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Abstract: The energy transition entails a rapid uptake
of renewable energy sources. Besides physical changes
within the grid infrastructure, energy storage devices and
their smart operation are key measures to master the
resulting challenges like, e.g., a highly fluctuating power
generation. For the latter, optimization based control has
demonstrated its potential on a microgrid level. However,
if a network of coupled microgrids is considered, iterative
optimization schemes including several communication
rounds are typically used. Here, we propose to replace the
optimization on the microgrid level by using surrogate
models either derived from radial basis functions or neural
networks to avoid this iterative procedure. We prove well-
posedness of our approach and demonstrate its efficiency
by numerical simulations based on real data provided by
an Australian grid operator.

Keywords: Smart Grids, Model Predictive Control, Dis-
tributed Optimization, Surrogate Models, Bidirectional
Optimization, Neural Networks, Radial Basis Functions

Zusammenfassung: Die Energiewende bringt einen
raschen Zuwachs eneuerbarer Energiequellen mit sich.
Neben den physikalischen Veränderungen der Netzinfras-
truktur spielen Energiespeichereinheiten und deren in-
telligente Nutzung eine entscheidende Rolle, um die sich
ergebenden Probleme wie z.B. die stark schwankende Ener-
gieerzeugung zu bewältigen. In Bezug auf Letztere haben
optimierungsbasierte Steuerungstechniken ihr Potential
auf Microgrid-Ebene unter Beweis gestellt. Betrachtet
man jedoch ein Netzwerk gekoppelter Microgrids, wer-
den üblicherweise iterative Optimierungsansätze gewählt,
welche mit mehreren Kommunikationsrunden einhergehen.
Um derartigen Kommunikationsschleifen vorzubeugen,
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schlagen wir vor, den Optimierungsschritt auf Microgrid-
Ebene durch den Einsatz geeigneter Ersatzmodelle zu
vermeiden. Den hier verwendeten Ersatzmodellen liegen
zum einen radiale Basisfunktionen und zum anderen neu-
ronale Netze zugrunde. Wir zeigen, dass unser Ansatz
wohlgestellt ist und demonstrieren die Effizienz anhand
numerischer Simulationen basierend auf realen Daten eines
australischen Verteilnetzbetreibers.

Schlagwörter: Smart Grids, Modellprädiktive Regelung,
Verteilte Optimierung, Ersatzmodelle, Bidirektionale Op-
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1 Introduction
The share of renewable energy sources rapidly increases;
also due to more and more installed devices like e.g., solar
panels at household-level. Hence, households become pro-
sumers, i.e., power is not only consumed but also produced.
Therefore, energy generation and distribution takes place
in a distributed way. In particular, energy can be transmit-
ted bidirectionally between the grid and the prosumers,
which results in a paradigm shift in the grid organization.
In addition, prosumers may also possess some kind of
energy storage device in order to manipulate their power
demand profiles by either charging or discharging. From
the grid operator’s perspective it might be beneficial that
charging decisions are not made based on local informa-
tion only. Instead taking into account information on the
entire grid may improve the system-wide operation, e.g.,
to flatten the overall power demand within the grid in
order to facilitate the power supply. [1]. In order to achieve
this goal, communication is needed. In the future, each
household shall be equipped with a smart meter which
yields so-called smart homes. Smart meters collect data
and communicate with the grid operator automatically.

A straight-forward way to optimally operate the over-
all system is to formulate one large-scale optimization
problem and to solve it in a centralized way, see, e.g. [2].
This approach, however, is hard to realize in practice. One
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of the disadvantages is that some central node needs the
complete information about the grid, which is, e.g. due
to data privacy, not desirable. Alternatives are decentral-
ized or distributed optimization algorithms. In [3] the
authors propose a decentralized approach to steer energy
storage systems in order to avoid over-capacity of pole
transformers while maintaining a high charging amount
of energy storage systems in low-voltage distribution sys-
tems. The other option mentioned above are distributed
optimization methods such as distributed dual ascent [4],
Alternating Direction Method of Multipliers (ADMM) [5]
or Augmented Lagrangian based Alternating Direction
Inexact Newton (ALADIN) [6]. These algorithms use a
star-shaped communication topology, i.e. each smart home
communicates only with the grid operator and does not
share any information with its neighbours. Nevertheless,
in every iteration each household has to transmit specific
(personal) data to the grid operator, see also [7] and [8]
for an application of ADMM and ALADIN to electrical
networked systems, respectively. In order to exploit the
potential of these algorithms they are typically embed-
ded within a Model Predictive Control (MPC) framework.
MPC is a state-of-the-art technique to tackle optimal
control problems by solving finite-dimensional optimiza-
tion problems successively, see e.g. [9] for an introduction
to MPC and [10, 11] for MPC approaches in electrical
networks.

An alternate option to steer the power demand of local
agents besides battery control is to schedule so-called con-
trollable loads. Controllable loads can be shifted in time
to avoid bottlenecks in the energy supply, see e.g. [12, 13].
There is also a large potential in the context of stochas-
tic optimization of smart grids. For weather forecasting
methods we refer to [14]. How to integrate electrical ve-
hicles into the electricity network under uncertainties is
described in [15].

Considering the power networks described so far, it
is assumed that exchange of energy within the grid is
possible at any time and does not cause any losses or
additional costs, which might (approximately) hold for
domestic nets, e.g. a town. In this paper, we refer to
these grids as microgrids (MGs). In [16, 17], the concept
of coupled MGs is used to tackle large-scale problems
incorporating several MGs. In the latter, the authors show
that even if each single MG is optimally operated, there
is still room for improvement if energy can be exchanged
among MGs. Therefore, a second optimization problem is
solved on a higher grid level in order to optimally exchange
energy resulting in a bilevel optimization problem [18].

In [19], the authors propose to replace the distributed
optimization routine on the lower grid level by a surrogate

model in order to speed-up the calculation and further re-
duce communication effort. Here, Radial Basis Functions
(RBFs) [20] are used to approximate the input-output
behaviour of ADMM within the framework of coupled
MGs established in [17]. Besides RBFs there are various
methods to learn the behaviour of a complex function. Ar-
tificial Neural Networks (NNs) are one of the most popular
representatives of modern artificial intelligence techniques
and are often used in practice due to their success in
various application fields, see e.g. the survey article [21].
In [22] the authors forecast loads in a power grid using
NNs, whereas in [23] NNs are used in an optimal power
flow framework. The main advantage of using surrogates
is that communication effort can be reduced.

