (3) and transversal (4) cou-
pling are treated consistently they provide a local in-
teraction. However, in practice often only one of the
two interactions is treated explicitly depending on which
properties of the combined light-matter system one is in-
terested in [12]. Focusing on quantum mechanics, e.g.,
the electric structure as essential to describe chemical re-
actions, the transversal interaction is often omitted and
one implicitly assumes that the photon field has zero fluc-
tuations 6. Quantum optical considerations on the other
hand focus typically on the description of the transversal
fields and thus strongly simplify the electronic structure.
The resulting quantum-optical models are designed to
predict specific photonic observables and are consequen-
tially limited in their predictability for the matter sub-
system [14, 15]. Recent interest in strong-light matter
interaction is calling now for a consistent treatment of
those historically as complementary perceived limits.

Besides the above microscopic Maxwell’s equations in
terms of vector potentials, there are many other equiv-
alent formulations, such as Riemann-Silberstein electro-
magnetism [95, 96] or the macroscopic Maxwell’s equa-
tions. In the latter case the fields are divided into bound
fields due to polarization and magnetization of, e.g., elec-
trons bound to an atom, and free fields. This formulation
can be easily deduced from the vector-potential formula-
tion by using the inhomogeneous Maxwell’s equation

∇×E(r, t) = −∂tB(r, t)

∇×B(r, t) =
1

c2
[
∂tE(r, t) + µ0c

2j(r, t)
]

6 The only reference to the fluctuations of the photon field is that
one uses the dressed physical mass instead of the bare mass of
the particles in the Schrödinger or Pauli equations [15, 71].
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such that(
1
c2 ∂

2
t −∇2

)
A(r, t) = µ0cj(r, t)

−∇ 1

c2

∫
d3r′

∂tj
0(r′, t)

4πε0|r− r′|
= µ0cj⊥(r, t)(~r, t),

where we made explicit that in Coulomb gauge only the
transversal part of the current couples to the transversal

vector potential. First we rewrite j⊥ = jb⊥ + jf⊥, where

jb⊥ is a bound and jf⊥ a free current, and define a bound
charge current

jb⊥(r, t)(~r, t) = ∇×M(r, t) + ∂tP⊥(r, t),

with M the magnetization and P⊥ the (transversal) po-
larization of the matter system. If we then define the
displacement field D = ε0E⊥ + P⊥ and the magnetiza-
tion field H = 1

µ0
B−M we end up with

−∂tD(r, t) +∇×H(r, t) = jf⊥(r, t).

We can again perform a quantization, where the new
canonical momentum D is still fully transversal, and the
polarization and magnetization of the matter subsystem
are then determined by the microscopic theory for the
particles (see, e.g., Refs. [43, 67, 70]). In practice, how-
ever, the macroscopic Maxwell’s equations are often not
used to quantize the coupled theory of light and matter
but instead are rather employed to approximately cou-
ple theories that either describe only light or only mat-
ter, respectively [97, 98]. This is done by using constitu-
tive equations that specify the relation between the fields
E⊥,B and the matter quantities P⊥ and M. A common
practice is to use, e.g., the linear response of an uncou-
pled system such as a molecule or a solid [99, 100]. We
also see that if we express the energy of the electromag-
netic field in Eq. (1), naturally self-polarization P2

⊥ and
self-magnetization M2 terms arise. These are the second
quadratic coupling terms that we encounter in this work.
They arise due to reformulating Maxwell’s equation in
polarization and magnetization fields, which take implic-
itly (by the connection to E and B) the back-reaction of a
given medium on the electromagnetic field into account.
In this case the condition of zero transversal electric field
in the ground state does not force D to be zero but only
implies that D = P⊥.

III. FROM MICROSCOPIC TO MACROSCOPIC
MAXWELL’S EQUATIONS

As discussed above, many equivalent ways of formu-
lating the Maxwell’s equations exist and accordingly also
several (unitarily equivalent) forms of the resulting non-
relativistic QED Hamiltonian. If we follow the above
described quantization procedure, we will find that it is
equivalent to introducing the covariant derivative for the

electronic system and then quantizing the resulting gauge
field [12, 25, 71]. This minimal-coupling procedure there-
fore makes the invariance under local phase transforma-
tions Ψ′ = eiθ(r)Ψ explicit and the Coulomb gauge con-
dition fixes the local phase θ(r). The momentum of each

particle is shifted according to −i~∇ → (−i~∇− q
c Â(r)),

where q is the charge of the particle and the quantized
vector potential is

Â(r) =

√
~c2
ε0

∑
n,λ

1√
2ωn

[
ân,λSn,λ(r) + â†n,λS

∗
n,λ(r)

]
Sn,λ(r) = εn,λe

ikn·r/
√
L3 (6)

Here we defined the transversal polarization vectors εn,λ
for mode and polarization (n, λ) [87], and the creation
and annihilation operators can be expressed in terms of

displacement coordinates qn,λ =
√

~
2ωn,λ

(â†n,λ+ân,λ) and

their conjugate momenta −i∂qn,λ = i
√

~ωn,λ

2 (â†n,λ− ân,λ)

of harmonic oscillators with the allowed frequencies ωn =
c|kn|.

The non-relativistic minimally coupled Hamiltonian
(including Ne electrons and Nn nuclei) in Coulomb gauge

then reads with ĵ0(r) = cn̂(r) = c
∑Ne+Nn
i=1 qiδ(r− ri)

Ĥ =

Ne+Nn∑
i=1

1

2mi

(
− i~∇i −

qi
c
Â(ri)

)2
+ Ĥem + Ĥint,‖

Ĥem =
1

2

∑
n,λ

[
(−i∂qn,λ)2 + ω2

n,λq
2
n,λ

]
(7)

Ĥint,‖ =
1

8πε0

Ne+Nn∑
i 6=j

qiqj
|ri − rj |

.

Each charged particle then evolves under the influence
of the kinetic-energy operator (−i~∇ − q

c Â(r))2 and at
the same time experiences the instantaneous longitudinal
field (Coulomb potential Ĥint,‖) created by all the other
charged particles.

Let us next, for convenience assume linear polarization
εn,λ = ε∗n,λ and to connect to the more common formula-

tion, switch to atomic units, such that ε0 = 1/(4π), c =
1/α0 and the elementary charge e = 1. There is a
well-known procedure to connect to a Hamiltonian corre-
sponding to the macroscopic Maxwell’s equation by em-
ploying the unitary Power-Zienau-Woolley (PZW) trans-
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formation 7

exp

−i

Ne+Nn∑
j=1

qjα0

∫ 1

0

rj · Â(srj)ds


for all charged particles contributing to the polarization

P̂(r) = −
Ne∑
j=1

rj

∫ 1

0

δ3(r− srj)ds

+

Nn∑
j=1

ZjRj

∫ 1

0

δ3(r− sRj)ds .

Here we have used that the jth nucleus has the ef-
fective positive charge Zj . However, since the vector-
potential operator is purely transversal it also only cou-
ples to the transversal part of the polarization operator,
which can be expressed in terms of the transversal delta-
distribution [87] or we use the mode expansion of the
vector potential directly. To do so we first, for nota-
tional simplicity, introduce the abbreviation α ≡ (n, λ),
then use that the vector-valued functions Sn,λ(r) in (6)
form a basis for the transversal square-integrable vector
fields8, and find with Sα(r) = εα · Sα(r)

P̂⊥(r) = −
Ne∑
j=1

∑
α

εα (rj · εα)

∫ 1

0

S∗α(r)Sα(srj)ds (8)

+

Nn∑
j=1

Zj
∑
α

εα (Rj · εα)

∫ 1

0

S∗α(r)Sα(sRj)ds.

