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I. INTRODUCTION

The conversion of electromagnetic (EM) waves into col-
lective excitations of electrons [1,2], a cross fertilization
between optics, material science, and electronics, is an over-
arching theme among a wide range of important applica-
tions in nanophotonics [3,4], biology [5], sensing [6], single-
molecule detection [7], nanophotonic lasers [8], photovoltaic
devices [9,10], spectroscopy [11,12], and solar energy har-
vesting [13,14]. Computational electrodynamics modeling,
that is the simulated propagation of EM waves in matter using
the Maxwell equations, has been an invaluable tool in the
study and design of new materials.

The most popular approach for simulating the electromag-
netic response of materials to the propagation of Maxwell’s
equations in space and time is the finite-difference time-
domain (FDTD) method [15,16]. The FDTD method is con-
sidered to be stable and reliable for most materials where the
optical properties are known. The FDTD method, however,
relies on macroscopic material properties, namely the perme-
ability, permittivity, and conductivity of each point in space,
thus limiting the applicability of the method. Furthermore, it
is not easily applied to the modeling of surfaces, interfaces,
and nonlinear materials.

By the constant miniaturization of electronic and optical
devices towards the nanoscale, electromagnetic simulations
inevitably confront the quantum regime [17–22] where clas-
sical approaches based on macroscopic material properties
fail. The importance of quantum effects in strongly coupled
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light matter systems, e.g., nanoplasmonics and nano-optics,
have attracted intense experimental interest in the last few
years [19,23,24]. These experiments are able to probe the
local electronic states [23], the Raman scattering images of
molecular structures [25], and the plasmon couplings [24] at
the nanometer length-scale.

The importance of quantum effects has been realized
by the computational electromagnetics community, and con-
ventional finite-difference time-domain electromagnetic sim-
ulations have been complemented with a coupling to the
Schrödinger equation [26–29].

However, time-dependent quantum mechanical simula-
tions have also started to incorporate electromagnetic waves
to describe the light matter interaction [30–37]. Most of these
calculations use the EM waves as external driving fields,
but induced fields [31,38] and propagation of EM waves in
a multiscale manner [39] have also been investigated. Re-
cently, extensions of time-dependent density functional theory
have also been proposed to treat light and matter simulta-
neously on a quantized level [40,41]. The different levels of
computational approaches have been used to describe laser
irradiation [42], dielectric response [43,44] high harmonic
generation in solids [45,46], the dynamical Franz-Keldysh
effect [47], attosecond band gap dynamics [48], local cur-
rents [49,50], Rabi splittings of infrared spectra for molecules
in optical cavities [51], modification of excitation and charge
transfer in optical cavities [52], photoemission [53], and
Coulomb explosion as well as ionization [54,55].

The integration of a quantum description of electrons with
the propagation of EM waves for a description of the interac-
tion of light and matter has been attempted at various levels
of approximation. Computational approaches have to address
many challenges arising from the different time and length
scales used within the propagation of the EM waves and
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electron wave functions. On the theory level, one has to find an
acceptable compromise between the fully microscopic quan-
tum description of both electrons and photons [56,57] and
the macroscopic and/or classical field treatment of the EM
waves. The most rigorous approach, the quantum electrody-
namical density functional theory [40,58–61], is a framework
which allows to describe quantum particles interacting with
a quantized electromagnetic field. While with this approach
such a level of description becomes computationally feasible,
a full implementation of the method for extended systems is in
progress but has not been reached so far. On a different level of
approximation, the quantum mechanical system of electrons
is coupled to classical EM fields, and the problem of length
scales is bridged using multiscale approaches [57,62–64].

Coupled Maxwell–Schrödinger approaches based on the
FDTD method have also been developed. These approaches
neglect atomistic details and electron correlations, being pri-
marily interested in the propagation of EM waves in the
presence of matter within large systems [28,29,65–69]. Var-
ious gauges [68,69] and unified frameworks [65] have been
proposed and tested to make the calculations efficient. In
these approaches the Maxwell equations are solved using the
FDTD method on a Yee lattice [70] with appropriate boundary
conditions [71–73]. Once the electric and magnetic fields are
calculated, the corresponding vector potential is plugged into
the Schrödinger equation. The Schrödinger equation is solved
in the following step, and the polarization current density is
then the subsequent determined from the wave function. This
polarization current density is then input into of the Maxwell
equations.

For EM waves the FDTD algorithm is rather fast and can
be done numerous times in succession without significant
computational expense or difficulty. There is, however, an
inherent problem with time propagating the EM waves and
electrons using the same spatial dimensions. EM waves travel
much faster than electron waves and have much longer wave-
lengths. If the same 3D grid is used to discretize both EM
and electron waves, the time propagation of EM fields will
require very short time steps. The grid spacing and time steps
are constrained by the Courant condition, that is c�t/�x < 1,
connecting the speed of light c, the time step �t and the
spatial discretization �x. This seriously limits the flexibility
when plugging the electromagnetic vector potential into the
Schrödinger equation. Furthermore, the small grid spacings
and rapidly changing current densities required in quantum
mechanical calculations may lead to instabilities in the FDTD
method that can cause catastrophic failures.

In the simulations described above, the FDTD method
has been used to propagate both the EM waves and the
electron wave function—that is, the the Schrödinger equation
has been incorporated within the EM waves propagation
framework [27–29,62,66]. In this paper we take the opposite
approach wherein the Maxwell dynamics will be incorpo-
rated into the well developed quantum mechanical wave-
function propagation framework. For the quantum mechanical
description of electron dynamics, the time-dependent density
functional theory (TDDFT) [74] is the method of choice due
to its balance of computational efficiency and accuracy. The
challenge is then to couple Maxwell’s equations with the time-
dependent Schrödinger (Kohn-Sham) equation through the

current density produced by the electrons and the EM fields.
For simultaneous time propagation of the electromagnetic
waves and electronic wave functions in a quantum framework
we will use in the present work the Maxwell wave-function
approach.