In this paper, we extend the idea of coupled microgrids
established in [17] by proposing an iterative bi-directional
optimization routine in order to improve the overall perfor-
mance. Due to its iterative structure, however, our method
comes along with a strong need for communication be-
tween smart homes and grid operator. As a remedy we
present two approaches to reduce the communication effort
by substituting the optimization on microgrid level via
surrogate models. A main difference compared to [19] lies
in the different input-output map that is replaced by the
surrogate models, for which we can show that each input
uniquely determines an (optimal) output. Furthermore, we
also take NNs as potential surrogate models into account
and study the performance of the resulting approxima-
tions numerically in an MPC framework. Our simulations
show that the proposed method approximately recovers
the performance based on using ADMM but significantly
reduces the communication burden. The effect of apply-
ing surrogate models within MPC extends our previous
work [19] where a surrogate model based on RBFs was
only applied in a static optimization problem.

The paper is structured as follows: In Section 2 we
formulate a mathematical model for coupled microgrids
that consists of two hierarchy levels, and introduce opti-
mization problems corresponding to each of them. In the
consecutive section, we propose an iterative scheme that
requires the solution of a distributed optimization prob-
lem on the lower level which is solved using ADMM. In
Section 4, we investigate the impact of disturbances w.r.t.
the lower-level solution on the performance measured in
terms of the upper-level objective function. Based on the
results, we propose to replace ADMM by surrogates in
order to reduce communication effort and computation
time. The performance of the optimization scheme incor-
porating surrogates is analysed in an MPC framework in
Section 5.
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2 A model for coupled microgrids
We consider a system of coupled microgrids (MGs) and
call it a smart grid. Each MG consists of several residential
energy systems (agents) coupled through the grid operator,
which can be seen as Central Entity (CE). The coupling
of the microgrids is done through a network, where some
MGs are connected by a transmission line and others are
not connected, cf. Figure 1.

MG1 MG2

MG3 MG4

Fig. 1: Upper-level model: Schematic representation of four cou-
pled MGs. Energy exchange is possible only via transmission lines.

2.1 Upper-level model: Energy exchange

We assume that we have Ξ ∈ N many MGs which are
partially coupled via transmission lines and can be inter-
preted as nodes of a non-complete graph, see Figure 1
where Ξ = 4. Each MG 𝜅, for 𝜅 ∈ [1 : Ξ], consists of
ℐ𝜅 ∈ N agents modeled in detail in Subsection 2.2. We as-
sume that each MG 𝜅 has an average power demand 𝑧𝜅(𝑛)
at time 𝑛. Given this, we can compute the total power
demand ℐ𝜅𝑧𝜅 of a MG. The control goal is to exchange
power among the MGs in a way such that a desired quan-
tity 𝜁(𝑛) is targeted by controlling the residential storage
units. We specify 𝜁(𝑛) in Subsection 2.2, and assume for
the moment that this quantity is known to the grid and
has advantages for the grid operation. We assume that
this desired quantity is independent of 𝜅, but this is not
necessary for the rest of the discussion.

Let 𝛿𝜈𝜅 describe the percentage of power ℐ𝜈𝑧𝜈(𝑛) that
is transferred from MG 𝜈 to MG 𝜅. We enforce 𝛿𝜈𝜅 equals
zero if there is no transmission line between the two MGs.
Otherwise, the power demand of a MG 𝜅 is given by its own
total power demand 𝛿𝜅𝜅ℐ𝜅𝑧𝜅, where 𝛿𝜅𝜅 is what remains
at the MG, and the sum over the power received from
connected MGs,

∑︀
𝜈 ̸=𝜅 𝛿𝜈𝜅ℐ𝜈𝑧𝜈 . For each time step in our

prediction horizon of length 𝑁 ∈ N≥2, we want to match
this to the desired power demand starting at time 𝑘 for 𝑁
timesteps of each MG in a least-squares sense. The objec-
tive function is thus given by 𝒥 : RΞ𝑁 × RΞ×Ξ×𝑁 → R,

(𝑧, 𝛿) ↦→
𝑘+𝑁−1∑︁

𝑛=𝑘

Ξ∑︁
𝜅=1

(︃
𝜁(𝑛)ℐ𝜅 −

Ξ∑︁
𝜈=1

𝛿𝜈𝜅(𝑛)𝜂𝜈𝜅ℐ𝜈𝑧𝜈(𝑛)

)︃2

.

(1)

Here, the vector 𝑧 = (𝑧(𝑘), . . . , 𝑧(𝑘 + 𝑁 − 1)⊤)⊤ with
𝑧(·) ∈ RΞ stacks the average power demand per MG and
time step while the matrix 𝜂 = (𝜂𝜈𝜅)Ξ

𝜅,𝜈=1 ∈ [0, 1]Ξ×Ξ

incorporates efficiencies along the transmission lines.
We are interested in minimizing (1) under the fol-

lowing constraints: All exchange rates 𝛿𝜈𝜅 are within the
interval [0, 1], sum up to 1, and only transfer power in one
direction, meaning that either 𝛿𝜈𝜅 or 𝛿𝜅𝜈 is zero. Moreover,
note that at this grid level, the average power demands per
MG are known. Following [17], the optimization problem
of the upper-level is, thus, formulated over the exchange
rates 𝛿,

min
𝛿∈Δ

𝒥 (𝑧, 𝛿) (2a)

s.t.
Ξ∑︁

𝜅=1
𝛿𝜈𝜅(𝑛) = 1 (2b)

𝛿𝜈𝜅(𝑛) · 𝛿𝜅𝜈(𝑛) ≤ 0, 𝜅 ̸= 𝜈 (2c)
∀ 𝜈, 𝜅 ∈ [1 : Ξ], 𝑛 ∈ [𝑘 : 𝑘 +𝑁 − 1],

where 𝛿𝜈𝜅(𝑛) denotes the power exchange rate
from MG 𝜈 to MG 𝜅 at time instance 𝑛, and
Δ:=

{︀
𝛿∈ [0, 1]Ξ×Ξ×𝑁 |𝛿𝜈𝜅(𝑛)=0, if no line from 𝜈 to 𝜅

}︀
.