The resulting Hamiltonian [29, 67, 70] has the advan-
tage that it can be conveniently expanded in multipoles
of the interaction 9 and the mode-expansion provides

7 We note that while we here perform the PZW transformation af-
ter having chosen the Coulomb-gauge quantization, which leaves
the vector-potential operator invariant but leads to an adjusted
conjugate photon-field momentum and coupling, one can equiv-
alently use the PZW (multipolar) gauge of the field to perform
the quantization procedure [66]. This gauge is connected to
the Coulomb gauge by adjusting the phase of each particle by
θ(r) = −qα0

∫ 1
0 r · A(sr)ds [66]. This extra phase removes the

explicit diamagnetic component from the physical current (see
also discussion after Eq. 13) but also assigns a longitudinal com-
ponent to the vector potential that can be associated with the
Coulomb interaction. While the PZW gauge features, similarly
to the Coulomb gauge, a purely transversal light-matter cou-
pling, it mixes, in accordance with the macroscopic Maxwell’s
equations, light and matter degrees of freedom [64–66, 77, 82].

8 In general, e.g., for some cavity geometry, we do not have these
simple vector-valued eigenfunctions but some general basis Sα(r)
that obeys ∇ · Sα(r) = 0. In this case we need to perform the
mode expansion of the vector-potential operator and the polar-
ization operator with these modes.

9 Let us mention here an important yet often overlooked de-
tail. Most arguments for performing a multipole expansion for a
Hamiltonian are based on perturbation theory, where local prop-

a consistent regularization such that terms like P̂⊥(r)2

are well-defined 10. This avoids the usual auxiliary as-
sumption that some of these terms, which contribute
to the polarization self-energy, are only taken into ac-
count perturbatively [77]. It furthermore highlights how
the condition of transversality of the Maxwell field also
affects matter-only operators like the polarization. So
far, the only restriction we employed was that we con-
sidered non-relativistic particles. This simplification is,
however, usually not yet enough to allow for practical
calculations. In the following we do not want to con-
sider this more general case but assume only dipole in-
teractions. This approximation is very accurate provided
the dominating modes of the photon field have wave-
lengths that are large compared to the extend of the
matter subsystem. In the multipole form of the non-
relativistic QED Hamiltonian this means that we dis-

erties derived from a fixed wave function do only slightly depend
on higher-order contributions of a perturbing operator [70]. This
does, however, not mean that such arguments still apply for non-
perturbative considerations. Indeed, if we consider the influence
of such expansions on the Hamiltonian directly, the opposite is
usually true: The highest order determines all basic properties.
An instructive example is a one-dimensional model atom with
Ĥ = −∂2x/2 + v(x) and v(x) some binding potential centered at
x = 0 with v(x) → 0 for x → ∞. Its spectrum as a self-adjoint
operator in L2(R) contains both, bound (eigenfunctions expo-
nentially localized around x = 0) and scattering (distributional
eigenfunctions corresponding to the continuous spectrum) states.
In such cases a harmonic approximation for certain ground-state
properties where v(x) ' v(0) + v′(0)x+ v′′(0)x2/2 is reasonable
(assuming v′′(0) > 0) and the perturbative influence of higher-
order terms proportional to xn with n > 2 is minor. However, if
we consider the actual Hamiltonian and treat higher-order terms
proportional to xn non-perturbatively in L2(R), we see that ei-
ther we have an operator that is unbounded from below (having
no ground state) with purely continuous spectrum (no eigenfunc-
tions but only scattering states) for n odd [61], or bounded from
below with only bound states for n even (again assuming that
all v(n)(0) > 0). So all basic properties are only determined by
the highest order of n. We therefore find that an expansion of
an operator only becomes meaningful if we also indicate whether
we consider it perturbatively for a fixed wave function or non-
perturbatively. In this work we focus on the non-perturbative
situation. Let us also mention that alternatively to perturba-
tion theory a non-perturbative consideration but on a different
Hilbert space of a restrict domain ϑ ⊂ R3, i.e., we consider the
operators on L2(ϑ) with appropriate boundary conditions, or on
a restricted state space {Ψ1, ...,Ψr} ⊂ L2(R) becomes possible
(see also Sec. IV). As illustrated in Sec. IV, this will render the
restricted domain or subset a relevant parameter for the theo-
retical prediction since the physical properties can then crucially
depend on this parameter.

10 By this we mean that while there are many equivalent repre-
sentations of the delta distribution, e.g., by using different basis
sets Sα(r), multiplications of distributions are not uniquely de-
fined [101, 102]. Indeed, the origin of the divergence in quantum
field theories stems from the fact that (operator-valued) distribu-
tions are multiplied [103] and a regularization and renormaliza-
tion procedure needs to be employed to give a finite answer. The
usual way of regularization is equivalent to introducing a cutoff
in the mode expansion α and hence by keeping this explicit in-
stead of working with an unspecified representation of the delta
distribution we avoid non-uniqueness problems [77].
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card the integration over s in our transformation and
the polarization operator [67]. The Hamiltonian we then
find is the same as the one that we get if we approxi-
mate Â(r) ' Â(rMatter) for the bilinear and quadratic
coupling terms. This does not restrict the form of the
cavity modes itself but merely its spatial extension in
relation to the matter subsystem. In practice where,
e.g., an ensemble of molecules interacts with the cavity
mode, this simplification can become questionable. Such
an ensemble might extend over macroscopic scales such
that individual molecules will experience different cou-
plings. In the following we take rMatter = 0 for simplicity
such that Sα(0) is real and we can straightforwardly per-
form the unitary PZW, also referred to as length gauge,

transformation e−iα0
∑Ne+Nn
j=1

∑
α qj [Sα(0)εα·rj ]S

∗
α(0)εα·Â(0).

We accompany this by a canonical transformation which
swaps the photon coordinates and momenta i∂qα →
ωαpα, qα → −iω−1α ∂pα while preserving the commutation
relations [22]. This is equivalent to performing the PZW
transformation in the dipole limit. The non-relativistic
QED Hamiltonian then reads

Ĥ = Ĥn + Ĥe + Ĥne + Ĥp + Ĥep + Ĥnp, (9)

where the nuclear Hamiltonian is

Ĥn = T̂n + Ŵnn = −
Nn∑
j=1

1

2Mj
∇2

Rj
+

1

2

Nn∑
i 6=j

ZiZj
|Ri −Rj |

with the bare nuclear masses Mj . The electronic Hamil-
tonian is

Ĥe = T̂e + Ŵee = − 1

2me

Ne∑
j=1

∇2
rj +

1

2

Ne∑
i6=j

1

|ri − rj |

with the bare electron mass me and the nuclear-electron
interaction is given by

Ĥne = −
Nn∑
j=1

Ne∑
i=1

Zj
|ri −Rj |

.

