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We theoretically investigate field-induced charge-transport processes from the viewpoint of time-
reversal symmetry. We analytically demonstrate that breaking of the time-reversal symmetry is a
necessary condition to induce charge-transport and direct-current by external fields. This finding
provides microscopic insights into photovoltaic effects and optical-control of currents.

The photovoltaic effect, the conversion of energy from
light to electric current, is an important effect from both
fundamental and technological points of view. Recently,
the shift-current, which is one of the mechanisms of the
photovoltaic effect, has been attracting interest as an ef-
ficient energy conversion mechanism and has been inten-
sively investigated theoretically and experimentally1–6.
In ultrafast sciences and strong-field physics, control of
electric current by strong light has been investigated with
the aim of realizing petahertz optoelectronics7–14. In
this short note, we theoretically investigate field-induced
charge-transport phenomena from the viewpoint of time-
reversal symmetry in order to provide microscopic in-
sights into the photovoltaic effect and the optical-control
of current.
Here, we consider an N -particle system described by

the following Schrödinger equation,

i~
∂

∂t
Ψ(R, t) = Ĥ(t)Ψ(R, t), (1)

where coordinates of N -particles are collectively denoted
by R := {r1, · · · , rN}, and the Hamiltonian is denoted

by Ĥ(t). The charge-transport dynamics is investigated
by evaluating the current J(t) whose operator is defined
as

Ĵ(t) =
q

i~

[

R, Ĥ(t)
]

, (2)

where q is the charge of particles.
Now we prove that the charge-transport is forbidden

under the following three conditions. For the sake of
simplicity, we consider time propagation from t = −T/2
to t = T/2.
The first condition: The initial state is time-reversal

symmetric, satisfying

Ψ∗

(

R,−
T

2

)

= eiφ1Ψ

(

R,−
T

2

)

, (3)

where φ1 is a constant phase.
The second condition: The system returns to the initial

state after the time-evolution, satisfying

Ψ

(

R,
T

2

)

= e−iφ2Ψ

(

R,−
T

2

)

, (4)

where φ2 is a constant phase.

The third condition: The Hamiltonian Ĥ(t) satisfies
the following time-reversal symmetry condition:

[H(−t)Φ(R)]
∗

= Ĥ(t)Φ∗(R), (5)

where Φ(R) is any complex function.
The first condition, Eq. (3), guaran-

tees that the initial current, J(−T/2) =
∫

dRΨ∗(R,−T/2)Ĵ(−T/2)Ψ(R,−T/2), is zero. The
second condition, Eq. (4), guarantees that the external
field does not leave any excitations to the system
after the perturbation. The third condition, Eq. (5),
guarantees the time-reversal symmetry of external fields.
For example, if the Hamiltonian has the following form,

Ĥ(t) =
1

2m

[

−i~
∂

∂R
−

q

c
A(t)

]2

+ V (R, t), (6)

with a vector potential A(t) and a scalar potential
V (R, t), the third condition, Eq. (5), leads to the fol-
lowing requirements,

A(t) = −A(−t), (7)

V (R, t) = V (R,−t). (8)

Note that linearly-polarized light can satisfy Eq. (7) and
Eq. (8), while circularly- or elliptically-polarized light
cannot.
To prove that charge transport is forbidden, we ana-

lyze the relation between the forward and backward time-
propagations. Taking the complex conjugate of Eq. (1)
and replacing t by −t, the Schrödinger equation can be
rewritten as

i~
∂

∂t
Ψ∗(R,−t) =

[

Ĥ(−t)Ψ(R,−t)
]

∗

= Ĥ(t)Ψ∗(R,−t),(9)

where the third condition, Eq. (5), is used to obtain the
right-hand-side. Since Eq. (1) and Eq. (9) have the same
form, the forward and backward propagations are de-
scribed by the same propagator Û(t, t0) as

Ψ(R, t) = Û(t, t0)Ψ(R, t0), (10)

Ψ∗(R,−t) = Û(t, t0)Ψ
∗(R,−t0). (11)

For simplicity, we explicitly consider the forward time-
propagation from −T/2 to t as

Ψ

(

R, t−
T

2

)

= Û

(

t−
T

2
,−

T

2

)

Ψ

(

R,−
T

2

)

, (12)
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where 0 ≤ t ≤ T . Employing the first and second condi-
tions, Eq. (3) and Eq. (4), the corresponding backward
time-propagation is described as

Ψ∗

(

R,−t+
T

2

)

= Û

(

t−
T

2
,−

T

2

)

Ψ∗

(

R,
T

2

)

= ei(φ1+φ2)Û

(

t−
T

2
,−

T

2

)

Ψ

(

R,−
T

2

)

.

