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a b s t r a c t

Research on infants’ online lexical processing by Fernald, Perfors,
and Marchman (2006) revealed substantial individual differences
that are related to vocabulary development, such that infants with
better lexical processing efficiency show greater vocabulary growth
across time. Although it is clear that individual differences in lexi-
cal processing efficiency exist and are meaningful, the theoretical
nature of lexical processing efficiency and its relation to vocabulary
size is less clear. In the current study, we asked two questions: (a)
Is lexical processing efficiency better conceptualized as a central
processing capacity or as an emergent capacity reflecting a collection
of word-specific capacities? and (b) Is there evidence for a causal
role for lexical processing efficiency in early vocabulary develop-
ment? In the study, 120 infants were tested on a measure of lexical
processing at 18, 21, and 24 months, and their vocabulary was
measured via parent report. Structural equation modeling of the
18-month time point data revealed that both theoretical constructs
represented in the first question above (a) fit the data. A set of
regression analyses on the longitudinal data revealed little evi-
dence for a causal effect of lexical processing on vocabulary but
revealed a significant effect of vocabulary size on lexical processing
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efficiency early in development. Overall, the results suggest that
lexical processing efficiency is a stable construct in infancy that
may reflect the structure of the developing lexicon.

Crown Copyright ! 2019 Published by Elsevier Inc. All rights
reserved.

Introduction

Language development is characterized by significant yet stable individual differences (e.g., Bates,
Dale, & Thal, 1995; Bornstein, Hahn, & Putnick, 2016), which are measureable and developmentally
significant from early in life (e.g., Brito, Fifer, Myers, Elliott, & Noble, 2016; Cristia, Seidl, Junge,
Soderstrom, & Hagoort, 2014). One domain of language that is subject to significant individual differ-
ences is the lexicon, with large variability observed in both the growth rate and size of vocabulary
across the life span. Explaining this variability is of important theoretical and practical significance.
Theoretically, identifying sources of variation can reveal the mechanisms underlying development
(Bates, Bretherton, & Snyder, 1988; Kidd, Donnelly, & Christiansen, 2018). In practical terms, early
vocabulary is a strong predictor of language development in other domains (e.g., grammar) and of
important outcomes (e.g., educational performance and attainment). Thus, understanding of the
sources of early variability enables the potential early detection and remediation of developmental
delay. In the current article, we report on an investigation of individual differences in infants’ online
lexical processing efficiency and their longitudinal relationship with vocabulary development from 18
to 24 months, a period in which there is substantial vocabulary growth and reorganization in the lin-
guistic system.

Perhaps the most common measure of children’s early lexical processing efficiency is the Looking
While Listening (LWL) task (Fernald, Zangl, Portillo, & Marchman, 2008). In this task, children see
two images side by side (a target and a distracter) and hear sentences such as ‘‘Look at the bird.”
The dependent measure of interest is children’s efficiency in recognizing the target word. This can
be measured in two ways: the proportion of time spent looking at the target image after hearing
the noun and the time it takes children to look toward the target image on the trials in which they
were looking at the distracter image while the target word was playing, namely their reaction time
(RT).

The LWL task appears to capture developmentally stable and meaningful individual differences.
RTs and accuracy across time are significantly correlated (Fernald, Perfors, & Marchman, 2006;
Lany, Giglio, & Oswald, 2018) and, as would be expected, RTs are faster for older children than for
younger children in both English (Fernald et al., 2006) and Spanish (Hurtado, Marchman, & Fernald,
2008). Importantly, individual differences in LWL are related to other measures of linguistic compe-
tence measured concurrently, retrospectively, and prospectively. Several studies have reported signif-
icant correlations between LWL measures and vocabulary size concurrently in infants (Fernald et al.,
2006; Fernald, Marchman, & Weisleder, 2013), and under some conditions this relationship can be
observed by as young as 12 months (Lany et al., 2018). Moreover, in some circumstances, infants with
comparatively efficient lexical processing learn more words in a word-learning task than those with
less efficient lexical processing (Lany, 2018). Retrospectively, individual differences in LWL at
24 months predict size of vocabulary, grammatical complexity, and rate of growth in vocabulary over
the first year (Fernald et al., 2006). Prospectively, individual differences in LWL predict vocabulary
growth (Fernald & Marchman, 2012; Lany et al., 2018) and even broader expressive language abilities
6 years later (Marchman & Fernald, 2012).

Although the validity of the LWL task and its relation to vocabulary development are clear, the the-
oretical nature of the task is less so, as is the direction of the developmental relationship between lex-
ical processing efficiency and vocabulary. In the current study, we addressed these two issues, which
we discuss in turn.

2 S. Donnelly, E. Kidd / Journal of Experimental Child Psychology 192 (2020) 104781



The nature of individual differences in lexical processing efficiency

Lexical processing efficiency is operationalized either as the mean RT on all trials in which the par-
ticipant was looking to the distracter image prior to the onset of the target word or as the proportion
of time the infant looks as the target compared with the distractor image. Because these measures are
calculated over many words, they could conceivably be interpreted in two different ways. It is, for
example, possible that average RTs or proportions on the LWL task reflect some central lexical or cog-
nitive processing speed on which individuals vary and that applies to all known words (hereafter, the
central capacity account). Such a proposal is consistent with arguments that domain-general process-
ing speed plays a fundamental role in the development of higher-order cognitive processes (Kail &
Salthouse, 1994), and adult psycholinguistic research that has shown nonlinguistic processing capac-
ity predicts lexical processing (e.g., Hintz et al., 2019), although in the current case the capacity need
not be domain general. On the other hand, it is plausible that average RTs reflect a collection of word-
specific processing speeds (hereafter, the emergent capacity account). This approach captures the fact
that many item-level features of words predict speed of lexical access (e.g., frequency, imageability,
age of acquisition), which in some cases interacts with vocabulary knowledge (e.g., Mainz, Shao,
Brysbaert, & Meyer, 2017). An emergent capacity account is consistent with domain-specific theoret-
ical approaches to automization, where increased experience with specific events automatizes (i.e.,
speeds up) processing (e.g., Logan, 1988).

These two accounts can in principle be statistically disentangled because they correspond to differ-
ent classes of structural equation models: effects-indicator and causal-indicator models (also called
reflective and formative measurement models). The central capacity account corresponds to an
effects-indicator model. Effects-indicator models assume that covariation in observed variables is
caused by variation in some latent variable (i.e., in our case a central processing capacity). Observed
variables are modeled as a system of linear regression equations, each of which includes the latent
variable as a predictor and separate error terms. In the context of the LWL task, mean RTs for individ-
ual words would be modeled as shown in Fig. 1A, which illustrates the assumptions of an effects-
indicator model. The direction of the paths indicates that variation in the latent variable (e.g., a cen-
tralized lexical processing capacity) causes variation in the indicator variables (e.g., knowledge of
words). Because of this, any covariation in the indicator variables is assumed to be due to their shared
cause, the latent variable. Moreover, adding or removing indicator variables would not change the
interpretation of the latent variable; they are exchangeable indicators of a preexisting theoretical
entity (thus, lexical processing speed should, all things being equal, be roughly equivalent for different
words).

It is common in psychology to conceptualize constructs in this manner. One example is IQ, where it
is traditionally assumed that variation in IQ test scores is caused by g (as well as test-specific error).
Therefore, increasing g would increase the scores on individual IQ tests, but increasing the error com-
ponents of each individual test would not affect g. Moreover, adding an additional IQ test to a preex-
isting battery would not change the interpretation of g.