Further, the photonic contribution for Mp modes is then
given by

Ĥp + Ĥep + Ĥnp =
1

2

Mp∑
α=1

[
−∂2pα + ω2

α

(
pα −

λα
ωα
·R
)2
]
,

(10)

which incorporates the total dipole R =
∑Ne
j=1 rj −∑Nn

j=1 ZjRj of electrons and nuclei. Here Mp is a
finite but arbitrarily large amount of photon modes
which are the most relevant modes but in princi-
ple run from the fundamental mode of our arbitrarily
large but for simplicity finite quantization volume 11

11 We could straightaway also use the full infinite space [71], but

up to a maximum sensible frequency, for example, an
ultra-violet cut-off at rest-mass energy of the electrons.
The operator Eq. (10) contains the bilinear matter-
photon coupling and the quadratic dipole self-energy

term 1
2ε0

∫
drP̂

2

⊥(r)→ 1
2

∑Mp

α=1(λα ·R)2.
The fundamental light-matter coupling to mode α is

then denoted by

λα =
√

4πSα(0)εα, (11)

which depends on the form of the mode functions and the
chosen reference point for our matter subsystem [25, 105].
This can lead to an increase of the fundamental coupling
to a specific mode and is an inherent feature of the phys-
ical set-up, e.g., the form and nature of the cavity. In
the following we will treat λα and the corresponding fre-
quencies ωα as parameters that we can adopt freely to
match different physical situations, motivated by the re-
cent experimental progress to sub-wavelength effective
cavity volumes [106, 107]. This also highlights that the
self-energy term depending on λα is influenced directly
by the properties of the cavity.

Importantly, since the length gauge is equivalent to the
Maxwell’s equation in matter as introduced in section II,
we now work in terms of the displacement field [61, 70]

D̂ =
∑
α

ωα
4π
λαpα

and the transversal polarization operator 12

P̂⊥ = −
∑
α

1

4π
λα (λα ·R) .

By construction, the electric-field operator in length
gauge, no longer representing the conjugate momentum,
becomes

Ê⊥ = 4π
(
D̂− P̂⊥

)
. (12)

The combination of unitary length gauge transformation
and canonical-momentum transformation results in mod-
ified mode operators

âα =
−i√

2

(
1√
ωα

∂pα +
√
ωαpα −

λα ·R√
ωα

)
,

â†α =
i√
2

(
− 1√

ωα
∂pα +

√
ωαpα −

λα ·R√
ωα

)
. (13)

this will just make the notation unnecessarily complicated, since
we will reduce the photon modes in the course of the paper to
just one effective mode. Furthermore, the above Hamiltonian
converges in the norm resolvent sense to the infinite-space Hamil-
tonian for Mp →∞ [104], and hence the above Hamiltonian can
be made equivalent to the full infinite-space Hamiltonian if we
make the quantization volume larger.

12 This form agrees with Eq. (8) if we perform the dipole approx-
imation (discard s integration) and consider as reference point
r0 = 0. Alternatively this can also be found by directly quantiz-
ing the dipole-approximated classical theory [43].
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That the expression of physical operators in terms of cre-
ation and annihilation operators are not invariant un-
der the length-gauge transformation clarifies that special
care has to be taken on how we interpret observables and
design possible approximations as otherwise unphysical
consequences arise as highlighted explicitly in Sec. IV B.
We also see that in accordance to the Maxwell’s equation
in matter, by working with D̂ we implicitly take into ac-
count the back-reaction (polarization) of matter on the
electromagnetic field. The physical field is found with
the constitutive relation of Eq. (12). Finally we note
that the PZW transformation has removed the explicit
diamagnetic contribution of the current and the physical
current is now equivalent to the paramagnetic current.
The diamagnetic term has, however, not vanished but is
contained in the introduced phase of the coupled light-
matter wave function [61].

Finally, there is one subtle question left. If we con-
sider many photon modes they give rise to the radiative
losses, that is, they constitute the photon bath of the
matter subsystem into which the excited states can dis-
sipate their energy [44]. This gives rise to effects like
spontaneous emission, that is, turning the discrete eigen-
states of the closed system described by a Schödinger
equation into resonances with finite line width [44]. Se-
lecting furthermore only one or very limited set of modes
α will restrict retardation effects and can lead to un-
physical superluminal transfer appearing in the (deep)
ultra-strong coupling regime [108]. In this work we are,
however, not interested in lifetimes but in equilibrium
states of the coupled light-matter system. In this case
we can instead of keeping many modes subsume the vac-
uum photon bath by renormalizing the bare masses me

and Mj of the charged particles, i.e., we use the usual
physical masses such as me = 1 in atomic units, and
only keep a few important modes that are enhanced with
respect to the free-space vacuum.

We have seen that already several approximations have
to be employed to arrive at the above Hamiltonian which
represents the usual starting point of most considera-
tions in cavity QED and cavity-modified chemistry. Each
approximation restricts its applicability but the basic
physical constraints, i.e., gauge and coordinate-system
(basis-set) independence, existence of a ground state, and
radiation-less eigenstates, are as of yet conserved. It is
now subject of the following sections to emphasize that

ignoring the transversal self-polarization 1
2

∑Mp

α=1(λα·R)2

will inevitably break those fundamental constraints. This
implies by no means that perturbative treatments that
ignore this term, either by restricting the Hilbert space of
the matter subsystem or by perturbation theory on top
of free matter observables, might not provide accurate
predictions [15, 75, 109]. It shows however that care has
to be taken when the quadratic terms are disregarded.

IV. NECESSITY AND IMPLICATIONS OF
QUADRATIC COUPLINGS IN THE DIPOLE

APPROXIMATION

Let us first refine our picture of quadratic contribu-

tions (also for the ’momentum-gauge’ Â
2

term) before
we show in a concrete numerical example violations of
basic physical principles (no equilibrium IV A, radiating
eigenstates and gauge dependence IV B and dependence
on the coordinate system IV C) when the self-polarization
contribution is discarded.

a. The diamagnetic shift. In the momentum gauge
(which is just a different name for the covariant derivative
expression we started with) the dipole approximation is

(−i∇− α0qÂ(0))2 and gives rise to a term Â(0)2 in ac-
cordance to Eq. (5) and implies a shift in frequency (see
also Sec. II). Under certain assumptions this term can in-
deed be absorbed by a redefinition of the frequencies and
polarizations of the field modes [15, 73, 91, 92]. These re-
definitions depend on the matter subsystem (more specif-
ically the number of charged particles) and lead to the
diamagnetic shift of the photon field which can be ob-
served experimentally [93, 110, 111]. Since the difference
between the bare and the diamagnetically-dressed pho-
tonic quantities go as

√
N/V , where N is the total num-

ber of particles and V the quantization volume, it is often
argued that one can use the bare quantities for finite sys-
tems. This is not entirely correct. The same argument
would predict that the coupling between light and mat-
ter (see Eq. (11)) would be zero. The reason for non-zero
coupling lies in the fact that by making the quantization
volume larger (and approaching free space) the amount
of modes in any frequency interval approaches infinity as
well. So while indeed the coupling to an individual mode
becomes zero, the coupling to the continuum of modes
is non-zero. Thus when we keep individual modes in our
theoretical description we effectively treat a small but fi-
nite frequency interval of modes. This frequency interval
can be related to the effective mode volume, since it gives
the spacing between the effective modes. Consequently
we also need to dress the photon operators diamagneti-
cally. This diamagnetic shift, which increases all photon
frequencies [15, 91, 92], resolves the infrared divergence
that plagues full relativistic QED, provides the stability
of matter [71] and can become dominant for a large num-
ber of particles, i.e., a large polarizability [15, 91, 92].

