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Abstract
This work is the second part of an investigation aiming at the study of optical wave equations
from a field-theoretic point of view. Here, we study classical and quantum aspects of scalar fields
satisfying the paraxial wave equation. First, we determine conservation laws for energy, linear
and angular momentum of paraxial fields in a classical context. Then, we proceed with the
quantization of the field. Finally, we compare our result with the traditional ones.
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1. Introduction

In this second paper of the series ‘Field theory of mono-
chromatic optical beams,’ we continue the investigation of
scalar fields obeying either the Helmholtz wave equation
(HWE)
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and the paraxial wave equation (PWE)
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with = Î x yx , 2( ) . Specifically, this work is devoted to the
study of some properties of paraxial fields, in both classical
and quantum regimes.

The notation that we use here, is the same as established
in part I. The three-dimensional gradient is expressed as
y y y¶ ¶ º ¶ = ¶m

mx , z( ) , where a point in 3 is labeled
by the three coordinates xμ, with x3=z the longitudinal
coordinate and x k, k=1, 2 the transverse coordinates. The
two-dimensional gradient of a scalar function f (x, y, z) is

denoted f and is defined as

 =
¶
¶

+
¶
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f

x

f

y
, 31 2 ( )

where 1 and2 are the orthogonal unit vectors pointing in the
x and y Cartesian coordinate directions, respectively. Greek
indexes μ, ν, α, β,K,run from 1 to 3, while Latin indexes i,
j, k, l, m, n,K,take the values 1 and 2. Moreover,
¶ = ¶ + ¶ + ¶x y z

2 2 2 2 and  = ¶ + ¶x y
2 2 2.

2. Two Lagrangians for one paraxial field

In the remainder, we shall deal with paraxial fields only. So,
let f zx,( ) be a complex scalar field satisfying the PWE,
namely
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which is reminiscent of the Schrödinger equation for a free
particle on a plane. A suitable Lagrangian generating
equation (4) should be bilinear in the field and its derivatives:

f f f f f f d f f= ¶ + ¶ + + ¶ ¶ A B C D , 5ij
i j3 3* * * * ( )

where the four coefficients A, B, C, D are determined by
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imposing the fulfillment of the Euler–Lagrange equation

f f
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A straightforward calculation shows that substituting
equation (5) into equation (6), one obtains

f f f- ¶ -  + =A B D C 0. 73
2( ) ( )

Now, requiring the equality between equations (4) and (7)
yields the following relations:
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The equation A−B=i can be satisfied with different
choices of A and B. We distinguish between the symmetric
choice A=−B=i/2, leading to the Lagrangian 1, and the
asymmetrical choice A=i, B=0, which generates the
Lagrangian 2, where

f f f f d f f= ¶ - ¶ - ¶ ¶
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The first Lagrangian 1 is much more appealing and it is
clearly real, while 2 is not. However, 1 and 2 differ by a
total z-derivative which does not affect the dynamics:

f f- = ¶ 
i

2
. 112 1 3 *( ) ( )

In fact, as we shall see soon, only 2 leads to the correct
equations in the Hamilton form.

2.1. First Lagrangian: 1

In this case, there are two independent fields Π and Π*

canonically conjugate to f and f*, respectively, specifically
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The Hamiltonian density 1H is defined in the standard way:
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The total Hamiltonian H1 is simply
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where to obtain the last line, integration by part has been used
and a surface term has been discarded. Then, the Hamilton
equations give
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It is clear that equation (15) does not reproduce correctly
equation (4) and, therefore, 1 must be discarded. For a dis-
cussion about a context where (15) has a physical meaning,
the reader is directed to [1] (see, especially, equations (20)–
(27) in [1] ).

2.2. Second Lagrangian: 2

In this case, we have

f
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As explained in [2, 3], sinceP zx,2( ) is simply proportional to
the conjugate of f zx,( ), then there are only two independent
fields, namely f zx,( ) and P zx,2( ). Therefore, the Hamilto-
nian density is calculated as

f f f
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It should be noticed that the second line of equation (17)
coincides with the second line of equation (13). A straight-
forward calculation shows that using H2, the Hamilton
equations give the correct equations of motion:
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Therefore, from now on we will consider only 2 as the ‘true’
Lagrangian for the PWE and we will drop the subscript ‘2’
writing simply  instead of 2.

The asymmetry of  with respect to the Cartesian coor-
dinates x y z, , , can be made more manifest by rewriting
equation (10) as

f f d f f

d f f d f f
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where d d d dº -mn mn m n
T

3 3 is a transverse Kronecker delta,
which can also be seen as the coordinate-component of the
dyadic +   1 1 2 2, namely d = +mn mn   T 1 1 2 2( ) . By defi-
nition, d d= =n m0T

3
T
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3. Symmetries and conservation laws

In this section, we study the symmetries and the consequent
conservation laws for paraxial fields. This problem was
investigated from a different viewpoint in a few other works,
notably in [4–8].

