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In this note we introduce an infinite-dimensional space on which an infinite-dimensional general-
ization of the Galilei group acts. Standard Minkowski space can be modelled in this space and its
symmetries yield an embedding of the Poincaré group in the infinite extension. The extension has
an interpretation in terms of post-Newtonian corrections to Galilei symmetries. We also construct
particle and string actions that are invariant under these transformations.

Non-relativistic physics can be obtained from relativis-
tic physics in an expansion in 1/¢ where ¢ is the velocity of
light [1]. At the level of symmetries, it is well-known that
the strict ¢ — oo limit of the relativistic Poincaré group
yields the Galilei group of non-relativistic symmetries via
Wigner-Inénii contraction [2]. The non-relativistic limit
of general relativity is Newtonian gravity although this
limit is hard to perform at the level of the action. Correc-
tions to the non-relativistic Newtonian theory at higher
order in 1/c¢ are famously important for the original ex-
perimental evidence for general relativity, see for exam-
ple [3, 4] for discussions. Higher-order (parametrized)
post-Newtonian corrections to the Keplerian two-body
motion are of central importance in current investiga-
tions of binary gravitational wave sources [5-9] and post-
Newtonian corrections have also been investigated in the
context of cosmology and structure formation, see for in-
stance [10].

One common feature of truncated post-Newtonian ex-
pansions is that they inherently do not preserve the
full relativistic symmetries. As an early example, the
quantum-mechanical Breit equation describes correc-
tions of order v/c to the two-body problem for elec-
trons but it is not invariant under Lorentz transforma-
tions [11]. More recently, due to the possible applica-
tions of Newtonian gravities to non-relativistic hologra-
phy for strongly coupled systems in condensed matter
physics, non-relativistic gravities that are invariant under
various classes of non-relativistic symmetry Lie algebras
have been investigated [12, 13]. Subsequently, extensions
of the Bargmann algebra by a finite number of genera-
tors were first presented in [14-16] and these describe the
next-to-leading orders in the non-relativistic expansion

of gravity. The construction can also be generalized to
infinite-dimensional algebras [17-19] using different ap-
proaches.

In this note, we shall exhibit a universal scheme for
obtaining post-Newtonian expansions of non-relativistic
systems by means of their symmetry algebras, starting
from the Galilei algebra &. Our scheme can be viewed as
either stemming from (affine) Kac-Moody algebras [19]
or from a Lie algebra expansion [20-22], and it is based
on an infinite-dimensional algebra, which we will refer to
as B,. This algebra can be viewed as including the full
formal power series in 1/c of relativistic systems. The
analysis in [18] is in the context of the large ¢ expan-
sion of general relativity [23-26], while our approach is
purely kinematical and provides an extension of special
relativity that describes post-Newtonian physics. We in-
troduce an infinite-dimensional space on which this sym-
metry acts and identify subspaces of finite co-dimension
that are mapped to one another by the usual action of
the Poincaré algebra as a specific combination of transfor-
mations in &,,. The infinite-dimensional algebra &, ad-
mits finite-dimensional quotients corresponding to work-
ing up to a finite order in 1/c.

The present paper is mainly concerned with outlining
the kinematic underpinnings of this symmetry algebra.
Truncations of it have been used in a slightly different
guise to construct non-relativistic gravity theories [14—
16] that should properly be identified as post-Newtonian
gravities. In a follow-up paper [27], we shall study field-
theory implementations of the symmetry structure in
the framework of three-dimensional Chern—Simons the-
ory and also the post-Newtonian corrections of the non-
vibrating non-relativistic string theory [28].



Generalized Minkowski space-time and
its infinite-dimensional symmetry

Our starting point is the (d + 1)-dimensional Poincaré
algebra iso(d,1) written in a non-covariant form with
generators {po, jab, ja0, Pa} and non-trivial commutation
relations

[Jabs Jed] = 40(cipJald) s [Jab, Pe] = 20cpPa) »
[ja07jbO] = jab 5 [pOajU,O] = Pa > (1)
[Ja0, Pb] = —0abP0,  [Jabs Jeo] = 20¢pJalo -
Roman indices a = 1,...,d are vector indices of the spa-
tial rotation algebra so(d) that is generated by jup. The
other generators will be referred to as time translation
(po), boost (ja0) and translation (pg).

