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Abstract

We consider a Dirac fermion in a metric-axial-tensor (MAT) background. By regulating it

with Pauli-Villars fields we analyze and compute its full anomaly structure. Appropriate limits

of the MAT background allows to recover the anomalies of Dirac and Weyl fermions in the usual

curved spacetime, obtaining in particular the trace anomaly of a chiral fermion, which has been

the object of recent analyses.

1 Introduction

A metric-axial-tensor (MAT) background for Dirac fermions has been recently constructed in

[1, 2], with the main purpose of addressing anomalies, especially in a suitable chiral limit. It

generalizes to curved space the approach used by Bardeen to study vector and axial couplings

of Dirac fermions to gauge fields and analyze their anomalies [3]. The metric-axial-tensor is

defined by

ĝµν = gµν + γ5fµν (1)

and induces similar axial extensions (i.e. with a γ5 component) to the other geometrical quan-

tities, like the vierbein êaµ and the spin connection ω̂µab. A massless Dirac fermion coupled to

the MAT background has a lagrangian of the form

L = −ψγa
√

ĝêµa∇̂µψ (2)

with covariant derivative

∇̂µ = ∂µ +
1

4
ω̂µabγ

ab (3)

where γab = 1

2
[γa, γb]. All quantities with a hat contain an axial extension with γ5 and appear

always sandwiched between the Dirac spinors ψ and ψ. For details we refer to [1, 2], especially

appendix B of the latter.

For our purposes it is more convenient and transparent to split the Dirac fermion ψ into

its two independent and Lorentz irreducible chiral components λ and ρ of opposite chiralities,

ψ = λ+ ρ. We use the conventions of [4, 5] for spinors and gamma matrices. In particular our

chiral spinors satisfy γ5λ = λ and γ5ρ = −ρ. Then the lagrangian takes the form

L = −√
g+ λγ

ae+µ
a ∇+

µ λ−√
g− ργ

ae−µ
a ∇−

µ ρ (4)
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where g±µν = gµν±fµν are two different effective metrics, with related compatible vierbeins, spin

connections, and covariant derivatives (which we indicate with the ± sub/superscripts). This

happens since the γ5 matrices acting on chiral fermions are substituted by the corresponding

eigenvalues. One could be more general, allowing also for the spacetime points to have an axial

extension, as outlined in [2], but the present formulation is sufficient for our purposes.

The limit fµν = 0 recovers the standard massless Dirac fermion in the metric gµν . Setting

gµν = fµν → 1

2
gµν produces instead a left handed chiral fermion λ coupled to the final metric

gµν , while the other chirality is projected out (it remains coupled to the singular metric g−µν = 0).

A less singular limit, which keeps a free propagating right-handed fermion, is to consider the

“collapsing limit” [2], which consists in setting g+µν = gµν and g−µν = ηµν , with ηµν the flat

Minkowski metric.

The Dirac theory in the MAT background has several symmetries which may become anoma-

lous, and limits on the background can be used to recover the anomalies of a chiral fermion,

as in the Bardeen method. The classical symmetries of the model are: diffeomorphisms, local

Lorentz transformation and Weyl rescalings, together with their axial extensions, all of which

are background symmetries since they act on the MAT fields as well. In addition, the model

admits global vector and axial U(1) symmetries, that rotate the spinors by a phase. This global

U(1)V ×U(1)A symmetry group does not act on the MAT background or any other background,

as we do not couple the model to the corresponding abelian gauge fields, though that could be

done as well. We will review shortly these symmetries, compute systematically all of their

anomalies, and then study the chiral limit.

To compute the anomalies we use a Pauli-Villars (PV) regularization, where the mass term

of the PV fields is the source of the anomalies. If the mass term can be chosen to be symmetric

under a given symmetry, then there will be no anomalies in that symmetry. Otherwise the

classical breaking due to the nonsymmetric mass term sources the one-loop anomaly. Here we

use the scheme of [6, 7], that casts the anomalies in the form of a regulated Fujikawa jacobian

[8, 9], which allows the use of well-known heat kernel formulae for the explicit final evaluation.