The Helmholtz equation does not contain explicitly the
three Cartesian coordinates x, y, z. Moreover, the latter enter
in a symmetric manner in the differential operator
¶ = ¶ + ¶ + ¶x y z

2 2 2 2. This yields to the invariance of the
HWE under translations and rotations of the fields [9].
Conversely, due to its first-order form in the z-coordinate, we
do not expect to keep rotational invariance around an arbi-
trary axis for the PWE. In order to illustrate the symmetries
exhibited by the PWE, let us consider the field f zx,( ) eval-
uated in the generic point = zr x,( ) and imagine to perform
an active transformation that converts, via a translation by
= m

maa and a three-dimensional rotation by L n
m , the ori-

ginal field f zx,( ) into the new field f¢ zx,( ):

f f ¢z zx x, , . 21( ) ( ) ( )

Let ¢ = ¢ ¢zr x ,( ) be the point obtained by translating and
rotating the original point = zr x,( ) by a and Λ, respectively,
that is:

¢ = L +  ¢ = L +
 = L ¢ -

m
n
m n m

-

x x a r r a

r r a . 221( ) ( )

Then, by definition, the new field f¢ ¢ ¢zx ,( ) evaluated at ¢r
must take the same value of the original field f zx,( ) eval-
uated at r, namely

f f f¢ ¢ = = L ¢ - L- -r r r a , 231 1( ) ( ) ( ) ( )

where we have used the rightmost relation in equation (22).
Because of the arbitrariness of the point ¢r , we can drop the
prime symbol ¢( ) and rewrite equation (23) as

f f¢ = L - L- -r r a . 241 1( ) ( ) ( )

This equation defines the behavior of a scalar field under
translations and rotations.

Now, suppose that f zx,( ) is a solution of the PWE,
namely
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Then the question is: what are the admissible transformations
La,( ) such that f L - L- -r a1 1( ) is still a solution of the

PWE? An instructive and elegant method for answering this
question without embarking on calculations of chained partial
derivatives, is furnished by the Fourier transform technique.
Suppose that the field f f=zx r,( ) ( ) can be expressed as a
three-dimensional Fourier integral:
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where (d3p )=dp1 dp2 dp3. Substituting equation (26) into

equation (25), we obtain
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Thus, the differential equation (25) became an algebraic
equation in the amplitude f p p p, ,1 2 3( ) :
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From this equation, it follows that the Fourier amplitude
f p p p, ,1 2 3( ) can be different from zero only when +p3
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where, because of the Dirac delta property x δ(x)=0, the
amplitude j p p p, ,1 2 3( ) can be a completely arbitrary smooth
function of (p1, p2, p3).

By definition of Fourier transform and using
equation (26), we can write
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permits us to rewrite equation (30) in the form
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where we have inverted the first expression in equation (31)
to write = Ln m n

mp q . To see whether equation (32) is a
solution of the PWE, we substitute it into equation (25) to
eventually obtain the algebraic equation
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where equation (29) has been used. Since the displacement
vector a does not enter in equation (33), it can take any value.
However, equation (33) put some limitations on the form of
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the rotation Λ, which must evidently satisfy the relation
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where C is an irrelevant constant that we arbitrarily fix to
C=1. Equation (34) naturally splits in

L =  L = L =m
mq q 1, 0, 35i
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The last relation can be simply written as LLT=I2, where
with L we denoted the 2×2 principal submatrix of Λ

obtained from the latter deleting the third row and the third
column and I2 is the 2×2 identity matrix. The superscript
‘T’ indicates the transpose of the matrix.

To summarize, we have found that the transformations
that leave the PWE invariant consist of translations by arbi-
trary three-dimensional vectors a and of two-dimensional
rotations around the z-axis of the form

L =
L L
L L
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where L: LLT=I2 denotes an arbitrary 2×2 orthogonal
matrix.

3.1. Canonical energy-momentum tensor for the PWE

Given the paraxial Lagrangian

d f f d f f= ¶ - ¶ ¶m
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the canonical energy-momentum tensor can be build in the
usual manner as
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Explicitly, we have:

where we have used the shorthand f,μ=∂μf. By definition
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This means that there are a conserved energy H and a
conserved transverse linear momentum P defined as
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It should be noticed that the minus sign in the equation above,
opposite to the sign ofH in equation (43), is consistent with the
condition implied by the Dirac delta in equation (29), because
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where the equation of motion (25) has been used. Therefore,
one can consider the conserved quantities ºHP,( )
P P P, ,1 2 3( ) as the components of a conserved three-momentum
mP , where ~ -3P H.