Treating observed variables as effects indicators is common in psychology, but it is not the only
possibility. We could also view the observed variables as causing the latent variable. A common exam-
ple of this is socioeconomic status (SES). Although this construct may be measured by mother’s edu-
cation, father’s education, and number of books in the home (to identify only a few examples), it is
difficult to conceive of these variables as effects of some underlying SES dimension; rather, those vari-
ables define, or cause, SES. This conceptualization would lead to a different latent variable model such
as the one in Fig. 1B. This causal-indicator model assumes that RTs for each word combine to create
some general processing speed; that is, lexical processing speed is an emergent property of knowledge
of individual words. This model corresponds to a single regression equation in which the latent vari-
able is an outcome that has its own error term. In this case, the observed variables are called causal
indicators as opposed to effect indicators. Because they are causally prior to the latent variable, adding
or removing causal-indicator variables would change the definition of the latent variable (thus, differ-
ent words would result in different processing speeds). Moreover, this conceptualization makes no
assumptions about the correlations between the causal indicators. This model corresponds to the
emergent capacity account.

S. Donnelly, E. Kidd / Journal of Experimental Child Psychology 192 (2020) 104781 3



The merits of the distinction between these two sorts of models are still debated in the psychome-
tric community (Bainter & Bollen, 2014; Howell, 2014; Markus, 2014; McCoach & Kenny, 2014; Wang,
Engelhard, & Lu, 2014; West & Grimm, 2014; Widaman, 2014). In particular, this debate centers on
whether the latent variables in causal-indicator models can be described as a measurement. However,
there is no disagreement that effects-indicator models, such as factor analysis, assume latent variables
that are causally prior to observed variables or that a set of observed variables can be causally prior to
latent variables within a structural equation model. Therefore, because the distinction between these
two types of models maps onto a clear conceptual distinction within developmental psycholinguistics,
comparing the fit of these models with developmental psycholinguistic data is warranted, regardless
of whether they are considered measurement models.1

In fact, this distinction between causal-indicator and effects-indicator models has been employed
profitably within other areas in developmental psychology. For example, Willoughby and colleagues
suggested that batteries of executive functioning (EF) tasks might be better modeled as causal indica-
tors rather than effect indicators (Willoughby, Blair, & Family Life Project Investigators, 2016;
Willoughby, Holochwost, Blanton, & Blair, 2014). In a reanalysis of nine influential studies of EF,
Willoughby et al. (2014) found that four of the nine studies failed a vanishing tetrad test, a test of
model fit often used to determine whether effects indicators are appropriate. In a subsequent study,
Willoughby et al. (2016) fit causal-indicator and effects-indicator models to EF data from a longitudi-
nal study from 3 to 5 years of age. At 3 and 4 years a nested vanishing tetrad test preferred the causal-
indicator model to the effects-indicator model, and at 5 years there was a marginally significant trend
favoring the causal-indicator model. The two models yielded radically different inferences about the
developmental stability of EF. The effects-indicator model yielded 2-week and 2-year test–retest reli-
abilities that were nearly equal (r = .99 and r = .96, respectively), whereas the causal-indicator model
yielded much larger 2-week than 2-year test–retest reliabilities (r = .76 and r = .32, respectively). In
other words, inferences about the developmental stability were greatly influenced by the choice of
model; effects indicators suggested very little developmental variability in EF from 3 to 5 years,
whereas causal indicators suggested a great deal of variability. However, path coefficients from the
latent variable to related variables (intelligence, academic achievement, and attention-deficit/hyperac
tivity disorder [ADHD] symptoms) were approximately equal in magnitude across the two models,
indicating that inferences about the relationship between EF and other variables were not affected
by the choice of model.

Interestingly, all the research on individual differences in the LWL task has used mean RTs (or pro-
portions) across all trials as their measure of lexical processing efficiency, which is conceptually sim-
ilar to a causal-indicator model because it does not have word-specific error terms. Therefore, on top
of the theoretically interesting question of whether individual differences in lexical processing effi-
ciency are better explained by the central capacity account or the emergent capacity account, it is also
possible that inferences about the developmental stability of lexical processing efficiency and its rela-
tion to concurrently measured variables depend on which model is employed. This may explain the

Fig. 1. (A) Schematic of effects-indicator model. (B) Schematic of causal-indicator model.

1 We use the terms causal-indicator and effects-indicator models, rather than formative and reflective measurement models,
because they are more neutral with regard to this debate.
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seemingly small correlations between the LWL tasks at different time points (e.g., Fernald et al., 2006]
reported correlations between average RTs over 3-month intervals ranging from .21 to .39). In the
current study, we sought to address these questions by fitting effects-indicator and causal-indicator
models (hereafter, central capacity and emergent capacity models, respectively) to LWL data at
18 months.

Whether to conduct this analysis on RTs or proportions is unclear. On the one hand, RTs seem to
more closely reflect what most researchers have in mind when they use the term efficiency in lexical
processing efficiency. On the other hand, calculation of RTs requires researchers to drop trials on
which participants were looking to the distracter image prior to the onset of the target word, thereby
reducing the number of valid trials. Analyzing proportions eliminates this problem because they can
be calculated regardless of where the participant is looking prior to the onset of the target word.
Therefore, we estimated these models on both RTs and proportions.

Vocabulary size and developing lexical processing efficiency

There is a great deal of evidence that lexical processing efficiency is correlated with vocabulary
size. For example, in a seminal longitudinal study from 15 to 25 months, Fernald et al. (2006) found
that LWL RT was correlated with concurrent vocabulary by 25 months and an accuracy measure was
correlated with vocabulary by 21 months. However, by 25 months, both measures were significantly
correlated with vocabulary size at 15, 18, 21, and 25 months and when included in a multilevel model
predicted more rapid vocabulary growth over the 10-month window.

Although performance on the LWL task and vocabulary knowledge are clearly coupled, a possible
causal relationship between lexical processing efficiency and vocabulary size has been difficult to
determine. Fernald et al. (2006) postulated three possible explanations. First, it is possible that young
children with more efficient lexical processing are able to free cognitive resources so as to learn new
words. Second, it is also possible that growth in vocabulary causes words to be represented in a more
efficient manner, thereby facilitating processing. Third, it is possible that there is a bidirectional causal
relationship between the two, with vocabulary improving lexical processing efficiency and lexical pro-
cessing efficiency improving vocabulary.

Several additional longitudinal studies relevant to this question have been conducted, but
none offers unambiguous evidence about the direction of the relationship between the variables.
For example, Hurtado et al. (2008) studied the relationship among maternal talk, lexical process-
ing efficiency, and vocabulary among Spanish-speaking children from 18 to 24 months. They
found that lexical processing efficiency at 24 months mediated the relationship between mater-
nal talk at 18 months, defined as the number of word tokens used during a free play session,
and vocabulary at 24 months. In an additional model, they found that vocabulary at 24 months
mediated the relationship between maternal talk at 18 months and lexical processing efficiency
at 24 months. Similarly, Weisleder and Fernald (2013) found that the relationship between
child-directed speech at 19 months and vocabulary size at 24 months was mediated by lexical
processing efficiency (measured by proportion of time looking at target rather than RT).
Although these studies suggest that variation in input variables is related to shared variance
between vocabulary and lexical processing efficiency, they do not directly address the question
of whether lexical processing efficiency affects vocabulary over and above prior vocabulary and
vice versa.

