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The RNA world hypothesis is probably the most extensively studied model for the
emergence of life on Earth. Despite a large body of evidence supporting the idea that RNA
is capable of kick-starting autocatalytic self-replication and thus initiating the emergence
of life, seemingly insurmountable weaknesses in the theory have also been highlighted.
These problems could be overcome by novel experimental approaches, including out-of-
equilibrium environments, and the exploration of an early co-evolution of RNA and other
key biomolecules such as peptides and DNA, which might be necessary to mitigate the
shortcomings of RNA-only systems.

The conjecture that life on Earth evolved from an ‘RNA World’ remains one of the most popular
hypotheses for abiogenesis, even 60 years after Alex Rich first put the idea forward [1]. For some, evi-
dence based upon ubiquitous molecular fossils and the elegance of the idea that RNA once had a dual
role as information carrier and prebiotic catalyst provide overwhelming support for the theory.
Nevertheless, doubts remain surrounding the chemical evolution of an RNA world, whose classical
scenario is based on a temporal sequence of nucleotide formation, enzyme-free polymerisation/replica-
tion, recombination, encapsulation in lipid vesicles (or other compartments), evolution of ribozymes
and finally the innovation of the genetic code and its translation (Figure 1) [2,3]. Common criticisms
are that RNA is too complex to emerge de novo in a prebiotic environment, that catalysis is a relatively
rare property of RNA and requires implausibly long strands, that the catalytic repertoire of RNA is
too limited and that it is difficult to envisage scenarios in which precursors and feedstocks occurred at
sufficient concentrations to allow replication and evolution [4].
Breakthroughs in prebiotic chemistry demonstrating how the essential building blocks of RNA (and

other biomolecules) may have formed under different primordial scenarios address many concerns about
the plausibility of RNA or related nucleic acid emergence in a prebiotic world [5–9]. Similarly, demonstra-
tions of enzyme-free polymerisation and copying of nucleic acids from activated building blocks [10–13]
and the innate potential of random RNA strands to recombine and ligate show that the emergence of
longer RNA strands capable of catalysis is, in principle, feasible [14–16]. The in vitro selection of ribozymes
has over the years revealed the impressive catalytic repertoire of nucleic acids, despite their conformal and
sequence-based limitations compared with proteins [17]. RNA is particularly adept at manipulations of its
own phosphate backbone — precisely the chemistry needed to catalyse self-replication.
Despite these rebuttals, it has not yet been possible to demonstrate robust and continuous RNA

self-replication from a realistic feedstock (i.e. activated mono- or short mixed-sequence oligonucleo-
tides). Major obstacles for RNA copying such as efficiency, regiospecificity and fidelity and are dis-
cussed elsewhere [18,19] but are mostly true for both non-enzymatic and enzymatic scenarios. The
ever-looming strand dissociation problem is of particular concern (Figure 2). The high melting tem-
perature (Tm) of long RNA duplexes, such as those that arise from template-directed replication,
results in the formation of dead-end duplex complexes in the absence of highly evolved helicases.
When complementary RNA strands are separated, for example, by heat denaturation, reannealing
occurs orders of magnitudes faster than known copying reactions [18].
In the case of ribozymes, only ‘simple’ ligation or recombination-based RNA replication from

defined oligonucleotides has been demonstrated [20–23]. Such systems have only a limited ability to
transmit heritable information and so are not capable of open-ended evolution — the ability to

Version of Record published:
28 August 2019

Received: 17 June 2019
Revised: 8 August 2019
Accepted: 9 August 2019

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY).

469

Emerging Topics in Life Sciences (2019) 3 469–475
https://doi.org/10.1042/ETLS20190024

D
ow

nloaded from
 https://portlandpress.com

/em
ergtoplifesci/article-pdf/3/5/469/859756/etls-2019-0024c.pdf by M

ax-Planck-Institut fur Biochem
ie user on 28 N

ovem
ber 2019

http://orcid.org/0000-0001-8005-1657
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1042/ETLS20190024&amp;domain=pdf&amp;date_stamp=2019-08-28


indefinitely increase in complexity like living systems [24]. Open-ended evolution requires that a replicase must
at least be able to efficiently copy generic sequences longer than that required to encode its own function. This
topic has been reviewed in detail elsewhere [24,25].
The search for an RNA replicase ribozyme, a cornerstone of the RNA world hypothesis, is largely founded

