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Abstract

Plasma and serum are rich sources of information regarding an
individual’s health state, and protein tests inform medical decision
making. Despite major investments, few new biomarkers have
reached the clinic. Mass spectrometry (MS)-based proteomics now
allows highly specific and quantitative readout of the plasma
proteome. Here, we employ Plasma Proteome Profiling to define
quality marker panels to assess plasma samples and the likelihood
that suggested biomarkers are instead artifacts related to sample
handling and processing. We acquire deep reference proteomes of
erythrocytes, platelets, plasma, and whole blood of 20 individuals
(> 6,000 proteins), and compare serum and plasma proteomes.
Based on spike-in experiments, we determine sample quality-asso-
ciated proteins, many of which have been reported as biomarker
candidates as revealed by a comprehensive literature survey. We
provide sample preparation guidelines and an online resource
(www.plasmaproteomeprofiling.org) to assess overall sample-
related bias in clinical studies and to prevent costly miss-assign-
ment of biomarker candidates.
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Introduction

Protein levels determined in blood-based laboratory tests can be

useful proxies of diseases. These biomarkers assess normal physio-

logical status, pathogenic processes, or a response to an exposure or

intervention (FDA-NIH:Biomarker-Working-Group, 2016). Proteins

and enzymes constitute the largest proportion of laboratory tests,

reflecting the importance of the plasma proteome in clinical diag-

nostics (Geyer et al, 2017). Typical protein biomarkers such as the

enzymes aspartate aminotransferase (ASAT) and alanine amino-

transferase (ALAT) for the diagnosis of liver diseases or cardiac

troponins indicating myocardial necrosis are used routinely in clini-

cal decision making. Enzymatic activity or antibody-based labora-

tory tests are performed in high-throughput and at relatively low

costs, as the standard of health care. However, specific biomarkers

are only available for a very limited number of conditions and most

have been introduced decades ago (Anderson et al, 2013). There is

thus a critical need to make the biomarker discovery process more

efficient.

Protein-binder assays quantifying many plasma proteins in paral-

lel have become available (Gold et al, 2010; Assarsson et al, 2014),

resulting in large-scale biomarker mining efforts (Ganz et al, 2016;

Herder et al, 2018; Sun et al, 2018). Orthogonal to those technolo-

gies, mass spectrometry (MS)-based proteomics has become increas-

ingly powerful in all domains of protein research (Aebersold &

Mann, 2003, 2016; Munoz & Heck, 2014). MS measures the mass

and fragmentation spectra of tryptic peptides derived from the

sample with very high accuracy. Because these peptide and fragment

masses are unique, MS-based proteomics is inherently specific, which

can be an advantage over enzyme tests and immunoassays (Wild,

2013). Within its limit of detection, MS-based proteomics can analyze

all proteins in a system and is unbiased and hypothesis-free in this

sense.

The proteomic community has developed guidelines for the

development, specificity, and potential clinical application of

biomarkers. These discuss quality standards and emphasize the

importance of selecting cohorts that are appropriate in size, thus

ensuring the statistical significance of potential findings (Mischak

et al, 2010; Surinova et al, 2011; Skates et al, 2013; Hoofnagle et al,

2016; Geyer et al, 2017). That being said, there are no systematic

procedures in place to assess the proteome-wide effects of pre-analy-

tical handling of blood-based samples. Considering that plasma

samples are often collected during daily clinical routine and variably

processed, sample collection and processing clearly have the poten-

tial to negatively influence clinical studies, making it difficult to

uncover true biomarkers, while potentially contributing incorrect

ones. Especially in case–control studies, any difference in the
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collection and processing of samples may result in systematic bias.

So far, relatively little attention has been paid to this crucial aspect

on a proteome-wide scale and these studies mainly investigate pre-

analytical effects (Rai et al, 2005; Timms et al, 2007; Schrohl et al,

2008; Qundos et al, 2013; Hassis et al, 2015).

Recently, we developed “Plasma Proteome Profiling”, an auto-

mated MS-based pipeline for high-throughput screening of plasma

samples (Geyer et al, 2016a). In this article, we apply this technol-

ogy to systematically assess the quality of individual samples and

clinical studies with the aim to identify generally applicable qual-

ity marker panels. Blood collection and subsequent errors in

preparation are likely sources of plasma contamination. To

address this issue, we construct proteomic catalogs of contaminat-

ing cell types as well as proteomic changes that may be induced

during processing. This results in three panels of contaminating

proteins, recommendations for assessing the quality of plasma

samples and for consistent sample processing. We develop an

online tool for biomarker studies and test the applicability of the

panels on a recent investigation on the effects of weight loss on

the plasma proteome (Geyer et al, 2016b). A comprehensive litera-

ture review of plasma proteome studies highlights that about half

of them potentially suffer from limitations related to sample

processing.

Results

Erythrocyte and platelet proteins in the plasma proteome

During the development of our Plasma Proteome Profiling pipeline

and its optimization for high-throughput screening of human

cohorts (Geyer et al, 2016a), we repeatedly observed proteins that

tended to emerge as groups of statistically significant outliers but

appeared to be independent of the particular study. We hypothe-

sized that they reflected sample quality issues. Manual and bioinfor-

matic inspection revealed three classes of origin: erythrocytes,

platelets, and the blood coagulation system. Consequently, we

designed experiments to systematically characterize these main

quality issues of the plasma proteome.