Since d d=ij ij
T , the transverse part ijT of mnT is sym-

metric and can be written as
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Then, we can construct the conserved tensor density
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Therefore, the quantity
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one independent parameter, which amounts to the long-
itudinal component of the orbital angular momentum:
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3.2. Internal symmetries

The Lagrangian equation (38) is manifestly invariant under
the transformation

f f f f - L Le e, , 52i i* * ( )

where Λ is a real constant. From the Noether’s theorem, it
follows that there exist a conserved current (see [3], p 46,
equation (2.83))
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where equation (38) has been used. The current mJ has a
vanishing three-divergence [10–12]

¶ = ¶ + =m
m 0, 54z z JJJ J · ( )

namely
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¶
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This continuity equation has the same form, when position z
is replaced by time t, of the continuity equation for the con-
servation of probability in the quantum theory of a free two-
dimensional particle [13]. Moreover, as noticed in [14],
equation (55) is strictly connected to the Poynting theorem in
classical electrodynamics [15]. Integrating both sides of this
equation over all the xy-plane, we obtain

ò ò ¶ = - =d dx x 0, 56z zJ · ( )

where the right side amounts to the two-dimensional integral
of a two-divergence and then vanishes for fields localized
within a finite region of the xy-plane. This equation states that
during propagation of a monochromatic optical field along the
z-axis, the ‘charge’ Q defined as

ò f=
¶
¶

=Q d z
Q

z
x x, , is conserved: 0. 572∣ ( )∣ ( )

As we will see later, in the quantum version of the theory this
charge simply corresponds to the total number of the particles
in the field.

4. Quantization of the paraxial field

The quantum theory of electromagnetic fields in the regime
of paraxial propagation, has been accomplished by several
authors in the past [16–19]. In these works, the quantized
fields were vector fields obeying Maxwell equations. A
good example of alternative quantization of both paraxial
and non-paraxial optical fields, based upon eigenmodes of
angular momentum, is given in [20]. However, using the
full machinery of quantum electrodynamics is not really
necessary for many practical applications. Therefore, in the
present work, we simply aim at quantizing the complex
scalar field f(x, z) satisfying the PWE (14). In practice, we
will follows basically the same procedure outlined in [2, 3],
for the quantization of the non-relativistic Schrödinger
equation.

We begin by rewriting the Lagrangian (20)

f f f f = ¶ - 


i
k2

, 58z
0

* * · ( )

and the canonically conjugate field P zx,( ) associated with
f zx,( ):

f
fP =

¶
¶ ¶

=


z i zx x, , , 59
z

*( )
( )

( ) ( )

where the constant multiplicative term  that we added, does
not alter the dynamics of the fields and can be eliminated by
absorbing it into the definition of the field: f f  .
Moreover, if we multiply both sides of equation (58) by the
speed of light c and we define the new time-like variable
τ=z/c, then the so-obtained Lagrangian

f
f
t

f f 
¶
¶

- 


i
c

k2
, 60

0
* * · ( )

becomes identical to the Lagrangian associated to the
Schrödinger equation of a particle of mass = m k c0 , whose
motion is restricted to the plane xy.

Since Π*=0, there are only two independent fields,
either (f, Π) or (f, f*). We choose the second pair and write
the Hamiltonian density (43) as

f
f f = P

¶
¶

- =


z
z k

x,
2

. 61
0

*H( ) · ( )

As usual, the total Hamiltonian is obtained integrating
zx,H( ) over the xy-plane:

ò ò f f= = - 


H d z d z
k

zx x x x x, ,
2

, ,

62
0

2*H
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

( )

where we used integration by part to pass from the first to the
second line of equation (62).

At this point, the classical theory is quantized by pro-
moting the two classical fields f zx,( ) and f zx,*( ), to the

operators f zx,ˆ ( ) and f zx,ˆ ( )†
, respectively, and then postu-

lating the equal-z canonical commutation relations:

f f d¢ = - ¢z zx x x x, , , 63[ ˆ ( ) ˆ ( )] ( ) ( )†
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and

f f f f¢ = = ¢z z z zx x x x, , , 0 , , , . 64[ ˆ ( ) ˆ ( )] [ ˆ ( ) ˆ ( )] ( )† †

The Hamilton equations of motion now become

f f
¶
¶

=i
z

z z Hx x, , , , 65ˆ ( ) [ ˆ ( ) ˆ ] ( )

where Ĥ is straightforwardly derived from equation (62):

