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Abstract: The energy transition entails a rapid uptake
of renewable energy sources. Besides physical changes
within the grid infrastructure, energy storage devices and
their smart operation are key measures to master the re-
sulting challenges like, e. g., a highly fluctuating power
generation. For the latter, optimization based control has
demonstrated its potential on a microgrid level. However,
if a network of coupled microgrids is considered, itera-
tive optimization schemes including several communica-
tion rounds are typically used. Here, we propose to replace
the optimization on the microgrid level by using surrogate
models either derived from radial basis functions or neural
networks to avoid this iterative procedure. We prove well-
posedness of our approach and demonstrate its efficiency
by numerical simulations based on real data provided by
an Australian grid operator.

Keywords: smart grids, model predictive control, dis-
tributed optimization, surrogate models, bidirectional op-
timization, neural networks, radial basis functions

Zusammenfassung: Die Energiewende bringt einen ra-
schen Zuwachs eneuerbarer Energiequellen mit sich. Ne-
ben den physikalischen Veränderungen der Netzinfra-
struktur spielen Energiespeichereinheiten und deren in-
telligente Nutzung eine entscheidende Rolle, um die sich
ergebenden Probleme wie z. B. die stark schwankende
Energieerzeugung zu bewältigen. In Bezug auf Letzte-
re haben optimierungsbasierte Steuerungstechniken ihr
Potential auf Microgrid-Ebene unter Beweis gestellt. Be-
trachtet man jedoch ein Netzwerk gekoppelter Microgrids,
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werden üblicherweise iterative Optimierungsansätze ge-
wählt, welche mit mehreren Kommunikationsrunden ein-
hergehen. Um derartigen Kommunikationsschleifen vor-
zubeugen, schlagen wir vor, den Optimierungsschritt auf
Microgrid-Ebene durch den Einsatz geeigneter Ersatzmo-
delle zu vermeiden. Den hier verwendeten Ersatzmodellen
liegen zum einen radiale Basisfunktionen und zum ande-
ren neuronale Netze zugrunde. Wir zeigen, dass unser An-
satz wohlgestellt ist und demonstrieren die Effizienz an-
hand numerischer Simulationen basierend auf realen Da-
ten eines australischen Verteilnetzbetreibers.

Schlagwörter: Smart Grids, Modellprädiktive Regelung,
Verteilte Optimierung, Ersatzmodelle, Bidirektionale Op-
timierung, Neuronale Netze, Radiale Basisfunktionen

1 Introduction

The share of renewable energy sources rapidly increases;
also due to more and more installed devices like e. g.,
solar panels at household-level. Hence, households be-
come prosumers, i. e., power is not only consumed but also
produced. Therefore, energy generation and distribution
takes place in a distributed way. In particular, energy can
be transmitted bidirectionally between the grid and the
prosumers, which results in a paradigm shift in the grid or-
ganization. In addition, prosumersmay also possess some
kind of energy storage device in order to manipulate their
power demand profiles by either charging or discharging.
From the grid operator’s perspective it might be beneficial
that charging decisions are not made based on local infor-
mation only. Instead taking into account information on
the entire grid may improve the system-wide operation,
e. g., to flatten the overall power demandwithin the grid in
order to facilitate the power supply. [1]. In order to achieve
this goal, communication is needed. In the future, each
household shall be equipped with a smart meter which
yields so-called smart homes. Smart meters collect data
and communicate with the grid operator automatically.
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A straight-forward way to optimally operate the over-
all system is to formulate one large-scale optimization
problem and to solve it in a centralized way, see, e. g., [2].
This approach, however, is hard to realize in practice. One
of the disadvantages is that some central node needs the
complete information about the grid, which is, e. g., due to
data privacy, not desirable. Alternatives are decentralized
or distributed optimization algorithms. In [3] the authors
propose a decentralized approach to steer energy storage
systems in order to avoid over-capacity of pole transform-
ers while maintaining a high charging amount of energy
storage systems in low-voltage distribution systems. The
other option mentioned above are distributed optimiza-
tion methods such as distributed dual ascent [4], Alter-
nating Direction Method of Multipliers (ADMM) [5] or Aug-
mented Lagrangian based Alternating Direction Inexact
Newton (ALADIN) [6]. These algorithms use a star-shaped
communication topology, i. e., each smart home commu-
nicates only with the grid operator and does not share any
information with its neighbours. Nevertheless, in every it-
eration each household has to transmit specific (personal)
data to the grid operator, see also [7] and [8] for an ap-
plication of ADMM and ALADIN to electrical networked
systems, respectively. In order to exploit the potential of
these algorithms they are typically embedded within a
Model Predictive Control (MPC) framework. MPC is a state-
of-the-art technique to tackle optimal control problems by
solving finite-dimensional optimization problems succes-
sively, see e. g., [9] for an introduction to MPC and [10, 11]
for MPC approaches in electrical networks.

An alternate option to steer the power demand of local
agents besides battery control is to schedule so-called con-
trollable loads. Controllable loads can be shifted in time to
avoid bottlenecks in the energy supply, see e. g., [12, 13].
There is also a large potential in the context of stochas-
tic optimization of smart grids. For weather forecasting
methods we refer to [14]. How to integrate electrical vehi-
cles into the electricity network under uncertainties is de-
scribed in [15].