Constraints (2b) and (2c) ensure that the whole energy of
each MG is scheduled and that exchanges via transmission
lines can only occur in one direction during one time step.
The definition of the set Δ encodes the grid topology and,
hence, avoids scheduling energy exchange in the absence
of a transmission line, cf. Figure 1. We denote the feasible
set of (2) by

D𝛿 =
{︀
𝛿 ∈ Δ ⊆ [0, 1]Ξ×Ξ×𝑁

⃒⃒
(2b) - (2c) hold

}︀
.

The efficiency of a transmission line does not depend on
the direction of the transfer, i.e. the matrix 𝜂 is symmetric.
Furthermore, we assume no loss without transport, i.e.
𝜂𝜅𝜅 ≡ 1 for all 𝜅 ∈ [1 : Ξ], in the rest of the paper.

2.2 Lower-level model: Single microgrid

As we have seen in the previous section, we consider an
average power demand at each MG as well as some desired
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quantity 𝜁(𝑛). In order to understand these quantities
better, we explain the modeling of the MG in all detail.
The basis of our considerations forms the model presented
in [24] and its extension [7]. Therefore, let each subsystem
be equipped with an energy generation device (e.g. roof
top photo-voltaic panels) and some storage device (e.g. a
battery). Then, the 𝑖-th system, 𝑖 ∈ [1 : ℐ𝜅] in MG 𝜅, can
be described by the discrete time system dynamics,

𝑥𝜅𝑖(𝑛+ 1) = 𝛼𝜅𝑖𝑥𝜅𝑖(𝑛) + 𝑇 (𝛽𝜅𝑖𝑢
+
𝜅𝑖

(𝑛) + 𝑢−
𝜅𝑖

(𝑛)) (3a)
𝑧𝜅𝑖(𝑛) = 𝑤𝜅𝑖(𝑛) + 𝑢+

𝜅𝑖
(𝑛) + 𝛾𝜅𝑖𝑢

−
𝜅𝑖

(𝑛), (3b)

where 𝑥𝜅𝑖(𝑛) and 𝑧𝜅𝑖(𝑛) denote the State of Charge (SoC)
of the battery and the power demand at time instance
𝑛 ∈ N0, respectively. The latter incorporates the net con-
sumption, 𝑤𝜅𝑖(𝑛) = ℓ𝜅𝑖(𝑛) − 𝑔𝜅𝑖(𝑛), as the difference of
load and power generation, cf. Figure 2.

+   -

+   -

+   -

load `generation g SoC x

CE

Fig. 2: Lower-level model: Star-shaped network of residential
energy systems and central entity (CE). The quantity 𝑤 = ℓ − 𝑔

in (3b) is obtained from the data set [25].

The system can be controlled by charging 𝑢+
𝜅𝑖

and
discharging 𝑢−

𝜅𝑖
the battery at each time step. The length

of a time step in hours is denoted by 𝑇 > 0, e.g. 𝑇 = 0.5
corresponds to a half-hour time window. The constants
𝛼𝜅𝑖 , 𝛽𝜅𝑖 , 𝛾𝜅𝑖 ∈ (0, 1] represent efficiencies w.r.t. self dis-
charge and energy conversion. Furthermore, the initial
SoC 𝑥𝜅𝑖(𝑘) = 𝑥̂𝜅𝑖 , where 𝑘 ∈ N0 denotes the current time
instance, is assumed to be known. State and input are
subject to the inequality constraints,

0 ≤ 𝑥𝜅𝑖(𝑛) ≤ 𝐶𝜅𝑖 (4a)

¯
𝑢𝜅𝑖 ≤ 𝑢−

𝜅𝑖
(𝑛) ≤ 0 (4b)

0 ≤ 𝑢+
𝜅𝑖

(𝑛) ≤ 𝑢̄𝜅𝑖 (4c)

0 ≤
𝑢−

𝜅𝑖
(𝑛)

¯
𝑢𝜅𝑖

+
𝑢+

𝜅𝑖
(𝑛)

𝑢̄𝜅𝑖
≤ 1. (4d)

Here, 𝐶𝜅𝑖 ≥ 0 denotes the battery capacity. The last
constraint ensures that the bounds on discharging (4b) and

charging (4c) hold even if the battery is both discharged
and charged during one time step. Note that the case
𝐶𝜅𝑖 = 0 covers the case, where not all systems have a
storage device. Since the future net consumption is not
known in advance, it is assumed to be reliably predictable
on a short time horizon of size 𝑁 , 𝑁 ∈ N≥2, time steps.

For a concise notation we introduce the set
X𝜅𝑖 = [0, 𝐶𝜅𝑖 ] of feasible states, the set U𝜅𝑖 ={︀

(𝑢+
𝜅𝑖
, 𝑢−

𝜅𝑖
)⊤ ∈ R2

⃒⃒
(4b) − (4d) hold

}︀
of feasible control

pairs and the set

D𝜅𝑖 =

⎧⎨⎩ 𝑧𝜅𝑖 ∈R𝑁

⃒⃒⃒⃒
⃒⃒ 𝑧𝜅𝑖 = (𝑧𝜅𝑖(𝑘), . . . , 𝑧𝜅𝑖(𝑘+𝑁−1))⊤

∃𝑢𝜅𝑖 ∈ U𝑁 such that
𝑥𝜅𝑖(𝑘) = 𝑥̂𝜅𝑖 , (3) and (4) hold

⎫⎬⎭
of feasible outputs over the next 𝑁 time steps, 𝑖 ∈ [1 : ℐ𝜅],
𝜅 ∈ [1 : Ξ]. Referring to the feasible sets of a MG 𝜅 we
use the Cartesian product, e.g. D(𝜅) = D𝜅1 × . . .× D𝜅ℐ𝜅

and 𝑧(𝜅) ∈ D(𝜅). Note that the sets D𝜅𝑖 , 𝑖 ∈ [1 : ℐ𝜅], and
hence D(𝜅) are non-empty, compact, and convex.