Two studies provide more direct evidence that lexical processing efficiency predicts changes in
vocabulary over and above previous vocabulary. First, Fernald and Marchman (2012) compared the
vocabulary growth trajectories of typically developing and late-talking toddlers from 18 to 30 months.
They found that late talkers who exhibited more efficient lexical processing at 18 months exhibited
faster vocabulary growth from 18 to 30 months. This effect was not found for typically developing tod-
dlers, which they interpreted as a ceiling effect at the older time points. Second, Lany et al. (2018)
administered the LWL task and the MacArthur–Bates Communicative Development Inventory (CDI)
at two sessions: one in which participants were 12 months old and one in which they were between
15 and 18 months old. They found that lexical processing efficiency, as indexed by proportion of looks
to target on trials in which the target word was known during the first session, was correlated with
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differences in percentile scores between CDI percentile scores in the first and second sessions. They
also found that vocabulary during the first session did not predict either LWL variable during the sec-
ond session or changes in LWL variables between the second and first sessions. However, as the
authors pointed out, unlike the CDI percentile scores, during the second session the LWL variables
were not age controlled and the relatively wide range of participant ages may be responsible for this
nonsignificant relationship.

In sum, the available evidence suggests a robust relationship between lexical processing efficiency
and vocabulary by around 18 months. There is some evidence that lexical processing efficiency pre-
dicts subsequent vocabulary size over and above prior vocabulary size. However, whether vocabulary
predicts subsequent lexical processing efficiency over and above prior lexical processing efficiency is
less clear. Moreover, no attempts have been made to directly test whether there is a bidirectional cau-
sal relationship between the two variables.

The current study

The current study sought to address these outstanding questions regarding the theoretical nature
of lexical processing efficiency and its developmental relationship with vocabulary size. A large sam-
ple of infants completed the LWL task, and their vocabulary was measured using the CDI (Fenson et al.,
2007) at 18, 21, and 24 months. Our sample size and longitudinal design allowed us to examine the
following research questions:

1. Are individual differences in lexical processing efficiency at 18 months better explained by the cen-
tral capacity or emergent capacity account? If there is strong evidence for one account or the other,
does this conceptualization influence inferences about the stability of lexical processing efficiency
from 18 to 24 months and the strength of the relationship between lexical processing efficiency
and vocabulary at 18 months?

2. What is the nature of the developmental relationship between lexical processing efficiency and
vocabulary size? Does variation in lexical processing efficiency predict variation in vocabulary size
over and above prior vocabulary size? Does variation in vocabulary size predict variation in lexical
processing efficiency over and above prior lexical processing efficiency? Is this direction unidirec-
tional or bidirectional?

Method

Participants

Data came from a cohort of children who are being followed as part of a larger longitudinal project
that is tracking the interaction between language processing and language development from
9months to 5 years (see Kidd, Junge, Spokes, Morrison, & Cutler, (2018)). Families were recruited from
a medium-sized city in Australia. Inclusion criteria for the longitudinal study were (a) full-term babies
(at least 37 weeks gestation) born with a typical birth weight (>2.5 kg), (b) a predominantly monolin-
gual language environment (no more than 20% exposure to a language other than English; thus, chil-
dren were acquiring Australian English as a first language), and (c) no history of medical conditions
that would affect typical language development such as repeated ear infections, visual or hearing
impairment, or diagnosed developmental disabilities. Consistent with the demographics of the city,
the sample was drawn from families high in SES. Approximately 75% of the parents had completed
a bachelor’s degree or higher.

The LWL task and the CDI were administered at 18, 21, and 24 months. Of the original 130 partic-
ipants recruited to the study at 9 months, 120 were still in the study at 18 months. Two participants
were excluded because they were diagnosed with hearing problems. Because different analyses
included different variables, they are based on slightly different sample sizes. Sample sizes for each
analysis are noted in the relevant tables.
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Materials

The LWL task procedure was largely the same at the three time points except that the number of
target words, and thus the number of trials, differed. At 18 months, the task contained 8 target words
(ball, bird, book, car, cat, dog, fish, and shoe), each repeated six times. At 21 months, the task contained
10 target words (all prior words plus apple and flower), each repeated four times. At 24 months, the
task contained 12 target words (all prior words plus frog and teddy), each repeated four times. Words
were added at each time point to ensure that infants would maintain interest in the task if they had
memories of the previous targets from their last visit. Previous longitudinal studies have also taken
this approach (e.g., Fernald et al., 2006). Words at each time point were selected so as to be familiar
to a majority of participants during the previous session, which was determined by identifying words
that a majority of the children knew as indicated by their CDI measures from their previous visit
3 months earlier.

On each trial, two images were presented on a 1920 ! 1200-pixel screen for 7000 ms. The images
were of approximately equal size and enclosed in 470! 450-pixel boxes equal distances from the cen-
ter of the screen. After approximately 2000 ms, an audio file, recorded by a female native speaker of
Australian English, directed the child to the target image in child-friendly natural speech,. The audio
was timed so that the target word began playing at 2500 ms. The target word was introduced using
one of three carrier phrases (‘‘Look at the ____,” ‘‘Where is the ____?” or ‘‘Find me the ____”).

Across trials, each image occurred equally often as a target and a distracter and also occurred
equally often on the left and right sides of the screen. To ensure that responses were not due to the
visual salience of one target (or distracter) image, several images were used for each word across tri-
als. At 18 months, three images were chosen for each word (meaning that each image occurred four
times: twice as the target and twice as a distracter). At 21 and 24 months, two images were chosen for
each word (again each image occurred four times: twice as the target and twice as the distracter).

Four pseudorandomized lists were created so that no target word was repeated within 3 trials and
the target image appeared on the same side of the screen on no more than 2 consecutive trials.
Attention-getting fillers were played after every 6 trials. These were dynamic cartoons with encour-
aging audio (e.g., ‘‘Did you see it?”) that were meant to keep children engaged. Eye-tracking data were
captured using a Tobii T60XL eye tracker, sampling at a rate of 60 Hz.

The CDI: Words and Sentences form (Fenson et al., 2007) was administered at 18, 21, and
24 months. Following Reilly et al. (2007,2009), some minor changes were made to a small number
of words to better capture the Australian dialect. This instrument contains 678 items. Throughout
these analyses, we used total productive vocabulary score as our relevant vocabulary measure.

Results

All data and code for these analyses are freely available online (https://osf.io/3mxps/).

The nature of lexical processing efficiency measurements at 18 months

To explore the differences between the central and emergent capacity accounts, causal-indicator
and effects-indicator models were fit to both RTs and proportions for each word in lavaan (Rosseel,
2012), using full information maximum likelihood to account for missing data where necessary. Struc-
tural equation models assume that all exogenous variables follow a multivariate normal distribution.
To accommodate this assumption, we followed two steps. First, for each variable we calculated skew-
ness, kurtosis, and the Shapiro–Wilks test and visually inspected Q-Q plots to determine violations of
normality. Where necessary, variables were transformed and outliers were removed (details are dis-
cussed for each analysis separately). Second, all models were estimated using the robust maximum
likelihood function.