First, we acquired reference proteomes of erythrocytes and plate-

lets, which are by far the most abundant cellular components

(5 × 106 and 3 × 105 cells per ll). We harvested these cellular

components from 10 healthy females and 10 males to obtain repre-

sentative erythrocytes, platelets, and pure (platelet-free) plasma and

further collected platelet-rich plasma and whole blood (Fig 1A; see

Materials and Methods). Cell counting confirmed the purity of the

samples (Table EV1). All five blood fractions were separately

prepared for each individual by our automated proteomic sample

preparation pipeline, followed by liquid chromatography coupled to

high-resolution mass spectrometry (LC-MS/MS). To create reference

proteomes, we generated a very deep library from pooled samples

by analyzing extensively pre-fractionated peptides (Kulak et al,

2017; see Materials and Methods). A total of 6,130 different proteins

were identified from 61,654 sequence-unique peptides (Fig 1B and

C). The platelet proteome was the most extensive (5,793 proteins),

whereas we detected 2,069 proteins in erythrocytes, 1,682 in

platelet-rich plasma, and 912 in platelet-free plasma. The compar-

ison of platelet-rich plasma to platelet-free plasma (84% additional

proteins) demonstrates the extent of proteins that can be introduced

by platelets.

Next, we investigated purified samples for all 20 study partici-

pants individually. The average numbers of identified proteins and

peptides were very consistent in all individuals (Appendix Fig S1).

To construct panels of easily detectable and robust quality mark-

ers, we calculated the average protein intensities and the coeffi-

cient of variation (CV) across the study participants. As a

prerequisite, we required that the proteins should be substantially

more abundant in erythrocytes as well as platelets rather than in

plasma. According to these criteria, we selected the 30 most abun-

dant proteins with CVs below 30% and at least a 10-fold higher

expression level in the contaminating cell type than in plasma

(Fig 1D and E). NIF3-like protein 1 (NIF3L1), a low-abundance

erythrocyte-specific protein, was excluded, because it was incon-

sistently identified as was the platelet-bound coagulation factor

F13A1, whose function makes it an unsuitable platelet marker.

The remaining proteins represent our cellular quality marker

panels (Table EV2). They overlap by just two proteins (actin/ACTB

and glyceraldehyde-3-phosphate dehydrogenase/GAPDH), and

their quantities were not correlated with each other (Appendix Fig

S2). Thus, they are specific and independent indicators for the

origin of plasma quality.

Comparing median expression values of proteins shared between

the blood components revealed that plasma proteins do correlate

with whole blood (Pearson’s correlation coefficient R = 0.43), as

expected. In contrast, there was no correlation between the platelet,

erythrocyte, and plasma proteomes (Appendix Fig S2). This indi-

cates that the levels of cellular proteins in plasma are not a constant

fraction of those in the cellular proteomes. The platelet panel was

enriched in platelet-rich plasma compared to normal (platelet-free)

plasma. Both panels are de-enriched in pure plasma compared to

whole blood, however, this effected the erythrocyte panel even

more strongly, because centrifugation removes erythrocytes more

efficiently than platelets. A histogram of both panels over the abun-

dance range visualizes their distribution in the different blood

compartments (Appendix Fig S2). Erythrocytes are 10-fold more

abundant and fourfold larger than platelets, and indeed, the corre-

sponding panel proteins have a 42-fold difference in whole blood.

In plasma, however, their ratio was nearly one to one, again

pinpointing a more efficient removal of erythrocytes than of plate-

lets in standard sample preparation. The fact that several proteins

of both panels were still detectable in pure plasma indicates a base-

line level of contaminants due to imperfect de-enrichment or the life

cycle of these cells. The four most abundant erythrocyte proteins,

HBA1, HBB, CA1, and HBD, were present in pure plasma of almost

all individuals, whereas lower abundant proteins were only sporadi-

cally identified. In contrast, platelet proteins were quantified over a

larger abundance range and some of them were found in every indi-

vidual.

In addition to the sum of panel protein abundances, we calcu-

lated their correlation to the standard reference panel defined by the

20 participants to several hundred plasma samples of a previous

study (Geyer et al, 2016b). A distinct contamination of erythrocyte

proteins seems to be a part of the plasma proteome as the erythro-

cyte panel has in general a relatively high correlation between the

reference cohort erythrocyte levels and the plasma samples in the

above-mentioned study. In contrast, in many plasma samples there
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was no correlation detectable between the reference cohort platelet

levels and the plasma samples in the study. In practice, a correla-

tion > 0.5 indicated that the proteins are present as a result of

contamination (Appendix Fig S3A–C). Note that an apparent

contaminant protein could still be applied as a biomarker—

however, in this case its abundance value should be different from

the pattern in the reference quality panel.

Serial dilution experiments validate the erythrocyte and platelet
quality marker panels

To determine whether the two protein panels correctly quantify

contamination in plasma, we generated four pools of erythrocytes

and platelets from five study participants at a time. These pools were

diluted in nine steps into platelet-free plasma for a total range of 107,

followed by cell counting and proteomic analysis (Fig 2A). This

resulted in an expected decrease in the cellular proteome ratio to

plasma (Fig 2B and C). All but two of the panel proteins were consis-

tently quantified over the dilution range. As the protein within each

panel has the same origin, we defined a single variable for each cell

type by summing their intensities and dividing by the summed inten-

sities of all quantified plasma proteins. This yielded two remarkably

robust “contamination indices” that turned out to be linear with

respect to the cell numbers determined by cell cytometry

(Table EV3; R = 0.98 and 0.99, Fig 2D and E). Spiked-in

contaminations of 1:100 could readily be detected, which corre-

sponds to a concentration of 70,000 erythrocytes or 30,000 platelets

per ll plasma.

Quality marker panel for blood coagulation

In addition to contamination due to cellular constituents, partial and

variable coagulation could contribute to systematic bias in

biomarker studies. Indeed, we had found coagulation-related

proteins to be connected to sample handling from finger pricks

while developing our plasma proteomics pipeline (Geyer et al,

2016a). In clinical practice, an anticoagulant is pre-added to

commercially available containers so that it is combined with blood

upon withdrawal. Prompt inversion mixes the anticoagulant with

the blood, yielding pure plasma after centrifugation (Fig 3A). Any

delay in adding or mixing could cause partial coagulation—in the

extreme case of missing anticoagulant and waiting for 30 min, one

would obtain serum instead of plasma.