ò f f= - 


H d z
k

zx x x,
2

, . 66
0

2
⎛
⎝⎜

⎞
⎠⎟ˆ ˆ ( ) ˆ ( ) ( )†

From equations (63)–(66), it follows that with our choice the
Hamiltonian operator Ĥ must have the dimensions of an
energy divided by a velocity, therefore cĤ represents a true
energy. Substituting equation (66) into equation (65), one
obtains

ò

f f

f f

f

f

¶
¶

=

= ¢ ¢

´ -  ¢

= - 

¢







i
z

z z H

d z z

k
z

k
z

x x

x x x

x

x

, , ,

, , ,

2
,

2
, , 67

x
0

2

0

2

⎛
⎝⎜

⎞
⎠⎟

ˆ ( ) [ ˆ ( ) ˆ ]

[ ˆ ( ) ˆ ( )]

ˆ ( )

ˆ ( ) ( )

†

which correctly reproduces the PWE.

4.1. Mode expansion and particle interpretation

At any position z the fields f zx,ˆ ( ) and f zx,ˆ ( )†
can be

expanded in terms of the two-dimensional Fourier transform
representations as

òf
p

= Fz d z ex p p,
1

2
, 68ip xˆ ( ) ˆ ( ) ( )·

and

òf
p

= F -z d z ex p p,
1

2
, . 69ip xˆ ( ) ˆ ( ) ( )† † ·

Substituting equations (68) and (69) into equation (66) we
obtain, after some manipulation,

ò= F F


H d
p

k
z zp p p

2
, , , 70

2

0

ˆ ˆ ( ) ˆ ( ) ( )†

where =p p p2 · . Using the Fourier inversion formula, we
obtain from equations (68) and (69)

òp
fF = -z d z ep x x,

1

2
, 71ip xˆ ( ) ˆ ( ) ( )·

and

òp
fF ¢ = ¢ ¢ ¢ ¢z d z ep x x,

1

2
, . 72ip xˆ ( ) ˆ ( ) ( )† † ·

Therefore, after a straightforward calculation one finds that
the canonical commutation relations (63) and (64) yield for F̂

and F̂†
the following results:

dF F ¢ = - ¢z zp p p p, , , 73[ ˆ ( ) ˆ ( )] ( ) ( )†

and

F F ¢ = = F F ¢z z z zp p p p, , , 0 , , , . 74[ ˆ ( ) ˆ ( )] [ ˆ ( ) ˆ ( )] ( )† †

The z-derivative of F zp,ˆ ( ) is given by the Hamilton
equation

ò

¶
¶

F = F

= F F F

= - F







i
z

z z H

k
d q z z z

p

k
z

p p

q p q q

p

, , ,

2
, , , ,

2
, , 75

0

2

2

0

ˆ ( ) [ ˆ ( ) ˆ ]

[ ˆ ( ) ˆ ( )] ˆ ( )

ˆ ( ) ( )

†

where equations (70) and (73) have been used. This equation
can be easily solved to obtain

hF = ºh-z a e
p

k
p p, , with

2
, 76iz

p

2

0

pˆ ( ) ˆ ( ) ( )

where º Fa p p, 0ˆ ( ) ˆ ( ). It should be noticed that equation (76)
reproduces the so-called ‘Fresnel-propagation’ law for clas-
sical paraxial fields [21]. A similar calculation also shows that

F = hz a ep p, , 77iz pˆ ( ) ˆ ( ) ( )† †

with º Fa p p, 0ˆ ( ) ˆ ( )† †
. Then, we can rewrite the fields (68)

and (69) as

òf
p

= h-z d a ex p p,
1

2
. 78i izp x pˆ ( ) ˆ ( ) ( )·

and

òf
p

= h- +z d a ex p p,
1

2
. 79i izp x pˆ ( ) ˆ ( ) ( )† † ·

From equations (73), (76) and (77), it follows that

d¢ = - ¢
¢ = = ¢

a a

a a a a

p p p p

p p p p

, , and

, 0 , . 80

[ ˆ ( ) ˆ ( )] ( )
[ ˆ ( ) ˆ ( )] [ ˆ ( ) ˆ ( )] ( )

†

† †

4.1.1. Spectrum of the field. In the Fourier representation,
the Hamiltonian (70) becomes manifestly z-independent:

ò h= H d a ap p p . 81p
ˆ ˆ ( ) ˆ ( ) ( )†

According to our analysis about the conservation laws
associated to the PWE, there must exist a set of three
conserved operators P P P, ,1 2 3{ ˆ ˆ ˆ }, where º -P H3ˆ ˆ and

ò

ò

f f=
¶
¶

= 

P d z
i x

z

d p a a

x x x

p p p

,
1

,

, 82

l

l

l

⎛
⎝⎜

⎞
⎠⎟ˆ ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( ) ( )

†

†
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namely:

ò
º

= = -

m



P P P P

d p p p a ap p p

, ,

, , . 83p

k

1 2 3

1 2 3
2

2

0{ }
ˆ { ˆ ˆ ˆ }

ˆ ( ) ˆ ( ) ( )†

The invariance of these operators with respect to z-
propagation can be proved directly by calculating the
commutator

ò ò

ò ò

h

h

=

´

=

´
+

=

 

 

P H d d p

a a a a

d d p

a a a a

a a a a

p q

p p q q

p q

p p q q

q p q p

,

,

,

,
0, 84

l l
q

l
q

[ ˆ ˆ ] ( )( )

[ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )]

( )( )

{ ˆ ( )[ ˆ ( ) ˆ ( )] ˆ ( )
ˆ ( )[ ˆ ( ) ˆ ( )] ˆ ( )}

( )

† †

† †

† †

where equation (80) and the commutator distributive law [AB,
CD]=A[B, C] D+AC[B, D]+[A, C] DB+C[A, D]B,
have been used. Proceeding in the same manner, it is not
difficult to see that also the ‘number’ operator

ò òf f= =N d z z d a ax x x p p p, , 85ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )† †

is conserved: =N H, 0[ ˆ ˆ ] . Moreover, a straightforward
calculations shows that =P P, 0i j[ ˆ ˆ ] .

From equations (78) and (83) and by using the Camp-
bell–Baker–Hausdorff formula, it is not difficult to prove that

f f= -
m

m
n

n z e ex 0, , 0 . 86iP x iP xˆ ( ) ˆ ( ) ( )ˆ ˆ

Since the four operators P P H N, , ,1 2{ ˆ ˆ ˆ ˆ } commute, they
can be simultaneously diagonalized. The procedure to find a
complete set of eigenstates of such operators is pretty
standard and can be found in many textbooks; therefore
now we will only sketch the procedure following [22]. Let ¢ñn∣
be an eigenstate of N̂ with eigenvalue ¢n :

¢ñ = ¢ ¢ñN n n n , 87ˆ ∣ ∣ ( )

where ¢n is real number, not necessarily integer. Since

ò
ò

ò
ò

=

=

- +

=

+

= +

Na d a a a

d a a a

a a a a

d a a a

d a a a

a N

p q q q p

q q q p

p q p q

q q q p

q q p q

p

,

1 88

ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

ˆ ( )( ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

ˆ ( )[ ˆ ( ) ˆ ( )]

ˆ ( ) ˆ ( ) ˆ ( )

ˆ ( )( ˆ ) ( )

† † †

† †

† †

† †

† †

†

and

ò
ò

ò
ò

=

= -

+

= -

+

= -

Na d a a a

d a a a a

a a a

d a a a

a d a a

a N

p q q q p

q q p p q

p q q

q p q q

p q q q

p

,

1 , 89

ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

( ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( ) ˆ ( )

[ ˆ ( ) ˆ ( )] ˆ ( )

ˆ ( ) ˆ ( ) ˆ ( )

ˆ ( )( ˆ ) ( )

†

† †

†

†

†

then it follows that

¢ñ = ¢ + ¢ñ

¢ñ = ¢ - ¢ñ

Na n n a n

Na n n a n

p p

p p

1 and

1 . 90

ˆ ˆ ( )∣ ( ) ˆ ( )∣
ˆ ˆ ( )∣ ( ) ˆ ( )∣ ( )

† †

This procedure may be iterated. For example, it is not difficult
to see that

¢ = ¢ +Na a a a Np p p p 2 , 91ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )( ˆ ) ( )† † † †

and

¢ = ¢ -Na a a a Np p p p 2 , 92ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )( ˆ ) ( )

which implies that

¢ ¢ñ = ¢ + ¢ ¢ñNa a n n a a np p p p2 93ˆ ˆ ( ) ˆ ( )∣ ( ) ˆ ( ) ˆ ( )∣ ( )† † † †

and

¢ ¢ñ = ¢ - ¢ ¢ñNa a n n a a np p p p2 . 94ˆ ˆ ( ) ˆ ( )∣ ( ) ˆ ( ) ˆ ( )∣ ( )

After repeating this procedure n times, we find

¼ ¢ñ

= ¢ + ¼ ¢ñ

Na a a n

n n a a a n

p p p

p p p 95
n

n

1 2

1 2

ˆ ˆ ( ) ˆ ( ) ˆ ( )∣
( ) ˆ ( ) ˆ ( ) ˆ ( )∣ ( )

† † †

† † †

and

¼ ¢ñ
= ¢ - ¼ ¢ñ

Na a a n

n n a a a n

p p p

p p p . 96
n

n

1 2

1 2

ˆ ˆ ( ) ˆ ( ) ˆ ( )∣
( ) ˆ ( ) ˆ ( ) ˆ ( )∣ ( )