on improvements of the scaffold of the R18 RNA polymerase ribozyme, which itself is an optimised version of
the complex class I ligase ribozyme [26]. The discovery of the class 1 ligase, which is capable of ligating RNA
with higher efficiency and better turnover than most ribozymes, was perhaps a lucky coincidence (or misfor-
tune, if better ribozymes were missed), and can optimistically be expected to occur on average every 1 in 2000
selection experiments [27]. Considering this, it is truly astonishing how far this single ribozyme family has
been developed. Initially capable of copying only very simple templates [27], variants of the polymerase are
now able to copy complex templates [28,29], including the synthesis of an entire catalytic domain of a polymer-
ase itself from trinucleotides [30], achieved through copying and subsequent ligation of fragments albeit with
multiple human interventions. The much anticipated ‘riboPCR’, the amplification of RNA sequences in a
ribozyme-catalysed polymerase chain-like reaction, has so far only been successful for very short primer
dimers, which can be melted rapidly at relatively low temperatures, therefore minimising temperature-induced
RNA hydrolysis [29]. The apparent limitations of riboPCR with respect to amplification of long strands compli-
cate self-replication scenarios, although schemes evoking the asymmetric replication of short RNAs (where
‘antisense’ strands are produced in excess over coding ‘sense’ strands) followed by ligation or recombination
into an active replicase could still provide an elegant solution to the problem [31,32].

Figure 1. A schematic representation of the classical RNA world hypothesis.

Initially, synthesis and random polymerisation of nucleotides result in pools of nucleic acid oligomers, in which

template-directed non-enzymatic replication may occur. Recombination reactions result in the generation of longer oligomers.

Both long and short oligomers can fold into structures of varying complexity, resulting in the emergence of functional

ribozymes. As complexity increases, the first RNA replicase emerges, and encapsulation results in protocells with distinct

genetic identities capable of evolution. In reality, it is likely that multiple processes occurred in parallel, rather than in a strictly

stepwise manner, and encapsulation may have occurred at any stage.
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Looking back at the long history of the field, one might wonder why we have yet to achieve (self-sustained)
RNA replication and transcription, despite its centrality to the RNA world hypothesis. There are three
possibilities:

1. RNA is capable of this process but more time is needed to identify either conditions or replicators of suffi-
cient complexity that are able to solve the various problems associated with protein-free RNA replication.

2. RNA in isolation (including ribozymes) is simply not sufficient to catalyse its own replication, and substan-
tial help from either other molecules or the environment is essential.

3. RNA replication was never really central during early molecular evolution but rather the late result of a
(crudely) replicating non-enzymatic metabolism [33–37] or an early ‘polypeptide first’ world [38–40].
We will not discuss the merits of these scenarios here, but believe it is crucial to test and challenge the
predictions made by these alternative models experimentally.

For the first possibility, it may only be a matter of time and combined efforts to identify experimental model
scenarios that are convincing enough to please critics of the field. In the worst case, the formation of life as we
know it from RNA could be the result of a ‘frozen accident’, similar to the genetic code [41], that is generally
hard or impossible to reproduce (e.g. a robust self-replicating ribozyme). However, the current consensus
seems to be that while it may never be possible to identify the exact trajectory that led to our modern biochem-
istry, it should still be possible to emulate the process and find related routes that lead to a ‘recapitulated’
origin ex situ [42]. This notion is largely grounded on the assumption that enzyme-free replication requires no
a priori sequence information and can, therefore, emerge spontaneously under suitable environmental and
chemical conditions (e.g. a continuous supply of activated monomers and processes that enable repeated strand
separation). Assuming the remaining experimental problems of continuous enzyme-free nucleic acid replication
are solved, natural selection should spontaneously produce systems that are better or ‘good enough’ to persist
under the given conditions. Whether these new replicators will necessarily evolve into more complex systems
with advanced (and potentially emergent) properties (e.g. cooperative ribozyme networks) is of course
another matter, although simulations predict that genomic complexity is forced to increase in a fixed
environment [43–45].
To identify suitable conditions for such an in-laboratory origin, a ‘flexible’ approach is probably the best

choice in light of the large number of possible geochemical conditions that have been proposed to host the
emergence of life [46]. In other words, it is most sensible to perform key experiments under relaxed but plaus-
ible experimental boundary conditions instead of trying to implement strict restraints based on educated

Figure 2. A schematic illustrating nucleic acid replication and the strand separation problem.

Template copying, both enzymatic and non-enzymatic, is well established. However, the melting temperature (Tm) of the

resulting nucleic acid duplex is typically high, and as such, strand dissociation unfavourable and replication cycles are strongly

inhibited. Possible solutions include lowering duplex Tm by introducing backbone heterogeneity or non-equilibrium conditions

