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Recent advances illustrate the power of reservoir engineering in applications to many-body systems, such as
quantum simulators based on superconducting circuits. We present a framework based on kinetic equations and
noise spectra that can be used to understand both the transient and long-time dynamics of many particles coupled
to an engineered reservoir in a number-conserving way. For the example of a bosonic array, we show that the
nonequilibrium steady state can be expressed, in a wide parameter regime, in terms of a modified Bose-Einstein

distribution with an energy-dependent temperature.
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I. INTRODUCTION

Reservoir engineering [1-3] is used to deliberately gen-
erate some desired dissipative dynamics, as demonstrated in
a variety of platforms: atoms [4], superconducting circuits
[5-7], ion traps [8—10], and optomechanics [11,12]. In the
future, it could become particularly useful for controlling
quantum many-body systems, as theoretically proposed in
several works (see, e.g., Refs. [13-18]). In this context, an
important scenario concerns the case where the coupling to the
reservoir conserves the total number of particles [19]. In that
way, reservoir engineering contributes to the implementation
of quantum simulators, especially in cases where the naturally
available dissipation would not drive the system to the right
many-body ground state.

The first experimental realizations of such particle-
conserving reservoir engineered many-body systems are start-
ing to appear: It has been used to stabilize a circuit QED-
based Mott insulator in a one-dimensional (1D) chain of
eight transmon qubits against photon losses [20] as well as to
dissipatively prepare quantum states in a three-transmon array
[19]. However, a simple but yet quantitative theory is missing
to describe both the transient and long-time dynamics of such
experiments.

Here, we introduce a framework to quantitatively describe
the kinetics of many particles being scattered among states
due to the interaction with an arbitrary nonequilibrium reser-
voir [see Fig. 1(a)]. Our theory allows one to understand
both the transient and long-time behavior. In particular, we
establish a perturbative approach to derive the steady-state
distribution in momentum space. Since we are dealing with
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a nonequilibrium system, the steady-state distribution will
depend on details of the interaction and of the reservoir noise
spectrum, in contrast to the case of a thermal heat bath en-
countered, e.g., in certain approaches on particle-conserving
photon equilibration [21-23].

The physics we encounter is partially reminiscent of cavity
optomechanics [24], except that we are now dealing with
a many-particle system instead of a mechanical resonator.
Furthermore, the coupling to that system has been engineered
to preserve the number of excitations, somewhat analogous to
the unconventional quadratic coupling encountered in some
optomechanical systems [25].

As an example, we derive the steady state of a 1D array
of bosonic modes with nearest-neighbor hopping coupled to
a particle-conserving nonequilibrium reservoir. This turns out
to be a “deformed” Bose-Einstein distribution with an energy-
dependent effective temperature. We furthermore observe
features such as negative-temperature states and prominent
accumulation of particles at certain momenta during the time
evolution.

We stress that while we focus on the experimentally rel-
evant case of circuit QED, our framework is platform inde-
pendent. As such, it can be used to predict the time dynamics
of other implementations of a many-body system coupled to
an engineered reservoir in a number-conserving way, e.g.,
optomechanical arrays consisting of a chain of mechanical
modes, each of which is coupled quadratically [25] to a
driven cavity or cold atoms in an optical lattice coupled to
a Bogoliubov reservoir [13].

II. MODEL

We consider a general situation of bosons hopping on
a d-dimensional lattice. Each lattice site is coupled to an
engineered reservoir via a local density-density interaction
[see Fig. 1(b)]. We further assume that the reservoir is kept
in a nonequilibrium state, e.g., a steady state resulting from
a competition between an external drive and dissipation. The
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FIG. 1. Many-body reservoir engineering. (a) Many-particle sys-
tem coupled in a particle-conserving manner to a nonequilibrium
bath. (b) Array of bosonic modes, where each site experiences a
density-density coupling to a nonequilibrium reservoir. (c) In a cQED
setup, a driven, lossy cavity implements a nonequilibrium reservoir.
(d) A particle at energy w; is scattered to a state of energy w, < w;
by emitting a photon into the reservoir. The rate at which particles
scatter is proportional to the noise spectrum S(w) of the reservoir.