The output quantity in (3b) is the power demand 𝑧𝜅𝑖

of an individual agent in MG 𝜅. The average power demand
𝑧𝜅 = 1

ℐ𝜅

∑︀ℐ𝜅

𝑖=1 𝑧𝜅𝑖 in each MG can then be computed from
the individual power demands, and is used as an input
to (1). We define 𝜁 in (1) as a stable reference trajectory by
averaging over a past time horizon and over all individual
residential units of all microgrids, the so-called overall
average net consumption as proposed in [7],

𝜁(𝑛) = 1
ℐ · min{𝑁,𝑛+ 1}

𝑛∑︁
𝑗=𝑛−min{𝑛,𝑁−1}

ℐ∑︁
𝑖=1

𝑤𝑖(𝑗)

(5)

where ℐ =
∑︀Ξ

𝜅=1 ℐ𝜅 denotes the total number of agents
within the entire smart grid. Due to averaging, the trajec-
tory 𝜁 has little fluctuations and yields advantages for the
grid operation.

Let us for the moment ignore the coupling described
in Subsection 2.1. Then, 𝛿(𝑛) equals the identity for all
𝑛 ∈ [𝑘 : 𝑘 +𝑁 − 1] and 𝒥 becomes

𝑧 ↦→
𝑘+𝑁−1∑︁

𝑛=𝑘

Ξ∑︁
𝜅=1

(︀
𝜁(𝑛)ℐ𝜅 − ℐ𝜅𝑧𝜅(𝑛)

)︀2
.

Therefore, the overall objective 𝒥 can be decoupled yield-
ing the local optimization problem

min
𝑧(𝜅)∈D(𝜅)

𝑔(𝑧𝜅) (6)

per MG with local objective function 𝑔 : R𝑁 → R≥0,

𝑔(𝑧𝜅) =
⃦⃦
𝜁 − 𝑧𝜅

⃦⃦2
2 .
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2.3 Fully coupled optimization problem

We are interested in optimizing the function (1). This
function, in general, depends on 𝛿 as well as on 𝑧. As
seen in the previous section, the average power demand
𝑧 = 𝑧(𝑢) depends on the control 𝑢, which we have to find
in such a way that 𝒥 is optimal. The overall optimization
problem can be written as

min
𝛿∈D𝛿,𝑧(𝜅)∈D(𝜅)

𝒥 (𝑧, 𝛿). (7)

Note that due to constraint (2c) the optimization of 𝒥
w.r.t. 𝛿 is non-convex. Furthermore, the large scale of the
optimization w.r.t. 𝑧 causes the use of a centralized solver
to be expensive. In addition, using a centralized solver
assumes the existence of a global entity gathering the
information of the whole grid, in particular the personal
data of each household, which is undesirable in practice.
Hence, solving (7) centralized is impractical. In the sub-
sequent section we present an approach to tackle (7) by
solving the upper and lower-level problem iteratively. Do-
ing so we avoid a node with full knowledge in the grid and
only communicate specific aggregated information in each
iteration among the agents.

3 Bidirectional optimization
We propose to tackle the optimization problem (7) in a
bidirectional way, i.e. we first find an optimal 𝑧 for 𝛿 being
the identity and then optimize (7) w.r.t. 𝛿 for fixed 𝑧 in
order to find the optimal exchange strategy. This typically
already gives a considerable improvement, and has been
also done e.g. in [17]. To solve (2) for a fixed 𝑧 is straight
forward, and we use a standard Sequential Quadratic
Programming (SQP) solver. We refer to [26] for an in-
troduction to SQP methods. In this paper we show how
to incorporate the computed energy exchange from the
upper level into the lower-level optimization problem in
order to improve the overall performance.

3.1 Bidirectional optimization scheme

Assume that each MG 𝜅, 𝜅 ∈ [1 : Ξ], within the smart grid
has already solved its inherent optimization problem (6)
and based on the corresponding solutions 𝑧𝜅 an energy
exchange policy 𝛿⋆ has been computed according to (2).
This exchange yields an updated power demand

𝑧+
𝜅 (𝑛) = 1

ℐ𝜅

Ξ∑︁
𝜈=1

𝛿⋆
𝜈𝜅(𝑛) 𝜂𝜈𝜅 ℐ𝜈 𝑧𝜈(𝑛), 𝑛 ∈ [𝑘 : 𝑘 +𝑁 − 1],

and hence, the difference Δ𝑧𝜅(𝑛) = 𝑧𝜅(𝑛)−𝑧+
𝜅 (𝑛) in power

demand for all MGs. We are interested in updating 𝑧 in
such a way that our cost function (1),

𝒥 (𝑧, 𝛿⋆) =
𝑘+𝑁−1∑︁

𝑛=𝑘

Ξ∑︁
𝜅=1

(︃
𝜁(𝑛) ℐ𝜅−

Ξ∑︁
𝜈=1

𝛿⋆
𝜈𝜅(𝑛) 𝜂𝜈𝜅 ℐ𝜈 𝑧𝜈(𝑛)

)︃2

=
Ξ∑︁

𝜅=1
ℐ2

𝜅

⃦⃦
𝜁 − 𝑧+

𝜅

⃦⃦2
2 =

Ξ∑︁
𝜅=1

ℐ2
𝜅

⃦⃦
(𝜁 + Δ𝑧𝜅) − 𝑧𝜅

⃦⃦2
2

is minimized further. One could think about fixing 𝛿 and
finding an optimal 𝑧. This, however, leads to an optimiza-
tion problem not avoiding communication and coupling
all microgrids. The trick here is now to fix not only the
𝛿 but also the 𝑧-components from all the microgrids but
one. This leads to optimizing ℐ2

𝜅

⃦⃦
(𝜁 + Δ𝑧𝜅) − 𝑧𝜅

⃦⃦2
2 lo-

cally in each MG, where Δ𝑧𝜅 is computed by using the
𝑧𝜅’s and 𝛿’s from the previous optimization step. Intu-
itively, the difference Δ𝑧𝜅, 𝜅 ∈ [1 : Ξ], can be interpreted
as an additional load or generation, and, therefore, as a
change of the desired power demand profile for MG 𝜅.
This yields the modified lower-level optimization problem

min
𝑧(𝜅)∈D(𝜅)

𝑔𝜅(𝑧𝜅) =
⃦⃦
𝜁+

𝜅 − 𝑧𝜅

⃦⃦2
2 , (8)

where 𝜁+
𝜅 = 𝜁 + Δ𝑧𝜅 In this formulation the updated ref-

erence trajectories 𝜁+
𝜅 , 𝜅 ∈ [1 : Ξ], differ among the single

MGs and depend on a given 𝛿 and a given previous 𝑧𝜅.
The solution of the newly derived lower-level optimization
problem can be solved with ADMM for all microgrids
independently and in a parallel way.