The variation of local counterterms, that parametrize the relation to different regularization

schemes, as for example those identified by different mass terms, can in general be employed

to cancel or shift the anomalies to different sectors. This method has already been applied

successfully to several contexts in the past, as the case of two-dimensional b-c systems [10],

which bear some analogies to the four-dimensional Weyl fermion case, or the more exotic model

of chiral bosons [11]. It is the same method used more recently in [4, 5, 12] to address the trace

anomalies of a Weyl fermion.

Before starting our systematic treatment, let us discuss the possible form of the mass term to

be used in the PV sector. This mass term is quite arbitrary, as long as it regulates correctly the

theory by giving rise to an invertible matrix T in field space, to be defined shortly. Given this

arbitrariness, one would like to choose it in the most symmetrical way as possible, to preserve

the maximal number of symmetries at the quantum level. The choice is essentially between the

Dirac and Majorana masses, suitably coupled to the MAT background. Both are legal. However

choosing a Majorana mass will simplify drastically the calculations, as it allows to maintain

anomaly free the diffeomorphisms and the local Lorentz symmetry, together with their axial

extensions. This happens as the Majorana mass keeps a split structure for the couplings of the

chiral irreducible components of the Dirac fermion to the effective metrics g±µν , while producing

anomalies in the Weyl and U(1) symmetries and their axial extensions only. Thus, we will
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choose a Majorana mass for computing the complete set of anomalies of a Dirac fermion in the

MAT background. We will comment briefly also on the Dirac mass, which turns out to be much

less symmetric since it destroys all of the axial symmetries. It could be employed as well, but

calculations become much more cumbersome, producing more anomalies then necessary, that

eventually must be cured by adding countertems to the effective action. However, let us recall

once more that any choice of the PV mass term is valid, as local counterterms can be added to

the effective action to recover the same final result, independently of the regularization scheme

adopted. This arbitrariness is a general feature of the renormalization process of QFTs.

Now, let us briefly describe our method of calculation. A lagrangian for the fields ϕ

L =
1

2
ϕTTOϕ , (5)

which is invariant under a linear symmetry δϕ = Kϕ, that may act also on the background

fields contained in T and O, is regulated by PV fields φ with lagrangian

LPV =
1

2
φTTOφ+

1

2
MφTTφ (6)

whereM is a mass parameter which identifies the mass matrix T . The latter permits the explicit

identification of the differential operator O. In fermionic theories the operator O2 appears as

the regulator. Indeed, one may verify that the non-invariance of the mass term under the

symmetry of the massless action δφ = Kφ produces an anomalous variation of the regulated

effective action Γ, that survives in the M → ∞ limit. In our hypercondensed notation1 it reads

iδΓ = i〈δS〉 = lim
M→∞

iM〈φT (TK +
1

2
δT )φ〉 = − lim

M→∞
Tr

[(

K +
1

2
T−1δT

)(

1 +
O
M

)−1]

= − lim
M→∞

Tr

[(

K +
1

2
T−1δT +

1

2

δO
M

)(

1− O2

M2

)−1]

. (7)

The function of the regulator O2 inside the trace can now be substituted with an exponential

function, that gives an equivalent regularization and produces the same anomaly, so that one

finds the Fujikawa-like formula

iδΓ = i〈δS〉 = − lim
M→∞

Tr[Jei
O2

M2 ] (8)

where J = K+ 1

2
T−1δT + 1

2

δO
M

may be identified as the infinitesimal part of a Fujikawa jacobian.

As described, it is entirely due to the non invariance of the PV mass term. We use a factor

of i in the exponential to stress that we employ a minkowskian time in the heat kernel. Now,

heat kernel formulae may be directly applied. In particular, we need the heat kernel coefficient

a2(O2), that we indicate in the notation of appendix B of [5]. Details on this PV scheme may

be found in [6, 7], and recapitulated in [4, 5] as well.