b. From the diamagnetic shift to the self-polarization.
A different way to subsume the Â(0)2 term is to perform
the previously discussed PZW or length-gauge transfor-
mation. The momentum and the length gauge are unitar-
ily equivalent and hence by construction lead to the same
physical results when considered in the same Hilbert
space. This also highlights the gauge-independence of
non-relativistic QED. However, the wave function as well
as certain operators, e.g., the physical current operator
becomes equivalent to the paramagentic current oper-
ator [61], are transformed. And only if this is taken
into account properly are physical observables gauge
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invariant (see, e.g., Sec IV B). Also, it is important
to realize that both forms are only equivalent in the
case that we consider the full Hilbert space, i.e., in
quantum-chemical terms the full basis-set limit. Few-
level approximations that are deduced either from the
length or the momentum gauge, respectively, will lead
to different quantum-optical models with different phys-
ical results [70, 75, 78, 112]. This break of gauge-
invariance can have very fundamental consequences, as
the long-standing debate of the (non-)existence of a Dicke
super-radiant phase shows [62, 113, 114]. Disregard-

ing quadratic contributions (Â2/P̂2
⊥) will merely allow

to obtain perturbatively similar results when material
transition-frequency and photonic frequency perfectly co-
incide (on-shell or energy conserving process) while the
proper consideration of quadratic contributions will lead
to exactly identical observables, irrespectively of ener-
getic relations [15, 70]. Let us highlight at this point that

the transversal quadratic contributions P̂2
⊥ and Â(0)2

are not equivalent but have different physical meanings.
Performing the PZW-transformation did not transform
Â(0)2 into P̂2

⊥ [61] and a perturbative expansion in or-
ders of the different bilinear couplings will lead to the
same conclusion [15, 75].

c. Perturbation theory and the limit of the Dicke
model. When considering a system of several molecules
we can separate their instantaneous interactions medi-
ated by longitudinal and transversal polarization fields

(in the PZW gauge) by
∫
drP̂

2
=
∫
drP̂

2

‖ + P̂
2

⊥. Here
the first term on the right-hand side corresponds to
the Coulomb interaction, the second term corresponds
to the self-polarization contribution [82]. We can fur-
ther approximately distinguish between situations where
the wave functions of the different constituents overlap
strongly and situations where there is no strong over-
lap. The previous situation, often referred to as intra-
molecular, demands to carefully consider Coulomb and
self-polarization contributions simultaneously, where the
Coulomb contribution is dominating in most situations.
The latter situation of contact-free interactions, referred
to as inter-molecular, between matter sub-systems leads
to a perturbative (dipolar approximation) cancellation
of instantaneous interactions such that

∫
drPA ·PB ≈ 0

and we are left approximately with purely bilinear and re-
tarded interactions between those separated matter sub-
systems [88]. This situation, however, does not allow to
neglect longitudinal or transversal interactions when per-
forming calculations locally for one of the sub-systems.
A consistent calculation considering, for example, molec-
ular rearrangements during chemical reactions due to the
influence of cavity-mediated strong light-matter coupling
will thus demand also a consistent treatment of Coulomb
and self-polarization contributions.

At this point it is, however, instructive to assume that
indeed the local, i.e., sub-system, eigenstates are not af-
fected by inter-molecular interactions and do not need
to be updated during the process. In this case we can
perform the pinned-dipole approximation which implies

that each subsystem is localized at a specific position and
distinguishable. Starting from Eq. (9), we can then re-
cover the Dicke model by absorbing the self-polarization
contribution perturbatively by renormalizing the mass of
the particles (similar to the perturbative treatment of
the Lamb shift) such that the effective interaction re-
duces to the common bilinear coupling [70]. In the case
of the pinned-dipole approximation the bilinear coupling
to the displacement field becomes equivalent to a cou-
pling to the electric fields since the local polarization in
E⊥ = 4π(D − P⊥) is zero by construction. To assume
that the quantum sub-systems are perfectly localized
and distinguishable is in stark contrast to a quantum-
mechanical ab initio description of molecules. Thus ap-
plying the Dicke model to deduce the influence of strong
coupling on the local molecular states calls for a very
careful analysis of all the applied approximations and
their consequences. It furthermore permits physical fea-
tures such as when charge-distributions start to overlap,
as often the case in quantum chemical calculations, lead-
ing to a dependence of local observables on the surround-
ing (collective) ensemble [16].

d. Quadratic and higher-order terms in other physical
situations. Lastly, let us briefly highlight that quadratic
couplings also necessarily appear in other situations, i.e.,
they are indeed a quite general feature. For instance, if
nuclear vibrations are approximated as phonon modes,
the non-linear Debye-Waller-term ∝ ∇k∇k′Ĥ has to be
added to the bilinear interaction [115, 116]. This term
originates from the quadratic elements in a Born-Huang
expansion [15] with the very same physical effects as the

quadratic components Â
2

or P̂
2

⊥, e.g., enforcing transla-
tional invariance (see also Sec. IV C) and renormalizing
the excitation energies.

More closely connected to our current situation is the
coupling to modes of a plasmonic environment. In prin-
ciple, if we describe the plasmonic environment as part
of the full system [117, 118], the density oscillations of
the plasmonic environment are captured in an ab initio
description by the Coulomb interaction and the induced
transversal photon field and hence Eq. (9) is directly ap-
plicable. Let us assume, however, that we are not inter-
ested in a self-consistent calculation, can safely disregard
contact-terms

∫
drPA · PB = 0, and rather care about

perturbative corrections. This consideration will lead to
van-der-Waals (dipole-dipole) type interactions with dif-
ferent scalings in terms of their inter-molecular distance
RAB , independent of the choice of Coulomb or PZW
gauge [70]. The consideration of large distances sub-
ject to significant retardation are described by attractive
Casimir-Polder interactions [119, 120] scaling asO(R−7AB).
For smaller RAB retardation might be omitted and we
enter the realm of instantaneous attractive interactions
captured by the London dispersion potential O(R−6AB). 13

13 For a detailed discussion considering electric, magnetic and
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While those considerations are well tested and allow for
excellent perturbative results, they would not allow a
self-consistent calculation as these forces would merely
result in a collapse of the wave function onto a singular
point due to its unbalanced attraction, e.g., assuming a
set of harmonic oscillators describing the plasmonic exci-
tations coupled merely bilinear to the system of interest
would introduce divergent forces ∝ −∑α λα(λα ·R) [15].
Especially the Coulomb potential will give rise to repul-
sive components for small RAB similar to the empiric
O(R−12AB ) of the Lennard-Jones potential. It is therefore
the higher-order components that are ensuring the sta-
bility of matter. A self-consistent treatment of molecules
in a polaritonic cavity, which itself is modeled as, e.g., a
simple harmonic oscillator [40, 121], thus needs to include
higher-order couplings to describe a stable and physical
system. This would demand extending the quasistatic
approximation [122–124] for plasmonic systems such that
the plasmonic cluster responds to the coupled molecule.
This is precisely the physical origin of the quadratic terms
in QED, they allow the photonic or vice-versa the mat-
ter system to respond to the coupling by adjusting their
excitation energies. For instance, the A2 part can be
subsumed into adjusted mode frequencies and further
defines a minimal frequency, i.e., cures the infrared di-
vergence, while the P2

⊥ term renormalizes the energies
of the material, all within the long-wavelength approxi-
mation. The very same effects should be present for a
plasmonic cavity when consistently quantized. Such ef-
fects are already observable when performing ab initio
calculations with solely the longitudinal Coulomb inter-
action [118]. For small clusters, therefore small effec-
tive volume and high coupling strength, the modification
of the response and volume due to the presence of the
coupled molecule is non-negligible and modifies the plas-
monic modes of the cluster. A purely bilinear coupling
dictates entirely different physics (see footnote 9 for a de-
tailed discussion), violates all the aforementioned basic
constraints and leaves such a simplification as inherently
perturbative. While state-of-the-art models might pro-
vide insightful perturbative results, the development of
corrected models should obtain additional interest and
ab initio calculations could prove beneficial to foster this
effort.