We can construct an associated infinite-dimensional
algebra by applying the method of infinite Lie algebra
expansions [27, 29] to the previous algebra. The gen-
erators are H(W = ¢=2m+1 g po P — =2m gy,
B,(lm) =c 2" 1®j,0 and Jézn) = ™ ® jup, which satisfy
the algebra &:
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[B™, B{M] = gl (2)

This algebra can also be obtained from the positive
modes of an affine Kac-Moody [30] associated to the
Galilei algebra [19].

Thinking of the collection of all boost generators
Bt(lm) and rotation generators Jézn) for m > 0 as gen-
erating a generalized Lorentz algebra £.,, we intro-
duce generalized Minkowski space as the formal coset
space exp®../exp Lo. We put local coordinates on
this infinite-dimensional space by introducing coordi-
nates t(,,) and :c‘(lm) dual to the generalized translation

generators H(™ and P{™.

We now consider the action of an infinitesimal trans-
formation of the coordinates on generalized Minkowski
space under a general transformation in &, of (2) with

parameters oz‘(lgl) (for Jé;,n)), €(m) (for H™), €lm) (for

Pém)) and vf,,, (for B,Sm)). The infinitely many coordi-
nates transform as

2y = €y + 2, (olytnm = Breallyzlny)
n=0
m—1
a b
8tm) = €m) + D 0at0{a)Tlm—1-n) - (3)
n=0
Restricting only to the ‘zero modes’ these transforma-
tions take the form of the usual Galilei transformations
on (t(), x?o)). However, they differ when including higher
modes.

Recovering standard Minkowski space

‘We now introduce the coordinates
oo oo
Xo= ) aly, X0= ) T G (4)
m=0 m=0

that are formal power series in 1/c. Note that the coor-
dinates t(,,) have dimension of [L*"/T?" '] while the
coordinates z{,,) have dimension of [L2m+1/T2m] This

ensures that the coordinates X° and X have dimensions
of time and length and it is compatible with the fact that
these coordinates are associated to the Lie algebra gen-
erators of (2) that emerge from a particular expansion of
the translation algebra in powers of 1/¢. Expansions of
coordinates in 1/c have already appeared in the literature
in [18]. In the following we shall sometimes write X for
the spatial vector with components X* and use the dot
product to denote scalar products with respect to .

In order to understand the action of the symmetry al-
gebra (2) on these coordinates we focus on the boosts [31]
and introduce a similar collective series-expanded param-
eter

6 = Z c_zm_lv?m) . (5)
m=0

The action of this parameter on the coordinates (4) be-
comes from (3)

X =0x°,  6X°=0.X. (6)
These transformations resemble formally the standard
Lorentz boosts except for the fact that 8 contains an

infinity of independent components v?m). In order to
remedy this we let

o 1
Yom) T o1

2m+1na , (7)

with the same unit vector n® for all m and a single ad-
ditional parameter v. By replacing (7) in the definition
(6), we obtain

5X — 9X0 N i 1 (E)2m+1 ﬁXO
N N = 2m+1\c ’
oo (8)
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OX0 = . X = (5) X
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and we recover the usual expression of the rapidity pa-
rameter in terms of the boost velocity, i.e., 8% = 6n®
with § = arctanh(v/c) upon using the series expansion
of arctanh [32]. The linear transformation in 6 in (8)
agrees with the standard infinitesimal Lorentz boost on
Minkowski space.

While we have thus arrived at a formal agreement,
the definition (4) requires additional discussion. For



fixed (XY X?) this defines a subspace of generalized
Minkowski space of co-dimension d 4+ 1. The transfor-
mations (6) we have just analysed move between dif-
ferent embedded such subspaces. For general parame-
ters v(,,) they also move the individual (t(m),x‘(lm)) for
m > 0 around in a non-uniform manner, while (7) re-
sults in a more uniform transformation of all (t,,), x‘(lm))
as it only uses d independent parameters. We thus
arrive at the conclusion that we should identify stan-
dard Minkowski space as the space of subspaces of co-
dimension d+ 1 labelled by the coordinates (4). We note
that identifying Minkowski space by picking local coor-
dinates (ct(), z{p)) = (X0 X%) while setting the ‘higher’
coordinates to zero is not suitable as the transformations
of (2) either do not preserve this choice or lead to just
Galilean boosts instead of relativistic Lorentz boosts.