Considering the power networks described so far, it is
assumed that exchange of energy within the grid is pos-
sible at any time and does not cause any losses or addi-
tional costs, whichmight (approximately) hold for domes-
tic nets, e. g., a town. In this paper, we refer to these grids
asmicrogrids (MGs). In [16, 17], the concept of coupledMGs
is used to tackle large-scale problems incorporating sev-
eral MGs. In the latter, the authors show that even if each
single MG is optimally operated, there is still room for im-
provement if energy can be exchanged amongMGs. There-
fore, a second optimization problem is solved on a higher

grid level in order to optimally exchange energy resulting
in a bilevel optimization problem [18].

In [19], the authors propose to replace the distributed
optimization routine on the lower grid level by a surrogate
model in order to speed-up the calculation and further re-
duce communication effort. Here, Radial Basis Functions
(RBFs) [20] are used to approximate the input-output be-
haviour of ADMM within the framework of coupled MGs
established in [17]. Besides RBFs there are various meth-
ods to learn the behaviour of a complex function. Arti-
ficial Neural Networks (NNs) are one of the most popu-
lar representatives of modern artificial intelligence tech-
niques and are often used in practice due to their suc-
cess in various application fields, see e. g., the survey arti-
cle [21]. In [22] the authors forecast loads in apower gridus-
ing NNs, whereas in [23] NNs are used in an optimal power
flow framework. The main advantage of using surrogates
is that communication effort can be reduced.

In this paper,weextend the ideaof coupledmicrogrids
established in [17] by proposing an iterative bi-directional
optimization routine in order to improve the overall perfor-
mance. Due to its iterative structure, however, our method
comes along with a strong need for communication be-
tween smart homes and grid operator. As a remedy we
present two approaches to reduce the communication ef-
fort by substituting the optimization on microgrid level
via surrogate models. A main difference compared to [19]
lies in the different input-output map that is replaced by
the surrogate models, for which we can show that each
input uniquely determines an (optimal) output. Further-
more, we also take NNs as potential surrogate models into
account and study the performance of the resulting ap-
proximations numerically in an MPC framework. Our sim-
ulations show that theproposedmethodapproximately re-
covers the performance based on using ADMM but signif-
icantly reduces the communication burden. The effect of
applying surrogate models within MPC extends our previ-
ous work [19] where a surrogate model based on RBFs was
only applied in a static optimization problem.

The paper is structured as follows: In Section 2 we for-
mulate a mathematical model for coupled microgrids that
consists of two hierarchy levels, and introduce optimiza-
tion problems corresponding to each of them. In the con-
secutive section, we propose an iterative scheme that re-
quires the solution of a distributed optimization problem
on the lower level which is solved using ADMM. In Sec-
tion 4, we investigate the impact of disturbances w. r. t.
the lower-level solution on the performance measured in
terms of the upper-level objective function. Based on the
results, we propose to replace ADMM by surrogates in or-
der to reduce communication effort and computation time.
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The performance of the optimization scheme incorporat-
ing surrogates is analysed in an MPC framework in Sec-
tion 5.

2 A model for coupled microgrids

Weconsider a systemof coupledmicrogrids (MGs) and call
it a smart grid. Each MG consists of several residential en-
ergy systems (agents) coupled through the grid operator,
which can be seen as Central Entity (CE). The coupling
of the microgrids is done through a network, where some
MGs are connected by a transmission line and others are
not connected, cf. Figure 1.

Figure 1: Upper-level model: Schematic representation of four cou-
pled MGs. Energy exchange is possible only via transmission lines.

2.1 Upper-level model: Energy exchange

We assume that we have Ξ ∈ ℕ many MGs which are
partially coupled via transmission lines and can be in-
terpreted as nodes of a non-complete graph, see Figure 1
where Ξ = 4. Each MG κ, for κ ∈ [1 : Ξ], consists of Iκ ∈ ℕ
agentsmodeled in detail in Subsection 2.2.We assume that
each MG κ has an average power demand ̄zκ(n) at time n.
Given this, we can compute the total power demand Iκ ̄zκ
of a MG. The control goal is to exchange power among the
MGs in a way such that a desired quantity ̄ζ (n) is targeted
by controlling the residential storageunits.We specify ̄ζ (n)
in Subsection 2.2, and assume for the moment that this
quantity is known to the grid and has advantages for the
grid operation. We assume that this desired quantity is in-
dependent of κ, but this is not necessary for the rest of the
discussion.

Let δνκ describe the percentage of power Iν ̄zν(n) that is
transferred fromMG ν toMG κ.We enforce δνκ equals zero if

there is no transmission line between the two MGs. Other-
wise, the power demand of a MG κ is given by its own total
power demand δκκIκ ̄zκ, where δκκ is what remains at the
MG, and the sum over the power received from connected
MGs, ∑ν≠κ δνκIν ̄zν. For each time step in our prediction
horizon of length N ∈ ℕ≥2, we want to match this to the
desired power demand starting at time k forN timesteps of
eachMG in a least-squares sense. The objective function is
thus given by J : ℝΞN × ℝΞ×Ξ×N → ℝ,

( ̄z, δ) Ü→
k+N−1
∑
n=k

Ξ
∑
κ=1
( ̄ζ (n)Iκ −

Ξ
∑
ν=1

δνκ(n)ηνκIν ̄zν(n))
2

. (1)

Here, the vector ̄z = ( ̄z(k), . . . , ̄z(k +N − 1)⊤)⊤ with ̄z(⋅) ∈ ℝΞ

stacks the average power demand per MG and time step
while the matrix η = (ηνκ)Ξκ,ν=1 ∈ [0, 1]

Ξ×Ξ incorporates effi-
ciencies along the transmission lines.