2 Majorana mass

In this section we regulate the Dirac theory in the MAT background with PV fields with a

lagrangian of the same form as (4), but augmented by a Majorana mass, that we choose to be

1The sum over (suppressed) indices includes spacetime integration, so that the lagrangian identifies directly the

action.
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coupled as

∆ML =
M

2

√
g+ (λTCλ+ h.c.) +

M

2

√
g− (ρTCρ+ h.c.) (9)

where h.c. denotes hermitian conjugation and C is the charge conjugation matrix that satisfies

CγaC−1 = −γaT . For notational simplicity we use the same symbols for the PV fields and the

original variables, since no confusion can arise in the following. The advantage of this specific

mass term is that it is invariant under diffeomorphisms, and thus guarantees the absence of

gravitational anomalies [13] (the stress tensor remains covariantly conserved). In fact, inspection

of the action shows that this symmetry can be extended to the axial diffeomorphisms as well,

guaranteeing the covariant conservation of a corresponding axial stress tensor. Let us elaborate

more extensively on this point. The usual change of coordinates xµ → xµ − ξµ(x) induce the

standard transformation law on the fields as generated by the Lie derivative Lξ

δe±a
µ = ξν∂νe

±a
µ + (∂µξ

ν)e±a
ν ≡ Lξe

±a
µ

δψ = ξµ∂µψ ≡ Lξψ .
(10)

However, one can define chiral transformation rules that leave the entire massive action invariant.

One may define left infinitesimal diffeomorphisms generated by a vector field ξµ+(x)

δe+a
µ = Lξ+e

+a
µ

δλ = Lξ+λ

δe−a
µ = 0

δρ = 0

(11)

and right infinitesimal diffeomorphisms generated by a vector field ξµ−(x)

δe+a
µ = 0

δλ = 0

δe−a
µ = Lξ−e

−a
µ

δρ = Lξ−ρ .

(12)

It is only the sum with local parameters identified, i.e. with ξµ = ξµ+ = ξµ−, that plays the role of

the geometrical transformation induced by the translation of the spacetime point xµ described

above. Nevertheless, they are independent symmetries of the massless and massive actions.

They acquire a clear geometrical meaning once the spacetime point xµ is extended to have an

axial partner [2], but we do not need to do that for the scope of the present investigation.

These symmetries imply that the stress tensor and its axial partner satisfy suitable covariant

conservation laws. Invariance of the mass term, and thus invariance of the full PV action,

implies that these symmetries are not anomalous at the quantum level.

Similarly, the action and the mass term are invariant under the local Lorentz symmetries

that act independently on the + and − sector. On the + sector (the left-handed sector) the

left-handed local Lorentz symmetry acts nontrivially by

δe+a
µ = ω+a

be
+b
µ

δλ =
1

4
ω+

abγ
abλ

δe−a
µ = 0

δρ = 0

(13)
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where ω+

ab = −ω+

ba are local parameters. Similarly, on the right sector one has

δe+a
µ = 0

δλ = 0

δe−a
µ = ω−a

be
−b
µ

δρ =
1

4
ω−

abγ
abρ .

(14)

Evidently, these are full symmetries of the total PV lagrangian, including the mass term. The

invariance of the regulating fields guarantees that the stress tensor and its axial companion

remain symmetric at the quantum level.

The only possible anomalies appear in the Weyl and axial Weyl symmetries, and in the vector

and axial U(1) symmetries. It is again more convenient to consider their ± linear combinations,

that act separately on the chiral sectors of the theory. The infinitesimal Weyl symmetries are

defined by
δe±a

µ = σ±e±a
µ

δλ = −3

2
σ+λ

δρ = −3

2
σ−ρ

(15)

where σ± are the two independentWeyl local parameters. The mass terms breaks them explicitly

δ∆ML = σ+
M

2

√
g+ (λTCλ+ h.c.) + σ−

M

2

√
g− (ρTCρ+ h.c.) (16)

causing anomalies to appear. For the global U(1)L × U(1)R symmetries, with independent

infinitesimal parameters α±, we have the transformation rules

δλ = iα+λ

δρ = iα−ρ
(17)

and the PV mass term is again responsible for their breaking

δ∆ML = iα+M
√
g+ (λTCλ− h.c.) + iα−M

√
g− (ρTCρ− h.c.) . (18)