total Hamiltonian describing this situation can be written as
ﬁ(t):ﬁarray+ﬁR(t)+ﬁintv (D

where ﬁamy is the quadratic Hamiltonian describing the
bosonic modes and we denote the annihilation operator of
mode r by b,. The Hamiltonian Hg (¢) describes the nonequi-
librium reservoir and we denote the annihilation of a reservoir
excitation by R,. Most importantly, we assume a density-
density coupling between the array and the reservoir, of the
form

ﬂint =X ZR\:Iér AIl;ra (2)

with x being the coupling constant. Alternatively, one can
consider a situation where only one site of the lattice is
coupled to a nonequilibrium reservoir. This setting leads qual-
itatively to the same dynamics. However, the situation studied
here presents the advantage of being homogeneous and having
a well-defined thermodynamic limit, and the cooling power
scales with the size of the system.

To understand how H;, gives rise to particle-conserving
dissipation processes, it is useful to work in the frame that
diagonalizes Hmay. We introduce the mode operators Bk with
energy wy and defined via the relation 13, = <p,(k),3k,
where ¢,(k) is the mode function, indexed by a label k (in
a translational invariant system k would be the wave vector).
The interaction Hamiltonian is then given by

Hip = x Y, 97 (e (KRR,
r.k.k’

A

e )

Using Fermi’s golden rule, one can derive transition rates
from mode k to &/,

Tiow = X ViwS (o )n(ng + 1), )

where wy = wy — wy, and we introduce the power spectrum
of the nonequilibrium reservoir noise,

S(w) = /-00 dt exp(iot ){((671()671(0)), 5)

o0

with 8a(r) = R'(1)R(t) — (RT(t)R(r)), and we define
Yiw = Y 105 () |@r )] 6)

Here, we assumed for simplicity independent reservoirs with
identical properties, although this assumption could easily be
dropped.

Now we are in a position to describe the dynamics of
the array, by formulating a set of coupled kinetic equations
that describe the evolution of the average occupation of the
eigenmodes of the array:

i@ 1) = Y [Tei®) = T ()], )

Kk

with n(wyg, t) = ,3; (t )Bk (1)). In the presence of weak interac-
tions between particles, one would have to supplement Eq. (7)
by addition of two-particle scattering terms [26].

An important aim in any nonequilibrium scenario is to
characterize the resulting steady-state distributions. The con-
tinuum limit of Eq. (7),

iwp. 1) = f " dow D(wp 1S @en(op)n(@) + 11

— S(—wpn(wp)n(og) + 11}, ®)

where D(wy) denotes the density of states, is particularly
useful to find perturbative solutions describing the steady state
of the system. To understand how this can be done, we start
by recalling that even for a noise source that is not in ther-
mal equilibrium one can always define an effective tempera-
ture associated to a single transition frequency by using the
Stokes relation S(w)/S(—w) = exp[Berrw] or, alternatively,
tanh[Berw/2] = [S(w) — S(—w)]/[S(®) + S(—w)] [27]. By
expanding on both sides of the equality and noting that the
expression on the right-hand side is an odd function of w
(S(w) is an asymmetric function of w [27]), we find that the
effective inverse temperature for a single transition frequency
can be expressed as Be(w) =D, Bon®. In the limit
where Bo,w>" /Bo < 1 with n > 1, the reservoir effectively
acts as a thermal reservoir since all transitions have the
same the temperature Sy, which we define as the equilibrium
temperature. Thus, we expect the steady state to be described
by Bose-FEinstein statistics with an inverse temperature 5y and
a chemical potential u:

1
explBo(wx — w)l —1°

npe(wr) = ©)

In the vicinity of this limiting case, we can look for a de-
scription in terms of small corrections around the equilibrium
statistics, which can be done using a series representation for
the steady state:

n®(wx) =Y ni(an), (10)
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with no(wy) = nge(wx) and n; o (Bowe)' (i = 1). In other
words the steady-state distribution can be understood as a
certain deformed version of the Bose-Einstein distribution.