Post-Newtonian expansion and finite expansions

We now compare the structure of the transforma-
tions (3) to those of an expansion in 1/c¢ of standard
Lorentz boosts. For coordinates (7, X) on Minkowski

space, a finite boost with rapidity parameter 0 = 07 and
= arctanh(v/c) acts to order 1/c? by

1- = 1-
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where the expansion of

—

1 1
f = arctanh(v/c)ii = ~T(o) + S Ta) + - - (11)
c c

was introduced. When dropping consistently all terms of
higher order, these transformations close.

The step of dropping all higher order terms can be
circumvented by formally expanding also the Minkowski
coordinates according to

T= Loy + C_Zt(l) + ..., X = f(O) + 0_25(1) + ...
(12)
and reading off the coefficients at fixed order in 1/¢. This
leads to

toy=two),  T(o) =T T Vo)t
L . 1,
ty =t + %oy - Fo) + 579040 (13)
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These finite transformations close without dropping any
higher order terms. Moreover, the transformations (13)
coincide exactly with the finite transformations obtained
from (3) when consistently quotienting the algebra &
by the ideal spanned by all generators with superscript
larger than N = 1. More generally, the algebra (2) can
be truncated consistently by setting to zero all generators
with superscript larger than some fixed integer N > 0.
The case N = 0 corresponds to the Galilei algebra and
the first line in (13) indeed corresponds to the standard
Galilean boost on the zero modes while the transforma-
tion of (t(1y, (1)) build up higher polynomials. This pat-
tern persists when increasing IV to N+1: the lower trans-
formations up to (f(x), ¥(x)) are unchanged and the new
(t(N+1)> T(v+1)) transform with higher degree polynomi-
als. The transformations (13) generate a group as the
truncation of the algebra (2) to any fixed N is a con-
sistent Lie algebra quotient. We can recover the post-
Newtonian expansion of the Lorentz boost to any given
order ¢V from the transformation of the highest coor-
dinates (t(N), .’E(N))

The quotient algebra obtained with N = 1 is exactly
the one that has appeared in [14] in the context of non-
relativistic gravity. Here, we have obtained it from a
purely kinematical analysis of post-Newtonian expan-
sions.

Invariant metric and particle dynamics

The subspace of the generalized Minkowski space de-
fined for fixed (X°, X¢) has an invariant metric under
the transformations (3) given by

ds? = —dX"% + dX2. (14)

Using (4) we have

ds? = Z ¢~ 2(m+n) (702dt(m)dt(n) + dZ () - df(n)) .
m,n=0
(15)
Note that the term of order ¢? is

and is an invariant metric for the Bargmann algebra.
We also recognize it as the metric of (d + 2)-dimensional
Minkowski space written in light-cone coordinates. This
is in agreement with the fact that the Bargmann alge-
bra in d + 1 dimensions is a subalgebra of the Poincaré
algebra in d + 2 dimensions.

From the invariant metric we can construct a particle
action for a massive particle by considering

Spart. = —mc/ds = fmc/dﬂ/ fX“XH, (17)

=50 5w + 52 +- -



with
S(O) = —m C2/d7’ f(o),
‘%*2
S(l) = m/dT - t(l) + (O) R (18)
2t(0)
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where 7 is the affine embedding parameter and the dot
denotes a 7-derivative. The first action leading to non-
trivial dynamics is S(;), which is invariant under the
Bargmann algebra. The variable ¢(;) can be eliminated,
leading to a quasi-invariance under the Galilei algebra
and to the standard action of the massive non-relativistic
particle invariant under worldline diffeomorphisms.