Before computing the anomalies, let us cast the lagrangian with the Dirac mass term using

the Dirac basis of spinors ψ and ψc, so to recognize the operators in (6) and identify our regulator

O2. We prefer to use ψc = C−1ψ
T
rather than ψ, as the former has the same index structure

of ψ, and thus lives in the same spinor space. The massless lagrangian (2) with the addition of

the Dirac mass term (9) fixes the PV lagrangian

LPV =
1

2
ψT
c C

√

¯̂g∇̂/ψ +
1

2
ψTC

√

ĝ
¯̂∇/ψc +

M

2
(ψT

√

ĝCψ + ψT
c

√

¯̂gCψc) (19)

where a bar indicates a sign change in the axial extension (e.g. ¯̂gµν = gµν − γ5fµν) and ∇̂/ =

γaêµa∇̂µ, so that on the field basis φ =

(

ψ

ψc

)

one finds

TO =

(

0 C
√
ĝ
¯̂∇/

C
√

¯̂g∇̂/ 0

)

, T =

( √
ĝC 0

0
√

¯̂gC

)

, O =

(

0
¯̂∇/

∇̂/ 0

)

(20)
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and the regulator

O2 =

( ¯̂∇/ ∇̂/ 0

0 ∇̂/ ¯̂∇/

)

. (21)

Its structure is perhaps more transparent when the Dirac fermions are split in their chiral parts

φ =









λ

ρ

ρc
λc









(22)

and one recognizes a block diagonal regulator

O2 =









O2
λ 0 0 0

0 O2
ρ 0 0

0 0 O2
ρc 0

0 0 0 O2
λc









(23)

with entries
O2

λ = ∇/ 2
+P+ , O2

λc
= ∇/ 2

+P−

O2
ρ = ∇/ 2

−P− , O2
ρc

= ∇/ 2
−P+ .

(24)

where we have used the left/right chiral projectors P+ = PL = 1+γ5

2
and P− = PR = 1−γ5

2
, and

denoted by ∇/± = γae±µ
a ∇±

µ the Dirac operators coupled to the ± effective vierbeins.

Let us now compute the anomalies. For the Weyl symmetries we get anomalies in the traces

of the stress tensors, defined by varying the action under the two effective vierbeins e±µa

T µa
± (x) =

1√
g±

δS

δe±µa(x)
. (25)

In each chiral sector we use the corresponding chiral metric, and related vierbein, to perform

covariant operations and take traces, and the calculation is just a double copy of the one

presented in [4]. Recalling (8) one identifies the structure of the breaking term J , entirely due

to the PV mass. Once inserted into the “Fujikawa trace”, it is computed by using the heat

kernel coefficients a2(O2) for the regulators O2 due to the PV fields. All the steps have been

discussed in details in [4, 5], where in particular it was noticed that the term δO in J does not

contribute to the functional trace. In the present situation we find for the traces of the stress

tensors on the MAT background

〈T µ
+µ〉 = − 1

2 (4π)2

[

tr[P+a2(O2
λ)] + tr[P−a2(O2

λc
)]
]

〈T µ
−µ〉 = − 1

2 (4π)2

[

tr[P−a2(O2
ρ)] + tr[P+a2(O2

ρc
)]
]

(26)

where the remaining final dimensional traces are traces on the gamma matrices. The projectors

on the regulators can be dropped, as they get absorbed by the explicit projectors already present

in (26). Thus, one may use O2
λ = O2

λc
= ∇/ 2

+ and O2
ρ = O2

ρc
= ∇/ 2

− to simplify the anomaly

expressions to

〈T µ
±µ〉 = − 1

2 (4π)2
tr[a2(∇/ 2

±)] (27)

6



and one finds the following trace anomalies on the MAT background

〈T µ
±µ〉 =

1

720 (4π)2

(

7RµνλρR
µνλρ + 8RµνR

µν − 5R2 + 12�R
)

(g±) (28)

where the functional dependence on g± reminds that all the geometrical quantities and covariant

operations are computed using the effective metric g±µν .