III. IMPLEMENTATION WITH CQED

The physical situation described by Eq. (1) can be realized,
e.g., using linear elements of the superconducting circuits
toolbox. The array can be engineered by capacitively coupling
cavities and the local nonequilibrium reservoir can be realized
using driven, lossy cavities [see Fig. 1(c)]. In this context, we
have

Hr(t) = w. »_afar +Q Y _lexp(—iwgt)a) +Hel, (1)
r r

with w, being the reservoir frequency, a, being the annihila-
tion operator of a photon, 2 being the amplitude of the drive,
and wq being the driving frequency. The local density-density
coupling is given by Eq. (3) with R, [1:’,T ] replaced by &, (&)).
Assuming the reservoir to be in the steady state, one finds
that the power spectrum of the noise is given by [27,28]
Se(w) = |ap) ———., 12
@ =l (12)

with ay = iQy/(iA — k/2) being the classical amplitude of
the field inside the cavity, k being the energy decay rate, and
A = wy — . is the detuning between the reservoir frequency
and the drive.

As can be seen from Eq. (12), the sign of the detuning A
determines whether S.(w) peaks at either negative (A > 0) or
positive (A < 0) frequency. Thus, substituting S(w) by S.(w)
in Eq. (4) and choosing the detuning A to be negative while
assuming wy > wy leads to 'y > 'y in Eq. (7). This
corresponds to particles in high-energy modes being preferen-
tially scattered into low-energy modes by having the reservoir
absorb the excess of energy, leading to cooling [see Fig. 1(d)],
which generalizes optomechanical cooling ideas [27,28] to the
many-body case. The reverse situation, with positive detuning
A, means the noise pumps energy incoherently into the array,
scattering particles to higher energies. Another property of
Eq. (4) that influences the dynamics described by Eq. (7) is
the Bose enhancement factor; the rate at which a boson is
scattered to a state with occupation # is enhanced by a factor
n+1.

Using the definition of the effective temperature, we find,
in the limit where w?/[A% + (k/2)*] < 1,

Betr (@) = /30[1 + lg—(’A(s + ﬁoA)wz} + 0@, (13)

with the equilibrium temperature given by By = —4A/[A? +
(k/2)*].

One-dimensional bosonic array

For concreteness, we consider in the following a 1D array
with

L L—-1
Auray = w0 »_btb;+7 Y (b, \b;+He)  (14)
j=1 j=1
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FIG. 2. Steady state of a 1D bosonic array with open-boundary
conditions (L = 100, N = 50, x = J/1000, and ¢ = J/10, unless
specified otherwise). (a) Numerically observed steady-state distribu-
tion from Eq. (7) (solid thin lines), compared to perturbative solu-
tions (solid thick lines) [see Eq. (15)], and Bose-Einstein statistics
(dashed lines). (b) Effective energy-dependent inverse temperature
B(wy) of the modified Bose-Einstein distribution. (¢) Kullback-
Leibler divergence Dy k [see Eq. (17)] comparing the steady-state
solution with the perturbative solution.

with wg being the frequency of the modes and J being the hop-
ping strength. The spectrum is given by wy = wy + 2J cos(k)
and the density of states by D(w) = 1/[2nJ/1 — (w/2J)?]
for |w| < 2J and O otherwise.

In the long-time limit, the system approaches a steady-
state distribution. In general, this does not correspond to any
thermal equilibrium distribution, as it can be seen in our
numerical results [see Fig. 2(a)] obtained on the basis of
Eq. (7). However, we can characterize the final distribution
using our perturbative treatment whenever foJ < 1, since
wk o« J. In particular, the latter condition is fulfilled whenever
J/IALlorJ/k K 1.

Substituting our series ansatz in Eq. (8) and looking for the
steady state [72(wy, t) = 0], we find (see Appendix A)

n(wy) = nBE(wk){l — explBo(wr — w)]npe(wy)

2
X |:3€—OA(3 + .BOA)(CU/% + 18]2)a)k — eXP(_,BOM)C] }’
(15)

with ¢ being a constant of integration. We can fix both u
and c in Eq. (15) by enforcing particle number conservation,
> n(wy) = N; we first obtain p by imposing normalization
for ngg and then extract ¢ from the same condition applied to
the next order.

When we compare Eq. (15) to a generalized Bose-Einstein
statistics with an energy-dependent inverse temperature [set-
ting By — B(wy)], we conclude, to leading order,

Blax) = ﬂo[l + 0G4 o) (o} + 1812)]. (16)
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The curvature of the effective temperature depends on the
ratio between the detuning A and the decay rate « [see
Fig. 2(b)]. Equation (16) in addition to reducing to B, for a
small expansion parameter also reduces to Sy at the special
point A = —/3k /2.