We are interested in minimizing (1) under the follow-
ing constraints: All exchange rates δνκ are within the inter-
val [0, 1], sumup to 1, and only transfer power in one direc-
tion, meaning that either δνκ or δκν is zero. Moreover, note
that at this grid level, the average power demands per MG
are known. Following [17], the optimization problemof the
upper-level is, thus, formulated over the exchange rates δ,

min
δ∈[0,1]Ξ×Ξ×N

J ( ̄z, δ) (2a)

s.t.
Ξ
∑
κ=1

δνκ(n) = 1 (2b)

δνκ(n) ⋅ δκν(n) ≤ 0, κ ̸= ν (2c)
∀ ν, κ ∈ [1 : Ξ], n ∈ [k : k + N − 1],

where δνκ(n) denotes the power exchange rate from MG ν
toMG κ at time instance n. Constraints (2b) and (2c) ensure
that the whole energy of eachMG is scheduled and that ex-
changes via transmission lines can only occur in one direc-
tion during one time step. We denote the feasible set of (2)
by

Dδ = {δ ∈ [0, 1]Ξ×Ξ×N !!!! (2b) and (2c) hold} .

The efficiency of a transmission line does not depend on
the direction of the transfer, i. e., thematrixη is symmetric.
Furthermore, we assume no loss without transport, i. e.,
ηκκ ≡ 1 for all κ ∈ [1 : Ξ], in the rest of the paper.

2.2 Lower-level model: Single microgrid

As we have seen in the previous section, we consider an
average power demand at each MG as well as some de-
sired quantity ̄ζ (n). In order to understand these quanti-
ties better, we explain themodeling of the MG in all detail.
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The basis of our considerations forms themodel presented
in [24] and its extension [7]. Therefore, let each subsystem
be equipped with an energy generation device (e. g., roof
top photo-voltaic panels) and some storage device (e. g., a
battery). Then, the i-th system, i ∈ [1 : Iκ] in MG κ, can be
described by the discrete time system dynamics,

xκi (n + 1) = ακixκi (n) + T(βκiu
+
κi (n) + u

−
κi (n)) (3a)

zκi (n) = wκi (n) + u
+
κi (n) + γκiu

−
κi (n), (3b)

where xκi (n) and zκi (n) denote the State of Charge (SoC) of
the battery and thepowerdemandat time instancen ∈ ℕ0,
respectively. The latter incorporates the net consumption,
wκi (n) = ℓκi (n) − gκi (n), as the difference of load and power
generation, cf. Figure 2.

Figure 2: Lower-level model: Star-shaped network of residential
energy systems and central entity (CE). The quantity w = ℓ − g in (3b)
is obtained from the data set [25].

The system can be controlled by charging u+κi and dis-
charging u−κi the battery at each time step. The length of
a time step in hours is denoted by T > 0, e. g., T = 0.5
corresponds to a half-hour time window. The constants
ακi , βκi , γκi ∈ (0, 1] represent efficiencies w. r. t. self dis-
charge and energy conversion. Furthermore, the initial
SoC xκi (k) = x̂κi , where k ∈ ℕ0 denotes the current time
instance, is assumed to be known. State and input are sub-
ject to the inequality constraints,

0 ≤ xκi (n) ≤ Cκi (4a)

̄
uκi ≤ u−κi (n) ≤ 0 (4b)
0 ≤ u+κi (n) ≤ ūκi (4c)

0 ≤
u−κi (n)

̄
uκi
+

u+κi (n)
ūκi
≤ 1. (4d)

Here, Cκi ≥ 0 denotes the battery capacity. The last con-
straint ensures that the bounds on discharging (4b) and

charging (4c) hold even if the battery is both discharged
and charged during one time step. Note that the case Cκi =
0 covers the case, where not all systems have a storage de-
vice. Since the future net consumption is not known in ad-
vance, it is assumed to be reliably predictable on a short
time horizon of size N, N ∈ ℕ≥2, time steps.

For a concise notation we introduce the set Xκi =
[0,Cκi ] of feasible states, the set Uκi = {(u

+
κi , u
−
κi )
⊤ ∈ ℝ2 |

(4b) − (4d) hold} of feasible control pairs and the set

Dκi =
{{
{{
{

zκi ∈ℝ
N
!!!!!!!!!!

zκi = (zκi (k), . . . , zκi (k+N−1))
⊤

∃ uκi ∈ U
Nsuch that

xκi (k) = x̂κi , (3) and (4) hold

}}
}}
}

of feasible outputs over the next N time steps, i ∈ [1 : Iκ],
κ ∈ [1 : Ξ]. Referring to the feasible sets of a MG κ we use
the Cartesian product, e. g., D(κ) = Dκ1 × . . . × DκIκ

and
z(κ) ∈ D(κ). Note that the sets Dκi , i ∈ [1 : Iκ], and hence
D(κ) are non-empty, compact, and convex.