such as fluctuations in temperature (T), concentration (c), ionic strength/divalent ion concentration (I), pH or viscosity (η).
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guesses about a specific prebiotic environment. Once a set of experimental conditions that can sustain certain
crucial reactions such as RNA synthesis, building block activation and self-replication have been identified, it
will help to pinpoint plausible geochemical scenarios automatically. There are several examples of such
problem-oriented approaches, e.g. tackling the strand inhibition problem during the replication of long RNAs
using viscous solvents and temperature oscillations [47], overcoming low substrate concentrations and the fra-
gility of RNA by working under frozen conditions [48,49] or implementation of scenarios enabling multistep,
uninterrupted synthesis of key building blocks of nucleotide synthesis [50] or nucleotides themselves [16]. In
addition, combining typical model RNA world reactions with non-equilibrium settings based upon thermal
gradients shows great promise [51]. For example, gas bubbles in combination with thermal gradients cause
dissolved materials to cycle between dry and wet states and enable the key steps of precursor/oligonucleotide
accumulation and RNA phosphorylation, while drastically increasing ribozyme activity and facilitating RNA
encapsulation into vesicle aggregates [52]. Oscillating salt concentrations in such environments cause local
melting of nucleic acid duplexes up to 20°C lower than the Tm, which could provide an environmental route to
overcoming the strand dissociation problem [53]. It remains to be seen if such environments can eventually
support coupled cycles of RNA activation, replication and encapsulation under continuous conditions.
Similar combined efforts will also be necessary if RNA alone is insufficient to drive continuous self-

replication and evolution. In this case, it may be necessary to diversify the pool of feedstock molecules by
taking into account the chemical and conformational heterogeneities found in many experimental scenarios.
For example, nucleic acid polymers with non-inheritable backbone heterogeneities (e.g. 20–50 versus 30–50 back-
bone heterogeneity for RNA [54] or mixed nucleotide backbones formed from RNA, DNA or other nucleic
acid types [55]) have fascinating properties. In particular, some chimeric backbones decrease duplex stabilities,
which could help to mitigate the strand dissociation problem [56]. Such a ‘mixed’ scenario seems plausible in
view of the prebiotic clutter [57]. Recent synthesis strategies coming from different laboratories have found
strong evidence that RNA and DNA could have arisen from the same set of precursor molecules [9,58], and
ribozymes that can read and write both nucleotide backbone chemistries have already been found [59]. Even
though heterogeneous nucleic acids pose a general problem for hereditability of genetic information, such
chimaeras could have played an important role as non-genetic catalysts similar to modern proteins. Exploring
such heterogeneous scenarios poses major experimental challenges, as many of the standard tools used to study
RNA, particularly reverse transcription and (deep) sequencing, are harder or impossible with mixed backbone
chemistries. Nevertheless, it remains important to investigate these scenarios and, if necessary, develop new
molecular biological tools that can cope with non-homogeneous nucleic acid backbones [60].
Plausible help for RNA might also come from primitive polypeptides (thoroughly discussed elsewhere [61])

Nearly, all ribozymes found in extant biology are associated with proteins that help them to carry out their
function under intracellular conditions. These ribonucleoprotein complexes are thought to be remnants of an
ancient biology where polypeptides could have supported folding and substrate binding of catalytic RNAs
[62,63]. Before the advent of translation, these peptide cofactors would have been very simple or even
comprised of a pool of random peptides with sequence biases [64]. As such, they would probably not have
been initially capable of precise functionalities requiring a well-defined active site (although there might have
been some notable exceptions [65]). Even such simple peptides could have been crucial for RNA protection
during non-enzymatic replication [18] and during ribozyme-catalysed RNA copying [66]. It is tempting to
speculate that peptides might have also granted ancient ‘ribonucleopeptide RNA replicases’ improved non-
specific affinity to their substrates (i.e. a primer-template duplex), which is required for processivity but difficult
to achieve with the polyanionic phosphate backbone of RNA alone. An advantage of this hypothesis is that
an early co-evolution of RNA and peptides makes the transition to protein-dominated biology seem more
plausible. Moreover, an early cooperation between RNA and peptides might also provide an elegant route to
the formation of the first protocells before the advent of membrane-bound compartments [67]. As with nucleic
acid heterogeneity, the inclusion of peptides represents an enormous analytical and experimental challenge,
which will only be addressed by close collaboration between multiple disciplines within the origin of life field.
There remains the hope for origin of life scenarios where RNA plays a major role as an information carrier

and catalyst. New experimental approaches using out-of-equilibrium settings could finally result in genuine
RNA-based self-replicating systems capable of open-ended evolution. More complex scenarios involving RNA,
DNA, peptides, simpler polynucleotides, chimeric intermediates or other yet unknown helper molecules may
also be required, which will complicate the analytical understanding of the model systems and may ultimately
render the term ‘RNA world’ in its traditional sense obsolete.
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Summary
• Despite advances in prebiotic chemistry, it has not yet been possible to demonstrate robust

and continuous RNA self-replication from a realistic feedstock.

• RNA in isolation may not be sufficient to catalyse its own replication and may require help
from either other molecules or the environment.

• Non-equilibrium environments, backbone heterogeneity and polypeptide cofactors may
address some of the remaining problems in the RNA world hypothesis.
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