To assess the accuracy of our perturbative solution, we
quantify its distance from the true steady-state solution of
Eq. (15). We employ the Kullback-Leibler divergence [29]
(relative entropy)

D (™ I p)=)

n®) (awy) | [n(‘”)(wk)
k

N n(ewy) } an
which describes the amount of information lost when ap-
proximating one distribution by another. Here, we expressed
our perturbative solution in terms of the normalized density
p(wr) = n(wy)/N [with N being the total number of particles
and n(wy ) given by Eq. (15)] and compare it to the steady-state
distribution p® (wi) = n° (wi)/N.

Figure 2(c) shows the Kullback-Leibler divergence as a
function of detuning and decay rate. The numerical results
were obtained by time evolving the kinetic equations until the
system settles into the steady state.

We observe the perturbative solution in Eq. (15) ap-
proximating the nonequilibrium steady state well in a wide
range of parameters. The approximation becomes better, as
expected, in the limit BoJ < 1 [for BoJ — 0, the effective
temperature becomes energy-independent, and Eq. (15) re-
duces back to the Bose-Einstein distribution]. We stress that
Eq. (15) is much closer to the real solution than the Bose-
Einstein distribution itself; indeed, in a large parameter regime
we have Dk (p || pge)/DxL(p™ || p) ~ 10* with pgg =
nge/N (see Appendix B).

We now discuss some distinct properties of the nonequi-
librium distribution. In thermal equilibrium, detailed balance
ensures that the Bose-Einstein distribution is independent
of the density of states. This is no longer true here, out
of equilibrium. As we show in Fig. 2(b), signatures of the
density of states (with its characteristic divergence at the
band edge in 1D) can be observed when the noise spectrum
itself [see Eq. (4) with S(w) = Sc(w)] is sufficiently narrow,
i.e., for k/J < 1. In that case, prominent features (almost
nonanalytic) appear in the distribution at energies separated
from the band edge by the detuning. These features are even
more pronounced during the temporal dynamics (see below).

When deriving the kinetic equation [Eq. (4)], we pointed
out the presence of the bosonic enhancement factors. The
effects of such an enhancement can be observed when the
particle density increases, particularly in the most strongly
occupied regions of the band [see Fig. 3(a)]. For red detuning,
we obtain many-particle ground-state cooling. To assess its
efficiency, we plot in Fig. 3(b) the difference between the
occupation of the single-particle ground state and the high-
est excited state in the band, dn = nyign — ngs. The bosonic
enhancement serves to increase the efficiency of ground-state
cooling.

In stark contrast to optomechanics, where the spectrum
of the mechanical resonator is unbounded, we are dealing
with a physical system that possesses a bound (many-particle)
spectrum. This has an important consequence: Even for blue
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FIG. 3. Bosonic distribution in momentum space (long-time
limit). (a) Impact of the Bose enhancement factor (A = —J, k = 3J).
As the particle density increases, the low-energy levels become more
occupied during the cooling dynamics. (b) Efficiency of ground-state
cooling. We plot the difference between the average occupation
of the ground state and the highest excited state, n = ngs — nhigh
(k = 3J). (c) Transition toward negative temperature. For blue de-
tuning (A > 0), the system exhibits stable negative-temperatures
steady states. (d) Schematic representation of states with positive and
negative temperatures.