The output quantity in (3b) is the power demand zκi of
an individual agent in MG κ. The average power demand
̄zκ =

1
Iκ
∑Iκ
i=1 zκi in each MG can then be computed from the

individual power demands, and is used as an input to (1).
We define ̄ζ in (1) as a stable reference trajectory by aver-
aging over a past time horizon and over all individual res-
idential units of all microgrids, the so-called overall aver-
age net consumption as proposed in [7],

̄ζ (n) = 1
I ⋅min{N , n + 1}

n
∑

j=n−min{n,N−1}

I
∑
i=1

wi(j) (5)

where I = ∑Ξκ=1 Iκ denotes the total number of agents
within the entire smart grid. Due to averaging, the trajec-
tory ̄ζ has little fluctuations and yields advantages for the
grid operation.

Let us for the moment ignore the coupling described
in Subsection 2.1. Then, δ(n) equals the identity for all n ∈
[k : k + N − 1] and J becomes

̄z Ü→
k+N−1
∑
n=k

Ξ
∑
κ=1
( ̄ζ (n)Iκ − Iκ ̄zκ(n))

2
.

Therefore, the overall objective J can be decoupled yield-
ing the local optimization problem

min
z(κ)∈D(κ)

g( ̄zκ) (6)

per MG with local objective function g : ℝN → ℝ≥0,

g( ̄zκ) =
"""""
̄ζ − ̄zκ
"""""
2
2 .

Bereitgestellt von | MPI fuer Dynamik komplexer technischer Systeme
Angemeldet

Heruntergeladen am | 05.12.19 11:08



M. Baumann et al., Surrogate models in bidirectional optimization | 1039

2.3 Fully coupled optimization problem

We are interested in optimizing the function (1). This func-
tion, in general, depends on δ as well as on ̄z. As seen in
the previous section, the average power demand ̄z = ̄z(u)
depends on the control u, which we have to find in such
a way that J is optimal. The overall optimization problem
can be written as

min
δ∈Dδ ,z(κ)∈D(κ)

J ( ̄z, δ). (7)

Note that due to constraint (2c) the optimizationofJ w. r. t.
δ is non-convex. Furthermore, the large scale of the op-
timization w. r. t. ̄z causes the use of a centralized solver
to be expensive. In addition, using a centralized solver as-
sumes the existence of a global entity gathering the infor-
mation of thewhole grid, in particular the personal data of
each household, which is undesirable in practice. Hence,
solving (7) centralized is impractical. In the subsequent
section we present an approach to tackle (7) by solving
the upper and lower-level problem iteratively. Doing so we
avoid a nodewith full knowledge in the grid and only com-
municate specific aggregated information in each iteration
among the agents.

3 Bidirectional optimization
Wepropose to tackle the optimizationproblem (7) in abidi-
rectional way, i. e., we first find an optimal ̄z for δ being
the identity and then optimize (7) w. r. t. δ for fixed ̄z in
order to find the optimal exchange strategy. This typically
already gives a considerable improvement, and has been
also done e. g., in [17]. To solve (2) for a fixed ̄z is straight
forward, and we use a standard Sequential Quadratic Pro-
gramming (SQP) solver.We refer to [26] for an introduction
to SQPmethods. In this paper we show how to incorporate
the computed energy exchange from the upper level into
the lower-level optimization problem in order to improve
the overall performance.

3.1 Bidirectional optimization scheme

Assume that each MG κ, κ ∈ [1 : Ξ], within the smart grid
has already solved its inherent optimization problem (6)
and based on the corresponding solutions ̄zκ an energy ex-
change policy δ⋆ has been computed according to (2). This
exchange yields an updated power demand

̄z+κ (n) =
1
Iκ

Ξ
∑
ν=1

δ⋆νκ(n) ηνκ Iν ̄zν(n), n ∈ [k : k + N − 1],

and hence, the difference Δ ̄zκ(n) = ̄zκ(n) − ̄z+κ (n) in power
demand for all MGs. We are interested in updating ̄z in
such a way that our cost function (1),

J ( ̄z, δ⋆) =
k+N−1
∑
n=k

Ξ
∑
κ=1
( ̄ζ (n) Iκ−

Ξ
∑
ν=1

δ⋆νκ(n) ηνκ Iν ̄zν(n))
2

=
Ξ
∑
κ=1

I2κ
"""""
̄ζ − ̄z+κ
"""""
2
2 =

Ξ
∑
κ=1

I2κ
"""""(
̄ζ + Δ ̄zκ) − ̄zκ

"""""
2
2

is minimized further. One could think about fixing δ and
finding an optimal ̄z. This, however, leads to an optimiza-
tion problem not avoiding communication and coupling
all microgrids. The trick here is now to fix not only the δ
but also the ̄z-components fromall themicrogrids but one.
This leads to optimizing I2κ

"""""(
̄ζ + Δ ̄zκ) − ̄zκ

"""""
2
2 locally in each

MG, where Δ ̄zκ is computed by using the ̄zκ’s and δ’s from
the previous optimization step. Intuitively, the difference
Δ ̄zκ, κ ∈ [1 : Ξ], can be interpreted as an additional load
or generation, and, therefore, as a change of the desired
power demand profile for MG κ. This yields the modified
lower-level optimization problem

min
z(κ)∈D(κ)

gκ( ̄zκ) =
"""""
̄ζ +κ − ̄zκ
"""""
2
2 , (8)

where ̄ζ +κ = ̄ζ + Δ ̄zκ In this formulation the updated ref-
erence trajectories ̄ζ +κ , κ ∈ [1 : Ξ], differ among the sin-
gle MGs and depend on a given δ and a given previous ̄zκ.
The solution of the newly derived lower-level optimization
problem can be solved with ADMM for all microgrids inde-
pendently and in a parallel way.