Based on the updated reference value we solve (8)
and (2) to improve the battery usage and the energy
exchange and repeat the optimization until some termi-
nal condition is satisfied, e.g. performance improvement
less than a pre-defined tolerance or maximal number of
iterations exceeded. This procedure is summarized in Al-
gorithm 1. Note that we only update the reference 𝜁 on the
lower level, since the upper-level optimization problem (1)
does not change.

Neither convergence nor the interpretation of a poten-
tial limit of Algorithm 1 is clear a priori. Figure 3, however,
experimentally shows convergence of the proposed scheme
and a continuous improvement of the upper-level perfor-
mance index. Here, we ran 10 iterations of the optimization
scheme and plotted both the objective function values be-
fore and after the energy exchange within each iteration.
The values stagnate after four iterations indicating that
additional iterations do not further improve the overall
performance. The next subsection elaborates on how to
solve (8) in a fully distributed way using ADMM.
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Algorithm 1 Iterative bidirectional optimization scheme

Input: Current time instance 𝑘 ∈ N0, current SoC
𝑥𝜅𝑖(𝑘) ∈ X𝜅𝑖 , prediction horizon 𝑁 ∈ N≥2, predicted net
consumption (𝑤𝑖𝜅(𝑘), . . . , 𝑤𝑖𝜅(𝑘 + 𝑁 − 1))⊤ ∈ R𝑁 ,
𝑖𝜅 ∈ [1 : ℐ𝜅], 𝜅 ∈ [1 : Ξ], reference trajectory
(𝜁(𝑘), . . . , 𝜁(𝑘 + 𝑁 − 1))⊤ ∈ R𝑁 , maximal number
𝑗max ∈ N of iterations, and tolerance 𝜀 > 0.
Initialization:
1. Set 𝑗 = 0 and 𝛿0(𝑛) = 𝐼Ξ for all 𝑛 ∈ [𝑘 : 𝑘 +𝑁 − 1].
2. Lower level (parallel in 𝜅). Compute 𝑧𝑗

𝜅 as the solution
of (6) using ADMM.

3. Upper level. Given 𝑧𝑗
𝜅, solve (2) for 𝛿𝑗 using SQP.

While 𝑗 < 𝑗max and 𝒥 (𝑧𝑗−1, 𝛿𝑗−1) − 𝒥 (𝑧𝑗 , 𝛿𝑗) > 𝜀

Do:
4. Lower level (parallel in 𝜅).

(a) Compute 𝜁+
𝜅 from 𝑧𝑗

𝜅 and 𝛿𝑗 .
(b) Solve (8) using ADMM and send 𝑧𝑗+1

𝜅 to the
upper level.

5. Upper level. Given 𝑧𝑗+1
𝜅 , solve (2) for 𝛿𝑗+1 using SQP.

6. 𝑗 → 𝑗 + 1

Fig. 3: Evolution of the costs before and after energy exchange
computed according to the bidirectional optimization scheme
described in Algorithm 1, i.e. 𝒥 (𝑧𝑗 , 𝛿𝑗−1) and 𝒥 (𝑧𝑗 , 𝛿𝑗), resp.
Note that 𝒥 (𝑧1, 𝛿0) yields the costs without microgrid coupling.

Remark 1. The results displayed in Figure 3 and our
numerical investigations indicate convergence to the global
minimum of (7). However, a formal (and rigorous) deriva-
tion of this conjecture is left for future research.

3.2 Distributed optimization via ADMM

In this section we briefly discuss how to solve the lower-
level optimization problem (6) or (8) using an Alternating
Direction Method of Multipliers (ADMM) approach. We
consider a single MG and therefore omit the index 𝜅. Since
the averaged output quantity appears in the objective
function (6) or (8), we need to introduce an auxiliary
variable 𝑎 in order to decouple the lower-level optimization

in the following way,

min
𝑧,𝑎

𝑔(𝑎̄) = ‖𝑎̄− 𝜁‖2
2 (9a)

s.t. 1
ℐ

ℐ∑︁
𝑖=1

𝑎𝑖 − 𝑎̄ = 0, 𝑧𝑖 − 𝑎𝑖 = 0 (9b)

𝑧𝑖 ∈ D𝑖 ∀ 𝑖 ∈ [1 : ℐ]. (9c)

Note that (9c) is a short-hand notation for the battery
dynamics (3)-(4), and yields a fully decoupled constraint
in the variable 𝑧. ADMM is an optimization scheme to
solve (9) based on the augmented Lagrangian ℒ𝜌 : Rℐ𝑁 ×
Rℐ𝑁 × Rℐ𝑁 → R, for 𝜌 > 0,

ℒ𝜌(𝑧, 𝑎, 𝜆) = 𝑔(𝑎̄) +
ℐ∑︁

𝑖=1

(︁
𝜆⊤

𝑖 (𝑧𝑖 − 𝑎𝑖) + 𝜌

2 ‖𝑧𝑖 − 𝑎𝑖‖2
2

)︁
,

in a distributed way, cf. [5]. Following [7], the ADMM
algorithm for (9) yields the three-step iteration ℓ ↦→ ℓ+ 1,

𝑧ℓ+1
𝑖 = arg min

𝑧𝑖∈D𝑖

𝑧⊤
𝑖 𝜆

ℓ
𝑖 + 𝜌

2
⃦⃦
𝑧𝑖 − 𝑎ℓ

𝑖

⃦⃦2
2 (10a)

𝑎ℓ+1 = arg min
𝑎∈Rℐ𝑁

𝑔(𝑎̄) −
ℐ∑︁

𝑖=1
𝑎⊤

𝑖 𝜆
ℓ
𝑖 + 𝜌

2‖𝑧ℓ+1
𝑖 − 𝑎𝑖‖2

2 (10b)

𝜆ℓ+1
𝑖 = 𝜆ℓ

𝑖 + 𝜌(𝑧ℓ+1
𝑖 − 𝑎ℓ+1

𝑖 ) (10c)

until some termination condition is satisfied. Note
that (10b) is an unconstrained optimization problem and
can be solved explicitly. The problem (10a) can be solved
in parallel by each battery in the MG introduced for our
model in Section 2.2. Note that scheme (10) assumes com-
munication within the MG, more precisely, each system 𝑖,
𝑖 ∈ [1 : ℐ], sends its optimal solution 𝑧𝑖 to the CE and
receives both the updated auxiliary 𝑎𝑖 and dual variable
𝜆𝑖 in return. The variant discussed in [7] avoids unneces-
sary communication overhead by returning a broadcast
variable instead, which only incorporates information on
the aggregated values.