detuning (A > 0), and without any recourse to nonlinear
cavity dynamics, the system is still stable, as can be seen in
Fig. 3(c). In this “heating” regime, particles accumulate at
the upper band edge. Such states can be described by a nega-
tive temperature [see Fig. 3(d)]. Similar negative-temperature
states were previously obtained using localized spin systems
[30-32] and ultracold atoms trapped in optical lattices [33].
Creating stable negative states with optical lattices is chal-
lenging as it requires relatively complex state preparation. By
contrast, here, one only needs to choose a positive detuning.
We noted earlier the existence of features in the steady-
state distribution that are reminiscent of particle accumulation
or depletion [see Fig. 2(b)]. As illustrated in Fig. 4, these
features are substantially sharper and pronounced during the
time evolution. To understand their origin, we consider the
simplest possible situation: a uniform initial distribution. Such
a uniform distribution in k space can be realized, e.g., by
incoherently loading the whole array with bosons at con-
stant density (or quenching from a Mott insulator). At early
times, the incipient deviations from the uniform distribution
can be obtained perturbatively by considering Eq. (8) and
substituting n(wy, t) by its initial uniform value ny. Within this
approximation, the integral in Eq. (8) is maximal (or minimal)
when the divergence of the density of states aligns with the
maximum of the spectrum S(w) [or S(—w)]. Physically, this
translates into having a large incoming rate of particles for
states with @y = 2J + A and a large outgoing rate for states
with w, = —2J — A. As a consequence, particles accumulate
(deplete) at =A from the band edges [see Figs. 4(b) and
4(c)]. The accumulation of particles at wy = 2J + A can
subsequently lead to another accumulation of particles at
wr =2J +2A [see Fig. 4(b), A = —J/2]. As emphasized
already above for the steady state, observing these extra peaks
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FIG. 4. Time evolution. (a) Snapshots of the distribution showing
the emergence of accumulation and depletion of particles at £A off
the band edges (A = —3J, k = J/10). The steady-state distribution
can be seen in Fig. 2(a). (b) Detuning dependence (x%¢/J = 10, k =
J/10). (c) Impact of the decay rate «.

in the distribution is contingent on having a narrow cavity
spectrum, with ¥ < |A|, J [see Fig. 4(c)].

In experimental implementations, two factors may come
into play to distort the long-time dynamics from the idealized
scenario. We mention them briefly, though a detailed study
would be beyond the scope of the present work. First, there is
the loss of array bosons at a constant rate, e.g., intrinsic cavity
decay or mechanical dissipation. This will simply lead to an
overall depletion of the total particle number N(z) ~ e~ "";i.e.,
the steady state will slowly evolve, due to the modiﬁcatlon of
bosonic enhancement factors. Second, if there are interactions
between the bosons, e.g., attractive interactions for a chain
of transmon qubits instead of linear cavities, these will lead
to additional scattering that is compatible with ground-state
cooling but will drive the distribution closer to thermal.

IV. CONCLUSION

We have developed a general framework to analyze both
the short-time and long-time dynamics of a many-body
system coupled to an engineered reservoir in a number-
conserving way. In particular, we have established a pertur-
bative technique to derive the nonequilibrium steady-state
particle distribution. We have illustrated our theory by con-
sidering a 1D bosonic array with each site coupled to a driven
cavity. However, our treatment is applicable to other nonequi-
librium reservoirs coupled in a particle-conserving manner to
arbitrary noninteracting many-body systems, i.e., in higher
dimensions, for arbitrary lattices and band structures, and also
for fermionic systems, with straightforward modifications.

APPENDIX A: PERTURBATION THEORY

In this appendix, we show in more detail how we obtained
Eq. (15). As stated in Sec. III, the results were obtained by
considering a 1D array with open-boundary conditions. In
this case, the mode function is given by ¢,.(k) = ¢, (k) =
V2/(L+ 1)sintkr) withr € {1,..., L} and k =7 j/(L + 1)

with j € {1, ..., L}. With this mode function, we can evaluate
the factor y; p» = vk i [see Egs. (4) and (6)] using the result for
a finite geometric series, and we find

1 1
P S
Vk.k L+1[ +2k+k,i|

with 8, , being the Kronecker § function.

To get the continuous model presented in the main text [see
Eq. (8)], we approximate y; by a constant factor, y; p =~
y = 1/(L + 1). This is possible because there is only one
value of k' for a fixed k such that k + k' = . Converting
the sums in Eq. (7) of the main text to integrals, we find the
equation for the steady state:

(AD)

2
0= /dwk’D(wk’){S(w)n(wk’)[”l(wk)+ 1]
y

—S(—w)n(w)[n(wr) + 11}

To solve for n(wy), we start by expanding both S(w) and
S(—w) in powers of Byw. We have

(A2)

K
S(®) = lag|?
Yo+ A+ (5)
|
= lao|® - -
A (%)2 L+ Azj@)zi(l +3%)
1

= |ao|?