Based on the updated reference value we solve (8)
and (2) to improve the battery usage and the energy ex-
change and repeat the optimization until some terminal
condition is satisfied, e. g., performance improvement less
than a pre-defined tolerance or maximal number of iter-
ations exceeded. This procedure is summarized in Algo-
rithm 1. Note that we only update the reference ̄ζ on the
lower level, since the upper-level optimization problem (1)
does not change.

Neither convergence nor the interpretation of a poten-
tial limit of Algorithm 1 is clear a priori. Figure 3, how-
ever, experimentally shows convergence of the proposed
scheme and a continuous improvement of the upper-level
performance index. Here, we ran 10 iterations of the opti-
mization scheme and plotted both the objective function
values before and after the energy exchange within each
iteration. The values stagnate after four iterations indicat-
ing that additional iterations do not further improve the
overall performance. The next subsection elaborates on
how to solve (8) in a fully distributed way using ADMM.
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Algorithm 1 Iterative bidirectional optimization scheme
Input: Current time instance k ∈ ℕ0, current SoC
xκi (k) ∈ Xκi , prediction horizon N ∈ ℕ≥2, predicted net
consumption (wiκ (k), . . . ,wiκ (k + N − 1))

⊤ ∈ ℝN ,
iκ ∈ [1 :Iκ], κ ∈ [1 :Ξ], reference trajectory
( ̄ζ (k), . . . , ̄ζ (k + N − 1))⊤ ∈ ℝN , maximal number jmax ∈ ℕ
of iterations, and tolerance ε > 0.
Initialization:
1. Set j = 0 and δ0(n) = IΞ for all n ∈ [k : k + N − 1].
2. Lower level (parallel in κ). Compute ̄zjκ as the solution

of (6) using ADMM.
3. Upper level. Given ̄zjκ, solve (2) for δ

j using SQP.
While j < jmax and J ( ̄zj−1, δj−1) − J ( ̄zj, δj) > ε
Do:
4. Lower level (parallel in κ).

(a) Compute ̄ζ +κ from ̄zjκ and δ
j.

(b) Solve (8) using ADMM and send ̄zj+1κ to the upper
level.

5. Upper level. Given ̄zj+1κ , solve (2) for δj+1 using SQP.
6. j → j + 1

Figure 3: Evolution of the costs before and after energy exchange
computed according to the bidirectional optimization scheme de-
scribed in Algorithm 1, i. e., J ( ̄zj , δj−1) andJ ( ̄zj , δj), resp. Note that
J ( ̄z1, δ0) yields the costs without microgrid coupling.

Remark 1. The results displayed in Figure 3 and our nu-
merical investigations indicate convergence to the global
minimum of (7). However, a formal (and rigorous) deriva-
tion of this conjecture is left for future research.

3.2 Distributed optimization via ADMM

In this section we briefly discuss how to solve the lower-
level optimization problem (6) or (8) using an Alternat-
ing Direction Method of Multipliers (ADMM) approach.
We consider a single MG and therefore omit the index κ.
Since the averaged output quantity appears in the objec-

tive function (6) or (8), we need to introduce an auxiliary
variable a in order to decouple the lower-level optimiza-
tion in the following way,

min
z,a

g(ā) = ‖ā − ̄ζ ‖22 (9a)

s.t. 1
I

I
∑
i=1

ai − ā = 0, zi − ai = 0 (9b)

zi ∈ Di ∀ i ∈ [1 : I]. (9c)

Note that (9c) is a short-hand notation for the battery dy-
namics (3)–(4), and yields a fully decoupled constraint
in the variable z. ADMM is an optimization scheme to
solve (9) based on the augmented Lagrangian Lρ : ℝ

IN ×
ℝIN × ℝIN → ℝ, for ρ > 0,

Lρ(z, a, λ) = g(ā) +
I
∑
i=1
(λ⊤i (zi − ai) +

ρ
2 ‖

zi − ai‖
2
2) ,

in a distributed way, cf. [5]. Following [7], the ADMM algo-
rithm for (9) yields the three-step iteration ℓ Ü→ ℓ + 1,

zℓ+1i = argmin
zi∈Di

z⊤i λ
ℓ
i +

ρ
2
"""""zi − a

ℓ
i
"""""
2
2 (10a)

aℓ+1 = argmin
a∈ℝIN

g(ā) −
I
∑
i=1

a⊤i λ
ℓ
i +

ρ
2
‖zℓ+1i − ai‖

2
2 (10b)

λℓ+1i = λ
ℓ
i + ρ(z

ℓ+1
i − a

ℓ+1
i ) (10c)

until some termination condition is satisfied. Note
that (10b) is an unconstrained optimization problem and
can be solved explicitly. The problem (10a) can be solved
in parallel by each battery in the MG introduced for our
model in Section 2.2. Note that scheme (10) assumes com-
munication within the MG, more precisely, each system i,
i ∈ [1 : I], sends its optimal solution zi to the CE and re-
ceives both the updated auxiliary ai and dual variable λi
in return. The variant discussed in [7] avoids unnecessary
communication overhead by returning a broadcast vari-
able instead, which only incorporates information on the
aggregated values.

