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2.2 Poincaré coordinates and patch 3

2.3 Extremal coordinates and patch 4

2.4 Horizon coordinates 5

2.5 Extremal Killing field and BTZ 6

3 Scalar field 6

3.1 AdS3 Green function 6

3.2 Extremal BTZ Green function 8

4 Late-time decay 9

4.1 AdS3 10

4.2 BTZ 10

4.2.1 Both points outside the horizon 11

4.2.2 Field point on the horizon and source point outside 12

4.2.3 Both points on the horizon 13

5 Null geodesics 14

A AdS3 Green function 18

B Massless axisymmetric perturbations: Aretakis’ method 20

C Mode approach 21

C.1 Preliminaries 21

C.2 Modes at late times near the horizon 23

C.3 Non-periodic limit — AdS3 24

1 Introduction

In the decade since Aretakis’ initial study of massless scalar fields in the extremal Reissner-

Nördstrom spacetime [1, 2], it has become clear that extremal horizons generically exhibit

weak derivative instabilities [3–5]. Independent of the type of extremal black hole (and

even of the type of field that perturbs it!), the evidence suggests that sufficiently high-

order transverse derivatives always grow at least polynomially in advanced time along the

event horizon. This has the physical consequence that infalling observers experience large

field gradients [4, 6, 7].
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This general picture has emerged from a variety of techniques, whose domains of va-

lidity are largely non-overlapping. The original technique of Aretakis [3, 8, 9] involves a

conserved quantity along the horizon that provides an obstruction to decay. This tech-

nique has been used only in what we call the “discrete case” (e.g., axisymmetric massless

perturbations of Kerr [5]), and mainly when initial data extends to the horizon. We our-

selves have been involved with a different technique based on frequency-domain analysis,

in which the instability is associated with a singular branch point in each mode of the re-

tarded Green function [6, 10–12]. This technique has been used mainly in the non-discrete

case (e.g., non-axisymmetric mode perturbations of Kerr [6]), and only when initial data

is confined away from the horizon. Other techniques rely on discrete inversion symmetries

present only for some black holes [4, 13–15]. Analytic arguments involving the near-horizon

geometry [5, 6, 16, 17] together with numerical work in a variety of settings [4, 18, 19],

have provided complimentary insight into these various regimes. However, a fully general

understanding of the instability remains elusive.

There is a dissonance here: a universal phenomenon should be simple at its core, yet

the state of the art presents a sprawling complexity. One suspects that a key unifying

idea has not yet been identified. In such a situation, it pays to study the effect in the

simplest possible setting, where the nature of the phenomenon might be revealed with a

minimum of distraction. Buoyed by this hope, in this paper we initiate the study of the

Aretakis instability in the exceptionally simple setting of a 2+1-dimensional black hole —

the Bañados-Teitelboim-Zanelli (BTZ) spacetime [20, 21]. As this black hole has negative

cosmological constant, the results may also help understand the holographic implications

of the instability [22, 23].

The BTZ black hole allows exceptional analytic control because it is locally isometric

to three-dimensional Anti-de Sitter space (AdS3), a maximally symmetric spacetime. We

focus on the retarded Green function of a massive scalar field satisfying Dirichlet boundary

conditions. Using the results of [24] (and correcting some minor computational errors), we

write the AdS3 retarded Green function in a very simple form. We then use the method

of images [25] to construct the BTZ Green function.

The Aretakis instability emerges from this image sum in a beautiful way. Each term

in the sum decays at the same rate, fixed by the AdS3 spacetime. For a field point off

the horizon in BTZ, the high-order images are unimportant, and the full Green function

(and hence field) also decays at this AdS3 rate. However, when the field point is chosen on

the BTZ horizon, the high-order images become important and the infinite sum decays at

precisely half the AdS3 rate,1 as expected on general grounds [5]. Since the field decays at

different rates on and off the horizon, sufficiently high-order transverse derivatives on the

horizon must grow — the Aretakis instability.