The Maxwell wave-function formalism in connection with
the time propagation of the coupled Maxwell–TDDFT equa-
tions was first proposed in Ref. [61]. This work establishes
the theoretical foundations of a density functional approach
for coupled photons, electrons, and effective nuclei in nonrel-
ativistic QED.

In the Maxwell wave-function approach, the Maxwell
equations are recasted into a time-dependent Schrödinger-like
equation using the Riemann-Silberstein (RS) vector formal-
ism [75]. The RS vector describes both electric and magnetic
fields as a single complex quantity. With this combination,
a single time-evolution operator can be constructed instead
of using two coupled differential equations—Maxwell’s curl
equations. Furthermore, the time-evolution can be done an-
alytically using the momentum representation [76], and con-
version between momentum and spatial representations can be
done by fast-Fourier transforms (FFTs). The advantage of this
approach is that the same time propagation framework that is
typically used for matter dynamic [38,76,77] now can be used
for both the Maxwell and quantum equations.

In Ref. [61], the RS vector was propagated using finite-
difference representation and the boundary conditions have
been enforced by the Perfectly Matched Layers approach [16].
In this work we explore an alternative implementation:
momentum-space propagation of the RS vector and complex
absorbing potentials to avoid reflections from the boundary.
As using the RS formalism to construct the Maxwell–TDDFT
equations is a new approach, various implementations must
be tested to find the most suitable and efficient method.

The paper is organized as follows. In Sec. II we introduce
the theoretical method. In Sec. III various simulations are
performed using jellium systems. Finally, in Sec. IV the paper
is closed with a summary and future outlook.

II. FORMALISM

In the following we describe the formalism for both the RS
vector approach to the Maxwell equations and TDDFT.

A. The RS vector and Maxwell’s Equations

Maxwell’s equations are known to describe electromag-
netic radiation and are given as

∇ · E = ρ

ε0
, ∇ · B = 0 (1)

∇ × B = 1

c2

∂E
∂t

+ μ0J, ∇ × E = −∂B
∂t

, (2)

where E and B are the electric and magnetic fields, ρ and J
are the charge and current densities, ε0 and μ0 are the vacuum
permittivity and permeability, and c = (ε0μ0)−1/2 is the speed
of light.

The Riemann-Silberstein (RS) vector [75] is constructed as

F(r, t ) =
√

ε0

2
E(r, t ) ± i

√
1

2μ0
B(r, t ). (3)
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The sign of the imaginary part of the Riemann-Silberstein
vector corresponds to different helicities. Equation (1) may
now be rewritten as

∇ · F = 1√
2ε0

ρ. (4)

In the same way, Eq. (2) may also be rewritten as

ih̄
∂F
∂t

= c

(
S · h̄

i
∇

)
F − ih̄√

2ε0
J, (5)

where the elements of S = (Sx, Sy, Sz ) are the spin 1 counter-
parts of the Pauli matrices,

Sx =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, Sy =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠,

Sz =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠. (6)

Equation (5) may be viewed as being analogous to the
time-dependent Schrödinger equation, where one has an ef-
fective Hamiltonian,

HEM = c

(
S · h̄

i
∇

)
, (7)

acting on three “orbitals”—those being the three dimensional
components of the RS vector. There is also a source term
S(r, t ) = − ih̄√

2ε0
J(r, t ) which is represented for each “orbital”

as well. We therefore may write

ih̄
∂

∂t
F(r, t ) = HEMF(r, t ) + S(r, t ). (8)

The solution for this equation using a discretized small-time-
step approach is [77]

F(r, t + �tEM) = e−iHEM�tEM/h̄F(r, t ) − i

h̄
e−iHEM�tEM/h̄

×
∫ �tEM

0
eiHEMτ/h̄S(r, t + τ )dτ. (9)

Here the �tEM denotes the time step used to advance the RS
vector. If the time step is small enough, the the integrand may
be assumed to be constant. Then the integral and preceding
operator combine resulting in

F(r, t + �tEM) = e−iHEM�tEM/h̄F(r, t ) − i

h̄
S(r, t )�tEM. (10)

After plugging back in the definition for S, this yields

F(r, t + �tEM) = e−iHEM�tEM/h̄F(r, t ) − 1√
2ε0

J(r, t )�tEM.

(11)

As HEM is time independent, the exponential propagator for
F(r, t ) is exact for any time step [77]. The time-step error is
caused by the approximation of the integral in Eq. (10), which
in our case is second order in �tEM. The time propagation
of a Schrödinger-like equation with a source term has been
investigated in Ref. [78] where higher-order approximations
with smaller time-step errors have been developed. A more

detailed discussion of the time propagation of the RS vector
can be found in Ref. [61].

By casting the differential equation as a time-evolution
operator, one can use the same time propagation scheme for
the EM waves and the electron wave functions providing a
unified framework. In particular, FFT can be used to transform
F(r, t ) into momentum-space,

F̃(k, t ) = F[F(r, t )], (12)

where the e−iHEM�t/h̄ operator is diagonal; its action can be
easily calculated using element-wise multiplication, and then
an inverse FFT may be used to return the result to a real-space
representation:

F(r, t ) = F−1[F̃(k, t )]. (13)

The time evolution of the RS vector is easily performed
in Fourier space using the Fourier representation of the RS
vector and the Fourier representation of the current, given as

F̃(k, t + �tEM) = e−iHEM�tEM/h̄F̃(k, t ) − 1√
2ε0

J̃(k, t )�tEM.