For each operationalization of lexical processing efficiency (RT and proportions), indicator variables
were created for all target words at 18 months. Because the effects-indicator models can be estimated
only when the latent variable predicts at least two outcome variables, 21-month vocabulary and 21-

S. Donnelly, E. Kidd / Journal of Experimental Child Psychology 192 (2020) 104781 7



month lexical processing efficiency were treated as outcome variables. In addition to being necessary
for estimation of the models, including these models allowed us to examine whether inferences about
the relationship between lexical processing efficiency and other variables was affected by the decision
to use a causal-indicator or effects-indicator variable. That is, do the different conceptualizations of
lexical processing efficiency result in different statistical relationships to the outcome variables? Fol-
lowing Willoughby et al. (2016), we created variables that are conceptually similar to causal-indicator
and effects-indicator variables at 18, 21, and 24 months and calculated intraclass correlation coeffi-
cients across the three time points.

Models were fit to data including all words regardless of whether parents reported that children
knew a given target word. Although there are conflicting findings on whether item-level data from
the CDI predicts performance on preferential looking tasks (Houston-Price, Mather, & Sakkalou,
2007; Styles & Plunkett, 2009), removing the target words greatly increased the amount of missing
data and resulting models fit poorly. Moreover, given that lexical processing efficiency is conceptual-
ized as a graded measure, and that CDI measures at 18 months ask only about production, it is possible
that available CDI measures underestimate children’s processing of unreported words. Consistent with
this argument, previous reported studies (Fernald et al., 2006) have found that inferences about the
relationship between lexical processing efficiency and other variables are generally unaffected by
removing unknown words.

Log RTs
Prior to calculating RTs, we removed trials in which participants were looking to the screen for less

than 50% of the 3000-ms window between the onset of the target word and the offset of the image
(M = 7.14 trials, range = 0–28). Then, following Fernald and Marchman (2012), we calculated the dura-
tion to the first look to the target image on trials in which participants were (a) looking to the dis-
tracter image prior to the target word and (b) shifted to the target image between 300 and
1800 ms after the onset of the target word. The first look to the target image was defined as the first
fixation of at least 100 ms to the target image. This resulted in an average of 14.20 trials per partici-
pant (range = 4–26). The RTs were then log transformed.2 At this point, our data preparation deviated
from that of standard LWL studies. Prior studies calculated the average RT across all words. However, to
compare the central capacity and emergent capacity accounts, we calculated average log RTs at the level
of individual words for each participant. Because this task necessarily entails a large amount of missing
data, most participants did not have values for all eight words. Of the 115 participants for whom 18-
month eye-tracking data were available, 40 participants had log RTs for all eight words, 31 had log
RTs for seven words, 23 had log RTs for six words, 14 had log RTs for five words, 4 had log RTs for four
words, and 3 had log RTs for three words. To strike a balance of including as many participants as pos-
sible but minimizing the number of missing patterns from the dataset (because models with large
amounts of missing data fit poorly), we excluded the 21 participants with log RTs for fewer than six
words. The median number (and range) of trials available for each word are presented in Table 1.

Descriptive statistics for all eight words and the three outcome variables are presented in Table 2.
As can be seen, 21-month vocabulary was not normally distributed, thereby violating the assumption
of multivariate normally distributed exogenous variables. Therefore, we transformed vocabulary using
the square root. The resulting distribution was closer to normal according to both test statistics and
visual inspection of Q-Q plots.3 All other variables were approximately normally distributed.

Model fit statistics for each of the two models are presented in Table 3. Both models exhibited
excellent fit according to several common fit indices. Table 4 presents standardized path coefficients
to and from the latent variables in the two models. In the central capacity model, all path coefficients
from the latent lexical processing efficiency variable to the word-specific RTs were in the same direc-
tion, and all except shoe were statistically significant. In the emergent capacity model, all coefficients
were of the same direction, but no coefficient was statistically significant. However, given the large

2 We used log RT rather than raw RT because we found that log RTs were within the normal range for both skewness and
kurtosis, thereby satisfying the assumptions of normal structural equation models.

3 Results did not substantively differ when raw vocabulary was included in the model.
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number of parameters in this model, the standard errors for these coefficients were very large and this
model may have been underpowered to detect these effects.

Our next step was to compare model fit. The twomodels are not formally nested (i.e., there is no set
of parameters in the emergent capacity model that can be set to 0 to get the central capacity model),
and so they cannot be compared via a likelihood ratio test. However, the models are nested with
respect to their vanishing tetrads. This allows a formal test of whether the central capacity model fits
significantly worse than the emergent capacity model (Hipp, Bauer, & Bollen, 2005). In particular,
because the central capacity model assumes that all correlations between indicator variables are
due to their shared latent variable, it implies that the differences in the products of certain pairs of
covariances should be 0, so-called vanishing tetrads. On the other hand, because the emergent capac-
ity model indicator model includes correlations between every pair of indicator variables, it assumes
that fewer should be 0. The two models can, therefore, be compared with a nested vanishing tetrad
test. The central capacity model places more restrictions on the covariance structure than the emer-

Table 1
Number of valid trials per participant for log RTs and proportions.

Log RTs Proportions

Median SD Range Median SD Range

Ball 2 1.19 0–6 5 1.33 0–6
Bird 2 1.26 0–6 6 1.08 2–6
Book 2 1.10 0–6 6 1.02 2–6
Car 2 1.29 0–6 6 1.07 1–6
Cat 1.5 1.11 0–4 5 1.10 2–6
Dog 2 0.98 0–3 6 1.06 1–6
Fish 2 1.21 0–3 5 1.09 1–6
Shoe 2 1.20 0–5 5 0.98 3–6

Note. RT, reaction time.

Table 2
Descriptive statistics.

Mean SD Skewness Kurtosis Missing Shapiro–Wilks (p value)

Log RTs
Ball 6.60 0.30 .16 2.62 4 .747
Bird 6.64 0.34 .29 2.59 9 .126
Book 6.63 0.35 ".05 2.68 5 .892
Car 6.67 0.28 .48 3.14 7 .124
Cat 6.57 0.34 .02 2.12 24 .165
Dog 6.56 0.29 .14 2.53 12 .699
Fish 6.73 0.31 ".07 2.63 9 .624
Shoe 6.72 0.33 ".46 3.59 7 .078
Log RT 21 months 6.54 0.19 .33 2.68 3 .289
Vocab 21 months 220.90 140.90 .64 3.05 2 .007
SQRT Vocab 21 months 13.99 5.06 ".16 2.52 2 .645
E-logit proportions
Ball 0.46 1.24 .01 3.11 1 .491
Bird 1.15 1.32 .08 3.29 0 .294
Book 1.16 1.28 ".23 3.28 2 .040
Car 1.19 1.69 ".20 3.84 2 .137
Cat 1.55 1.35 .06 2.83 0 .213
Dog 1.78 1.36 .19 3.49 1 .234
Fish 0.55 1.32 ".48 2.89 1 .069
Shoe 0.72 1.48 .10 3.54 0 .647
E-logit 21 months 1.45 0.55 ".21 3.25 5 .344
Vocab 21 months 221.15 143.33 .58 2.80 4 .280
SQRT Vocab 21 months 13.96 5.16 ".15 2.38 4 .359

Note. RT, reaction time; Vocab, vocabulary; SQRT, square root; E-logit, empirical logit.
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gent capacity model, and this allows model comparison via a nested vanishing tetrad test. A statisti-
cally significant nested vanishing tetrad test would imply that the central capacity model, which has
fewer parameters, fits significantly worse than the emergent capacity model, which has more param-
eters. We conducted the nested vanishing tetrad test using the CTANEST SAS macro (Hipp et al., 2005).
The test was nonsignificant, indicating that the central capacity model did not fit significantly worse
than the emergent capacity model, v2(27) = 9.97, p = .998.