According to Theorem 3.1 in [7] the optimization
scheme (10) converges in the following sense.

Theorem 1. Consider Problem (9) with 𝑔 being strictly
convex, closed and proper and let the iterates (𝑧ℓ, 𝑎ℓ, 𝜆ℓ)
be computed according to (10). Then the following follow-
ing statements hold true:
1. (𝑧ℓ − 𝑎ℓ)ℓ∈N0 converges to zero for ℓ → ∞,
2. (𝑔(𝑎̄ℓ))ℓ∈N0 converges to the optimal value 𝑔⋆ of (9),
3. (𝜆ℓ)ℓ∈N0 converges to the dual optimal 𝜆⋆ of (9).

According to [7] and the references [5, Section 3] and [4,
Appendix C] therein, problem (6) fulfils the assumptions
of Theorem 1.
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4 Surrogate models for ADMM
This section is dedicated to surrogate models for the opti-
mization routine (10) within a single MG. For simplicity
of notation we omit the index 𝜅.

Due to the distributive structure of ADMM, the resi-
dential energy systems do not need to share information
with their neighbours but only with the CE, see also the
star-structure in Figure 2. In each iteration ℓ of ADMM,
subsystem 𝑖 has to transmit its solution 𝑧ℓ

𝑖 of (10a) to the
CE. The optimization scheme presented in Algorithm 1,
however, suggests to run ADMM more than once in order
to improve the performance w.r.t. to the objective func-
tion (1). In order to avoid unnecessary communication, we
propose to use surrogate models to approximate the opti-
mization routine (10). More precisely, we are interested in
a function which approximates 𝜙 : R𝑁 ×Rℐ ×R𝑁 → R𝑁 :

𝜙(𝑤̄, 𝑥(𝑘), 𝜁) = 𝑧, (11)

for all feasible (𝑤̄, 𝑥(𝑘), 𝜁) ∈ R𝑁 ×X×R𝑁 . Note that we do
neither assume knowledge on the local net consumption 𝑤𝑖,
𝑖 ∈ [1 : ℐ], nor on the future SoC 𝑥(𝑛), 𝑛 > 𝑘.

Figure 4 (top) shows that if the approximation (11)
is sufficiently accurate, the impact on the performance
of the optimization scheme is negligible. Here, the costs
𝒥 (𝑧, 𝛿) after optimization are visualized for 48 consecutive
time steps (equals 24-hours simulation time). In the exper-
iment, we disturbed the ADMM solution in Algorithm 1
by uniformly distributed additive noise, i. e., 𝑧 + 10−𝑝 · 𝑑,
where the vector 𝑑 ∼ 𝒰(−1, 1), and 𝑝 ∈ N0 denotes the
intensity of the disturbance.

Note that (11) might yield approximations to the
solution 𝑧 that either aggravate the performance w.r.t. (6)
compared to the solution 𝑤̄ associated with 𝑢 ≡ 0 or
solutions that correspond to an infeasible control 𝑢̂ /∈ U.
As a remedy, we propose to apply ADMM once after
replacing it by a surrogate in the optimization scheme.
More precisely, first we run Algorithm 1 using a surrogate
in Step 4(b) until the while loop terminates and then we
additionally repeat Steps 4 and 5 using ADMM.

4.1 Well-posedness

The following proposition states that for equality in (11),
a proper mapping is defined. For a concise notation we
replace the index 𝜅𝑖 by 𝑖 here.

Proposition 1. Consider 𝜙 given by (11), where 𝑧 de-
scribes the optimal solution of (6) computed via ADMM,

Fig. 4: Effect of mapping error in (11) (top) and of the approx-
imation via radial basis functions (RBFs) and a neural network
(NN) on the open-loop performance 𝒥 (𝑧, 𝛿) within 48 consecu-
tive time steps (bottom). We use 𝑇 = 0.5h in (3a).

i.e. 𝑧 = 𝑧(𝑢⋆). We assume all hyper-parameter to be fixed
meaning that {𝑇, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝐶𝑖, 𝑢̄𝑖, ¯

𝑢𝑖} in (3)-(4) are con-
stant over time for all 𝑖 ∈ [1 : ℐ]. Then 𝜙 is a mapping, i.e.
for all (𝑤̄, 𝑥(𝑘), 𝜁) ∈ R𝑁 ×X×R𝑁 , there exists a uniquely
determined 𝑧 ∈ R𝑁 such that 𝑧 is the solution to the
optimization problem (6).

Proof. First note that ADMM yields the unique solution
of (6), see e.g. [5]. Furthermore, there are no constraints
on 𝑧𝑖, 𝑖 ∈ [1 : ℐ], and the future SoC can be interpreted as
an affine function of the current SoC and the future (dis-)
charging rate. Hence, expansion of (3a) and averaging
of (3b) yield,

min
𝑢

⃦⃦
𝑧(𝑢) − 𝜁

⃦⃦2
2 , subject to

𝑥𝑖(𝑘+1+𝑛) = 𝛼𝑛+1
𝑖 𝑥𝑖(𝑘)+𝑇

𝑘+𝑛∑︁
ℓ=𝑘

𝛼𝑛+𝑘−ℓ
𝑖

(︀
𝛽𝑖𝑢

+
𝑖 (ℓ)+𝑢−

𝑖 (ℓ)
)︀
,

𝑥𝑖(𝑘) = 𝑥̂𝑖, and constraints (4),
𝑧(𝑘 + 𝑛) = 𝑤̄(𝑘 + 𝑛) + 𝑢̄+(𝑘 + 𝑛) + 𝛾𝑢̄−(𝑘 + 𝑛),
𝑛 ∈ [0 : 𝑁 − 1],
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where ·̄ denotes the corresponding average value w.r.t.
all subsystems, in particular 𝑧(𝑛) = 1

ℐ
∑︀ℐ

𝑖=1 𝑧𝑖(𝑛). This
representation of (6) illustrates that the (predicted) av-
erage values 𝜁 = (𝜁(𝑘), . . . , 𝜁(𝑘 + 𝑁 − 1))⊤ and 𝑤̄ =
(𝑤̄(𝑘), . . . , 𝑤̄(𝑘+𝑁 − 1)) and the current SoC {𝑥𝑖(𝑘)}ℐ

𝑖=1,
uniquely determine the optimal solution 𝑧(𝑢⋆) obtained
by ADMM.