(13)

Comparing with Eq. (12) and Eq. (13), one finds
that the forward and backward-propagated wavefunc-
tions have the following relation:

Ψ∗

(

R,−t+
T

2

)

= eiφ Ψ

(

R, t−
T

2

)

, (14)

where the constant phase φ is defined as φ ≡ φ1 + φ2.
Therefore, the three conditions, Eq. (3), Eq. (4) and
Eq. (5), lead to the equivalence of forward and backward
time-propagations, or namely the time-reversal symme-
try of the system.
Evaluating the current flow with Eq. (5) and Eq. (14),

the following constraint for the current is obtained:

J

(

t−
T

2

)

= J∗

(

t−
T

2

)

=

[
∫

dRΨ∗

(

R, t−
T

2

)

Ĵ

(

t−
T

2

)

Ψ

(

R, t−
T

2

)]

∗

= −

∫

dRΨ∗

(

R,−t+
T

2

)

Ĵ

(

−t+
T

2

)

Ψ

(

R,−t+
T

2

)

= −J

(

−t+
T

2

)

. (15)

Furthermore, the transported charge Q during the time
interval between −T/2 and T/2 becomes

Q =

∫ T

0

dtJ

(

t−
T

2

)

= −

∫ T

0

dtJ

(

−t+
T

2

)

= −

∫ T

0

dτJ

(

τ −
T

2

)

= −Q (16)

with the variable transformation, τ = −t+T . Hence the
transported charge is zero, Q = 0, under the three condi-
tions, Eq. (3), Eq. (4), and Eq. (5). Therefore, at least,
one of the three conditions has to be violated in order
to induce charge-transport or direct current by external
fields. The violation of the first condition, Eq. (3), allows
initial states to have current flow, and it may trivially in-
duce the charge transport.
The second condition, Eq. (4), can be violated by

photo-excitation. Therefore, the photovoltaic effect may
be induced in a resonant excitation condition, where the
photon energy of applied fields exceeds the optical gap
of materials. Indeed, the shift-current mechanism relies
on the violation of the second condition as it can be in-
duced by linearly polarized light in a resonant condition,
while satisfying the first and third conditions, Eq. (3) and
Eq. (5).

Importantly, even if applied electric fields are
strongly off-resonant, charge-transport can be induced
by a strongly-nonlinear light-matter interactions with
inversion-symmetry-breaking7–9. In Refs7,15, such cur-
rent induced by linearly-polarized light has been inter-
preted with reversible and adiabatic quantum transitions
based on virtual carrier generation, and they suggested
an efficient and high-speed signal processing based on
the reversibility. However, according to the above anal-
ysis, an irreversible transition violating Eq. (4) with real

photocarrier generation is indispensable for the current
injection in dielectrics with linearly-polarized light that
satisfies Eq. (5) even if the spatial inversion symmetry
is broken by crystal structures or laser pulses. Thus the
microscopic mechanism of optical-field-induced current
in dielectrics warrants further investigation.

The above analysis further indicates that the strongly-
nonlinear light-matter interactions break the second con-
dition, Eq. (4), through nonlinear photocarrier gener-
ation such as multi-photon absorption and tunneling
excitation16, resulting in the field-induced current. Thus,
the light-induced current in dielectrics can be seen as the
current mediated by photocarriers. Recently, the role
of intraband transitions in photocarrier generation has
been discussed17, and they suggested a potential for ef-
ficient control of photocarrier generation with multicolor
laser pulses by optimizing the contribution of inter and
intrabant transitions. Extending this proposal, the pho-
tocurrent may be efficiently induced with multicolor laser
pulses by manipulating the contributions of inter and in-
traband transitions.

The third condition, Eq. (5), is the time-reversal sym-
metry of the Hamiltonian, and it can be broken by a mag-
netic field, circularly-polarized light etc. For example, by
applying a static magnetic field, the quantum Hall effect
can be hosted in a two-dimensional electron gas18,19. In
addition to the shift current, the injection current is yet
another mechanism of the photovoltaic effect based on
the breakdown of time reversal symmetry. The injec-
tion current originates from the photocarrier population
imbalance in momentum space induced by circularly- or
elliptically-polarized light in a system with breakdown of
spatial inversion symmetry1.

In summary, we theoretically investigated field-induced
charge-transport phenomena from the viewpoint of time-
reversal symmetry. We clarified that the three condi-
tions, Eq. (3), Eq. (4), and Eq. (5), guarantee the identity
of the forward and backward time-propagation, Eq. (14),
and forbid the charge transport processes. Therefore, the
light-induced charge transport, or namely photovoltaic
effects, can be induced only if, at least, one of these condi-
tions is violated by breaking the time-reversal symmetry
of the target system. This finding provides microscopic
insights into the photocurrent generation and may open
an efficient way of inducing photovoltaic effects and con-
trolling of electric current by light.
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man, J. Reichert, M. Schultze, S. Holzner, J. V. Barth,
R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I.
Stockman, and F. Krausz, Nature 493, 70 (2012).

8 G. Wachter, C. Lemell, J. Burgdörfer,
S. A. Sato, X.-M. Tong, and K. Yabana,
Phys. Rev. Lett. 113, 087401 (2014).

9 G. Wachter, S. A. Sato, I. Floss, C. Lemell,

X.-M. Tong, K. Yabana, and J. Burgdrfer,
New Journal of Physics 17, 123026 (2015).

10 M. S. Wismer, S. Y. Kruchinin, M. Ciap-
pina, M. I. Stockman, and V. S. Yakovlev,
Phys. Rev. Lett. 116, 197401 (2016).

11 J. D. Lee, W. S. Yun, and N. Park,
Phys. Rev. Lett. 116, 057401 (2016).

12 T. Higuchi, C. Heide, K. Ullmann, H. B. Weber, and
P. Hommelhoff, Nature 550, 224 (2017).

13 J. McIver, B. Schulte, F.-U. Stein, T. Matsuyama,
G. Jotzu, G. Meier, and A. Cavalleri, arXiv preprint
arXiv:1811.03522 (2018).

14 S. A. Sato, J. W. McIver, M. Nuske, P. Tang,
G. Jotzu, B. Schulte, H. Hübener, U. De Giovannini,
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