The subsequent actions S(,) with n > 1 describe non-
relativistic particles plus post-Newtonian corrections;
they are individually invariant under (3). We will illus-
trate this by considering the action S(3), which includes
the coordinates (t(oy, Z(0), (1), T(1), t(2))- Due to the ex-
tra coordinate Z(3), this action is invariant under a central
extension of the symmetry algebra realized by the trans-
formations (13) (this symmetry has been considered in
the (241)-dimensional case in [15, 16]), which is obtained
by adding the transformation law

to) = t(2) + Vo) - Ty + Ty - T(o) + Ty - o) Lo
1., 1., . . 1

+ §U(Qo)t(1) + gU(QO)U(O) T + ﬂﬁ?mtw) - (19)
Neglecting the total derivative i(g) leads to an action that
is only quasi-invariant under the transformations (13).
In fact, its variation gives total derivatives of the form
d(T(oy - (1))/dr and d(¥(1) - Z(¢y)/dT, which are in corre-
spondence with central extensions

[BO, P = —5,H® | [BM, PV = —5,, H?
(20)

of the algebra truncated at NV = 1. This is in complete
analogy with the analysis of the non-relativistic particle,
where the invariance under the Bargmann algebra can
be deduced from the quasi-invariance of the action un-
der Galilean transformations, which leads to the central
extension [Bt(lo),Pb(O)] = S HW [33).

Defining the canonical momenta (™ = 9L/ 8f(m) and
E(m) = —8L/8t(m) for (t(o),f(o),ﬁ(l),f(l),t(z)), Satisfy—
ing the Poisson brackets

{tny, B}y = =60, {al 0} = 0moy . (21)

leads to the primary constraints

¢ (22)

112 m m
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These ‘generalized mass-shell conditions’ define first-class
constraints associated to the reparametrization invari-
ance of the action. They can be made second-class by
introducing a suitable gauge-fixing [34], which in this case
can be chosen as

CQ—mt(m) =t=r71 (forall m), (23)
including fixing the affine parameter. This allows in par-
ticular to express the generalized momenta E™ in terms
p(m). Finally by projecting the action on the hyperplane

Cz—mx?m) =2z% (for all m), (24)
the action S(2) becomes
_ 2, Mug | M oy

Note that the conditions (23) and (24) break the sym-
metry (3) of the action. The energy and momentum for
this action are given by

m - 3m - - : m -

E=mc* + 59?2 + 8?54, P=mz+ @i‘af, (26)
which correspond to the usual non-relativistic relations
of energy and momentum plus their first post-Newtonian
corrections. Also note that each term in the expansion
(26) in 1/¢ can be recovered from the canonical momenta
defined in (21). Indeed, for any m, ¢*™E(™) has dimen-
sion of energy, while ¢?”5(") has dimension of linear mo-
mentum. One can verify that after gauge fixing and im-
posing (24), these quantities reduce to the terms of F and
P in (26) order by order. More general actions S(, in-
corporate more generalized momenta and first-class con-
straints, leading to post-Newtonian corrections up to or-
der 1/¢?"2 for a non-relativistic particle [27].

One can also use the coordinate expansion (4) in the
Nambu—-Goto action for a bosonic relativistic string. In
the same way one can consider the Nambu—Goto action

1/2

T . 2 s
Sstrin = - drdo XHX, - XtX X/VX/
& c M 122 v

. . :, 2
-7 / deg[\/ [E0)(0) — tioyley| + -
(27)

where the next-to-leading term, proportional to 1/c?; is
straightforward to compute but rather cumbersome and
therefore omitted here. Unlike the case of the relativistic
particle, the first term in this expansion is exactly in-
variant under the Galilei algebra [28, 35], while the term
proportional to 1/c? is also invariant under (13) without
the need of adding central extensions.




Summary

In this note, we have outlined a procedure for sys-
tematically describing symmetries of post-Newtonian ex-
pansions through the embedding in an enlarged space.
The necessity of working up to a certain order in the
1/c-expansion is replaced by exactly closing symmetry
transformations on an extended space. Invariant non-
relativistic particles and strings can be easily consid-
ered in this language. The same type of symmetry alge-
bras as considered have appeared in the context of non-
relativistic gravity theories [14-16]. In this context, the
results shown in [18] naturally arise when gauging this
infinite-dimensional symmetry or, in other words, from a
differentiable manifold whose tangent space is the gener-
alized Minkowski space presented here.
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