A. No bound eigenstates without self-polarization

Let us now consider concretely what happens if we dis-
card the quadratic terms and which further physical con-
straints we violate. The example will be a simple molec-
ular system, a slightly asymmetric one-dimensional Shin-
Metiu model, coupled strongly to a single cavity mode as
illustrated in Fig. 1. We subsume the rest of the photon

diamagnetic polarizability please refer to [120] and references
therein.

Figure 1. Illustration of the Shin-Metiu model insight the
cavity. The two outer nuclei with the distance L and charges
Z± are fixed in position while central nucleus and electron
can move freely within one dimension.

bath in our description approximately into the physical
mass of electron and nuclei. The Shin-Metiu model fea-
tures one nucleus moving in between two clammed nuclei
with in total one electron and is a paradigmatic model for
non-adiabatic electron-nucleus coupling that gives rise to
many interesting chemical processes. The Hamiltonian of
this model with moving nuclear charge Z = +1 is given
by

Ĥ = − 1

2M
∂2X −

1

2me
∂2x + Venx(x−X) (14)

+ Z−Vnn(X − L

2
) + Z+Vnn(X +

L

2
) + Z−Ven(x− L

2
)

+ Z+Ven(x+
L

2
) +

1

2

[
−∂2p + ω2

(
p− λ

ω
R

)2
]
,

with the total dipole R = x − ZX and electron-nuclear
and nuclear-nuclear potentials

Vnn(X ± L

2
) =

Z

|X ± L
2 |

Ven(x± L

2
) =

erf
[
(|x± L

2 |)/Rc
]

|x± L
2 |

Venx(x−X) =
Z erf [(|x−X|)/Rf ]

|x−X|
where erf represents the error-function. For the follow-
ing calculations we consider parameters Z+ = 1, Z− =
1.05, M = 1836 me, L = 18.8973, Rc = 2.8346, Rf =
3.7795 with an electronic and nuclear spacing of ∆x =
0.4, ∆X = 0.04 between the equidistant grid-points and
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40 photon number-states. Furthermore, we couple a sin-
gle cavity-mode with the frequency ω = 0.00231 to the
vibrational manifold. We achieve ultra-strong vibrational
coupling with g/ω = λ/

√
2ω = 0.40748 in atomic units,

where by no means the following results qualitatively de-
pend on coupling or frequency. The strength of the light-
matter interaction solely determines how quickly given
effects will be visible and the selected values are close to
those of previous publications in this field of research. It
is important to realize that the associated wavelength to
this frequency is 1.9724 · 105 Å = 19.724 µm and thus
differs by about four orders of magnitude from the com-
putational box (≈ 60 Å) that is considered for the matter
system. Our example is thus safely within the validity of
the long wavelength approximation when considering e.g.
one-dimensional cavities.

Let us start to investigate the most fundamental
problem of discarding the quadratic term in the non-
perturbative regime: The instability of the coupled sys-
tem, i.e., that electrons and nuclei fly apart if coupled
even in the slightest to the photon field unless we restrict
the Hilbert space [15, 61]. To illustrate this we increase
the simulation box stepwise by increasing the number of
basis functions (grid-points), keeping other parameters
fixed, and present first the light-matter correlated ener-
gies as well as the total dipole in Fig. 2. We find that
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Figure 2. First four light-matter correlated eigenvalues with
(blue, solid) and without (blue, dashed) self-polarization con-
tribution as well as total dipole R = x−ZX with (red, solid)
and without (red, dashed) self-polarization. While observ-
ables start to be converged with a box size around 50 Å,
without self-polarization the system starts to disintegrate al-
ready for slightly larger box-values as highlighted by the inset.

by increasing the space of allowed wave functions, i.e.,
approaching the basis-set limit, the minimal-energy solu-
tion without the self-polarization term does not converge
and minimizes the energy (dashed blue line) by increasing
the total dipole (dashed red line). To put it differently,
the system is torn apart and electrons occupy one side of
the simulation box, while nuclei the other.

On the other hand, with the self-polarization term we
see how we approach quickly the basis-set limit such that

we have a basis-set independent result (red and blue solid
line, respectively). The complete disintegration of the
system without the self-polarization happens at a criti-
cal box size, which is just marginally larger than a box
leading to converged results when the self-polarization
is included. With further increasing box size, the en-
ergies resemble more and more those of an inverted
shifted harmonic oscillator, which only supports scatter-
ing states [125]. This illustrates that by a small (∼20%)
variation of the simulation box we lose the physical char-
acter of the model and enter a non-physical regime. How
drastic this effect will appear is given by the ratio of
quadratically divergent potential energy − 1

2 (λ ·R)2 and
the energy that is demanded to ionize the system from a
given eigenstate −εi (assuming non-interacting electrons
for simplicity) such that a pure bilinear treatment would
be perturbatively only reasonable for −(λ ·R)2/2εi � 1.
In this sense the common ratio between coupling and ex-
citation energy g/ω, assuming resonance ε2−ε1 = ω, can
with slight adjustments to

Extension criterion =
λ2

4ε2i
(in atomic units) (15)

be seen as an estimate how quick the given eigenstate
”i” will become unstable without self-polarization com-
ponent. This extension criterion (15) can be motivated

by the single-particle Schrödinger equation [−~
2

2me
∆ +

v(r)]Ψi(r) = εiΨi(r) in the limit r →∞, v(r)→ 0, ∆→
∂2r such that the long-range exponential decay of the

state Ψi ∝ e−
√

2me(−εi)r/~ = e−r/ai is defined by its
characteristic extension ai = ~/

√
2me(−εi) (e.g. for the

hydrogen atom the Bohr radius). The simulation box
has to be large enough to at least fit the state ”i” to
an amount that we resolve an exponential decay ∼ e−1

(which is far from numerical convergence in fact). This
provides an estimate of the extension of the eigenstate
of interest and its associated self-polarization energy
(λ ·R)2 ≈ (λai)

2 = −λ2/2εi. While this might provide
an orientation for theoretical calculations when instabil-
ities are to be expected without self-polarization, even
before the system is torn apart we see that the eigenval-
ues and the total dipole differ noticeably when increasing
the basis set. Also other observables are changing with-
out the self-polarization term, e.g., the non-perturbative
Rabi splitting. The observables with self-polarization re-
main completely size-independent once reaching a suffi-
cient basis-resolution.