As can also be seen in Table 5, both models yielded significant relationships between the 18-month
lexical processing efficiency variable and the 21-month lexical processing efficiency and vocabulary.
However, the magnitudes of the coefficients were larger for the emergent capacity model. A related

Table 4
Indicator variables from structural equation models.

Log RT (n = 94) E-logit proportions (n = 115)

Centralized model Emergent model Centralized model Emergent model

Ball .718 (fixed) .231 (fixed) .360* .188
Bird .562*** .189 .429* .352a

Book .472** .082 .246* .195
Car .433* .184 .184 .231
Cat .554** .166 .098 .098
Dog .378** .039 ".018 ".076
Fish .478*** .021 .548 (fixed) .556 (fixed)
Shoe .173 .115 .341* .114

Note. RT, reaction time; E-logit, empirical logit.
a 05 < p < .10.
* .01 < p < .05.
** .001 < .p < .01.
*** p < .001.

Table 3
Fit statistics for structural equation models.

Log RT (n = 94) Proportions (n = 115)

Centralized model Emergent model Centralized model Emergent model

Chi-square v2(34) = 33.47
p = .493

v2(7) = 5.25,
p = .630

v2(34) = 31.99,
p = .567

v2(7) = 5.03,
p = .656

CFI 1.00 1.00 1.00 1.00
TLI 1.01 1.09 1.05 1.12
RMSEA .00 .00 .00 .00
VTT v2(34) = 13.59,

p = .999
v2(7) = 3.98,
p = .782

v2(34) = 9.80,
p = .999

v2(7) = 8.32,
p = .832

Nested VTT v2(27) = 9.97,
p = .998

v2(27) = 6.27,
p = .999

Note. RT, reaction time; CFI, comparative fit index; TLI, Tucker–Lewis index; RMSEA, root mean square error of approximation;
VTT, vanishing tetrad test.

Table 5
Regressions from latent variable in structural equation models.

Log RT (n = 94) E-logit proportions (n = 115)

Central model Emergent model Central model Emergent model

Vocab ".516*** ".697* .673*** .545**
LPE .621*** .927* .372* .291*

Note. RT, reaction time; E-logit, empirical logit; Vocab, vocabulary; LPE, lexical processing efficiency.
* .01 < p < .05.

*** p < .001.
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question is whether these two approaches yield different conclusions about the developmental stabil-
ity of lexical processing efficiency. To address this question, we constructed two indices that were con-
ceptually similar to the central capacity and emergent capacity models using the data from the LWL
task at 18, 21, and 24 months. To build emergent capacity indices, we took an average of the z-scored
log RTs for the eight words given in the 18-month sessions at each of the three time points. To build
central capacity indices, we fit linear mixed-effects models with crossed random effects by items and
words at 18, 21, and 24 months separately and then extracted the by-participant random intercepts.4

We then calculated the intraclass correlation coefficient (ICC) on each of these estimates. We found that
the ICC for the emergent capacity indices was .33 (confidence interval [CI] = .21–.46) and that the ICC for
central capacity indices was .24 (CI = .11–.36). Whereas the ICC was slightly higher for the central capac-
ity indices, the confidence interval overlapped with the value of the ICC for the emergent capacity
indices, suggesting that the two procedures do not differ.

Proportions
As was the case prior to calculating RTs, we removed trials in which participants were looking to

the screen for less than 50% of the 3000 ms. Trials were not excluded for any other reason. The pro-
portion of looks to the target word was, then, calculated for each trial. We applied the empirical logit
transformation to these proportions because we found that this reduced the skew. We then averaged
these empirical logit transformed proportions across words for each participant. Unlike the case with
RTs, all but 1 participant had proportions for all eight words. The distribution of several words still
deviated from normal. Examination of the Q-Q plot revealed that this may be due to outliers. There-
fore, we removed data points that exceeded 3 standard deviations from the mean of each word (n = 5).
The median number (and range) of trials available for each word are presented in Table 1.

Descriptive statistics for all eight words and the three outcome variables are presented in Table 2.
As was the case with RTs, vocabulary was not normally distributed, and so we included the square root
of vocabulary in both models.

Model fit statistics for each of the two models are presented in Table 3. Both models exhibited
excellent fit according to several common fit indices. Table 4 presents standardized path coefficients
to and from the latent variables in the two models. In the central capacity model, all path coefficients
from the latent lexical processing efficiency variable to the word-specific RTs were in the same direc-
tion except that for the word dog, and all except car, cat, and dog were statistically significant. In the
emergent capacity model, all coefficients except that for dog were in the same direction, and only that
for bird was marginally statistically significant.

To formally compare model fit for the two models, we again ran the nested vanishing tetrad test,
which was nonsignificant, indicating that the central capacity model did not fit worse than the emer-
gent capacity model, v2(27) = 6.28, p = .999. To determine whether the models yielded different infer-
ences, we again examined the implied relationships between 18-month lexical processing efficiency
and 21-month variables and the developmental stability of lexical processing efficiency from 18 to
24 months. As can be seen in Table 5, the path coefficients from 18-month lexical processing efficiency
to 21-month lexical processing efficiency and vocabulary were significant in both models but slightly
larger in magnitude in the central capacity model than in the emergent capacity model. ICCs for both
conceptualizations were small with overlapping confidence intervals (central capacity: ICC = .14,
CI = .03–27; emergent capacity: ICC = .18, CI = .06–.31).

The longitudinal relationship between lexical processing efficiency and vocabulary

To determine whether lexical processing efficiency predicted subsequent growth in vocabulary and
whether vocabulary predicted subsequent growth in lexical processing efficiency, we estimated a set

4 The causal-indicator indices were estimated using the same eight words at all three time points. However, the effects-indicator
indices were estimated using all eight words at 18 months, all 10 words at 21 months, and all 12 words at 24 months. This is
because in the causal-indicator model the meaning of the latent variable changes, depending on which indicator variables are used.
However, in the effects-indicator model the latent variable exists independently from the indicator variables, and its meaning
should be the same regardless of which indicators are used to estimate it.
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of regressions.5 To examine the relationship between lexical processing efficiency and vocabulary, we
predicted vocabulary at both 21 and 24 months using the prior time points’ vocabulary and lexical pro-
cessing efficiency. We followed the same method for lexical processing efficiency. For each set of anal-
yses, we considered lexical processing efficiency defined using both RTs and proportions. Models with
RTs as the dependent variable produced skewed residuals, whereas those with log transformed RTs
did not. Therefore, we used log transformed RTs in all analyses.6

One possible explanation for any observed relationship between lexical processing efficiency and
vocabulary is that variation in measured lexical processing efficiency is affected by variation in the
number of target words that participants know. Although results of previous research were generally
unaffected by including unreported words (Fernald et al., 2006), to control for this possibility we con-
ducted all analyses using lexical processing efficiency calculated on all target words and lexical pro-
cessing efficiency calculated using only the trials for which participants knew the target word
according to their CDI measures. Because results were qualitatively similar across these two
approaches, we report on analyses of all words in the main text but report parameter estimates from
both analyses in tables.

Table 6 contains descriptive statistics for the lexical processing efficiency variables, vocabulary, and
demographic variables from relevant subsamples across the three time points. To put our sample
within context, we also report median vocabulary and interquartile range of vocabulary from the
American sample of Wordbank (Frank, Braginsky, Yurovsky, & Marchman, 2017) because the Aus-
tralian sample available on Wordbank completed a separate form. Consistent with its relatively high
SES, our sample was above the median but within the interquartile range at all three time points.
Tables 7 and 8 contain correlations between log RT and vocabulary at the three time points. As can
be seen, when lexical processing efficiency was operationalized as log RT, it was correlated with
vocabulary at all time points when measured at 18 and 21 months, but 24-month RTs were correlated
with 21- and 24-month vocabulary only. When operationalized as proportions, 18- and 21-month lex-
ical processing efficiency was correlated with all vocabulary measurements and 24-month lexical pro-
cessing efficiency was correlated with concurrent vocabulary.