Since, from the definition (85) it follows that N̂ is an
Hermitean operator positive semidefinite, then in
equation (96) we must have ¢ - n n 0 for any integer n
and any real number ¢n . Therefore, ¢n must be an integer
(otherwise the iteration never stops). If in (96) we choose
¢ =n n and define the vacuum state ñ0∣ as

ñ º ¼ ña a a np p p0 , 97n1 2∣ ˆ ( ) ˆ ( ) ˆ ( )∣ ( )

then it follows that the vacuum state does not contains
particles:

ñ =N 0 0. 98ˆ ∣ ( )

From equations (89) and (98), it follows that

ñ = - ñ = - ñNa a N ap p p0 1 0 0 , 99ˆ ˆ ( )∣ ˆ ( )( ˆ )∣ ˆ ( )∣ ( )

which is in contradiction with the fact that N̂ is positive
semidefinite. Therefore, it must be

ñ =a p 0 0. 100ˆ ( )∣ ( )
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Finally, putting ¢ =n 0 in equation (95), we obtain

¼ ñ

= ¼ ñ

N a a a

n a a a

p p p

p p p

0

0 , 101
n

n

1 2

1 2

ˆ ˆ ( ) ˆ ( ) ˆ ( )∣
ˆ ( ) ˆ ( ) ˆ ( )∣ ( )

† † †

† † †

which permits us to identify ¼ ñ º ¼ap p p, , n1 1∣ ˆ ( )†

ña p 0nˆ ( )∣† with the state containing n particles. The single-
particle state ñ = ñap p 0∣ ˆ ( )∣† is normalized according to

dá ¢ñ = á ¢ ñ = - ¢ á ña ap p p p p p0 0 0 0 , 102∣ ∣ ˆ ( ) ˆ ( )∣ ( ) ∣ ( )†

where we used equation (80) to rewrite ¢ =a ap pˆ ( ) ˆ ( )†

d - ¢ + ¢a ap p p p( ) ˆ ( ) ˆ ( )† . From now on, we assume that the
vacuum state is normalized, that is á ñ =0 0 1∣ . It is not difficult
to verify that the two-particle state ñ = ña ap p p p, 01 2 2 1∣ ˆ ( ) ˆ ( )∣† †

has the expected Bosons symmetry with respect to the
exchange of particles:

d d d d

á ¢ ¢ñ

= á ¢ ¢ ñ

= - ¢ - ¢ + - ¢ - ¢

a a a a

p p p p

p p p p

p p p p p p p p

, ,

0 0

,

103

1 2 1 2

2 1 2 1

1 1 2 2 1 2 2 1

∣
∣ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )∣

( ) ( ) ( ) ( )
( )

† †

where equation (80) has been repeatedly used. This calculation
can be straightforwardly generalized to the n-particle states.

4.1.2. Physical quantities. To begin with, we show that the
n-particle states ¼ ñp p, , n1∣ are actually eigenstates of the

physical observables P P H, ,1 2{ ˆ ˆ ˆ }, as previously claimed (for
N̂ this has been already shown in equation (101)). To prove
this, first we have to calculate the action of a pˆ ( ) upon

¼ ñp p, , n1∣ , namely

å

d
d
d

d

¼ ñ= ñ
= - ¼ ñ

+ - ¼ ñ+¼
+ - ¼ ñ

= - ¼ ¼ ñ

-

=
- +

a a a ap p p p p p

p p p p p

p p p p p

p p p p p

p p p p p p

, , 0

, , ,

, , ,

, , ,

, , , , , ,

104

n n

n

n

n n

k

n

k k k n

1 1

1 2 3

2 1 3

1 2 1

1
1 1 1

ˆ ( )∣ ˆ ( ) ˆ ( ) ˆ ( )∣
( )∣

( )∣
( )∣

( )∣
( )

† †

where equation (80) has been used n times. Now we are
equipped to calculate

ò
å

å

h

h

h

¼ ñ= ¼ ñ

= ¼ ¼ ñ

= ¼ ñ

º ¼ ñ

=
- +

=







H d a a

a

E

p p p p p p p

p p p p p

p p

p p

, , , ,

, , , , ,

, ,

, , .