Let us illustrate how weakly bound states are affected
with the help of a second numerical example. We select
a simple one-dimensional soft-Coulomb Hydrogen atom
but screen the nuclear charge Z that binds the electron
with v(x) = −Z/

√
x2 + 1 to Z = 1/20. We couple

this system rather weakly g/ω = 0.006 with frequency
ω = 0.01368 in resonance to its first excitation (when
converged) and as before increase step-wise the simula-
tion box. Figure 3 illustrates that although the ground
state is merely perturbatively affected for up to 200 Å,
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the excited states immediately turn into, for this case,
unphysical scattering states. As before adding the self-
polarization term will result in the expected spectrum,
very much in contrast to the spectrum without the self-
polarization component even though the coupling is so
weak that the ground state is barely affected at small
extensions of the simulation box. The extension crite-
rion λ2/4ε2i leads for the ground state to 0.0011 and
for the first excited state to 0.1664. While the ratio
g/ω = 0.006 gives the impression of rather weak cou-
pling, the extension criterion provides a first indication
that the excited states will be substantially affected by
the self-polarization component.
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Figure 3. First four light-matter correlated eigenvalues with
(blue, solid) and without (red, dashed) self-polarization con-
tribution for the Rydberg-type weakly bound hydrogen model
with grid spacing ∆x = 0.8 and 120 photon number-states.
Until the box reaches large extends ≈ 200 Å the ground state
without self-polarization is merely slightly deviating from the
correct one. The excited states however, i.e., also the spec-
tra and all observables involving excited states, are relatively
weakly bound and experience unphysical behavior even before
entering a converged regime. The inset magnifies the unphys-
ical cross-over from physically bound into scattering states.
The disintegration effect is qualitatively independent of the
frequency.

While the bilinear interaction reduces the ground state
energy with increasing coupling, the self-polarization
contribution counteracts by an increase in energy and
dominates for typical couplings the bilinear contribution,
i.e., even the sign, thus the qualitative behavior, of ener-
getic shift within the cavity can alter depending on the
presence/absence of the self-polarization [13, 15]. This
qualitative change is also represented in spatial observ-
ables, i.e., the self-polarization term favors a reduced po-
larizability and thus focuses charge density in domains
where charge is already present [14–16]. The bilinear
coupling, which furthermore scales with the frequency,
is typically weaker affecting the ground state, features
the contrary tendency and their competition will deter-
mine the qualitative distribution of charges inside the
cavity [15, 126]. The resulting consequences can e.g. in-
clude a reduced equilibrium bond length [13, 14] with

an earlier onset of static correlation [14] that could be
steered on demand by controlling the polarization of the
field and therefore implies interesting opportunities for
chemical considerations and electronic devices.

As a side remark, although the validity of the dipole
approximation for high frequencies is questionable, the
quadratic self-polarization term guarantees that the high-
frequency photons essentially decouple from the matter
subsystem. If only a purely linear-coupling is assumed,
then the ultra-violet behavior is completely wrong as
photons with arbitrarily high energies still interact with
the matter subsystem [105].

B. Radiating eigenstates without self-polarization

Let us look at another unphysical feature that appears
when the self-polarization is neglected. In the case of
the simple Rabi or Dicke model, where the particle is
assumed perfectly localized (assuming effectively classi-
cal particles), the polarization is zero and we can as-
sociate the expectation values of the modes in length
gauge with the electric field. However, if we consider
an ab initio treatment, this is no-longer the case and
we need to use the correct definition of the electric field
of Eq. (12). In Fig. 4 we then show the displacement
as well as the electric field expectation values as we in-
crease the number of basis functions. This is again the
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Figure 4. Displacement field with (blue, solid) and without
(blue, dashed) self-polarization contribution as well as the
electric field with (red, solid) and without (red, dashed) self-
polarization. While the electric field is independent of the
molecular convergence, therefore even in a restricted subspace
we do not radiate and have a well defined equilibrium solu-
tion, the displacement field depends on the convergence of the
molecular system.

same as allowing the electrons and nuclei to extend over
an ever increasing spatial region which is equivalent to
exploring the full Hilbert space. Also in these observ-
ables we see that the system with the self-polarization
term included leads to simulation-box size independent
results after roughly ≈ 45 − 50 Å (blue and red solid
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lines). Only extending the box slightly at ≈ 60 Å the
system without the self-polarization desintegrates (blue
and red dashed lines). Recall here that this is well within
the validity of the long-wavelength approximation as the
matter and photon-field scales are separated by four or-
ders of magnitude. By construction the system with the
self-polarization term always obeys the basic constraint
of zero electric field (red solid line), while the system
with only bilinear-coupling leads to an eigenstate (which
would turn in the basis-set limit to a non-normalizable
scattering state) with non-zero electric field. This cannot
be a physical ground state.

Realizing the connection between observable field and
canonical momentum, let us turn our attention to the
number of photons in the ground state. The photon
number operator (the electromagnetic field occupation)
is defined in Coulomb gauge as

N̂ =
∑
α

â†αâα.

In the length or PZW gauge these annihilation and cre-
ation operators are given by Eq. (13), and as a conse-

quence the number operator N̂ in this gauge is

N̂ =

Mp∑
α=1

[
− 1

2ωα
∂2pα +

ωα
2

(
pα −

λα
ωα
·R
)2

− 1

2

]
.

Originating from the change of conjugate momentum
from electric to displacement field, we see that the self-
polarization enters the definition of the photon number
operator when we work in the length gauge. Without sur-
prise, this leads to different occupations as if we would
naively use

N̂ ′ =

Mp∑
α=1

[
− 1

2ωα
∂2pα +

ωα
2
p2α −

1

2

]
,

and we illustrate this difference in Fig. 5. The alleged
occupation N ′ is higher than the physical occupation N
caused by the permanent dipole. Only for two-level mod-
els such as the Rabi model both definitions agree [15].
Comparing Fig. 4 and 5, it is instructive to observe that
displacement field D and naive mode occupation N ′ be-
have qualitatively very similar, obtaining relevant non-
zero values only after a sufficiently large numerical box
size is reached. In contrast the electric field E remains
system-size independent and the physical mode occupa-
tion N adjusts merely quantitatively to the simulation
box. Not surprisingly, ignoring the self-interaction con-
tributions in general leads to different results for different
gauge choices.

C. Coordinate system and dipole dependence
without self-polarization

The Hamiltonian of Eq. (9) (and its variants) guar-
antees that all physical observables in equilibrium are
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0

100

101

N
ai

ve
m

o
d

e
o
cc

u
p

at
io

n

R2

no R2

R2

no R2

0

100

101

102

P
h
y
si

ca
l

m
o
d

e
o
cc

u
p

at
io

n

1 2 3 4 5 6 7 8
Nuclear box size (Å)

Figure 5. Naive N̂ ′ and physical photon occupations N̂ in
length gauge with (blue, solid) and without (blue, dashed)
self-polarization contribution during the self-consistent solu-
tion.

independent of the chosen coordinate system. This is
obvious if we have a charge neutral system, where the
Hamiltonian of Eq. (9) is completely translationally in-
variant. This constraint is physically very reasonable,
because without a spatial dependence, i.e., the manifes-
tation of the long-wavelength approximation, the elec-
tromagnetic field cannot break the symmetry of the bare
molecular system. If the system is not charge neutral,
e.g., when we only consider electrons in an external bind-
ing potential, we do no longer have trivial translational
invariance. To see this, consider a shift of the origin of
the coordinate system along the polarization of the field
such that also the total dipole operator R is shifted. Note
that this also changes the origin of the cavity as the long-
wavelength approximation enforces that all molecules see
the same field (of the now also shifted reference point)
of the cavity. However, due to the zero-electric-field con-
dition of a physical ground state we explicitly know the
relation between the (shifted) dipole expectation value
〈R〉 of the matter subsystem and the expectation values
of the displacement fields as 〈pα〉 = λα

ωα
· 〈R〉 [15, 25, 61].