Changes in vocabulary
One complication in predicting changes in vocabulary size from lexical processing efficiency is that

in the current sample the relationship between vocabulary sizes at consecutive time points is mark-
edly nonlinear (see Appendix A). Determining whether lexical processing efficiency predicts vocabu-
lary over and above prior vocabulary requires modeling this nonlinearity. Therefore, prior to fitting
models with lexical processing efficiency as a predictor, we fit a series of linear regressions predicting
vocabulary (at both 21 and 24 months) with increasingly higher-order orthogonal polynomial terms
for prior vocabulary. As can be seen in Table 9, at 21 months the model with linear and quadratic
terms of prior vocabulary fit nearly as well as the model with a cubic term. Thus, we selected the
model with linear and quadratic terms for the sake of parsimony. At 24 months, the model with linear,
quadratic, and cubic terms for prior vocabulary was comparable to the model with the quartic term
according to adjusted R2 and was slightly worse according to Akaike information criterion (AIC). For
the sake of parsimony, we decided to choose the model with linear, quadratic, and cubic terms. To
examine the effect of lexical processing efficiency, we added the lexical processing efficiency variables
to the models identified above.

Parameter estimates for models of 21-month vocabulary are presented in Table 10. When indexed
with log RT, lexical processing efficiency at 18 months did not significantly predict 21-month vocab-
ulary when controlling for 18-month vocabulary, b = "29.19, t(105) = "0.77, p = .441. However, when
indexed by proportion of looks, lexical processing efficiency marginally significantly predicted

5 The ideal approach to addressing this question would be a random-intercept cross-lagged path analysis. However, path
analysis would not be able to easily accommodate the nonlinear relationships between vocabulary at consecutive time points
(described in more detail below).

6 One participant was excluded from all regressions because across all models this participant had a very large Cook’s distance
relative to other cases, suggesting that the participant was greatly affecting regression lines. Examination of raw data revealed that
this participant had an extremely high productive vocabulary at 18 months (412 words).
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increases in vocabulary size, b = 181.15, t(105) = 1.85, p = .067. Parameter estimates for models of 24-
month vocabulary are presented in Table 11. When indexed with log RT, lexical processing efficiency
at 21 months was nonsignificant after controlling for prior vocabulary, b = 40.61, t(102) = 1.34,
p = .183. The result was the same when 21-month lexical processing efficiency was operationalized
as proportion of looks, b = "40.86, t(103) = "0.44, p = .664.

Table 6
Descriptive statistics for variables at the three time points.

18 months 21 months 24 months

RT 848 (156) 769 (168) 566 (117)
Log RT 6.67 (0.18) 6.56 (0.19) 6.26 (0.18)
Prop .63 (.07) .68 (.06) .70 (.07)
Vocab current sample 102 (94) 217 (136) 340 (146)
Vocab Wordbank 76 (32–173) 178 (81–320) 316 (165–454)
Age (in days) 568 (7) 656 (6) 749 (8)
Percentage female 46 46 48
Caregiver 1 Education 3.96 (1.14) 3.96 (1.14) 3.93 (1.15)
Caregiver 2 education 3.57 (1.55) 3.53 (1.54) 3.51 (1.54)

Note. Standard deviations are in parentheses except for Vocab Wordbank (where ranges are in parentheses). RT, reaction time;
Prop, proportion; Vocab, vocabulary. Vocab Wordbank is the median vocabulary size (and interquartile range) from the
American sample on Wordbank for the relevant age group.

Table 7
Correlation matrix for log RTs.

RT
18 months

RT
21 months

RT
24 months

Vocab
18 months

Vocab
21 months

Vocab
24 months

RT 18 months 1.00
RT 21 months .45*** 1.00
RT 24 months .26** .27** 1.00
Vocab 18 months ".25** ".33*** ".18a 1.00
Vocab 21 months ".32*** ".40*** ".20* .85*** 1.00
Vocab 24 months ".35*** ".41** ".24* .70*** .90*** 1.00

Note. RT, reaction time; Vocab, vocabulary.
a .05 < p < .10.
* .01 < p < .05.
** .001 < .p < .01.
*** p < .001.

Table 8
Correlation matrix for proportions.

Prop
18 months

Prop
21 months

Prop
24 months

Vocab
18 months

Vocab
21 months

Vocab
24 months

Prop 18 months 1.00
Prop 21 months .42*** 1.00
Prop 24 months .23* .21* 1.00
Vocab 18 months .37*** .31** .15 1.00
Vocab 21 months .43*** .38*** 17a .85*** 1.00
Vocab 24 months .43*** .37*** .20* .70*** .90*** 1.00

Note. Prop, proportion; Vocab, vocabulary.
a .05 < p < .10.
* .01 < p < .05.
** .001 < .p < .01.
*** p < .001.
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Changes in lexical processing efficiency
There was no evidence for a nonlinear relationship between measures of lexical processing effi-

ciency across time periods. Adding polynomial terms to the models did not improve fit, so we do
not report those analyses here. When lexical processing efficiency was operationalized using RT,
examination of residuals indicated that linear models on log RT fit better than linear models on raw
RT. When lexical processing efficiency was operationalized as a proportion, examination of residuals
indicated that beta regressions (Smithson & Verkuilen, 2006) fit better than linear regressions.7 Vocab-
ulary was converted to z scores to facilitate interpretation of model coefficients.

7 Beta regression assumes a beta likelihood function, which is defined between 0 and 1, thereby accounting for the floor and
ceiling effects, and the consequent heteroscedasticity, inherent in proportions.

Table 11
Regression models predicting 24-month vocabulary.

LWL RT LWL Prop

All trials No unknown All trials No unknown

Intercept 78.55 71.87 371.60*** 341.08***

Vocab 21 months 1375.73*** 1374.55*** 1361.66*** 1350.27***

Vocab 21 months2 "280.22*** "278.45*** "284.31*** "280.36***

Vocab 21 months3 168.90** 168.44** 170.81** 166.92**

LWL 40.61 41.65 "40.86 4.14
Adjusted R2 .85 .85 .85 .85
N 107 107 108 108

Note. LWL, Looking While Listening; RT, reaction time; Prop, proportion; Vocab, vocabulary; Vocab 21 months2, squared 21
month vocabulary; Vocab 21 months3, cubed 21 month vocabulary.
** .001 < .p < .01.
*** p < .001.

Table 10
Regression models predicting 21-month vocabulary.

LWL RT LWL Prop

All trials No unknown All trials No unknown

Intercept 412.64 390.64 104.31a 114.32a

Vocab 18 months 1192.73*** 1162.49*** 1158.19*** 1152.26***

Vocab 18 months2 "318.69*** "307.32*** "305.96*** "311.87***

LWL "29.19 "25.19 181.15a 167.96a

Adjusted R2 .76 .75 .77 .76
N 109 106 109 107

Note. LWL, Looking While Listening; RT, reaction time; Prop, proportion; Vocab, vocabulary; Vocab 18 months 2, squared 18
month vocabulary.

a .05 < p < .10.
*** p < .001.