We now compute the U(1)L×U(1)R anomalies. Evidently, we are going to find again a split

form. By the Noether theorem one finds the covariantly conserved Noether currents

δS =

∫

d4x
√
g+ α+∇+

µ J
µ
+ +

∫

d4x
√
g− α−∇−

µ J
µ
− (29)

where the constants α± in (17) are extended to arbitrary functions, with the currents taking

the explicit form Jµ
+ = iλγae+µ

a λ and Jµ
− = iργae−µ

a ρ. We compute their anomalies with the

PV regularization and find

∇+
µ 〈Jµ

+〉 =
i

(4π)2

[

tr[P+a2(O2
λ)]− tr[P−a2(O2

λc
)]
]

∇−
µ 〈Jµ

−〉 =
i

(4π)2

[

tr[P−a2(O2
ρ)]− tr[P+a2(O2

ρc
)]
]

(30)

that once more can be simplified to

∇±
µ 〈Jµ

±〉 = ± i

(4π)2
tr[γ5 a2(∇/ 2

±)] . (31)

Their evaluation in terms of the heat kernel coefficients produces anomalies proportional to the

Pontryagin density of the effective metrics

∇±
µ 〈Jµ

±〉 = ∓ 1

48 (4π)2
√
g±ǫαβγδRµν

αβRµνγδ(g±) . (32)

Eqs. (28) and (32) are our final results for the anomalies of a Dirac fermion on a MAT

background. All other symmetries are anomaly free.

We have evaluated these anomalies using traces with chiral projectors of the heat kernel

coefficient a2(∇/ 2), associated to the covariant square of the Dirac operator in a background

metric gµν . For completeness, we list this coefficient and related traces

a2(∇/ 2) =
1

180
(RµνρσR

µνρσ −RµνR
µν) +

1

288
R2 − 1

120
�R+

1

192
RµνRµν (33)

tr[P±a2(∇/ 2)] =− 1

720
(7RµνρσR

µνρσ + 8RµνR
µν − 5R2 + 12�R)

± i

96

√
gǫαβγδRµν

αβRµνγδ (34)

where Rµν = Rµνabγ
ab. One may deduce them from [14, 15], for example. They are useful in

studying intermediate results leading to the evaluation of (26) and (30), and have appeared in

the anomaly context already in [16, 17].
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3 Limits of the MAT background

We now discuss the limits on the MAT background to recover the usual theories of Dirac and

Weyl fermions in a curved spacetime and their anomalies.

Setting fµν = 0 reproduces the standard coupling of a massless Dirac fermion to a curved

background and corresponds to identify the two effective metrics g+µν = g−µν . The final stress

tensor becomes the sum of the two chiral stress tensors, and acquires the sum of the two trace

anomalies in (28). Thus, one recovers the usual trace anomaly of a Dirac field

〈T µ
µ〉 =

1

360 (4π)2

(

7RµνρσR
µνρσ + 8RµνR

µν − 5R2 + 12�R
)

. (35)

Similarly, for the two U(1) symmetries, one obtains

∇µ〈Jµ
±〉 = ∓ 1

48 (4π)2
√
gǫαβγδRµν

αβRµνγδ (36)

which gets translated into the covariant conservation of the vector current Jµ
V

= Jµ
+ + Jµ

−,

together with the anomalous conservation of the axial current Jµ
A

= Jµ
+ − Jµ

−, with the well-

known Pontryagin contribution [18, 19]

∇µ〈Jµ
V
〉 = 0 , ∇µ〈Jµ

A
〉 = − 1

24 (4π)2
√
gǫαβγδRµν

αβRµνγδ . (37)

Let us now study the case of the Weyl fermion λ. This is obtained by taking the collapsing

limit in which the effective metric g−µν becomes flat (g−µν = ηµν and g+µν = gµν), so that the

independent right-handed fermion ρ decouples completely from the background. Therefore,

only the chiral left-handed part part contributes to the stress tensor, producing for the trace

anomaly half of the result above. Similarly, one finds the anomalous conservation of the U(1)

current Jµ
+, the only one that remains coupled to the curved background, with the expected

Pontryagin contribution. To summarize, we find for a left-handed Weyl fermion the following

anomalies

〈T µ
µ〉 =

1

720 (4π)2

(

7RµνρσR
µνρσ + 8RµνR

µν − 5R2 + 12�R
)

∇µ〈Jµ
+〉 = − 1

48 (4π)2
√
gǫαβγδRµν

αβRµνγδ .