If we then further re-express the light-matter coupling
with fluctuation quantities ∆R = R − 〈R〉 such that
Eq. (10) becomes

1

2

Mp∑
α=1

[
−∂2pα + ω2

α

(
∆pα −

λα
ωα
·∆R

)2
]
,

we find that in equilibrium the shifts cancel and the only
remaining contribution in the Hamiltonian is given by
the fluctuations around the mean values. Indeed, the
equilibrium wave function in the new coordinate system
is just the original wave function translated in space and
the photon subsystem coherently shifted.

As a consequence, the light-matter coupled system is
invariant under shifts of the origin in equilibrium, no
physical observable has a dependence on the permanent
dipole. That the equilibrium properties of light-matter
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coupled systems do not depend on a possible permanent
dipole 14 , is merely a consequence of how particles cou-
ple to the transversal electromagnetic field: only currents
can interact with photons. A permanent dipole does only
shift the photonic displacement field, which is not a phys-
ical observable, and the permanent dipoles of molecules
will only contribute when the combined system is moved
out of equilibrium.

Only upon neglecting the self-polarization term can an
unphysical dependence on the permanent dipole in equi-
librium arise. To illustrate that even for small systems
and shifts this can have a large influence, we consider
the Shin-Metiu model from before, however, we slightly
charge the complete system by using Z = +1.05|e|. We
then perform a small shift x → x + µ in the coordinate
system, solve the corresponding Shin-Metiu model and
determine the electronic ground state density nµe (x) and
then translate back, i.e., nµe (x− µ), to compare with the
original (unshifted) solution ne(x). 15 As expected, when
the self-polarization is included, we just recover the old
density and nµe (x−µ)−ne(x) ≡ 0. In contrast, in Fig. 6
we show the differences without the self-polarization and
find an ever increasing difference for larger µ (increas-
ing permanent dipole). The behavior of the Shin-Metiu

14 Without self-polarization, an ensemble of molecules would feel
a force on each individual molecule scaling with the number of
molecules oriented along the polarization. This would lead to
a rapid disintegration of a molecular ensemble as exemplified in
Sec. IV A.

15 Note that in this case this is not a physical translation but merely
a shift of origin for the coordinate system. However, within the
long-wavelength approximation, physical (or active) and coordi-
nate system (or passive) translations are synonymous and only
when extending beyond this prototypical approximation observ-
able differences between active and passive translations will ap-
pear.
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Figure 6. Electronic density difference between the trans-
lated (by a shift µ) nµe (x) and original system ne(x), i.e.,
nµe (x− µ) − ne(x), without the self-polarization term. If the
self-polarization is included the difference is always zero, i.e.,
the equilibrium-physics remains independent of the coordi-
nate system and the permanent dipole. In the Shin-Metiu
model the moving nucleus was slightly charged by Z = +1.05
and an electronic and nuclear box size of 59.27 and 5.93 Å was
chosen, i.e., before any scattering states appear. All other pa-
rameters remain as before.

model without the self-polarization is clearly unphysi-
cal, since observables should not depend on the coordi-
nate system. Any approximate method tailored to per-
form self-consistent calculations should respect the above
coordinate system independence by retaining the bal-
ance between bilinear and quadratic contributions. Con-
sider for example the performance of the non-variational
Krieger-Li-Iafrate approximation for ab initio quantum
electrodynamical density-functional theory presented in
Ref. [16] which is breaking this balance. Recall here that
translational invariance demands a similar consideration
for electron-nucleus interaction when approximated. The
appearance of quadratic terms is a general feature of non-
relativistic Hamiltonians [15, 115, 116].

V. SUMMARY

It is the very nature of physics that our descriptions
are necessarily approximate and that every theory
has its limitations and drawbacks. And even if we
have seemingly very accurate theories like QED, we
need to reduce their complexity by employing further
approximations and assumptions to render them practi-
cal. For QED this was historically done by employing
perturbation theory and/or restrictions to a minimal set
of dynamical variables. The resulting simplified versions
of QED are due to their clarity and elegance a very good
starting point for further investigations, provide for good
reasons a common language for a variety of subjects
and have provided tremendous insight over decades
of research. Nevertheless, we need to be aware under
which conditions these simplifications are valid and what
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their consequences are. With the recent experimental
advances in combining quantum-optical, chemical and
material science aspects [127] and the subsequent
merging of ab initio approaches with quantum-optical
methods, it has become important to scrutinize these
common assumptions [12].

In this work we have elucidated and illustrated
the consequences of discarding quadratic terms that
arise naturally in non-relativistic QED. Omitting them
breaks gauge invariance, introduces a dependence on
the coordinate system (or basis set), leads to radiating
ground states, introduces an artificial dependence on
the total dipole and in the basis-set limit leads to a
disintegration of the complete system. However many of
these effects can be mitigated if one works perturbatively
or restricts the space. This is in accordance with many
years of successful application of such approximations,
but also highlights their limits of applicability. However,
estimates of their applicability, such as the extension
criterion (15) discussed in Sec. IV A, become nowadays
relevant for practical calculations. Certainly when strong
coupling between light and matter modifies the local
matter subsystem, as is suggested by recent experimental
results [3, 11, 94, 128–130], the quadratic terms can
become important and determine the physical properties.

When looking beyond the simple Rabi splitting of spec-
tral lines, which is the accepted indicator of the onset
of strong coupling, other observables that contain fur-
ther information about the matter subsystem should be
able to highlight the necessity to modify the common
Dicke or Rabi models, e.g., as demonstrated in Ref. [74].
By considering photonic as well as matter observables at
the same time, the dipole-approximated bilinear coupling
can be further scrutinized, the influence of quadratic cou-
pling terms revealed and effects that are due to spatially
inhomogeneous fields (beyond the long-wavelength ap-
proximation) observed. Furthermore, when the light-
matter coupling renders bilinear, self-polarization and
Coulomb interaction act on comparable energy scales,
non-perturbative effects can be expected. At this point
it is important to realize that this statement also holds
spatially, i.e., that while a coupling might be considered
small for certain bondlengths/extensions of the molecular
system, at other parts or on other scales it might become
substantial. The extension criterion (15), that weights
the with spacial extension increasing divergent forces
against the ionization energy, is motivated precisely with
this spirit in mind, providing the to g/ω complementary

parameter estimate. Consider e.g. the binding curve of a
molecule, probing the dissociative regime with large dis-
tances will change the ratio of the aforementioned contri-
butions until van-der-Waals type of interactions contain-
ing retardation effects have to be considered, a problem of
also chemical interest [131]. Not just the equilibrium dis-
tance of molecules will change but especially their behav-
ior in the stretched configuration will be effected [13, 14],
a feature essential to describe chemical reactions. For
relatively large systems, which are yet still small com-
pared to the relevant wavelengths of the photon field,
stronger effects would be expected. In the simple models
we presented here we could have used a smaller coupling
strength yet a spatially more-extended system and we
would have found similar effects. Dynamics that probe
the long-range part of potential-energy surfaces should be
affected more strongly, especially true when compared to
dynamics due to classical external laser fields in dipole
approximation ignoring the self-polarization term. While
our focus remained on the single molecular limit an addi-
tional essential scale of the system is represented by the
amount of charged carriers, amplifying the dipole, polar-
izability, and therefore the self-polarization contribution.
Extended systems (e.g. solids and liquids) and molec-
ular ensembles with charge contact (e.g. biomolecules)
are therefore expected to experience quite sizable influ-
ences by quadratic components, i.e., perturbatively seen
renormalizing photonic or matter excitations due to the
collective light-matter interaction [15, 61, 73]. Recent
investigations on cavity enhanced electron-phonon cou-
pling [63] and its role for superconductivity [94] might
indicate the substantial scientific impact of this realiza-
tion. Exploring these situations where our theoretical
descriptions begin to differ strongly thus hold promise of
revealing further yet undiscovered effects [12].
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C. Tejedor, and F. J. Garćıa-Vidal, “Theory of strong
coupling between quantum emitters and propagating
surface plasmons,” Physical Review Letters 110 (2013),
10.1103/physrevlett.110.126801.