(14)
The advancement in time of the RS vector defines the time
evolution operator, written as

F̃(k, t + δt ) = R(t, t + δt )F̃(k, t ). (15)

where time t + δt is reached by successive applications of
Eq. (14). In this way the time evolution of the RS vector
proceeds analytically on the Fourier components, until its real
space representation is needed, at which time an inverse FFT
is used.

It should also be noted that in the equations given above,
the same time index t is given for F and J; however, some ad-
vanced time-integration schemes may occur where the explicit
time may differ between the two.

To couple the Maxwell equations to the Schrödinger equa-
tion, we need the vector potential A(r, t ). To calculate the
vector potential from the electric field we split the electric
field as

E(r, t ) = Erot(r, t ) + Eirr(r, t ), (16)

so that

∇ · Erot(r, t ) = 0, ∇ × Eirr(r, t ) = 0. (17)

Vector fields meeting these criteria can be obtained through
a Helmholtz decomposition (HD), which can be performed
trivially on the Fourier components of F(r, t ).

Using the Coulomb gauge, which requires

∇ · A(r, t ) = 0, (18)

the vector potential can be calculated as

A(r, t ) = −
∫ t

τ=0
Erot(r, τ )dτ. (19)

An external vector potential can be added to the solenoidal
part of the electric field (calculated from the RS vector),

A(r, t ) = −
∫ t

τ=0
Erot(r, τ ) + EExt(r, τ )dτ. (20)
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This is only possible if the entire simulation cell has the same
relative permittivity and permeability. Otherwise, a source
must be introduced that generates an incident RS vector
corresponding to the desired external field. Alternatively, for
short enough pulses that fit entirely within the bounding
box, the RS vector may be initialized using the external
fields.

We note that the use of a HD allows for some options for
the calculation of the scalar potential. The scalar potential
calculated from Eirr(r, t ) can be added to the potential at
the beginning of the simulation, and in this way, the Hartree
potential can be obtained. However, the potential is obtained
from electron currents introduced to the Maxwell equations
and not from the electron density directly. We therefore cal-
culate the Hartree potential by solving the Poisson equation
using the electron density.

B. Absorbing Boundary Conditions for the RS Method

Since the RS method utilizes the Fourier representation, it
is periodic by definition. This is somewhat of a disadvantage
when compared to FD methods, where periodicity is optional.
To make simulations using the RS method finite, absorbing
boundary conditions are required. Typical absorbing boundary
conditions are not simply applied to the RS vector prop-
agated in this way, because the derivatives of F are not
easily obtained at the boundaries while the time evolution is
being applied, since the exponential is applied to the Fourier
components.

A simpler alternative is to use an absorbing function in
real-space, akin to the way the electronic wave function is
prevented from reflecting from the boundaries using complex
absorbing potentials (CAP) [79,80]. In the CAP approach, an
imaginary potential iWEM(r), usually a polynomial function,
is added to the Hamiltonian,

HEM(r, t ) + iWEM(r), (21)

and the new Hamiltonian is time propagated. The potential is
only nonzero outside of the physical region where it absorbs
outgoing waves. The following functional form was chosen
for the RS CAP:

WEM(r) = −2π2(c1h + c2h2 + c3h3 + c4h4). (22)

Here, h = 10(x − x0)/l , x0 is the end of the physical region,
x0 � x � x0 + l , and l is the width of the absorbing boundary.
We note that l should encompass at least 15 grid points. While
this defines CAPs in the x direction, CAPs may be added
in other directions as needed. Coefficients for the polyno-
mial were obtained by a mixed genetic-gradient optimization
algorithm resulting in values of c1 = 1.27967 × 10−3, c2 =
4.86973 × 10−4, c3 = 9.78732 × 10−3, and c4 = 2.77563 ×
10−4, each given here in atomic units. CAPs employing these
coefficients exhibited a typical reduction by 4–7 orders of
magnitude in the reflected electric field.

Incorporating the CAPs modifies the time propagation
formalism of the RS vector. The CAP can be efficiently added
using the split operator approach, where the exponential is
split, separating the potential from the derivative operators.

Using the split operator approach one obtains

F(r, t + �t ) = eWEM(r)�t/2F−1[R(t, t + �t )F
× [eWEM(r)�t/2F(r, t )]]. (23)

Note that the CAP is diagonal in real-space so the exponenti-
ation does not add to the computational cost.

C. Kohn-Sham Hamiltonian

We will use density functional theory (DFT) [81] to ini-
tialize the quantum mechanical system and TDDFT [74] to
simulate the dynamics of the electrons. The ground-state
Kohn-Sham (KS) Hamiltonian, HKS, is given by

HKS = − h̄2

2m
∇2

r + VBG(r) + VH[ρ](r) + VXC[ρ](r), (24)

where ρ is the electron density obtained by a sum over all
occupied orbitals, VBG is the background potential, VH is
the Hartree potential, and VXC is the exchange-correlation
potential. VBG is determined by solving the Poisson equation
for a uniform background charge with a prescribed density,
corresponding to a jellium model of electrons. In calcula-
tions with atomistic details this term would be replaced by
an electron-nuclei Coulomb potential using an all-electron
or pseudopotential approach. Such approaches are routinely
used in DFT and TDDFT calculations and using such here
would not interfere with the current formalism. The Hartree
potential, VH, is given by

VH(r) =
∫

dr′ ρ(r′)
|r − r′| (25)

and accounts for the electrostatic Coulomb interaction be-
tween electrons. Equation (25) is computed by numerically
solving the Poisson equation. To represent the exchange–
correlation potential, VXC, we employ the adiabatic local–
density approximation (ALDA) with the parameterization of
Perdew and Zunger [82].