(38)

These results confirm the absence of a Pontryagin term in the trace anomaly of a Weyl

fermion, as calculated in [4] and confirmed in [20]. The Pontryagin term sits only in the chiral

anomaly.

4 Dirac mass

In this section we wish to give a brief description of a different regularization, namely the one

obtained by using a Dirac mass for the PV fields. In a flat background a Dirac mass is given by

−Mψ̄ψ =
1

2
M(ψT

c Cψ + ψTCψc) . (39)

As well-known this term breaks the U(1)A axial symmetry while maintaining the U(1)V vector

symmetry. This continues to be the case also when one tries to MAT-covariantize it. There are
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various options to couple the Dirac mass to the MAT geometry. One may choose to use in the

mass term only the metric gµν , without any axial extension, so that

∆DL = −√
gMψ̄ψ =

√
g

2
M(ψT

c Cψ + ψTCψc) (40)

has the virtue of preserving the vector-like diffeomorphisms and vector-like local Lorentz trans-

formations on top of the U(1)V symmetry, while breaking all of their axial extensions. It also

breaks both vector and axial Weyl symmetries, which are then expected to be anomalous as

well. Counterterms should eventually be introduced to achieve the equivalence with our previous

results. Other choices are also possible, as for example
√
g → 1

2
(
√
g+ +

√
g−), which shares the

same property of preserving the vector-like diffeomorphisms and local Lorentz transformations.

In the following we just wish to derive the regulators to be used for computing the anomalies

in this new scheme. We add to the lagrangian (2) written in a symmetric form

L =
1

2
ψT
c C

√

¯̂g∇̂/ψ +
1

2
ψTC

√

ĝ
¯̂∇/ψc (41)

the mass term (40), and comparing it with (6) we find on the field basis φ =

(

ψ

ψc

)

TO =

(

0 C
√
ĝ
¯̂∇/

C
√

¯̂g∇̂/ 0

)

, T =

(

0
√
gC√

gC 0

)

, O =





√

¯̂g
g
∇̂/ 0

0
√

ĝ
g

¯̂∇/



 . (42)

Thus, we get the regulator

O2 =





√

¯̂g
g
∇̂/
√

¯̂g
g
∇̂/ 0

0
√

ĝ
g

¯̂∇/
√

ĝ
g

¯̂∇/



 (43)

with the differential operators acting on everything placed on their right hand side. This regu-

lator O2 is difficult to work with, but it has the virtue of being covariant under vector diffeo-

morphisms, making it somewhat manageable after all. Its structure is again more transparent

when splitting the Dirac fermion into its chiral parts, so that on the basis

φ =









λ

ρ

ρc
λc









(44)

one finds a block diagonal regulator

O2 =









O2
λ 0 0 0

0 O2
ρ 0 0

0 0 O2
ρc 0

0 0 0 O2
λc









(45)

with entries
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O2
λ =

√

g−
g
∇/−

√

g+
g
∇/+P+ , O2

ρ =

√

g+
g
∇/+

√

g−
g
∇/−P−

O2
λc

=

√

g−
g
∇/−

√

g+
g
∇/+P− , O2

ρc =

√

g+
g
∇/+

√

g−
g
∇/−P+ .

(46)

The functions
√

g∓
g

are scalar functions under the vector-like diffeomorphism, so that these reg-

ulators are covariant under that symmetry. The projectors P± take just the unit value on the

corresponding chiral spinor space, but we have kept them to remember on which space the differ-

ent regulators act. A systematic analysis of all the anomalies, including the axial gravitational

anomaly, may be feasible in this scheme, at least when treating fµν as a perturbation.

5 Conclusions

We have studied the full set of anomalies of a Dirac fermion coupled to the MAT background

formulated recently in [1, 2]. This result has allowed a rederivation of the anomalies of a Weyl

fermion coupled to a curved spacetime, including the trace anomaly. Our result for the trace

anomaly agrees with the one calculated in [4] and reproduced with different methods in [20].