Remark 2. Note that 𝜁 ↦→ 𝑧 as introduced in [19] does
not define a mapping since the solution 𝑧 of (6) not only
depends on the reference value 𝜁 but also on the future
net consumption 𝑤̄ and the current SoC 𝑥𝑖(𝑘).

4.2 Radial basis functions approximation

Radial Basis Functions (RBFs) are used to interpolate
functions based on a set of sampling data. We briefly
recap some basics on RBFs. For a detailed introduction to
theory and application see e.g. [20], for a similar approach
where RBFs are used to replace ADMM we refer to [19].

Let 𝑀 ∈ N denote the number of samples. Then, the
interpolation function of (11) is given as the sum of basis
functions 𝜓𝑚 : R𝑁 × X × R𝑁 → R, 𝑚 ∈ [1 : 𝑀 ], and
a regularization term 𝑞 : R𝑁 × X × R𝑁 → R𝑁 . More
precisely,

𝑧 ≈ 𝜙RBF(𝜒) =
𝑀∑︁

𝑚=1
𝜓𝑚(𝜒)𝛼𝑚 + 𝑞(𝜒), (12)

where 𝜒 = (𝑤̄, 𝑥(𝑘), 𝜁) is the joint inputs of Proposition 1,
and 𝛼𝑚 ∈ R𝑁 , 𝑚 ∈ [1 : 𝑀 ]. The basis functions are
so-called radial basis functions of the form, 𝜓𝑚(𝜒) =
𝜓(‖𝜒− 𝜒𝑚‖), where the kernel 𝜓 yields support close to
the sampling data 𝜒𝑚, 𝑚 ∈ [1 : 𝑀 ]. We choose an affine
linear regularization 𝑞(𝜒) = 𝛽0 +𝐵𝜒. Note that different
choices are possible. The missing parameters 𝛼𝑚, 𝛽0 and 𝐵
are determined by interpolation conditions, cf. [19, 20].

In Figure 5, a possible fit via RBFs is visualized. Here,
we interpolated given data from two-weeks of optimization
(4540 data points) based on sampling data picking each
25-th data point to train (12). Then, we tested 𝜙RBF on
the following day, and plotted the fitting. Our implemen-
tation is based on the Matlab toolbox DACE [27]. Note
that the evaluation time of the RBF approximation grows
with the number of data points used. Already with 180
data points to train (12) with 𝑁 = 6 causes the function
evaluation of 𝜙RBF to be expensive, see Table 1. Using
more data points would no longer yield an advantage over
using ADMM w.r.t. computation time.

Fig. 5: RBF and neural net fitting of the first component 𝑧(𝑘) of
𝑧 = (𝑧(𝑘), . . . , 𝑧(𝑘 + 𝑁 − 1))⊤ within 48 consecutive time steps
indicating the quality of the approximation (11).

4.3 Neural networks approximation

Neural Networks (NNs) are a state-of-the-art method in
artificial intelligence frameworks. Based on huge amounts
of data 𝑀 ≫ 1 they are able to learn and recognize
patterns in complex systems. We consider a NN of 𝑙-layers
as an approximation to the mapping (11), i.e.,

𝑧 ≈ 𝜙NN(𝜒) = 𝜎
(︁
𝑊 [𝑙] ... 𝜎(𝑊 [2]𝜒+ 𝑏[2]) ... + 𝑏[𝑙]

)︁
,

(13)

where 𝜎 denotes the sigmoid function, and the weights𝑊 [𝑙]

and biases 𝑏[𝑙] are determined during the training phase.
Here, the number of neurons at layer 𝑙 − 1 and at layer 𝑙
determine the number of rows and columns of 𝑊 [𝑙], re-
spectively. Note that a separate neural network is trained
for each MG. For an introduction to deep learning and
neural networks we refer the reader to [28, 29]. To train
the NNs, we used Matlab’s built-in toolbox nftool.

The overall goal of the approximation (13) is to be
sufficient in the sense of the MPC performance shown in
Figure 6. Our experiments in Figures 4 (bottom) and Fig-
ure 5 show that with one hidden layer of ten neurons only,
a satisfying approximation on a 24-hours time window can
be achieved if the training data is large enough. Note that
NNs benefit from big data. In our case study, we trained
the NN only on data corresponding to two weeks.

5 Numerical proof-of-concept
Model Predictive Control (MPC) is a method to tackle
optimal control problems on an infinite time horizon by
solving a series of finite dimensional optimization problems
instead, see e.g. [9] for an introduction to non-linear MPC.
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5.1 Model predictive control (MPC)

Consider the optimal control problem (6). In order to
provide an optimal control sequence over an arbitrary long
time horizon we use MPC. To this end, at current time
instance 𝑘 ∈ N0 we assume the future net consumption
(𝑤𝑖(𝑘), 𝑤𝑖(𝑘+1), . . . , 𝑤𝑖(𝑘+𝑁−1))⊤ ∈ R𝑁 to be predicted
for all subsystems 𝑖 ∈ [1 : ℐ]. Based on the prediction,
Algorithm 1 is executed (per MG) to determine control
sequences 𝑢𝑖, 𝑖 ∈ [1 : ℐ], and an exchange strategy 𝛿. Then,
only the first instances 𝑢𝑖(𝑘) and 𝛿(𝑘) are implemented
and the time instance is incremented. Algorithm 2 outlines
this MPC scheme.