[22] Ilya V. Tokatly, “Time-dependent density functional
theory for many-electron systems interacting with cav-
ity photons,” Phys. Rev. Lett. 110, 233001 (2013).

[23] Stefan Yoshi Buhmann, Dispersion forces I: Macro-
scopic quantum electrodynamics and ground-state
Casimir, Casimir–Polder and van der Waals Forces,
Vol. 247 (Springer, 2013).

[24] Stefan Buhmann, Dispersion Forces II: Many-Body Ef-
fects, Excited Atoms, Finite Temperature and Quantum
Friction, Vol. 248 (Springer, 2013).

[25] Michael Ruggenthaler, Johannes Flick, Camilla Pelle-
grini, Heiko Appel, Ilya V. Tokatly, and Angel Rubio,
“Quantum-electrodynamical density-functional theory:
Bridging quantum optics and electronic-structure the-
ory,” Phys. Rev. A 90, 012508 (2014).

[26] Javier Galego, Francisco J. Garcia-Vidal, and Johannes
Feist, “Cavity-induced modifications of molecular struc-
ture in the strong-coupling regime,” Phys. Rev. X 5,
041022 (2015).

[27] Javier del Pino, Johannes Feist, and Francisco J Garcia-
Vidal, “Quantum theory of collective strong coupling of
molecular vibrations with a microcavity mode,” New
Journal of Physics 17, 053040 (2015).

[28] Johannes Schachenmayer, Claudiu Genes, Edoardo
Tignone, and Guido Pupillo, “Cavity-enhanced trans-
port of excitons,” Phys. Rev. Lett. 114, 196403 (2015).

[29] Akbar Salam, Non-relativistic QED theory of the Van
der Waals dispersion interaction (Springer, 2016).

[30] Markus Kowalewski, Kochise Bennett, and Shaul

http://dx.doi.org/ 10.1002/anie.201605504
http://dx.doi.org/ 10.1002/anie.201605504
http://dx.doi.org/10.1002/anie.201703539
http://dx.doi.org/10.1002/anie.201703539
http://dx.doi.org/10.1126/sciadv.aas9552
http://dx.doi.org/10.1126/sciadv.aas9552
http://dx.doi.org/10.1073/pnas.1722063115
http://dx.doi.org/10.1073/pnas.1722063115
http://dx.doi.org/ 10.1038/s41467-018-04736-1
http://dx.doi.org/ 10.1038/s41467-018-04736-1
http://dx.doi.org/10.1038/s41567-019-0436-5
http://dx.doi.org/10.1364/optica.6.000318
http://dx.doi.org/10.1038/s41467-019-08611-5
http://dx.doi.org/10.1038/s41467-019-08611-5
http://dx.doi.org/ 10.1002/anie.201905407
http://dx.doi.org/ 10.1002/anie.201905407
http://dx.doi.org/10.1038/s41570-018-0118
http://dx.doi.org/10.1038/s41570-018-0118
http://dx.doi.org/ 10.1073/pnas.1615509114
http://dx.doi.org/ 10.1073/pnas.1615509114
http://arxiv.org/abs/http://www.pnas.org/content/114/12/3026.full.pdf
http://dx.doi.org/10.1103/PhysRevA.98.043801
http://dx.doi.org/10.1103/PhysRevA.98.043801
http://dx.doi.org/ 10.1021/acsphotonics.7b01279
http://arxiv.org/abs/https://doi.org/10.1021/acsphotonics.7b01279
http://dx.doi.org/10.1021/acs.jctc.6b01126
http://dx.doi.org/10.1021/acs.jctc.6b01126
http://arxiv.org/abs/http://dx.doi.org/10.1021/acs.jctc.6b01126
http://dx.doi.org/10.1103/physrevb.67.085311
http://dx.doi.org/10.1103/physrevb.67.085311
http://dx.doi.org/ 10.1103/physrevb.71.115320
http://dx.doi.org/ 10.1103/physrevb.71.115320
http://dx.doi.org/ 10.1103/PhysRevA.84.042107
http://dx.doi.org/10.1103/physrevlett.110.126801
http://dx.doi.org/10.1103/physrevlett.110.126801
http://dx.doi.org/10.1103/PhysRevLett.110.233001
http://dx.doi.org/ 10.1103/PhysRevA.90.012508
http://dx.doi.org/10.1103/PhysRevX.5.041022
http://dx.doi.org/10.1103/PhysRevX.5.041022
http://dx.doi.org/ 10.1103/PhysRevLett.114.196403


16

Mukamel, “Cavity femtochemistry: Manipulat-
ing nonadiabatic dynamics at avoided cross-
ings,” J. Phys. Chem. Lett. 7, 2050–2054 (2016),
http://dx.doi.org/10.1021/acs.jpclett.6b00864.

[31] Felipe Herrera and Frank C. Spano, “Cavity-controlled
chemistry in molecular ensembles,” Phys. Rev. Lett.
116, 238301 (2016).

[32] M. Ahsan Zeb, Peter G. Kirton, and Jonathan Keel-
ing, “Exact states and spectra of vibrationally dressed
polaritons,” ACS Photonics 5, 249–257 (2017).

[33] Hoi Ling Luk, Johannes Feist, J Jussi Toppari, and
Gerrit Groenhof, “Multiscale molecular dynamics sim-
ulations of polaritonic chemistry,” Journal of chemical
theory and computation 13, 4324–4335 (2017).

[34] Simone De Liberato, “Virtual photons in the ground
state of a dissipative system,” Nature Communications
8, 1465 (2017).

[35] Oriol Vendrell, “Collective jahn-teller interactions
through light-matter coupling in a cavity,” Phys-
ical Review Letters 121 (2018), 10.1103/phys-
revlett.121.253001.

[36] Raphael F. Ribeiro, Adam D. Dunkelberger, Bo Xi-
ang, Wei Xiong, Blake S. Simpkins, Jeffrey C. Owrut-
sky, and Joel Yuen-Zhou, “Theory for nonlinear spec-
troscopy of vibrational polaritons,” The Journal of
Physical Chemistry Letters 9, 3766–3771 (2018).

[37] Norah M Hoffmann, Heiko Appel, Angel Rubio, and
Neepa T Maitra, “Light-matter interactions via the
exact factorization approach,” The European Physical
Journal B 91, 180 (2018).

[38] David Hagenmüller, Stefan Schütz, Johannes Schachen-
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