According to Theorem 3.1 in [7] the optimization
scheme (10) converges in the following sense.

Theorem 1. Consider Problem (9) with g being strictly con-
vex, closed and proper and let the iterates (zℓ, aℓ, λℓ) be
computed according to (10). Then the following following
statements hold true:
1. (zℓ − aℓ)ℓ∈ℕ0 converges to zero for ℓ→∞,
2. (g(āℓ))ℓ∈ℕ0 converges to the optimal value g

⋆ of (9),
3. (λℓ)ℓ∈ℕ0 converges to the dual optimal λ

⋆ of (9).

According to [7] and the references [5, Section 3]
and [4, Appendix C] therein, problem (6) fulfils the as-
sumptions of Theorem 1.
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4 Surrogate models for ADMM

This section is dedicated to surrogate models for the opti-
mization routine (10) within a single MG. For simplicity of
notation we omit the index κ.

Due to thedistributive structure ofADMM, the residen-
tial energy systems do not need to share information with
their neighbours but only with the CE, see also the star-
structure in Figure 2. In each iteration ℓ of ADMM, subsys-
tem i has to transmit its solution zℓi of (10a) to the CE. The
optimization scheme presented in Algorithm 1, however,
suggests to run ADMMmore than once in order to improve
the performance w. r. t. to the objective function (1). In or-
der to avoid unnecessary communication, we propose to
use surrogatemodels to approximate the optimization rou-
tine (10). More precisely, we are interested in a function
which approximates φ : ℝN × ℝI × ℝN → ℝN :

φ(w̄, x(k), ̄ζ ) = ̄z, (11)

for all feasible (w̄, x(k), ̄ζ ) ∈ ℝN × X × ℝN . Note that we
do neither assume knowledge on the local net consump-
tion wi, i ∈ [1 : I], nor on the future SoC x(n), n > k.

Figure 4 (top) shows that if the approximation (11) is
sufficiently accurate, the impact on the performance of the
optimization scheme is negligible. Here, the costs J ( ̄z, δ)
after optimization are visualized for 48 consecutive time
steps (equals 24-hours simulation time). In the experi-
ment, we disturbed the ADMM solution in Algorithm 1 by
uniformly distributed additive noise, i. e., ̄z+10−p ⋅d, where
the vector d ∼ U(−1, 1), and p ∈ ℕ0 denotes the intensity
of the disturbance.

Note that (11) might yield approximations to the so-
lution ̄z that either aggravate the performance w. r. t. (6)
compared to the solution w̄ associated with u ≡ 0 or solu-
tions that correspond to an infeasible control û ∉ U. As a
remedy, we propose to apply ADMM once after replacing it
by a surrogate in the optimization scheme. More precisely,
first we run Algorithm 1 using a surrogate in Step 4(b) until
the while loop terminates and then we additionally repeat
Steps 4 and 5 using ADMM.

4.1 Well-posedness

The following proposition states that for equality in (11), a
proper mapping is defined. For a concise notation we re-
place the index κi by i here.

Proposition 1. Consider φ given by (11), where ̄z describes
the optimal solution of (6) computed via ADMM, i. e., ̄z =

Figure 4: Effect of mapping error in (11) (top) and of the approxima-
tion via radial basis functions (RBFs) and a neural network (NN) on
the open-loop performance J ( ̄z, δ) within 48 consecutive time steps
(bottom). We use T = 0.5h in (3a).

̄z(u⋆). We assume all hyper-parameter to be fixed mean-
ing that {T , αi, βi, γi,Ci, ūi, ̄

ui} in (3)–(4) are constant over
time for all i ∈ [1 : I]. Then φ is a mapping, i. e., for all
(w̄, x(k), ̄ζ ) ∈ ℝN × X × ℝN , there exists a uniquely deter-
mined ̄z ∈ ℝN such that ̄z is the solution to the optimization
problem (6).

Proof. First note that ADMM yields the unique solution
of (6), see e. g., [5]. Furthermore, there are no constraints
on zi, i ∈ [1 : I], and the future SoC can be interpreted
as an affine function of the current SoC and the future
(dis-) charging rate. Hence, expansion of (3a) and averag-
ing of (3b) yield,

min
u
""""" ̄z(u) −

̄ζ """""
2
2 , subject to

xi(k+1+n) = α
n+1
i xi(k)+T

k+n
∑
ℓ=k

αn+k−ℓi (βiu
+
i (ℓ)+u

−
i (ℓ)),

xi(k) = x̂i, and constraints (4),
̄z(k + n) = w̄(k + n) + ū+(k + n) + γ̄ū−(k + n),
n ∈ [0 : N − 1],

Bereitgestellt von | MPI fuer Dynamik komplexer technischer Systeme
Angemeldet

Heruntergeladen am | 05.12.19 11:08



1042 | M. Baumann et al., Surrogate models in bidirectional optimization

where ̄⋅ denotes the corresponding average value w. r. t. all
subsystems, in particular ̄z(n) = 1

I ∑
I
i=1 zi(n). This repre-

sentation of (6) illustrates that the (predicted) average val-
ues ̄ζ = ( ̄ζ (k), . . . , ̄ζ (k + N − 1))⊤ and w̄ = (w̄(k), . . . , w̄(k +
N − 1)) and the current SoC {xi(k)}

I
i=1, uniquely determine

the optimal solution ̄z(u⋆) obtained by ADMM.