D. Time propagation of electrons

To couple the EM fields to the electron dynamics, the
kinetic energy operator is replaced—using velocity gauge—in
the KS Hamiltonian

HKS(r, t ) = − 1

2m
[−ih̄∇r + A(r, t )]2

+VBG(r) + VH[ρ](r) + VXC[ρ](r)

= − 1

2m
[−ih̄∇r + A(r, t )]2 + VKS(r, t ), (26)

and the electron dynamics is governed by the time-dependent
KS equation. The time-dependent KS (TD-KS) equation for
the ith electron orbital is(

ih̄
∂

∂t
− HKS

)
ψi(r, t ) = 0. (27)

This equation can be solved by time propagating the wave
function from the initial state to some time, t , by using the
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time-evolution operator,

U (0, t ) = T exp

[
− i

h̄

∫ t

0
HKS(r, t ′)dt ′

]
,

ψi(r, t ) = U (0, t )ψi(r, 0),

(28)

where T denotes time-ordering. In practice, U (0, t ) is split
into a product of multiple short-time propagators,

U (0, t ) =
∏

q

U (tq, tq + δt ), tq = qδt, (29)

which evolves the Kohn-Sham orbitals from tq to tq + δt . The
short-time-step propagator is defined by

U (tq, tq + δt ) = exp

[
− iδt

h̄
HKS(r, tq)

]
. (30)

The time step, δt , is chosen to be sufficiently small so that the
Hamiltonian can be treated as constant over the course of one
step. A fourth-order Taylor expansion is used to approximate
Eq. (30),

U (tq, tq + δt ) ≈
4∑

n=0

1

n!

[
− iδt

h̄
HKS(r, tq )

]n

. (31)

While the Taylor propagation scheme is conditionally stable,
one must choose a suitably small time step to preserve unitar-
ity approximately during the time propagation.

The time dependent electron density and the electron cur-
rent are defined as

ρ(r, t ) = 2
Ne/2∑
i=1

|ψi(r, t )|2, (32)

J(r, t ) = 2Re
Ne/2∑
i=1

[ψi(r, t )∗(−ih̄∇r + A(r, t ))ψi(r, t )],

(33)

where Ne is the number of electrons in the system and each
orbital is occupied by two electrons.

In practice, this time step for electrons can be larger than
that used during the propagation of the RS vector, �tEM. For
the propagation scheme used in this work, where electrons
are propagated by Taylor expansion in real-space with finite
difference and the RS vector is propagated analytically in
momentum-space, �tEM should be at least 20 times smaller
than �t .

One additional consideration is that as the electrons are
driven to excited states by the vector potential, some elec-
tron density will reach the boundary of the simulation cell
(see Fig. 1). To avoid the nonphysical wrapping of periodic
boundary conditions (PBCs) in the x direction, a CAP of the
aforementioned form given by Manolopoulos [80] is added in
the region close to the boundary.

E. Combined RS and KS time propagation

To propagate the RS vectors and KS orbitals one needs
to choose a space and time grid. For simplicity and for test
purposes, we use the same spatial grid for both propagations.
This is obviously not ideal and one can design much more

FIG. 1. Computational box containing a laser incident on the
surface of a conducting layer. The laser was propagated in the x
direction. The dimensions of the box were Lx × Ly × Lz. Absorbing
boundary conditions (ABCs) were added on either end of the box to
absorb the EM waves. For FDTD this was a Mur-type ABC and for
the RS formalism this was a CAP. PBCs were used in the y and z
directions.

efficient multiscale approaches. For example, the propagation
of the KS orbitals in the presence of atoms requires a spatial
mesh with about 0.2 Å and time steps around 1 attosecond.
Depending on the wavelength of the EM fields, the spatial
mesh representation can be much more coarse (or much finer).
Due to the presence of the speed of light in the definition
of HEM in Eq. (7), the RS vector changes much faster than
the KS orbitals propagated with HKS. This means that the RS
propagation will require a much smaller time step than the KS
propagation. This in itself is not a serious drawback since the
RS propagation only advances three components of a vector
and is thus a much faster calculation than the propagation of
the KS orbitals.

Starting with the KS orbitals, current, and an arbitrary
external vector potential at time t = 0, time-stepping can
be achieved in a straightforward manner as it is shown
in the pseudo algorithm, labeled “SIMPLE” in Listing 1.
First, the CAP is applied to the RS vector using Eq. (23), then
the RS vector and the electron current (calculated by solving
the TD-KS equation) is transformed to momentum-space us-
ing FFTs ( Listing 1, lines 2 and 3). Then Eq. (11) is evaluated
in momentum-space: F̃(k, t ) is multiplied by eiHEM�t/h̄ and the
current term is added ( Listing 1, line 4). The next steps are
a Fourier transformation back to real-space and a calculation
of the vector potential using Eq. (19) ( Listing 1, lines 5–8).
Once the vector potential is calculated, the Taylor propagator
can be used to advance the KS orbitals in time ( Listing 1,
line 9). Finally, the new currents and density are calculated
and the density-dependent KS potential VKS is updated by
solving the Poisson equation and evaluating the VXC, both
using the new density. In practice, higher-order propagation
schemes are preferred, such as a leapfrog algorithm which
shifts the time grid between the two coupled equations by a
half step. This approach does not increase the computational
time significantly, yet greatly increases the accuracy of the
results. The leapfrog algorithm proceeds in much the same
way as the simple algorithm, but the time index is more
complicated (see the algorithm in Listing 2).
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Algorithm 1 RS and KS time propagation

0: procedure SIMPLE ψ (r, t ),J(r,t),A(r,t),F(r,t),VKS(r,t)
1: F(r, t ) ← CAP(F(r, t ))