105

n p n

k

n

p k k k n

k

n

p n

n n

1 1

1
1 1 1

1
1

1

k

k

⎛
⎝⎜

⎞
⎠⎟

ˆ ∣ ˆ ( ) ˆ ( )∣

ˆ ( )∣

∣

∣
( )

†

†

So, ¼ ñp p, , n1∣ is actually an eigenstate of Ĥ with eigenvalue
En. In a similar manner, we obtain

å¼ ñ= ¼ ñ

º ¼ ñ
=

P p

P

p p p p

p p

, , , ,

, , . 106

l
n

k

n

k
l

n

n
l

n

1
1

1

1

⎛
⎝⎜

⎞
⎠⎟

ˆ ∣ ∣

∣ ( )

Next, an important quantity to calculate is the so-called
propagator for the PWE. It is evaluated from the two-point

correlation function f fá ¢ ¢ ñz zx x, , 0
ˆ ( ) ˆ ( )†

defined as

ò
f f f f

p

p

á ¢ ¢ ñ = á ¢ ¢ ñ

=

=
- ¢

- ¢ - - ¢

- ¢
- ¢

z z z z

d e e

k

i

e

z z

x x x x

p

, , 0 , , 0
1

2

2
,

107

i i z z p k

i

p x x

0

2
2

0
k

z z
x x

2
0

0
2

2

ˆ ( ) ˆ ( ) ∣ ˆ ( ) ˆ ( )∣

( )

( )

† †

·( ) ( ) ( )

∣ ∣

which coincides with the so-called Fresnel propagator in
paraxial optics [23].

As a further step, we introduce the position states
¼ ñzx x, , ;n1∣ defined as

f f¼ ñ= ñ

º ñ

z z z

X z

x x x x, , ; , , 0

0 , 108

n n

n

1 1∣ ˆ ( ) ˆ ( )∣
ˆ ( )∣ ( )

† †

where fº  =X z zx ,n k
n

k1
ˆ ( ) ˆ ( )†

. Exploiting the fact that
ñ =H 0 0ˆ ∣ , it is easy to see that these states obey the

Schrödinger equation:

¶
¶

¼ ñ=
¶
¶

ñ

= ñ

= - ¼ ñ

 i
z

z i
z

X z

X z H

H z

x x

x x

, , ; 0

, 0

, , ; . 109

n n

n

n

1

1

∣ ˆ ( )∣

[ ˆ ( ) ˆ ]∣
ˆ ∣ ( )

The wave function associated with the scalar field is
given by the scalar product between position ñzx;∣ and
momentum ñp∣ single-particle states, namely:

f f

f

p

á ñ = á ñ

= á ñ

=

-

-

m
m

n
n

n
n

 z e e

e

e

x p 0 p

0 p

0 , 0 , 0

0 , 0
1

2
. 110

iP x iP x

ip x

i izp kp x 22
0

∣ ˆ ( )∣ ∣ ˆ ( ) ∣
∣ ˆ ( )∣

( )

ˆ ˆ

· ( )

If we denote ñ º ñx x; 0∣ ∣ , then equation (110) shows that we
have actually recovered the normalized Fourier basis in a two-
dimensional space:

p
á ñ = ex p

1

2
. 111ip x∣ ( )·

The action of the field operator f zx,ˆ ( ) on the position
state ¼ ñzx x, , ;n1∣ is similar to the action of the annihilation
operator a pˆ ( ) on the momentum state ¼ ñp p, , n1∣ , which we
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have seen in equation (104). In the present case, we have

å

f

f f f
d

d
d

d

¼ ñ

= ñ
= - ¼ ñ

+ - ¼ ñ+¼
+ - ¼ ñ

= - ¼ ¼ ñ

-

=
- +

z z

z z z

x x x

x x x

x x x x x

x x x x x

x x x x x

x x x x x x

, , , ;

, , , 0

, , ,

, , ,

, , ,

, , , , , , 112

n

n

n

n

n n

k

n

k k k n

1

1

1 2 3

2 1 3

1 2 1

1
1 1 1

ˆ ( )∣
ˆ ( ) ˆ ( ) ˆ ( )∣
( )∣

( )∣
( )∣

( )∣ ( )

† †

where equation (63) has been used to write f fz zx y, ,ˆ ( ) ˆ ( )†

= f f d+ -z zy x x y, ,ˆ ( ) ˆ ( ) ( )†
.

4.2. Mode expansion in different bases

Amongst the solutions of the PWEs there are the so-called
Hermite-Gauss and Laguerre–Gauss modes [24]. Different
mode functions can be used as well [25]. Let u zx,a ( ) be one
of such modes, where the shorthand a denotes a multiple
index. By definition

¶
¶

+  =i
z k

u zx
1

2
, 0. 113a

0

2
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

These modes form a complete and orthonormal basis, namely

ò

å d

d

= -

=

u z u z

d u z u z

x y x y

x x x

, , ,

, , . 114

a
a a

a b ab

*

*

( ) ( ) ( )

( ) ( ) ( )