To generate a panel for assessing blood coagulation, we systemati-

cally compared 72 plasma vs. 72 serum samples (four individuals, 18

aliquots). From a total of 2,099 quantified proteins, 299 were signifi-

cantly altered (Fig 3B). The most significantly de-enriched proteins

after clotting were typical constituents of the coagulation cascade

such as fibrinogen chains alpha (FGA), beta (FGB), and gamma

(FGG) (P < 10�130, > 40-fold), whereas the platelet-associated

A

B C D E

Figure 1. Identification of blood cell markers.

A Study outline and proteomic workflow. Erythrocytes, thrombocytes, platelet-rich, and platelet-free plasma were generated from 10 healthy female and male
individuals by differential centrifugation and successive purification steps. To generate reference proteomes for each of the blood compartments, the respective
protein samples of the 20 study participates were digested to peptides.

B, C Proteins (B) and peptides (C) identified for platelets, erythrocytes, platelet-rich, and platelet-free plasma.
D, E Selection of the most suitable quality marker proteins for (D) platelet contamination (blue dots) and (E) erythrocyte contamination (red dots) based on their

abundance, the platelet/erythrocyte-to-plasma ratio, and the coefficient of variation. Proteins that were only detected in platelets or erythrocytes, but not in
plasma are aligned on the right side of the graph.
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coagulation factor F13A1 and antithrombin-III (SERPINC1) decreased

by more than half. Interestingly, the strongest elevated proteins in

serum were highly abundant platelet proteins: platelet basic protein

(PPBP), platelet glycoprotein Ib alpha chain (GP1BA), throm-

bospondin 1 (THBS1), and platelet glycoprotein V (GP5) (P < 10�10;

twofold to fivefold increase). In total, 208 proteins increased and 91

decreased due to coagulation. The former set of proteins, which have

higher levels in serum than in plasma, were also quantitatively

enriched with high-abundant platelet proteins (P < 10�5; median

rank 699 of 3,150 proteins), indicating coagulation-induced activa-

tion of platelets.

To define a robust panel of quality markers for the extent of

coagulation, we first selected the 30 most significantly altered

proteins between serum and plasma. Although not among the top

30, we added the platelet factor 4 variant 1 (PF4v1; P < 10�11, 2.2-

fold up in serum), because it was an excellent indicator of

coagulation in our studies and has already been reported in the

context of pre-analytical variation (Timms et al, 2007).

In contrast to the erythrocyte and platelet panels, proteins of the

coagulation panel increase or decrease due to blood clotting and the

fold changes vary strongly between them. Because fold changes are

greatest for the decreasing proteins, we calculated the coagulation

marker ratio only from them (sum of all plasma proteins divided by

sum of plasma-elevated coagulation proteins). This ratio was very

robust when comparing serum and plasma, clearly separating them

with median ratios of 9 and 120 for these distinct sample types

(Fig 3C). Of the coagulation marker panel, only F13A1, PPBP, and

THBS1 were in common with the platelet panel and none with the

erythrocyte panels (Fig 3D). The low overlap observed for the three

quality marker panels should make them highly specific tools to

elucidate the presence and origin of sample-related bias.

Application of the quality marker panels to a biomarker study

The above-defined marker panels can assess sample-related issues

at three levels: the quality of each sample in a clinical cohort, poten-

tial systematic bias in the entire study, and the likelihood that indi-

vidual biomarker candidates belong to the contaminant proteomes.

We recently investigated changes in the plasma proteome upon

weight loss (Geyer et al, 2016a,b). Briefly, caloric restriction in 52

individuals for 2 months was followed by weight maintenance for

1 year. Plasma Proteome Profiling of seven longitudinal samples

revealed significant changes in the profile of apolipoproteins, a

decrease in inflammatory proteins and markers correlating with

insulin sensitivity. Given that protein abundance changes of < 20%

were often highly significant, we expected that overall sample qual-

ity was high, making this study suitable for testing the practical

applicability of the quality marker panels.

First, we assessed the quality of each sample separately by calcu-

lating the three contamination indices and plotting their distribution

in the total of 318 measurements. For each index, we initially

defined potentially contaminated samples as those with a value

more than two standard deviations above the mean (red lines in

Fig 4A). This flagged 12 samples, six with platelet contamination,

one with increased erythrocyte levels, and five with signs of partial

coagulation. Resolving the three quality marker panels to the levels

of individual proteins resulted in almost perfectly parallel trajecto-

ries (Appendix Fig S4A–C). Accordingly, the correlations to the

reference quality marker panels were substantial (R > 0.77). Over-

all, the variation of the contamination indices was highest for the

platelets also visible by a contamination index difference (max/min

ratio) of a factor 182 between the least and the most contaminated

sample, followed by erythrocytes (max/min 23), and lowest for

coagulation (max/min 5). The platelet proteins talin-1 (TLN1),

myosin-9 (MYH9), and alpha-actinin-1 (ACTN1) had the largest

variations, all with maximal changes > 5,000-fold. Catalase (CAT),

carbonic anhydrase 1 and 2 (CA1, CA2) from the erythrocyte index

varied maximally by more than 500-fold. The three fibrinogens in

the coagulation panel changed by up to 20-fold, indicating that only

partial coagulation events took place (Fig 4A).

Note that evaluating individual sample quality based on the stan-

dard deviation of all samples, as done here, has the benefit of being

independent of the specific proteomic method used to measure

protein amounts. However, this requires that most samples have

A

B D

C E

Figure 2. Spike-in of erythrocyte and platelet fractions into pure plasma.

A Dilution and analysis scheme.
B, C Protein intensities were Z-scored across the dilution series (B) for the 29

quality markers of the erythrocyte panel and (C) for the 29 markers of
the platelet panel as a function of their spike-in proportion to plasma.
Whiskers indicate 10–90 percentiles, and horizontal lines denote the
mean.

D Correlation of erythrocyte count to the “contamination index” for the
erythrocyte marker panel.

E Correlation of platelet count to contamination index for the platelet
marker panel.
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low levels of contamination, so that outliers of the statistical distri-

bution are clearly apparent. If this is not the case, we propose using

general, study-independent cutoff values to differentiate between

samples of high and poor quality in such studies.