Remark 2. Note that ̄ζ Ü→ ̄z as introduced in [19] does not
define a mapping since the solution ̄z of (6) not only de-
pends on the reference value ̄ζ but also on the future net
consumption w̄ and the current SoC xi(k).

4.2 Radial basis functions approximation

Radial Basis Functions (RBFs) are used to interpolate func-
tions based on a set of sampling data. We briefly recap
some basics on RBFs. For a detailed introduction to the-
ory and application see e. g., [20], for a similar approach
where RBFs are used to replace ADMMwe refer to [19].

Let M ∈ ℕ denote the number of samples. Then, the
interpolation function of (11) is given as the sum of basis
functions ψm : ℝ

N × X × ℝN → ℝ, m ∈ [1 : M], and a
regularization term q : ℝN ×X×ℝN → ℝN . More precisely,

̄z ≈ φRBF(χ) =
M
∑
m=1

ψm(χ)αm + q(χ), (12)

where χ = (w̄, x(k), ̄ζ ) is the joint inputs of Proposition 1,
andαm ∈ ℝN ,m ∈ [1 : M]. Thebasis functions are so-called
radial basis functions of the form, ψm(χ) = ψ(‖χ − χm‖),
where the kernel ψ yields support close to the sampling
data χm,m ∈ [1 : M]. We choose an affine linear regulariza-
tion q(χ) = β0+Bχ. Note that different choices are possible.
Themissing parameters αm, β0 andB are determinedby in-
terpolation conditions, cf. [19, 20].

In Figure 5, a possible fit via RBFs is visualized. Here,
we interpolatedgivendata from two-weeks of optimization
(4540 data points) based on sampling data picking each
25-th data point to train (12). Then, we tested φRBF on the
following day, and plotted the fitting. Our implementation
is basedon the Matlab toolbox DACE [27]. Note that the eval-
uation timeof theRBFapproximation growswith thenum-
ber of data points used. Already with 180 data points to
train (12)withN = 6 causes the function evaluation ofφRBF

to be expensive, see Table 1. Usingmore data points would
no longer yield an advantage over usingADMMw. r. t. com-
putation time.

Figure 5: RBF and neural net fitting of the first component ̄z(k) of
̄z = ( ̄z(k), . . . , ̄z(k + N − 1))⊤ within 48 consecutive time steps
indicating the quality of the approximation (11).

4.3 Neural networks approximation

Neural Networks (NNs) are a state-of-the-art method in ar-
tificial intelligence frameworks. Based onhuge amounts of
data M ≫ 1 they are able to learn and recognize patterns
in complex systems. We consider a NN of l-layers as an ap-
proximation to the mapping (11), i. e.,

̄z ≈ φNN(χ) = σ (W [l] . . . σ(W [2]χ + b[2]) . . . + b[l]) , (13)

where σ denotes the sigmoid function, and the
weights W [l] and biases b[l] are determined during the
training phase. Here, the number of neurons at layer l − 1
and at layer l determine the number of rows and columns
of W [l], respectively. Note that a separate neural network
is trained for each MG. For an introduction to deep learn-
ing and neural networks we refer the reader to [28, 29]. To
train the NNs, we used Matlab’s built-in toolbox nftool.

The overall goal of the approximation (13) is to be suf-
ficient in the sense of the MPC performance shown in Fig-
ure 6. Our experiments in Figures 4 (bottom) and Figure 5
show that with one hidden layer of ten neurons only, a sat-
isfying approximation on a 24-hours time window can be
achieved if the training data is large enough.Note thatNNs
benefit from big data. In our case study, we trained the NN
only on data corresponding to two weeks.

5 Numerical proof-of-concept
Model Predictive Control (MPC) is a method to tackle opti-
mal control problems on an infinite time horizon by solv-
ing a series of finite dimensional optimization problems
instead, see e. g., [9] for an introduction to non-linearMPC.
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5.1 Model predictive control (MPC)

Consider the optimal control problem (6). In order to pro-
vide an optimal control sequence over an arbitrary long
time horizon we use MPC. To this end, at current time in-
stance k ∈ ℕ0 we assume the future net consumption
(wi(k),wi(k + 1), . . . ,wi(k + N − 1))⊤ ∈ ℝN to be predicted
for all subsystems i ∈ [1 : I]. Based on the prediction,
Algorithm 1 is executed (per MG) to determine control se-
quences ui, i ∈ [1 : I], and an exchange strategy δ. Then,
only the first instances ui(k) and δ(k) are implemented and
the time instance is incremented. Algorithm 2 outlines this
MPC scheme.

Algorithm 2MPC for coupled MGs
Input: Current time instance k ∈ ℕ0, current SoC
xi(k) ∈ Xκi , prediction horizon N ∈ ℕ≥2, and reference
trajectory ( ̄ζ (k), . . . , ̄ζ (k + N − 1))⊤ ∈ ℝN .
Repeat:
1. Measure current state xi(k) and update the forecast
(wi(k),wi(k + 1), . . . ,wi(k + N − 1))⊤, i ∈ [1 : I].