These findings however are at odds with the original claim of ref. [21], reconfirmed also

in [1, 2] where the notion of the MAT background was developed precisely for the purpose of

studying the anomalies. Let us comment a bit more on this point. The presence of a Pontryagin

term, which satisfies the consistency conditions for trace anomalies [22] and would constitute

a type-B anomaly in the classification of [23], was conjectured to be a realistic possibility in

[24], see also [25, 26, 27]. On the other hand, it is known that CFTs do not support nonlocal

parity-odd terms in the correlation function of three stress tensors [28, 29], thus hinting at the

absence of such a contribution. Our explicit calculation within the MAT background shows

indeed that such terms are absent, thereby confirming the findings of refs. [4] and [20]. The

analogous case of a Weyl fermion in a gauge background has also been studied more recently

in [5, 12], where it was found that parity-odd terms do not contribute to the trace anomaly in

that context as well.

Retracing our calculation of the trace anomaly, and observing the formulae in (26), one

may notice that an imaginary term proportional to the Pontryagin density would indeed arise

in the trace anomalies if the contribution from the regulators of the charge conjugated fields

were neglected. However, there is no justification for dropping those terms. A close analogy

is given by the two-dimensional b-c system, whose gravitational and trace anomalies have been

computed in [10] with the same methods employed here. In that paper, the contributions from

the regulator of the c field and that of the b field must be added together, and they sum up to

produce the correct final anomaly. It would not be correct to drop, say the b contribution to find

the anomaly of the c field. Said differently, the propagator of the b-c system contains information

on both fields, and they cannot be split artificially. Similarly, in the Weyl fermion case both

helicities h = ±1

2
(described by the Weyl fermion and its hermitian conjugate) circulate in the

loop that produces the anomalies, and their contributions cannot be split in any legal way. This

is consistent with four dimensional CPT, that requires both helicities to be present in a massless

relativistic QFT.

A preprint has recently appeared [30], suggesting that the methods we use for the anomaly

calculations are not fit to detect parity-odd terms in the trace anomaly. We reject those criti-
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cisms, which we find unfounded. We find it important to reiterate that in principle any regular-

ization scheme can be used to define a QFT, with different schemes producing perhaps different

results for the anomalies, that however must be related by adding local counterterms to the

effective action. The use of massive PV fields with a Majorana mass is certainly legal for regu-

lating Weyl fields. We have used it here to compute systematically all the anomalies within the

same regularization scheme, finding in particular the correct and well-known consistent U(1)

chiral anomaly. The Majorana mass couples the two helicities of a Weyl fermion, thus breaking

its U(1) symmetry that indeed becomes anomalous. It also breaks the Weyl local scaling sym-

metry, thus causing a trace anomaly to appear as well. Other regularizations may of course be

used, though some of them might be too cumbersome to carry out effectively the calculations

(we have illustrated briefly the case of PV fields with Dirac mass in the last section). As a final

comment on the views expressed in [30], we wish to stress that the theory of a chiral fermion

in 4 dimensions may be described equivalently in two ways. One description makes use of a

Weyl spinor and its hermitian conjugate (this is how we have proceeded in the present paper).

Alternatively, one may use a Majorana spinor. The latter has the same field content of the

former, as it casts together the two irreps of the Lorentz group ((1/2, 0) for the Weyl spinor

plus its complex conjugate (0, 1/2) for the hermitian conjugate Weyl spinor) into a single spinor,

making the resulting Majorana spinor reducible under the Lorentz group. Lorentz invariance

fixes uniquely their actions, which are totally equivalent. A mass term can be added in both

schemes, it is the so-called Majorana mass, which has the property of breaking the chiral U(1)

symmetry associated to the conservation of a fermion number (correlated to the helicity and

identified with the lepton number in neutrino applications). References where these matters

are clearly explained are the textbooks [31, 32, 33], for example. Thus, we find unfounded the

suggestion that our methods are suitable for Majorana fermions but not for Weyl fermions.
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