To assess potential systematic bias for groups of samples such as

cases and controls or different time points, we applied a t-test based

volcano plot. Most of the significantly upregulated proteins at time

point 4 were members of the platelet panel (Fig 4B). With this infor-

mation in hand, we contacted our collaboration partners, who

tracked down the platelet contamination to a switch of the blood-

taking equipment due to low supplies.

In practice, such sample issues will occasionally happen in a clinical

study, and our quality marker panels would allow elimination of the

affected samples. However, if contaminating proteins can reliably be

distinguished from relevant biomarker candidates, the data could still

be used. In our example, six of the eight significant outliers were from

the platelet panel, and the other two proteins—GP1BA and NRP1—

could still be of interest. To investigate this further, we inspected the

global correlation map of all proteins, time points, and participants

(Albrechtsen et al, 2018). In this hierarchical clustering analysis,

proteins that are co-regulated have a high correlation to each other and

appear in groups, visualized as red patches (Fig 4C). Here, the platelet

cluster was the second largest one with 38 proteins (R = 0.69). All

quantified platelet panel proteins were in this cluster, as was GP1BA,

flagging them as likely contaminants (Fig 4C and inset). Interestingly,

NRP1, a receptor involved in angiogenesis, did not group with the

platelet proteins, suggesting a potential biological role. This is

supported by the fact that NRP1 was significantly regulated over all

time points compared to the baseline, in contrast to the platelet cluster

proteins.

The other two quality marker panels are also readily apparent in

the global correlation map. Ten members of the erythrocyte panel

cluster tightly as do the three fibrinogen chains (Appendix Fig S5).

However, in this study the fibrinogens group with proteins involved

in low-grade inflammation, reduction of which was one of the main

findings of our study (Appendix Fig S5). In contrast, the coagulation

marker PF4v1, which is also a highly abundant protein in platelets,

clustered in the platelet group in this analysis, indicating that it

varied as a result of sample preparation.

To make the above-described analysis readily available, we

created an online platform at www.plasmaproteomeprofiling.org. It

provides a toolbox for the interactive assessment of the quality of

plasma proteomic data. Lists of protein abundances from MaxQuant

search result tables or the template (Table EV4) can be uploaded by

a simple drag and drop system. The system automatically generates

the three contamination index values as shown in Fig 4A. If the user

indicates cases and controls, the data set will be analyzed for

systematic bias as visualized in a volcano plot (Fig 4B). The global

correlation map is also displayed with the clusters of the quality

marker panels (Fig 4C). The website is designed in the Dash data

visualization framework, which allows further interactive analysis

of the data (see Materials and Methods). Potential biomarker candi-

dates in the volcano plot can be selected and displayed in the global

correlation map to check whether the protein falls into or near one

of the quality marker clusters.

Revisiting results of published biomarker studies

Having examined one study in detail, we set out to survey the

extent to which quality marker proteins are reported as biomarker

candidates in the literature. To this end, we performed a compre-

hensive PubMed search requiring the terms ‘proteomics‘, ‘pro-

teome‘, ‘plasma OR serum‘, ‘biomarker‘ and ‘mass spectrometry‘

spanning the time frame from 2002 to April 2018. We excluded

review papers, purely technological publications without

biomarker candidates, animal studies, and publications without

proteins as qualitative or quantitative variables. From the resulting

210 publications, we manually extracted the lists of the biomarker

candidates that were reported as “significantly altered proteins” by

the authors. Gene and protein names were mapped to the corre-

sponding protein identifiers in our reference panels and analyzed

for their frequencies.

A B C D

Figure 3. Quality marker panel for blood coagulation.

A Preparation of plasma and serum samples. EDTA was used as anticoagulation agent, and incubation and centrifugation values are indicated.
B Volcano plot comparing 72 plasma vs. 72 serum proteomes. Proteins highlighted in yellow were chosen according to their P-value as markers for coagulation. Only

the plasma-enriched proteins (compared to serum) were used in the calculation of the coagulation contamination index.
C Ratio of the summed intensities of all plasma or serum proteins to the sum of the plasma-enriched panel proteins is plotted for all samples. Whiskers indicate the

10–90 percentile, and horizontal lines denote the mean.
D Overlap of the three quality marker panels.
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Remarkably, 113 studies (54%) reported at least one potential qual-

ity marker as a biomarker candidate or as a statistically significant

association (Fig 4D). As the total quality marker panel consists of 84

proteins and the median number of candidates per clinical study was

seven, a certain overlap is not entirely unexpected. However, the

candidates in question almost always were near the top of most abun-

dant proteins of the quality marker panels, making it highly likely that

they are indeed contaminants. Furthermore, while an individual

protein could still be a genuine biomarker candidate, the fact that 22

studies (11%) reported two of them, and a further 23 studies (11%)

three or more, again makes quality issues the likely explanation.

The majority of these studies reported proteins as potential

biomarkers or as significant outliers of the coagulation panel, followed

by the erythrocyte and platelet panels (Fig 4E). The most frequent one

was clusterin (CLU; 27 times), followed by the fibrinogens (alpha, beta,

and gamma; 22, 10, and 15 times), prothrombin (F2; 17 times), kinino-

gen (KNG1; 15 times), antithrombin-III (SERPINC1; 13 times), and

platelet basic protein (PPBP; 10 times). It is worth noting that proteins

related to erythrocyte leakage may falsely be taken to indicate activa-

tion of oxidative pathways. For example, the hemoglobin subunits

(e.g. HBA1, HBB, and HBD, listed 1, 6, and 1 time), carbonic anhy-

drases (CA1 and CA2, 6 and 6 times), fructose-bisphosphate aldolase

(ALDOA, 5 times), peroxiredoxin 2 (PRDX2, 3 times), and superoxide

dismutase (SOD1; 2 times) are annotated with keywords linked to

oxidation. To illustrate this, a recent publication connected plasma

proteome alterations in type 1 diabetes to oxidative stress. This may be

a spurious link because the reported proteins were mostly members of

the erythrocyte quality marker panel (Liu et al, 2018). Although

platelet panel proteins are not prominent in the biomarker literature

yet, we expect that they—along with lower abundant erythrocyte-

specific proteins—will play an increasing role as technological progress

enables higher plasma proteome coverage. We caution that platelet

proteins already found in the biomarker literature such as PPBP,

THBS1, and PF4 are often linked to coagulation events.