2. Run Algorithm 1 for all MG to get optimal control
sequences u⋆i = (u

⋆
i (k), . . . , u

⋆
i (k + N − 1))

⊤ for all
subsystems i ∈ [1 : I], and an optimal exchange
strategy δ⋆ = (δ⋆(k), . . . , δ⋆(k + N − 1)).

3. Implement u⋆i (k), i ∈ [1 : I], and δ
⋆(k) and shift the

time instance k → k + 1.

Note that Problems (6) or (8) and (2) have to be solved
in order to determine ̄z⋆ and δ⋆ in each MPC iteration.
Therefore, the open-loop costs J ( ̄z⋆, δ⋆) can be computed
in each iteration as well (cf. Figure 4). However, since
Step 3 in Algorithm 2 suggests to only implement the first
instance of the controls computed in Step 2, these costs are
not attained. Instead the stage costs

Ξ
∑
κ=1
( ̄ζ (k)Iκ −

Ξ
∑
ν=1

δ⋆νκ(k)ηνκIν ̄z
⋆
ν (k))

2

(14)

are realized at each time step k ∈ ℕ0 (cf. Figure 6).

5.2 Usage of surrogate models in MPC

We compare the performances using ADMM, RBFs, and
NNs on the lower-level, i. e., in Step 4(b) of Algorithnm 1.
In all numerical simulations we set T = 0.5, N = 6, Ξ = 4,

I1 = 50, and I2 = I3 = I4 = 10.1 The battery parame-
ters were randomly chosen with mean values C = 0.98,

̄
u = −0.24, and ū = 0.25. Based on the battery capacities
we set x̂i = 0.5Ci. In order to incorporate losses along the
transmission lines, we used the efficiency matrix,

η =
[[[[

[

1.0 0.9 0.9 0.85
0.9 1.0 0.0 0.85
0.9 0.0 1.0 0.0
0.85 0.85 0.0 1.0

]]]]

]

in (1).

For simplicity of the numerical computation, we only re-
placed the lower-level optimization routine for MG 1 and,
thus, avoid training a separate surrogate model for each
MG. We used Matlab for implementation.

Results on the MPC closed loop can be found in Fig-
ure 6 andTable 1. InFigure 6 the closed-loopperformances
of ADMM (black line) compared to perturbed ADMM, and
ADMM (black line) compared to the two surrogate models

Figure 6: Impact of mapping error (top) and approximation via RBF
and NN (bottom) on the stage costs (14) within 48 consecutive time
steps.

1 Note that this setting yields the global optimization problem (7)
with more than 1000 variables.
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Table 1: Comparison of the summed MPC closed-loop performance
∑47k=0 ∑

Ξ
κ=1 ( ̄ζ(k)Iκ −∑

Ξ
ν=1 δ
⋆
νκ(k)ηνκIν ̄z

⋆
ν (k))

2
and runtime (per call):

ADMM vs. RBFs vs. NNs.

closed-loop cost runtime [ms]

no control 12,228 —
ADMM 4,416 2.5
RBFs 4,529 1.2
NNs 5,598 0.05

are visualized. Similar to the open-loop case, small distur-
bances in ADMM have little impact and RBFs outperform
the NN. The first column of Table 1 compares the sum of
all MPC closed-loop performances using ADMM, RBFs and
a NN while in column 2 the average runtimes of these ap-
proaches are reported. Note that when using a surrogate,
we call ADMM once per MPC iteration. As elaborated in [7]
in each ADMM iteration an N-dimensional vector has to
be transmitted twice. Hence, both surrogates reduce the
need for communication. Two great advantages of ADMM
are that the local optimization (10a) can be parallelized
and the global optimization is independent of the size of
the MG. However, a single function evaluation such as (12)
or (13) is faster than running the entire ADMM optimiza-
tion routine.

Note that in column 2 of Table 1 we ignored the
communication between smart homes and CE which is
needed to apply ADMM in practice. However, the runtime
of ADMM impairs when executed in an actual smart grid
while surrogates do not require additional communica-
tion.

In order to improve the performance of the NN, more
sampling data has to be generated to increase the training
set significantly. To avoid large offline computation times,
we chose N = 6, i. e., a prediction horizon of three hours,
which is rather short compared to [7, 19].

Remark 3. We point out two implementation details to
solve (2) efficiently. First, note that the optimization (2) can
be parallelized in n, since there is no coupling. Further-
more, we replace (2c) by

δκν(n) ⋅ δνκ(n) ≤ ε

for some tolerance ε > 0 to smooth the feasible set.

6 Conclusions
In this paper we recalled an optimization problem arising
in large-scale electrical networks. We proposed an itera-

tive bidirectional optimization scheme to tackle this prob-
lem in a distributed way, and showed numerically that a
small error on the lower level does not have noticeable im-
pact on the performance. Based on this observation, we
replaced the lower-level optimization by surrogate mod-
els using radial basis functions and artificial neural net-
works. The numerical results show the potential of using
these surrogates to reduce communication effort and com-
putational time in MPC while preserving the overall per-
formance.
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