Therefore, we can express the fields f zx,ˆ ( ) and f zx,ˆ ( )†
in

this basis as

å

å

f f

f f

=

=

z u z

z u z

x x

x x

, , and

, , , 115

a
a a

a
a a*

ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( ) ( )† †

where

ò
ò

f f

f f

=

=

d u z z

d u z z

x x x

x x x

, , and

, , . 116

a a

a a

*ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( ) ( )† †

Using equation (63), it is straightforward to calculate the
commutators

f f d f f f f= = =, and , 0 , . 117a b ab a b a b[ ˆ ˆ ] [ ˆ ˆ ] [ ˆ ˆ ] ( )† † †

From equation (116), it follows that

òf fñ = ñ = ñ º ñd u z z ax x x0 0 and 0 , ; . 118a a a
ˆ ∣ ˆ ∣ ( )∣ ∣ ( )†

The latter relation tells us that the operator fa
ˆ †

creates a par-
ticle in the paraxial mode u zx,a ( ) from the vacuum state. The
single-particle states associated to different paraxial modes
are automatically orthogonal:

f f dá ñ = á ñ =a b 0 0 , 119a b ab∣ ∣ ˆ ˆ ∣ ( )†

where equations (117) and (118) have been used.

From these definitions, any other relation may be
straightforwardly calculated.

4.3. Connection with the physical electromagnetic fields

The paraxial scalar field f zx,( ) and its corresponding
quantum operator f zx,ˆ ( ) are not directly physical electro-
magnetic fields, but must be understood as ‘envelope fields’,
in the following sense. Consider a field y zx,( ) obeying the
HWE

y
¶
¶

+
¶
¶

+
¶
¶

+ =
x y z

k zx, 0. 120
2

2

2

2

2

2 0
2

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

Such a field can be thought, for example, as one of the three
components of either the electric or the magnetic field.
Without loss of generality, let us define the envelope field
f zx,( ) via the relation

y f=z z ex x, , . 121ik z0( ) ( ) ( )

Substituting this expression in the Helmholtz equation (119)
yields the exact wave equation governing f zx,( ):

f
¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

=
x y

ik
z z

zx2 , 0. 122
2

2

2

2 0

2

2

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( ) ( )

Now, the slowly varying envelope approximation amounts to
the assumption

f f¶
¶

¶
¶z

k
z

123
2

2 0 ( )

and it permits to omit the last term within square bracket in
equation (122), which eventually reduces to the PWE

f
¶
¶

+
¶
¶

+
¶
¶

=
x y

ik
z

zx2 , 0. 124
2

2

2

2 0

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

Therefore, we must think of f zx,( ) as an approximation of
the actual field y -z ik zx, exp 0( ) ( ). Moreover, if we restore
the time dependence (for the monochromatic field) multi-
plying y zx,( ) by w-i texp 0( ), with ω0≡ck0, then the actual
scalar field that can be related to a real vector electromagnetic
field, is given by

y f= w-z t z ex x, ; , . 125ik z t0 0( ) ( ) ( )

From this scalar field, the actual electric and magnetic
fields may be calculated within the paraxial approximation, as

y= + +E
iA

k

i

k
z tn n x, ; c.c ., 1260

0 0
3

⎡
⎣⎢

⎤
⎦⎥( · ) ( ) ( )



and

w
y= ´ + ´ + B

iA i

k
z tn n x, ; c.c .,

127

0

0
3

0
3 3

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )



where ‘c.c.’ stands for ‘complex conjugate’ and =n
+ n n1 1 2 2 is a two-dimensional transverse unit vector that

fixes the polarization of the field [17]. A0 is a constant real
amplitude with the physical dimensions of an electric field.
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For the quantum fields, the generalization of the
equations above is straightforward. For example, the electric

field operator will be written as = +
+ -

E E Eˆ ˆ ˆ  
, where

-
Ê


is

the Hermitean conjugate of
+

Ê


. Then, using equation (78), we
can readily write

ò

f

p





= +

= +

´ -

w

w

+
-

-





E
iA

k

i

k
z e

iA

k
e d a

i

k

i iz
p

k

n n x

p p n n

p x

,

2

exp
2

.

128

ik z t

ik z t

0

0 0
3

0

0
3

0

2

0

0 0

0 0

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ˆ ( · ) ˆ ( )

ˆ ( ) ·

·
( )



This expression is in full agreement with equations (17) and
(18) of [26], when the latter are reduced to the monochro-
matic case.

5. Conclusions

In this second part of our work on monochromatic optical beams,
we have studied the PWE from a field-theoretic point of view.
We began writing a Lagrangian apt to yields the Euler–Lagrange
equations correctly reproducing the paraxial wave equation.
Then, we studied the symmetries of the latter and we deduced
several conservation laws. Then, we quantized the fields and
calculated the relevant physical observables. Finally, we com-
pared our results with previously established ones finding full
agreement.
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