Recommendations for future proteomic studies

Based on our experience with the above-defined three quality

marker panels (Table EV2) and analysis of thousands of plasma

proteomes, we devised a general guideline for minimizing and

detecting biases related to sample taking and processing (Table 1).

To further document the influence of common variables in the

blood-taking process, we invited 10 healthy individuals and

collected blood in 10 different blood sampling tubes. In this experi-

ment, we systematically varied the type of plasma/serum, the blood

specimen tubes (with or without gel), and the deposition of blood

into the sampling tube (vacuum vs. pull system).

The most prominent differences were again between serum and

plasma (Fig 3B; Appendix Fig S6). Apart from this, we found that

contaminations with high-abundant erythrocyte-specific proteins

appeared in several comparisons. Serum and EDTA plasma both had

significantly higher levels than lithium heparin and citrate plasma

(Appendix Fig S6A–F). Moreover, vacuum sampling can have an

influence on erythrocyte-specific protein levels for some tubes. For

instance, we found significantly increased levels of HBA1 and HBB

in lithium heparin plasma tubes after vacuum sampling compared to

a pull system, but not in the same comparison when using serum

tubes (Appendix Fig S7A–D). Furthermore, erythrocyte-specific

proteins were significantly increased in lithium heparin pull tubes

(more than twofold), which contain a gel plug compared to pull

tubes without a gel plug (Appendix Fig S8A–D). In contrast, there

were no differences between serum tubes with and without gel.

These findings illustrate how even seemingly minor changes in

blood-taking equipment can result in statistically significant dif-

ferences of protein levels, which could confound biomarker studies.

They also highlight the value of unbiased, system-wide investigation

of the blood proteome and our quality marker panels.

We also found that the procedure of sampling the plasma from the

tubes has a prominent effect on platelet contamination (Appendix Figs

S9 and S10). Thus, we recommend not to collect the lowest layer of

the plasma above the platelet bed after centrifugation. Furthermore,

any delay from centrifugation to plasma harvest has the potential to

induce platelet protein contamination. These factors mainly influence

the platelet rather than the erythrocyte contamination index, indicating

that proteins from the platelet proteome are the most likely cause of

erroneous assignment of biomarker candidates.

Discussion

Blood plasma remains the predominant biological matrix to assess

health and disease in clinical settings. Around the world, every day

hundreds of thousands of samples are analyzed to determine the

levels of individual proteins. Likewise, blood plasma is directly or

indirectly assessed in most clinical trials. Protein levels in plasma

can readily be affected by cellular contamination or handling-related

issues, and in clinical practice, this is partially addressed by simple

tests such as those for hemoglobin contamination. However, these

tests are not systematic or quantitative and they can only be used to

exclude clearly contaminated samples.

Because of its high specificity and unbiased nature, MS-based

proteomics is ideally suited to characterize the quality of blood

plasma and it requires < 1 ll of material. So far, research on sample

quality involving MS has mainly been restricted to the stability of

internal standards in targeted assays and has rarely addressed over-

all sample quality (Schrohl et al, 2008; Hassis et al, 2015; Hoofnagle

et al, 2016). Employing our Plasma Proteome Profiling pipeline to

various clinical studies suggested that platelets, erythrocytes, and

coagulation are by far the most important causes of plasma quality

issues. We acquired very deep reference proteomes for these cell

types and blood compartments, which we provide to the community

to evaluate the possible origin of proteins emerging from biomarker

studies. We defined three panels of about 30 proteins each that can

serve as contamination indices (Table EV2). Using the example of a

longitudinal Plasma Proteome Profiling study of weight loss and our

online resource, we illustrated how the contamination indices can

flag individual suspect samples and systematic biases. Furthermore,

correlation analysis reveals whether potential biomarkers emerging

from a given study are likely to be associated with quality-related

proteome changes instead. Conversely, this procedure can “rescue”

genuine biomarker candidates that are part of the quality marker

proteomes. As an example, fibrinogens, a member of the coagula-

tion quality marker panel, can also change during an inflammatory

condition and might be correlated with classical inflammation mark-

ers such as CRP. In certain diseases, the entire set of proteins of a

quality marker panel can be altered. For example, increased platelet
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levels—thrombocythemia—can have a variety of causes ranging

from chronic inflammation to myeloproliferative diseases. Likewise,

increased concentration of erythrocyte-specific proteins can be

caused by hemolytic diseases such as in autoimmunity. While these

cases are not the usual reasons why a quality marker panel is

altered, they need to be considered when judging the analytical

validity of a plasma measurement.

The clinical potential of the plasma proteome has long been

realized and is also emphasized by the fact that more than 50

FDA-approved biomarkers can be quantified even in relatively

shallow proteomic measurements of plasma (Geyer et al, 2016a).

If there are as many new biomarkers among the less abundant

proteins, there should be a diagnostic treasure trove still to be

discovered (Geyer et al, 2017). Millions of plasma samples are

stored in biobanks worldwide, representing an immense untapped

resource that could be analyzed by MS-based proteomics or large-

scale affinity-based methods. Despite initial enthusiasm and

community efforts such as the Human Proteome Organization’s

plasma proteomic initiative (Omenn et al, 2005; Schwenk et al,

2017), few if any new protein biomarkers have entered the clinic

in recent decades. This is probably at least partially due to techno-

logical limitations to characterize the vast dynamic range of the

plasma proteome, which in turn has led to underpowered study

designs (Geyer et al, 2017). While many of these challenges are

already being addressed, we suspect that problems with sample qual-

ity represent another important reason for the paucity of new

biomarkers and, even more seriously, for incorrect biomarkers being

used. Examining our own data as well as the scientific literature, we

here show that sample quality issues indeed have an impact on

reported results. Nearly half of the reviewed studies reported at least

one potential biomarker that is in our quality marker panels, and

many had two or more, making sample contamination very likely.