2: F̃(k, t ) ← F (F(r, t ))

3: J̃(k, t ) ← F (J(r, t ))

4: F̃(k, t + �t ) ← F̃(k, t ), J̃(k, t )

5: F(r, t + �t ) ← F−1(F̃(k, t + �t ))

6: F̃rot(k, t + �t ) ← F̃(k, t + �t )

7: Frot(r, t + �t ) ← F−1(F̃rot(k, t + �t ))

8: A(r, t + �t ) ← Frot(r, t + �t ), A(r, t )

9: ψ (r, t + �t ) ← ψ (r, t ), A(r, t + �t ),VKS(r, t )

10: J(r, t + �t ) ← ψ (r, t + �t ), A(r, t + �t )

11: VKS(r, t + �t ) ← ψ (r, t + �t )

Algorithm 2 Advanced RS and KS time propagation

0: procedure LeapFrog ψ (r, t ),J(r,t),A(r, t − �t/2),

F(r, t − �t/2),VKS(r,t)

1: F(r, t − �t/2) ← CAP(F(r, t − �t/2))

2: F̃(k, t − �t/2) ← F (F(r, t − �t/2))

3: J̃(k, t ) ← F (J(r, t ))

4: F̃(k, t + �t/2) ← F̃(k, t − �t/2), J̃(k, t )

5: F(r, t + �t/2) ← F−1(F̃(k, t + �t/2))

6: F̃rot(k, t + �t/2) ← F̃(k, t + �t/2)

7: Frot(r, t + �t/2) ← F−1(F̃rot(k, t + �t/2))

8: A(r, t + �t ) ← Frot(r, t + �t/2), A(r, t )

9: A(r, t + �t/2) ← A(r, t + �t ), A(r, t )

10: ψ (r, t + �t ) ← ψ (r, t ), A(r, t + �t/2),VKS(r, t )

11: J(r, t + �t ) ← ψ (r, t + �t ), A(r, t + �t )

12: VKS(r, t + �t ) ← ψ (r, t + �t )

F. Implementation

The RS formalism was implemented in a real-space, real-
time TDDFT code that incorporates a homogeneous back-
ground potential with a charge density defined using the
Wigner–Seitz radius for a given material (e.g., lithium or
aluminum). The electronic wave function is represented on
a real-space grid of equal spacing in all directions. For the
electrons, the application of differential operators for the first
and second derivatives are evaluated using fourth-order finite-
difference formulas. The velocity gauge Hamiltonian is also
applied in real-space, which allows the first and second deriva-
tives to be calculated at the same time, since the same values
are needed for both. This representation significantly saves
on memory bandwidth and computational time. The accuracy
and efficiency of our real-space and real-time TDDFT code
have been tested in many calculations [38,76,77,83].

An external field will be added to induce currents in the
jellium system. The external field used in these simulation
takes the form of a Gaussian laser pulse given as

Ez(x, t ) = E0e−(t−t0−x/c)2/α2
sin(ω(t − x/c))�(x, t ). (34)

Here t0 is the pulse shift, α controls the width of the pulse, ω

gives the frequency, and c is the speed of light. � is a ramping

FIG. 2. A comparison between the FDTD and RS methods at
t=4.2 a.u. for a laser pulse incident upon a uniform conducting
sheet. For the RS method �tEM = 0.0015 and for the FDTD method
�tFDTD = 0.00075. The parameters of the computational box were
Lx = 1500, Ly = Lz = 20 a.u. with grid spacings of �x = �y =
�z = 0.5 a.u.. The laser parameters were E0 = 0.1 a.u., t0 = 2 a.u.,
α = 1a.u., and ω=0. The sheet was positioned in the middle of the
cell perpendicular to the x-axis. The sheet was 60 a.u. wide, and its
conductivity was set to be σ = 0.1 a.u. CAPs were used in the x
direction and PBCs were used in the y and z directions. Note, the two
curves are on top of each other.

function given as

�(x, t ) =
{

(t − x/c)/tγ , if t − x/c <= tγ
1, if t − x/c > tγ ,

(35)

which is used to ensure that the field within the jellium is
zero at the beginning of the simulation. The parameter tγ is the
ramping time which is set to 0.1 a.u. unless otherwise noted.
The parameters used in the calculations are equal or similar
to the parameters of typical FDTD simulations presented in
Ref. [16] and their concrete values will be specified in the
figure captions.

In the jellium model the core electrons and the nuclei are
modeled as the uniform positive background and the valence
electrons are treated explicitly. In the examples the jellium
is defined by the valence electron density, the number of
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FIG. 3. A comparison between FDTD and RS solutions at t =
130 a.u. and t = 138 a.u. for a laser pulse incident upon a wide layer
of lithium-jellium. The time step used in the solution of the TD-KS
equations was δt = 0.02 a.u. For the RS method, �t = 0.02/20 a.u.,
and for the FDTD method, �t = 0.02/2000 a.u. The simulation cell
size used was Lx = 767.5 a.u., Ly = Lz = 3.5 a.u., and the grid spac-
ings were �x = �y = �z = 0.5 a.u.. The parameters of the laser
pulse [see Eq. (34)] were E0 = 0.1 a.u., t0 = 400 a.u., α = 206 a.u.,
and ω = 0.05695 a.u. (which corresponds to 800 nm wavelength).
The width of layer was 328 a.u., containing 36 electrons. CAPs were
used in the x direction and PBCs were used in the y and z directions.
The Top panel shows the incident electric field in time. The middle
and bottom panels show the average electric field along the x axis at
different times. Note, in the middle panel the two curves are on top
of each other.

electrons per volume. We will use lithium-jellium with one
valence electrons and aluminum-jellium with three valence
electrons interacting with the uniform positive background
charge representing the ionic cores. These jellium models
work remarkably well for simple metal clusters [84].