Table 9
Fit statistics for vocabulary models with nonlinear terms.

21-Month Vocab 24-Month Vocab

AIC Adjusted R2 AIC Adjusted R2

Linear 1250.50 .71 1208.60 .80
Linear + quadratic 1229.57 .76 1188.94 .84
Linear + quadratic + cubic 1229.45 .77 1182.07 .85
Linear + quadratic + cubic + quartic 1231.44 .76 1180.48 .85

Note. Vocab, vocabulary; AIC, Akaike information criterion.
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As can be seen in Table 12, 18-month vocabulary significantly predicted 21-month log RTs over and
above 18-month log RTs, b = " 0.04, t(104) = " 2.65, p = .009, and marginally significantly predicted
proportions, b = 0.05, z = 1.82, p = .069. Table 13 shows that 21-month vocabulary did not significantly

Table 12
Regression models predicting 21-month lexical processing efficiency.

LWL RT LWL Prop

All trials No unknown All trials No unknown

Intercept 3.86*** 4.23*** "0.18 0.05
LWL 18 months 0.40*** 0.35** 1.47*** 1.12**

Vocab 18 months "0.04* "0.05* 0.05a 0.06*
Adjusted R2 .24 .17 .21 .14
N 107 104 108 105

Note. LWL, Looking While Listening; RT, reaction time; Prop, proportion; Vocab, vocabulary.
a .05 < p < .10.
* .01 < p < .05.
** .001 < .p < .01.
*** p < .001.

Table 13
Regression models predicting 24-month lexical processing efficiency.

LWL RT LWL Prop

All trials No unknown All trials No unknown

Intercept 4.89*** 5.23 0.33 0.35
LWL 21 months 0.21* 0.16 0.79 0.76
Vocab 21 months "0.02 "0.02 0.04 0.03
Adjusted R2 .08 .04 .06 .05
N 103 103 104 103

Note. LWL, Looking While Listening; RT, reaction time; Prop, proportion; Vocab, vocabulary.
* .01 < p < .05.

*** p < .001.

Fig. 2. Schematic relationship of the results of the longitudinal study. Vocab, vocabulary; LPE, lexical processing efficiency.
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predict 24-month log RTs over and above prior log RTs, b = " 0.02, t(98) = " 0.808, p = .421, or 24-
month proportions over and above prior proportions, b = 0.04, z = 1.14, p = .256.

Fig. 2 depicts a schematic overview of the results of the longitudinal analyses. There was strong evi-
dence for an effect of 18-month vocabulary on 21-month lexical processing efficiency over and above
18-month lexical processing efficiency, an effect that was either significant or marginally significant
over all four analyses. There was some evidence for an effect of 18-month lexical processing efficiency
on 21-month vocabulary over and above 18-month vocabulary, an effect that was marginally signif-
icant when lexical processing efficiency was measured by proportions. There was no evidence for an
effect of 21-month lexical processing efficiency on 24-month vocabulary or of 21-month vocabulary
on 24-month lexical processing efficiency.

Discussion

The current study had two goals. The first was to determine whether lexical processing efficiency is
better conceptualized as a central or emergent processing capacity. To this end, we modeled 18-month
LWL RTs using effects-indicator and causal-indicator models, which we labeled the central capacity
and emergent capacity models, respectively. Both models displayed excellent fit according to conven-
tional structural equation modeling fit indices. Moreover, inferences about the relationship between
lexical processing efficiency and other constructs and inferences about the stability of lexical process-
ing efficiency over time were similar in the two models. The second goal was to determine the rela-
tionship between vocabulary and lexical processing efficiency over time. We found clear evidence that
18-month vocabulary predicted 21-month lexical processing efficiency over and above 18-month
LWL; however, this relationship was nonsignificant between 21 and 24 months. We found weaker evi-
dence of an effect of 18-month lexical processing efficiency on 21-month vocabulary over and above
18-month vocabulary and found no effect of 21-month LWL on 24-month vocabulary.

The nature of individual differences in lexical processing efficiency

Two points about the comparative fits of the central capacity and emergent capacity models war-
rant discussion. First, although we could not statistically distinguish between the two models, all the
coefficients from the emergent capacity model to the latent variable were nonsignificant. If the emer-
gent capacity model were correct, one would expect these coefficients to be significant because they
cause variation in lexical processing efficiency. This pattern of nonsignificant coefficients could be
taken as evidence for the central capacity model. However, for log RTs all the coefficients were in
the same (positive) direction, and for proportions all but one coefficient were in the same direction.
Moreover, in both cases standard errors were quite large, which is unsurprising given the large num-
ber of parameters in the causal-indicator model. If lexical processing efficiency reflects a constellation
of word-specific processing speeds, one would expect the contribution of any one particular word to
be quite small. As such, the data may have been underpowered to estimate these coefficients. Second,
the nested vanishing tetrad test indicated that the central capacity model did not fit significantly
worse than the emergent capacity model. Following the logic of a likelihood ratio test, one is tempted
to view this as evidence for the superiority of the central capacity model; the model with fewer
parameters did not fit significantly worse and, therefore, is the more parsimonious option. However,
we are uncomfortable with this logic. Because the models are not nested in terms of their parameters,
it is not clear that the central capacity model is more parsimonious than the emergent capacity model.
Therefore, we conclude that there is no strong reason to prefer one model over the other.

One encouraging result of our comparison of the two models is that inferences about the stability
of lexical processing efficiency and its relationship to other constructs did not vary substantially. Stan-
dardized path coefficients to 21-month vocabulary and lexical processing efficiency were significant in
both models, and whereas they were larger for the emergent capacity model than for the central
capacity model when log RTs were used, they were larger for the central capacity model than for
the emergent capacity model when proportions were used. Moreover, the ICCs for the two models
were of similar magnitudes with overlapping confidence intervals. This differs from the results of
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Willoughby et al. (2016), who found that inferences about the developmental stability of executive
functions depended critically on whether it was modeled using effects indicators or causal indicators.
Willoughby et al.’s finding creates a challenge for developmental researchers in that their conclusions
will be strongly affected by the theoretical assumptions implicit in their analytical strategy. Our
results suggest that this might not be the case for researchers studying lexical processing efficiency.
Given the similarity of results in these two models, researchers can ask questions about the stability
of lexical processing efficiency and its relation to other variables without making strong assumptions
about the theoretical nature of individual differences in lexical processing efficiency. However, it
remains possible that, with more trials per item, inferences from these two approaches might differ
more substantially.

The longitudinal relationship between lexical processing efficiency and vocabulary development

Fernald et al. (2006) identified three possible causal explanations for the relationship between
vocabulary and lexical processing efficiency during the second year of life, namely that increases in
lexical processing efficiency could lead to increases in vocabulary, increases in vocabulary could lead
to increases in lexical processing efficiency, or there could be a bidirectional relationship between the
two. Despite the fact that lexical processing efficiency and vocabulary were correlated at all three time
points, our longitudinal design allowed us to disentangle these three possibilities. The current data
rule out the possibility of a mono-causal relationship from lexical processing efficiency to vocabulary;
there was strong evidence of an effect of 18-month vocabulary on 21-month vocabulary and only
weak evidence of an effect of 18-month lexical processing efficiency on 21-month vocabulary. We
consider the possible explanations for an effect of vocabulary on lexical processing efficiency and a
bidirectional relationship in turn.