While coagulation-related issues are currently most prominent,

increasing depth of plasma proteome coverage may replace platelet

contamination as the most important source of error in the future. A

corollary of the very large abundance variation of proteins introduced

by quality issues is that it should further discourage pooling of

samples. While this increases throughput, even a single contaminated

sample can readily skew an entire batch.

Systematic bias introduced by imperfect sample handling or

processing may lead to reporting incorrect biomarkers. Conversely,

randomly distributed samples with poor quality will diminish over-

all statistical quality and may obscure true biomarker candidates.

The sources of quality issues are different kinds of variations in

the pre-analytical processes, and we found platelet contamination

during plasma harvesting to be one of the main culprits. Among the

few previous studies, Hassis et al (2015) investigated different

sample handling errors and concluded that only extreme conditions,

such as delay in sample storage for 4 days, substantially changed

the plasma proteome. However, proceeding with such extreme cases

is rare, and quality issues are much more likely to originate from

recontamination with whole blood after centrifugation during the

plasma harvest or post-centrifugation times and resuspension of

platelets, for instance. The comparison of 10 different blood

sampling tubes showed that even seemingly minor differences in

Table 1. Practical considerations to minimize systematic bias.

General instructions

Avoid pooling of samples

Use plasma or serum exclusively, not a combination

Sample collection

Standardize blood collection and pre-analytical procedures (preferably
same person collecting blood, centrifuge, sampling container, storage
temperature, and time)

Centrifuge blood to generate plasma immediately

Centrifuge according to manufacturer’s instruction

Harvest plasma immediately after centrifugation

Harvest the plasma starting from the top of the container and pool it
before aliquotting

Discard the last 500 ll of plasma to avoid contamination with platelets or
use a second centrifugation step to generate platelet-poor plasma

Freeze samples immediately after harvesting

Principal assessment of study sample quality

When working with a new batch of samples from collaborators: run at
least 10 test samples of each study group by mass spectrometry

Use quality marker panels to check for any indication of contamination

Main study

Continuously assess quality during the project to detect and avoid
systematic bias (pre-analytics, mass spectrometric analyses)

Overall quality: report the number of contaminated samples

Systematic bias: report potential systematic bias

Check whether biomarker candidates are contained in the quality marker
panels

Identification of several quality markers as biomarker candidates may be
indicative of a study vector

If a quality marker is among the biomarker candidates, thorough validation
is required

◀ Figure 4. Quality marker panels in a weight loss study and literature study.

A Assessment of individual sample quality with respect to the three contamination indices using the online tool at www.plasmaproteomeprofiling.org. Samples with
indices that are more than two standard deviations from the mean (horizontal red lines) are flagged as potentially contaminated (red bars and sample numbers).

B Volcano plot of the proteome comparison of time point 1 vs. 4. Proteins of the platelet panel are highlighted in blue and two additional significantly regulated
proteins in red.

C Global correlation map on the left with an inset of the platelet cluster on the right. The two significant outliers of the volcano plot in (B) are marked in red. Platelet
panel proteins are highlighted in blue in the inset. Red patches in the global correlation map indicate positive and blue patches negative correlations.

D Literature analysis of 210 publications using MS-based plasma proteomics to identify new biomarkers. The number of quality markers reported as biomarker
candidates in these studies is indicated.

E Distribution of the reported quality markers according to the three types of likely contaminations. The distribution is shown across studies that report one, two, or
three proteins of the same quality marker panel.
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the sample handling devices like a pull vs. a vacuum deposition

system can have a statistically significant effect on the measured

proteome. Therefore, we want to stress the importance of strictly

following standard operating procedures. We here provide general

considerations for minimizing sample-related issues, ranging from

immediate harvest of the plasma after centrifugation to discarding

the lowest layer of plasma to avoid recontamination with platelets

(Table 1). These recommendations update and extend general

good laboratory practices as well as HUPO guidelines (Omenn

et al, 2005; Rai et al, 2005). We also advocate that plasma

samples are quality-checked by MS-based proteomics, at least for

a representative subset. This is especially important for clinical

studies but also for targeted single-analyte measurements, which

by their nature are blind to the overall composition of the sample.

Although it would be possible to determine contamination indices

by multiplexed affinity-based methods, we recommend MS for

this purpose because of its very high specificity and its unbiased

nature. Furthermore, the proteomic depth needed to assess the

quality is easily achievable even in rapid and economical

measurements.

The concepts and methods put forward in this study could read-

ily be adapted to other body fluids such as urine, saliva, or cere-

brospinal fluid. This would require developing the appropriate

contamination indices. Furthermore, the three quality marker cate-

gories are the largest but not the only ones. For instance, we imag-

ine that similar experiments can be performed to gauge the effect of

storage duration and temperature on the plasma proteome as it

influences MS-based proteomics.

In conclusion, sample-related quality issues are clearly a concern

for biomarker studies. However, we show here that they can be

addressed rigorously and comprehensively by MS-based proteomics.

As this technology continues to improve in throughput, depth, and

robustness, we envision that it will be employed in routine clinical

practice. Biomarker panels instead of single markers will be

measured by MS-based proteomics as this takes advantage of its

inherently multiplexed nature and allows the characterization of

clinical conditions more comprehensively. These biomarker panels

could routinely be extended with quality marker panels as intro-

duced here, helping to establish biomarker-guided decisions in a

wide variety of clinically important areas.

Materials and Methods

Samples for defining the three quality marker panels

All participants gave written informed consent for their participation

in the Munich Study on Biomarker Reference Values (MyRef), which

is registered under the local ethic number 11-16. All experiments

conformed to the principles set out in the WMA Declaration of

Helsinki and the Department of Health and Human Services

Belmont Report.