For the FDTD simulations we have used the computer
code accompanied with Ref. [16]. This code implements the
FDTD solution of Maxwell’s curl equations over a three-
dimensional Cartesian space lattice. The grid is terminated by
perfectly matched layers absorbing boundary conditions. We
have tested the code using numerical examples of Ref. [16].

FIG. 4. A comparison of the current calculated by the FDTD and
RS methods corresponding to the same system and times as those
shown in Fig. 3. Note, for the top panel the two curves are on top of
each other.

III. RESULTS AND DISCUSSION

A. Comparison of FDTD and RS methods: A conducting layer

The input of the RS and FDTD approach is the external
field and the electric current. First we compare the FDTD
and RS approaches in a macroscopic case for a uniform
conducting layer. This problem is macroscopic in the sense
that we rely on macroscopic material properties—that is we
use Ohm’s law, J (r) = σ (r)E (r), to get the electric current. In
a “microscopic” simulation of the coupled Maxwell–TDDFT
system, the electric currents would be calculated by TDDFT.

To compare FDTD and RS on the same footing, we use
the same simulation box and grid spacing. A sketch of the
system is shown in Fig. 1. A laser pulse incident upon a
uniform conducting sheet will be propagated. The electric
field inside the sheet is expected to induce a current according
to Ohm’s law. This current, as a material response, will be
used to update the EM fields via Maxwell’s equations. We
note that no modification to the permittivity of free space is
used. Throughout this paper, atomic units (a.u.) have been
used.
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FIG. 5. System setup for a rigorous test of time propagation
algorithms with the RS method. Initially a very short laser pulse is
to be added to the box. The pulse then is to reflect off of the left and
right sides of the box, going through the periodic boundary in the x
direction.

The results are given in Fig. 2, which shows the external
laser field (labeled ELaser), the field due to the response of the
material (labeled Einduced), and the sum of the laser and mate-
rial (labeled Enet). The induced current field in the conducting
sphere produces an electric field that is counter to the external
field. This will propagate outward in both directions. Due to
the principle of linear superposition, the induced pulse cancels
out some of the incident pulse, resulting in the observed effect
of partial reflection of the incident pulse.

The RS method propagates the EM fields just as well as
the FDTD method. The time step taken with the RS method
can be larger by a factor of 3, due to the higher accuracy of the
spatial derivatives. The time step and accuracy is also better in
the RS approach because it uses a higher-order solution of the
differential equations then the first-order FDTD. This example
shows that the RS approach can be used as a Maxwell solver.
The FDTD method is very fast and efficient, and in problems
based on material properties it would normally be preferred to
using the RS formalism.

B. Comparison of FDTD and RS method: Real electrons

In this example we do a similar calculation as in the
previous case but with real electrons; the material response
will be calculated by TDDFT. We test both the RS and
the FDTD methods in coupling the Maxwell and the KS
equations. The input of the RS and FDTD step is the electric
current (calculated by TDDFT) and the external EM field. The
output is the vector potential that will be used in TDDFT.

In this example we have the same computational setup as
shown in Fig. 1, but the layer is a system of a homogeneous
positive background potential and electrons. When the FDTD
method is applied to a system with real electron density,
the stability becomes a major issue. Two snapshots of the
simulation are shown in Fig. 3. At t = 130 a.u. the FDTD
and the RS methods give similar results, but soon thereafter
the FDTD solution starts to diverge and eventually blows up.
We have found that the FDTD time propagation fails in most
cases due to its instabilities for time steps as small as even
�t = 10−5 a.u.. The snapshots of the current at the same times

FIG. 6. The change in the electronic energy in time using the
simple and leapfrog time propagation schemes using time steps of
0.02 and 0.002 a.u. for electrons with 20 RS steps per TD-KS time
step. The simulation cell size was Lx = 2304 a.u., Ly = Lz = 3 a.u.
with grid spacings of �x = �y = �z = 0.5 a.u.. The parameters of
the laser pulse [see Eq. (34)] were E0 = 0.1 a.u., t0 = 0 a.u., α = 2
a.u., and ω=0. PBCs were used in each direction. The width of the
jellium, corresponding to the gray area in Fig. 5, was 777 Bohr. The
curves for the simple propagator and the leapfrog propagator are on
top of each other for the 0.002 a.u. time step.

are shown shown in Fig. 4. The current becomes very noisy in
FDTD which then leads to divergence.

One possible reason for the divergence of the FDTD solu-
tion is that only first-order spatial derivative approximations
are used. Therefore, there will be some error associated with
each field at each grid point. Because all of the quantities
are coupled, numerical instabilities can lead to catastrophic
failure of the time propagation. Another issue may be the
divergence of the vector potential. The velocity gauge Hamil-
tonian is valid only for vector potentials in the Coulomb
gauge, for which ∇ · A = 0. We have performed HDs on
FDTD obtained electric field both using FD operators and
the Fourier components (the same way as the RS vector),
and in both the same instabilities arise so that the electron
density always diverges. It is surmised that if more accurate
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FIG. 7. Electric field vector at given times during the rigorous
time-step test simulation using the simple and leapfrog time propaga-
tion schemes with time-step sizes of 0.02 and 0.002 a.u. for electrons
and 20 RS steps per TD-KS time step.

derivatives were used with the FDTD method, the instabilities
would be less, and time propagation would be possible. How-
ever, such increased order finite-difference formulas would
dramatically reduce the speed and efficiency of the FDTD
approach.