Why might increases in vocabulary size lead to increases in lexical processing efficiency? Although
this question has been considered less frequently than whether increases in lexical processing effi-
ciency lead to increases in vocabulary, Fernald et al. (2006) speculated that increasing vocabulary size
results in pressure to create more fine-grained representations of word forms. However, young infants
already have fairly detailed phonological representations. For instance, Swingley and Aslin (2002)
showed that infants as young as 15 months are sensitive to initial-consonant mispronunciations of
words, and recent work by Kidd, Junge, Spokes, Morrison, and Cutler (2018) showed that some 9-
month-old infants can rapidly create and access memories for newly presented words (for a review
of early lexical knowledge, see Johnson, 2016). Thus, other forces are likely to be at play. Moreover,
any account of the effect of vocabulary on lexical processing efficiency must explain why it existed
from 18 to 21 months but not from 21 to 24 months.

One possibility is the changing network structure of the lexicon between 18 and 24 months. It is
well understood that among adults neighborhood effects in the lexicon can be facilitatory or inhibi-
tory, with semantic neighborhood effects facilitating lexical access and phonological neighborhood
effects having an inhibitory effect (Chen & Mirman, 2012). There is increasing evidence of both effects
in children as young as 24 months. For example, Borovsky, Ellis, Evans, and Elman (2016) found evi-
dence of a facilitatory effect of semantic neighborhood density in an LWL task at 24 months, and Mani
and Plunkett (2011) found evidence of inhibitory effects of phonological neighborhood density in a
priming task at 24 months. If lexical development over the second year of life is initially characterized
by increased semantic neighborhood density and then becomes influenced by both phonological and
semantic neighborhood density, we could expect to see the pattern observed in the current study.
Early growth in vocabulary would facilitate lexical processing efficiency increasing semantic neigh-
borhood density; later growth would be unrelated to lexical processing efficiency because of the coun-
tervailing effects of both semantic and phonological neighborhood density. There is some indirect
evidence supporting this account. Rämä, Sirri, and Serres (2013) observed electrophyslogical evidence
of semantic priming in high-vocabulary 18-month-olds but not in low-vocabulary 18-month-olds, and
Mani and Plunkett (2010, 2011) found no evidence of phonological neighborhood effects at 18 months
but did find effects at 24 months. Thus, facilitative semantic neighborhood effects appear develop-
mentally prior to inhibitory phonological neighborhood effects and are related to vocabulary size.
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The influence of the structure of the lexicon on the LWL task and its relation to individual differences
in vocabulary awaits further research.

Our analyses do not rule out the possibility of a bidirectional relationship between lexical process-
ing efficiency and vocabulary, but evidence for an effect of lexical processing efficiency on vocabulary
was relatively weak. At first glance, this finding seems inconsistent with two studies directly testing
the effect of lexical processing efficiency on vocabulary, but these findings can be reconciled. First,
Lany et al. (2018) reported that 12-month LWL accuracy predicted changes in CDI percentile scores
between a first testing session (12 months) and a second testing session (15–18 months), with infants
who were more accurate on the LWL task exhibiting bigger gains in their percentile scores on the CDI
over the following months. Given the difference of ages between the samples, it is possible that the
effects of lexical processing efficiency on vocabulary are larger at earlier ages and slowly diminish.
This would be consistent with the 18-month correlation between lexical processing efficiency and
vocabulary. However, it is also important to note that the difference scores used by Lany et al.
(2018) implicitly assume a linear relationship between vocabulary at consecutive time points;
whether this assumption is more plausible for percentile scores than for raw vocabulary scores is
unclear.

This finding also seems inconsistent with the results of Lany (2018), who found that participants
with more efficient lexical processing as operationalized by RTs learned words more quickly under
moderately challenging conditions than those with less efficient lexical processing. However, it may
be that after 18 months lexical processing efficiency plays a role in the initial stages of word learning
but that the effect is too subtle to be observed in aggregate vocabulary size. For example, Storkel and
Lee (2011) pointed out that learning a new word involves several partially separable but dependent
cognitive processes and that these differentially affect immediate and long-term retention of new
words. Lexical processing efficiency may affect initial cognitive processes in detecting and encoding
a novel word. Therefore, they may be more easily detectable in a laboratory-based novel word-
learning task but less detectable when the outcome measure is existing vocabulary.

More recent research suggests that the relationship between lexical processing efficiency and
vocabulary may be quite complex. In a study conducted concurrently with the current one, Peter
et al. (2019) administered the LWL task at 19 months and examined how it predicted growth in lexical
knowledge from 19 to 31 months. They found that for children with smaller vocabularies at 19 months
19-month lexical processing efficiency predicted subsequent vocabulary growth, but for children with
larger vocabularies at 19 months it did not. Examining such a relationship was not possible in the cur-
rent study because of the relatively small number of time points.

Finally, we note that although the variables remain correlated later in development, our regression
analyses did not detect a relationship between the variables after 21 months, such that they predict
themselves (at best) only at 24 months. We should not be surprised at identity relations like this in
longitudinal data, but the results suggest a cautionary note: We should be careful about interpreting
cross-variable effects (e.g., lexical processing efficiency predicting vocabulary) in this age range when
prior variables have not been controlled. This is particularly important for central capacity explana-
tions of development, which predict that development proceeds via domain-general increases in cen-
tral processing speed that in turn support the learning of new words. Although attractive, such
explanations have been criticized across several domains for privileging capacity over knowledge
(e.g., Cowan, Rouder, Blume, & Scott Saults, 2012; MacDonald & Christiansen, 2002), which in devel-
opmental studies are only controlled using cross-lagged longitudinal designs like ours. Thus, future
longitudinal studies, perhaps across a wider age range, should employ similar designs to better under-
stand the theoretical nature of lexical processing efficiency and its role in vocabulary acquisition.

Limitations

The current research should be considered with two significant limitations in mind. First, the data
used in the structural equation models fit on the 18-month data were necessarily noisy. Indeed, RT
data could be based on as few as one trial per word for each child. Although more data were available
for proportions, future research should consider designs that maximize the number of valid trials per
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participants. Increasing the number of trials may allow the models to better distinguish between these
two conceptualizations. Second, our sample contains children predominantly from upper-SES back-
grounds. It is possible that the longitudinal relationship between vocabulary and lexical processing
efficiency would differ in a more diverse sample given that both lexical processing efficiency and
vocabulary are related to the quality of input (Weisleder & Fernald, 2013).

Conclusions

Lexical processing efficiency as measured by the LWL task is an important concept in research
investigating individual differences in early language development, but the interpretation of the
developmental relationship has been unclear. In the current study, we investigated (a) the nature of
individual differences on lexical processing efficiency tasks and (b) the longitudinal relationship
between lexical processing efficiency and vocabulary over the second year of life. We found that lex-
ical processing efficiency could be well modeled as either an emergent capacity or a central capacity,
and we found that there was a clear effect of 18-month vocabulary on 21-month lexical processing
efficiency, possibly due to changes in the structure of the infant lexicon, and at best subtle effects
of lexical processing efficiency at 18 months on 21-month vocabulary. Although the results suggest
that data fit either central capacity or emergent capacity accounts of infant lexical processing effi-
ciency, the longitudinal analysis provides greater evidence for a developmental account where lexical
processing efficiency is closely tied to and predicted by infants’ vocabulary knowledge. Further
research should examine how lexical network structure changes over the second year of life and
beyond.
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Fig. A1. Left: Relationship between 18-month vocabulary and 21-month vocabulary. Right: Relationship between 21-month
vocabulary and 24-month vocabulary.
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