To establish the quality marker panels, whole blood was

harvested by venipuncture of 10 females and 10 males into commer-

cial EDTA-containing sampling containers. The blood was centri-

fuged at 200 g for 10 min, and both the pellet and the supernatant

were kept for further processing steps. The bottom layer of 500 ll
plasma was discarded to avoid contamination of the platelet-rich

plasma fraction with erythrocytes. The pellet was centrifuged at

2,000 g for 15 min, and the top layer containing plasma, the

buffy coat, and 1 ml of erythrocytes were discarded. After adding

4 ml PBS containing 1.6 mg/ml EDTA, the suspension was

centrifuged at 2,000 g for 15 min and the supernatant was

discarded together with 500 ll of the top layer of the erythro-

cytes. This step was repeated, and the pure erythrocyte fraction

was harvested. We centrifuged the supernatant from the first

centrifugation step containing plasma and platelets a second time

at 200 g for 10 min and harvested the supernatant, which consti-

tutes the platelet-rich plasma. This step was repeated, and we

collected the supernatant and the platelet after centrifugation at

2,000 g for 15 min. The supernatant was centrifuged a second

time at 2,000 g for 15 min to harvest platelet-free plasma by

sampling only top layer of the supernatant, but discarding the

bottom layer of 500 ll. The platelets were washed twice by

adding 4 ml PBS containing 1.6 mg/ml EDTA and centrifugation

at 2,000 g for 15 min. The supernatant was discarded, and the

pure platelet fraction was harvested.

For the serum and plasma comparison, blood samples from two

females and two males were split into 18 samples each and serum

and plasma were harvested after centrifugation at 2,000 g for

15 min.

To investigate the effects of different blood sampling devices on

the blood plasma proteome, we invited 10 healthy individuals (five

female and five males) and collected blood in the 10 different blood

sampling devices (Table EV5). After collecting whole blood, it was

incubated at room temperature for 30 min to allow coagulation in

the serum tubes. The plasma tubes were also stored at room temper-

ature for the same time, and the different tubes were centrifuged

together. Afterward, 0.5 ml of plasma or serum was sampled from

the top of the tubes.

To evaluate the platelet contamination in different layers of

plasma after centrifugation, blood was collected in two different 9-

ml S-Monovette EDTA-containing sampling containers (Sarstedt).

The blood of one container was transferred to a 15-ml centrifugation

tube without separation gel. Both containers were centrifuged at

2,000 g for 15 min. Plasma was harvested in nine volume fractions

starting from the top layer in 500 ll steps to the top of the buffy

coat. The buffy coat itself was not touched, and a small amount of

plasma (~200 ll) remained on top.

High-abundant protein depletion for building a matching library

We created a matching library and applied a consecutive deple-

tion strategy, in which the top 6 and top 14 most abundant

plasma proteins were depleted by using a combination of two

immunodepletion kits, as described in ref. Geyer et al (2016a).

Briefly, the Agilent Multiple Affinity Removal Spin Cartridge was

used for the depletion of the top six highest abundant proteins

(albumin, IgG, IgA, antitrypsin, transferrin, and haptoglobin),

followed by Seppro Human 14 Sigma immunodepletion for the

14 highest abundant proteins (albumin, IgG, IgA, IgM, IgD, trans-

ferrin, fibrinogen, a2-macroglobulin, a1-antitrypsin, haptoglobin,

a1-acid glycoprotein, ceruloplasmin, apolipoprotein A-I,

apolipoprotein A-II, apolipoprotein B, complement C1q, comple-

ment C3, complement C4, plasminogen, and prealbumin). Follow-

ing depletion, we fractionated our samples using the high pH
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reversed-phase “Spider fractionator” into 24 fractions as described

previously (Kulak et al, 2017).

Sample preparation: protein digestion and
in-StageTip purification

Sample preparation was carried out according to our Plasma

Proteome Profiling pipeline as described in Geyer et al (2016a,b) with

an automated setup on an Agilent Bravo Liquid Handling Platform. In

brief, plasma samples were diluted 1:10 with ddH2O and 10 ll of the
sample was mixed with 10 ll PreOmics lysis buffer (P.O. 00001,

PreOmics GmbH) for reduction of disulfide bridges, cysteine alkyla-

tion, and protein denaturation at 95°C for 10 min (Kulak et al, 2014).

Trypsin and LysC were added to the mixture after a 5-min cooling

step at room temperature, at a ratio of 1:100 micrograms of enzyme

to micrograms of protein. Digestion was performed at 37°C for 1 h.

An amount of 20 lg of peptides was loaded on two 14-gauge

StageTip plugs, followed by consecutive purification steps according

to the PreOmics iST protocol (www.preomics.com). The StageTips

were centrifuged using an in-house 3D-printed StageTip centrifugal

device at 1,500 g. The collected material was completely dried using

a SpeedVac centrifuge at 60°C (Eppendorf, Concentrator plus).

Peptides were suspended in buffer A* [2% acetonitrile (v/v), 0.1%

formic acid (v/v)] and sonicated (Branson Ultrasonics, Ultrasonic

Cleaner Model 2510). Pools for each of the five sample types (whole

blood, erythrocytes, platelets, plasma, and platelet-free plasma) were

generated from the 20 individuals and prepared according to the

procedure above. The peptides were fractionated using the high pH

reversed-phase “Spider fractionator” into 24 fractions as described

previously to generate deep proteomes (Kulak et al, 2017).

Ultra-high-pressure liquid chromatography and
mass spectrometry

Samples were measured using LC-MS instrumentation consisting of

an EASY-nLC 1000 or 1200 ultra-high-pressure system (Thermo

Fisher Scientific), which was coupled to a Q Exactive HF Orbitrap

(Thermo Fisher Scientific) using a nano-electrospray ion source

(Thermo Fisher Scientific). Purified peptides were separated on 40-

cm HPLC columns [ID: 75 lm; in-house packed into the tip with

ReproSil-Pur C18-AQ 1.9 lm resin (Dr. Maisch GmbH)]. For each

LC-MS/MS analysis, about 0.5 lg peptides were used for 45-min

runs and for each fraction of the deep plasma data set.