C. RS propagation rigorous time-step test

To more rigorously test the accuracy of the RS time
propagation scheme, the dynamics of the test system must be
driven by the induced fields, and not some external field. If an
extended exciting pulse were used, the induced fields would
be absorbed by the CAPs before they could significantly
excite other electrons and induce counter currents. One way
to achieve a long simulation in which induced fields have a
continued influence is to remove the CAPs and use a very
short excitation pulse. With the CAPs removed the system is
periodic in all directions. Then if a thick layer of conductive
material is used, the short pulse will be partially reflected and
approach from the opposite side, as shown in Fig. 5.

FIG. 8. Comparison of a simulation with and without the cou-
pling of the induced current, showing the change in electronic energy
(top) and the electron current (bottom). The system was lithium-
jellium consisting of 36 electrons in a 328 a.u. wide sheet contained
within a box of Lx = 576 a.u., Ly = Lz = 4. a.u. with grid spacings
of �x = �y = �z = 0.5 a.u. CAPs were used in the x direction and
PBCs were used in the y and z directions. The system was excited by
a Gaussian pulse with peak electric field of E0 = 0.02 a.u., a width
of α = 2.0 a.u. and a shift of t0 = 6 a.u. It is seen that without the
coupling of the Maxwell and KS equations, the system is put into an
excited state which does not relax to the ground state.

These PBCs were applied to a system of lithium-jellium in
a long–narrow box with different time steps and using both
integration methods, the results of which are shown in Fig. 6.

The leapfrog integrator appears to be well-converged for
time-step sizes as large as even �t = 0.02 a.u., seeing as
the solution using these time steps closely agrees with that
of �t = 0.002 a.u.. This is not the case, however, for the
simple integrator which performs poorly at such larger time-
step sizes. In each of these simulations, 20 RS time steps
were used per time step of the KS equations. Since 0.02 a.u.
is practically the longest time step possible for propagating
the TD-KS equations on a grid of this spacing, the leapfrog
integrator is the obvious choice. There is some deviation in
the energies at later times in the simulation; however, there is
some dependency on the time step for the time propagation of
the KS equations alone, since they are nonlinear. The resulting
total electric field is well matched between 0.02 and 0.002 a.u.
time steps, as shown in Fig. 7 at various time points.
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FIG. 9. Comparison of the transmitted electric field (taken at
the beginning of the right CAP) resulting from a strong laser pulse
incident from the left on a 232 a.u. thick sheet of aluminum-jellium
of 400 electrons within a box of Lx = 320 a.u., Ly = Lz = 8. a.u.
with grid spacings of �x = �y = �z = 0.5 a.u. CAPs were used in
the x direction and PBCs were used in the y and z directions. The
system was excited by a Gaussian pulse with a peak electric field
of E0 = 0.1 a.u., a width of w = 206 a.u., ω=0.05695 a.u., and a
shift of t0 = 400 a.u.. A ramp time of γ = 0.5 a.u. was used for this
simulation.

These test calculations show that the additional coupling
to the Maxwell equations does not put any restriction on
the maximum time step of the KS equations. The accuracy
of the leapfrog time integration scheme with a time step of
0.02 a.u for the KS equations and 0.02/20 = 0.001 a.u. for
the RS equations, is quite good, and is used for all calculations
throughout the rest of the paper. Higher-order means of time
propagation such as the predictor corrector or Runge-Kutta
methods exist; however, they will require more applications
of the exponential operators and FFTs per step.

D. Comparison to uncoupled case

In this test case we will compare two calculations: one
in which in the KS equations are coupled to the Maxwell
equations and one in which there is no such coupling. In the
uncoupled case any incident EM waves propagates through
space as if there were no electrons present, that is J = 0 is
plugged into Eq. 14. A simulation was performed using a very
short pulse to place a jellium sheet into an excited state, using
both Maxwell-coupled and Maxwell-uncoupled time propa-
gations. In the Maxwell-uncoupled system, the pulse excites
the electrons and causes significant electron current, as shown
in Fig. 8. After the pulse has passed through the medium,
the system is still in an excited state, and, since there is no
resistance in this simulation (no scattering by phonons), the
current continues. In the Maxwell-coupled system the pulse
excites electrons and the electron current generates an electric
field that de–excites the electrons. The resulting energy decays
back to the ground state and the current decays back to zero.
This shows that the Maxwell-coupled system has the proper
behavior for conductive materials.

FIG. 10. Comparison of the net electric field and current at given
time points resulting from a strong laser pulse incident from the left
on a sheet of aluminum-jellium. The system parameters are given in
Fig. 9

E. Longer exciting pulses

Using longer pulses, the frequency of the excitation is
closer to the energy of the electrons, so they more completely
respond to the external field. By using thick jellium sheets,
the incident pulse may be nearly completely reflected or
modulated. As the light penetrates the medium, the inten-
sity will diminish and create a broad range of pulse inten-
sities. This has applications in the calculation of harmonic
spectra.

The results of a simulation with a sheet of aluminum-
jellium irradiated by a strong laser pulse are shown in Fig. 9.
The electric field is not uniform as the external electric field
penetrates the sheet since the field induces currents stronger
on the side of incidence. This is shown in Fig. 10. The
nonuniformity of the electric field from a laser pulse as a
function of depth is modeled by this approach.