Algorithm 2 MPC for coupled MGs

Input: Current time instance 𝑘 ∈ N0, current SoC
𝑥𝑖(𝑘) ∈ X𝜅𝑖 , prediction horizon 𝑁 ∈ N≥2, and reference
trajectory (𝜁(𝑘), . . . , 𝜁(𝑘 +𝑁 − 1))⊤ ∈ R𝑁 .
Repeat:
1. Measure current state 𝑥𝑖(𝑘) and update the forecast

(𝑤𝑖(𝑘), 𝑤𝑖(𝑘 + 1), . . . , 𝑤𝑖(𝑘 +𝑁 − 1))⊤, 𝑖 ∈ [1 : ℐ].
2. Run Algorithm 1 for all MG to get optimal control

sequences 𝑢⋆
𝑖 = (𝑢⋆

𝑖 (𝑘), . . . , 𝑢⋆
𝑖 (𝑘 + 𝑁 − 1))⊤ for all

subsystems 𝑖 ∈ [1 : ℐ], and an optimal exchange
strategy 𝛿⋆ = (𝛿⋆(𝑘), . . . , 𝛿⋆(𝑘 +𝑁 − 1)).

3. Implement 𝑢⋆
𝑖 (𝑘), 𝑖 ∈ [1 : ℐ], and 𝛿⋆(𝑘) and shift the

time instance 𝑘 → 𝑘 + 1.

Note that Problems (6) or (8) and (2) have to be
solved in order to determine 𝑧⋆ and 𝛿⋆ in each MPC
iteration. Therefore, the open-loop costs 𝒥 (𝑧⋆, 𝛿⋆) can be
computed in each iteration as well (cf. Figure 4). However,
since Step 3 in Algorithm 2 suggests to only implement
the first instance of the controls computed in Step 2, these
costs are not attained. Instead the stage costs

Ξ∑︁
𝜅=1

(︃
𝜁(𝑘)ℐ𝜅 −

Ξ∑︁
𝜈=1

𝛿⋆
𝜈𝜅(𝑘)𝜂𝜈𝜅ℐ𝜈𝑧

⋆
𝜈(𝑘)

)︃2

(14)

are realized at each time step 𝑘 ∈ N0 (cf. Figure 6).

5.2 Usage of surrogate models in MPC

We compare the performances using ADMM, RBFs, and
NNs on the lower-level, i.e. in Step 4(b) of Algorithnm 1.
In all numerical simulations we set 𝑇 = 0.5, 𝑁 = 6, Ξ = 4,

ℐ1 = 50, and ℐ2 = ℐ3 = ℐ4 = 10.1 The battery parameters
were randomly chosen with mean values 𝐶 = 0.98,

¯
𝑢 =

−0.24, and 𝑢̄ = 0.25. Based on the battery capacities we
set 𝑥̂𝑖 = 0.5𝐶𝑖. In order to incorporate losses along the
transmission lines, we used the efficiency matrix,

𝜂 =

⎡⎢⎢⎣
1.0 0.9 0.9 0.85
0.9 1.0 0.0 0.85
0.9 0.0 1.0 0.0
0.85 0.85 0.0 1.0

⎤⎥⎥⎦ in (1).

For simplicity of the numerical computation, we only
replaced the lower-level optimization routine for MG 1
and, thus, avoid training a separate surrogate model for
each MG. We used Matlab for implementation.

Results on the MPC closed loop can be found in
Figure 6 and Table 1. In Figure 6 the closed-loop per-

Fig. 6: Impact of mapping error (top) and approximation via RBF
and NN (bottom) on the stage costs (14) within 48 consecutive
time steps.

formances of ADMM (black line) compared to perturbed
ADMM, and ADMM (black line) compared to the two

1 Note that this setting yields the global optimization prob-
lem (7) with more than 1000 variables.
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closed-loop cost runtime [ms]
no control 12,228 —

ADMM 4,416 2.5
RBFs 4,529 1.2
NNs 5,598 0.05

Tab. 1: Comparison of the summed MPC closed-loop perfor-
mance

∑︀47
𝑘=0

∑︀Ξ
𝜅=1

(︁
𝜁(𝑘)ℐ𝜅 −

∑︀Ξ
𝜈=1 𝛿

⋆
𝜈𝜅(𝑘)𝜂𝜈𝜅ℐ𝜈𝑧⋆𝜈(𝑘)

)︁2
and

runtime (per call): ADMM vs. RBFs vs. NNs.

surrogate models are visualized. Similar to the open-loop
case, small disturbances in ADMM have little impact and
RBFs outperform the NN. The first column of Table 1
compares the sum of all MPC closed-loop performances
using ADMM, RBFs and a NN while in column 2 the aver-
age runtimes of these approaches are reported. Note that
when using a surrogate, we call ADMM once per MPC
iteration. As elaborated in [7] in each ADMM iteration an
𝑁 -dimensional vector has to be transmitted twice. Hence,
both surrogates reduce the need for communication. Two
great advantages of ADMM are that the local optimiza-
tion (10a) can be parallelized and the global optimization
is independent of the size of the MG. However, a single
function evaluation such as (12) or (13) is faster than
running the entire ADMM optimization routine.

Note that in column 2 of Table 1 we ignored the
communication between smart homes and CE which is
needed to apply ADMM in practice. However, the runtime
of ADMM impairs when executed in an actual smart grid
while surrogates do not require additional communication.

In order to improve the performance of the NN, more
sampling data has to be generated to increase the training
set significantly. To avoid large offline computation times,
we chose 𝑁 = 6, i.e. a prediction horizon of three hours,
which is rather short compared to [7, 19].

Remark 3. We point out two implementation details to
solve (2) efficiently. First, note that the optimization (2)
can be parallelized in 𝑛, since there is no coupling. Fur-
thermore, we replace (2c) by

𝛿𝜅𝜈(𝑛) · 𝛿𝜈𝜅(𝑛) ≤ 𝜀

for some tolerance 𝜀 > 0 to smooth the feasible set.

6 Conclusions
In this paper we recalled an optimization problem arising
in large-scale electrical networks. We proposed an iterative
bidirectional optimization scheme to tackle this problem
in a distributed way, and showed numerically that a

small error on the lower level does not have noticeable
impact on the performance. Based on this observation,
we replaced the lower-level optimization by surrogate
models using radial basis functions and artificial neural
networks. The numerical results show the potential of
using these surrogates to reduce communication effort
and computational time in MPC while preserving the
overall performance.
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