Peptides were loaded in buffer A [0.1% formic acid and 5% DMSO

(v/v)] and eluted with a linear 35-min gradient of 3–30% of buffer B

[0.1% formic acid, 5% DMSO, and 80% (v/v) acetonitrile], followed

stepwise by a 7-min increase to 75% of buffer B and a 1-min increase

to 98% of buffer B, followed by a 2-min wash of 98% buffer B at a

flow rate of 450 nl/min. Column temperature was kept at 60°C by an

in-house-developed oven containing a Peltier element, and parame-

ters were monitored in real time by the SprayQC software (Scheltema

& Mann, 2012). MS data were acquired with a Top15 data-dependent

MS/MS scan method for the construction of the library and BoxCar

scans (Meier et al, 2018) for the study samples. Target values for the

full-scan MS spectra were 3 × 106 charges in the 300–1,650 m/z

range with a maximum injection time of 55 ms and a resolution of

60,000 at m/z 200. Fragmentation of precursor ions was performed

by higher-energy C-trap dissociation (HCD) with a normalized colli-

sion energy of 27 eV. MS/MS scans were performed at a resolution of

30,000 at m/z 200 with an ion target value of 1 × 105 and a maxi-

mum injection time of 120 ms. Dynamic exclusion was set to 30 s to

avoid repeated sequencing of identical peptides.

Data analysis

MS raw files were analyzed by MaxQuant software, version 1.5.6.8,

(Cox & Mann, 2008), and peptide lists were searched against the

human UniProt FASTA database. A contaminant database generated

by the Andromeda search engine (Cox et al, 2011) was configured

with cysteine carbamidomethylation as a fixed modification and N-

terminal acetylation and methionine oxidation as variable modifi-

cations. We set the false discovery rate (FDR) to 0.01 for protein and

peptide levels with a minimum length of 7 amino acids for peptides,

and the FDR was determined by searching a reverse database. Enzyme

specificity was set as C-terminal to arginine and lysine as expected

using trypsin and LysC as proteases. A maximum of two missed cleav-

ages were allowed. Peptide identification was performed with an initial

precursor mass deviation up to 7 ppm and a fragment mass deviation

of 20 ppm. The “match between run algorithm” in the MaxQuant

quantification (Nagaraj et al, 2012) was enabled after constructing a

matching library consistent of depleted and all the undepleted plasma

samples. All proteins and peptides matching to the reversed database

were filtered out. Label-free protein quantitation (LFQ) was performed

with a minimum ratio count of 2 (Cox et al, 2014).

Bioinformatic analysis

All bioinformatic analyses were performed with the Perseus soft-

ware of the MaxQuant computational platform (Cox & Mann, 2008;

The paper explained

Problem

New biomarkers are urgently needed in many health and disease
contexts and mass spectrometry-based proteomics is a potentially
powerful and promising technology for their discovery, as it can
analyze the plasma proteome in a quantitative and specific manner.
However, a systematic analysis of pre-analytical variations might
obscure the discovery of novel biomarkers and has not been
performed so far.

Results
We employ Plasma Proteome Profiling to discover three quality
marker panels that report on the status of plasma samples with
regards to erythrocyte lysis, platelet contamination, and partial coagu-
lation. These panels can identify individual samples of poor quality
and correct for systematic bias in biomarker studies. Moreover, they
can be applied to evaluate whether a novel biomarker candidate is
linked to one of the sources of contamination. We further provide
sample preparation guidelines and an online resource to assess the
overall sample-related bias in individual samples in clinical studies.

Impact
Quality issues due to erythrocyte lysis, platelet contamination, and
partial coagulation might affect up to 50% of all biomarker studies as
we showed by a literature survey of more than 200 published manu-
scripts. Our quality marker panels will prevent costly miss-assignment
of potential biomarker candidates and support the discovery of
promising biomarkers.
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Tyanova et al, 2016). For the global correlation analysis, proteins

were filtered for at least 50% valid values in the weight loss study

and the hierarchical clustering was performed using Euclidean

distance. The weight loss study contained in total 28 proteins of the

platelet panel, but after sorting for 50% valid values only 24 were

left and all of them clustered in the platelet panel.

Online platform for automated analysis of clinical studies

Our online portal is equipped with a user-friendly graphical inter-

face that supports the most common web browsers, such as Google

Chrome, Firefox, and Internet Explorer. For the front-end develop-

ment, a Dash framework was used (version 0.27.0), which consists

of a Flask server (1.0.2) that communicates with front-end React.js

components using JSON, or JavaScript Object Notation, packets (a

minimal, readable format for structuring data) over HTTP, or Hyper-

text Transfer Protocol, requests that work as request–response

protocols between a client and server. Taking advantage of the full

power of Cascading Style Sheets (CSS), every graphical element was

customized: the sizing, the positioning, the colors, and the fonts.

The platform takes the results of the MS data processed by the

MaxQuant software (Cox & Mann, 2008) from the proteinGroups

table (to be extended to other formats). During the data uploading,

the input file is verified through a combination of preliminary tests.

We built a complex data structure using general Python libraries,

such as NumPy, Pandas, and SciPy. Using three panels of markers for

platelet contamination, erythrocyte contamination, and coagulation

events in plasma samples, respectively, we identify samples affected

by quality issues. Samples having at least 50% “valid values” (i.e.

those with quantification results) are preprocessed by cleaning the

data and prepare them for the subsequent visualization step.

Data availability

The MS-based proteomic data have been deposited to the Proteo-

meXchange Consortium via the PRIDE partner repository and are

available via ProteomeXchange with identifier PXD011749 (https://

www.ebi.ac.uk/pride/archive/projects/PXD011749).

Expanded View for this article is available online.
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