F. Simulation of jellium spheres

Next we test the approach using a jellium model of quan-
tum dots. A simulation was performed on an aluminum-
jellium sphere of radius 12.8 a.u., corresponding to a diameter
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FIG. 11. Comparison of the cell average currents in time result-
ing from a strong laser pulse incident from the left on a sphere
of aluminum-jellium of 236 electrons in a box of Lx = 96 a.u.,
Ly = Lz = 30. a.u. with grid spacings of �x = �y = �z = 0.5 a.u.
CAPs were used in the x direction and PBCs were used in the y and z
directions. The system was excited by a Gaussian pulse with a peak
electric field of E0 = 0.1 a.u. with a width of α = 2 a.u. and a shift
of t0 = 5 a.u.. The inset more clearly shows the differences in current
as the simulation progresses.

of 1.4 nm, which is very small in terms of actual nanoparticles.
This small sphere nevertheless contains 236 electrons. A com-
parison of the electron currents with and without coupling the
TD-KS and the Maxwell equations is shown in Fig. 11. The
effect of simulating the dynamics with the Maxwell equations
is small early in the simulation, but differences do appear at
later times. This simulation shows how the electron induced
currents for systems as small as a single nanoparticle can
influence the electron dynamics.

G. Propagation in inhomogeneous system

In the previous test cases the medium in which the EM
waves were propagated was homogeneous, except for the
abrupt surfaces. The electron density is very inhomogeneous
in atomistic systems. We have two examples to mimic the
effect of nonlocality: a system with periodically repeated
local potentials and a system of periodically repeated tilted
potential wells.

In the case of periodically repeated local potentials, we use
a wedge shape, as seen in Fig. 12. We have used a wedge
rather then a sphere to mimic the effect of bonds which are
directed into a certain direction. The resulting net electric field
is seen to be strongly modulated by the wedge shape, as seen
in Fig. 12.

The second example with a tilted potential well models a
medium that contains certain lattice planes that are far more
conductive in certain directions, as is the case with graphene.
A simulation of such a situation using aluminum-jellium
sheets is shown in Fig. 13. Here, as it is expected, the current
will be different in different directions.

FIG. 12. Vector plot of the current in the y-z plane resulting from
a strong laser pulse incident from the left on a repeating wedge of
aluminum-jellium 100 Bohr thick containing 258 electrons (top) and
the electric field in time (bottom). The dark color shows the region
where the electron density is large. Each wedge was contained within
a box of of Lx = 160 a.u., Ly = Lz = 12 a.u. with grid spacings of
�x = �y = �z = 0.5 a.u. CAPs were used in the x direction and
PBCs were used in the y and z directions. The images have been
wrapped to illustrate the periodicity and the periodic boundaries are
shown as a box. The system is excited by a Gaussian pulse with peak
electric field of E0 = 0.02 a.u. with a width of α = 206 a.u., a shift
of t0 = 400 a.u., and ω=0.05695 a.u.

IV. SUMMARY

We have implemented and tested the Riemann-Silberstein
vector formalism in momentum-space. This approach has
been first proposed and implemented in Ref. [61] in real-
space. Both approaches have advantages and disadvantages,
and which is better suited depends on the concrete physical
system being simulated.

One of the main advantages of the momentum-space
formalism is that the EM Hamiltonian is diagonal and the
time propagation with FFTs is simple, efficient and accurate.
Another benefit is the straightforward use of the Helmholtz
decomposition for the extraction of the desired vector poten-
tial. The easy implementation within time-dependent plane
wave TDDFT codes (see, e.g., the Volkov basis approach in
Ref. [76]) is also an advantage.

We have compared the RS and FDTD solution of the
Maxwell equations to show the accuracy of the RS approach.
We have found that it is difficult to couple the FDTD approach

053301-11



CODY COVINGTON et al. PHYSICAL REVIEW E 100, 053301 (2019)

FIG. 13. Vector plot of the current in the y-z plane (top) and the
electric field (bottom) resulting from a strong laser pulse incident
from the left on a repeating slit of aluminum-jellium 108 Bohr thick
containing 200 electrons that has been rotated at 45 degrees. The dark
color shows the region where the electron density is large. The sheet
was contained within a box of Lx = 256 a.u., Ly = Lz = 12 a.u. with
grid spacings of �x = �y = �z = 0.5 a.u. CAPs were used in the x
direction and PBCs were used in the y and z directions. The system is
excited by a Gaussian pulse with peak electric field of E0 = 0.1 a.u.
with a width of α = 2 a.u. and a shift of t0 = 5 a.u.

due to the TDDFT solver due to the different time scales and
to the inaccuracy of the first-order finite-difference representa-
tion used in FDTD. This problem does not persist if Maxwell’s
equations are solved in Riemann-Silberstein representation
with a finite-difference discretization in real-space, since then
higher-order discretizations can be easily used [61].

The momentum-space representation invokes periodic
boundary conditions which would limit the applicability of
the approach. Motivated by the complex absorbing potentials
used in quantum mechanics, we have designed and optimized
a complex absorbing potential for the EM Hamiltonian. The
CAP is in real-space and it efficiently diminishes the transmis-
sion and reflection of EM waves at the boundary.

A leapfrog algorithm was implemented and tested for
coupled propagation of the Maxwell and TDDFT equations.
It exhibited substantially increased accuracy compared to the
simple time propagation which only uses the EM fields and
electron wave functions in a single point in time. Various fur-
ther development is possible and needed to make the approach
multiscale in time and space.

The approach has been tested on various systems, includ-
ing jellium sheets, a jellium sphere, and periodically repeated
confining potentials. The next step is obviously the inclusion
of atoms using ionic potentials. As the TDDFT code used
in these calculations already has the capability to describe
atomic systems [38,54,55,76], this step does not seem to be
a problem, but it requires careful testing. This is left for future
work.

The coupled Maxwell TDDFT approach enables descrip-
tion of the microscopic EM fields in quantum mechanical
simulations. Using this approach one does not have to rely
on approximations to extract enhanced fields or absorption
spectra using material properties. The simulated emitted
EM fields give direct access to observables. The coupled
Maxwell TDDFT simulation has important potential appli-
cations in nano-optics, nanoplasmonics, and other physical
applications where the strong light matter interaction plays
important role.
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