U At (5P 1= Bos(1+ )

and similarly we have

1
S(=0) =l — - 22[ 2w< ZA)] (Ad)

We also expand n(wy) = n(wk + w) in a Taylor series around
w = 0, so we have

1@y
n(wy +w) = Z w',

!
— U

(A5)

where n” denotes the Ith derivative of n(w i)

By replacing Egs. (A3), (A4), and (AS) into Eq. (A2), we
can carry out the integral over the density of states. We look
for solutions of the resulting equation in the form of a series
expansion

n(w) =Y miew),

=0

(A6)

where we assume that n; o< (Bowy)'.

By expanding Eqgs. (A3), (A4), and (A5) to third order, i.e.,
up to [ = 3, we can find first-order differential equations for n;
with [ € {0, 1, 2} by grouping together terms proportional to
(Bowr)'. We note that we treat terms like (Bowy)wi /A as being
higher order; i.e., for this particular example, this term would
be grouped together with terms scaling like (Bywy)?>. This is
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FIG. 5. (a) Kullback-Leibler divergence comparing the steady-
state solution with the Bose-Einstein statistics given by Eq. (AS8).
(b) Ratio between Dk (p© || pse) and Dgp (p*® || p). The white
dashed line corresponds to A = —+/3k/2 where the temperature

B(wy) is equal to By.

motivated by the result found for the effective temperature
where 8,/B0 = Bo/(4A) + ,83/12 (see main text).

Collecting terms proportional to Sywy, we find that ng(wy)
must obey the differential equation

ny(@r) + Bono(wi)lno(wy) + 11 = 0. (A7)
The solution of Eq. (A8) is the Bose-Einstein statistics with
temperature S,
1
exp [Bo(wx — )] — 17

and the constant of integration p is the chemical potential,
which is fixed by requiring that )", no(wy) = N.

Collecting terms proportional to (Bowy)?, we find that
ny (wy) must obey the differential equation

no(a)k) = (A8)

'y (w) + Boni (wi)no(wr) + 11 =10, (A9)
whose solution is
ny(wp) = ¢ exp [Bo(wr — 2u)] (A10)

] 9
{exp [Bo(wr — )] — 1)
with ¢ being a constant of integration. To determine the con-
stant ¢, we require that ) ", [no(wi) + ni(wi)] = N. Note that
we have previously fixed p by requiring that )", no(wi) = N,
which leads to ¢; = 0. We note that this procedure to find

the constants of integration ensures that our solution always
describes a distribution with N particles at every order.

Finally, collecting terms proportional to (Bowy)?, we find
that n; (wy ) must obey the differential equation

14 BE3 + BoA)6J* + )
12A

nh(wi) + Bona(wi)[2no(wy) + 1
x no(wp)[no(wy) + 11 = 0. (Al1)
The solution of Eq. (Al1) is

explBo(wr — u)]
{exp[Bo(wr — )] — 1}2

m(wy) = —

2
) [3€_OA(3 + BoA) (1877 + w oo — exP(ﬂoM)6‘2:|,

(A12)
with ¢, being the constant of integration which is once more
determined by the condition ), [no(wx) + na(wi)] = N.

Combining Egs. (A8), (A10), and (A12) together with the
result ¢; = 0 leads to Eq. (15) of the main text. We note that
the latter equation can predict negative occupation numbers,
but this only occurs outside of the perturbative regime where
the theory is not valid anymore.

APPENDIX B: APPROXIMATING THE STEADY-STATE
SOLUTION WITH THE BOSE-EINSTEIN STATISTICS

In this appendix, we show that the third-order perturbative
solution is a better approximation of the steady-state solution
than the leading order Bose-Einstein statistics. In Fig. 5(a),
we plot the Kullback-Leibler divergence between p® and
pee. We indicate by a white dashed line when B(wi) = Bo
[see Eq. (16)],1i.e., A = —\/§K/2. When this last condition is
met, we have ny(wy) = 0if ¢, = 0.

In Fig. 5(b), we plot the ratio

_ DxL(P*™ || paE)
Dg(p© || p)

which shows that the higher order perturbation approximates
the steady-state solution more accurately than the leading
order given by the Bose-Einstein statistics. We note, however,
that in the close vicinity of A = —+/3k /2, the leading order
is more suitable to approximate the steady state.
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