By solving the null geodesic equation in BTZ, we are able to identify the late-time-

relevant terms in the image sum with the arrival of wavefronts that have orbited the event

horizon arbitrarily many times before falling in. The number of orbits increases linearly

1We demonstrate this fact numerically and give heuristic analytical arguments for the behavior, but

do not provide a rigorous proof. Furthermore, this analysis assumes that the source point is outside the

horizon, or equivalently that the initial data do not extend to the horizon.
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as the geodesic conserved quantity approaches that of the event horizon. We conjecture

that this behavior is part of the following larger pattern for black holes: the surface gravity

of the event horizon functions as a Lyapunov exponent for the deviation of nearby null

geodesics; and when this exponent vanishes for an extremal black hole, the exponential

deviation goes over to a power law. One can then say that wavefronts linger far longer

near the event horizon of extremal black holes, as compared to analogous non-extremal

black holes, providing an interpretation of the instability of extremal horizons.

Our results offer a new way to think about the Aretakis instability, but they do not

solve the problem of unifying the previous different approaches. To provide a point of

comparison, in the appendices we apply two other methods to the extremal BTZ spacetime:

the conserved charge method (appendix B) and the mode sum method (appendix C). We

cannot compare with the conserved charged method because our analysis is restricted to the

non-discrete case, with initial data not extending to the horizon. We can compare with the

decay rate of individual modes in the frequency domain analysis (and we find agreement),

but this method does not give the behavior of the full field (see further discussion in

appendix C). Thus there remains much mystery surrounding the Aretakis instability of

extremal horizons.

This paper is organized as follows. In section 2 we review the AdS3 and extremal

BTZ spacetimes, introducing notation. In section 3 we consider a massive scalar field and

construct the retarded Green function by the method of images. In section 4 we discuss

late-time decay, and in section 5 we interpret the instability in terms of null geodesics. Our

signature is (−+ +) and we set the AdS radius to one.

2 Metric

We now discuss the AdS3 metric and its periodic identification to produce the extremal

BTZ black hole. We introduce a few different coordinate patches that are useful in the

analysis that follows.

2.1 Global AdS3

The maximally extended AdS3 metric is given in “global coordinates” by

ds2 =
1

cos2 χ

(
−dτ2 + dχ2 + sin2 χdΩ2

)
, (2.1)

where τ ∈ (−∞,∞), χ ∈ [0, π/2), and Ω ∼ Ω + 2π. The spacetime can be conformally

completed by a cylinder at χ = π/2, which we refer to as the boundary. We will gener-

ally use global coordinates to visualize the spacetime, with (τ, χ,Ω) treated as cylindrical

coordinates representing height, radius, and angle, respectively.

2.2 Poincaré coordinates and patch

“Poincaré coordinates” for AdS3 are given by

t =
sin τ

cos τ − cos Ω sinχ
, z =

cosχ

cos τ − cos Ω sinχ
, x =

sin Ω sinχ

cos τ − cos Ω sinχ
, (2.2)

– 3 –
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Figure 1. AdS3 and its patches, plotted using global coordinates (τ, χ,Ω) as cylindrical coordinates

with height τ , radius χ, and angle Ω. The maximally extended spacetime has a cylindrical conformal

boundary at χ = π/2, shown here in translucent orange. On the left, we show the Poincaré horizons

τ± that bound the Poincaré patch. In the middle, we show τ− along with the future horizon τH
(which is also a Poincaré horizon); these bound the “extremal patch” that becomes the BTZ exterior

after identification. Finally, on the right we show the same plot from a different perspective, along

with a selection of integral curves of the Killing field ξ = ∂X . The extremal BTZ black hole is

obtained by identifying discretely along these curves.

where the metric becomes

ds2 =
1

z2
(−dt2 + dz2 + dx2). (2.3)

These coordinates cover only a “Poincaré patch” where (cos τ − cos Ω sinχ) has a definite

sign. We choose the region τ ∈ (τ−, τ+), with

τ± := ± arccos (cos Ω sinχ). (2.4)

The bounding null surfaces τ = τ± are called Poincaré horizons (figure 1 left). The

interior has z > 0 with t and x unbounded. The boundary is at z = 0, and all coordinates

become large as the Poincaré horizons are approached.

2.3 Extremal coordinates and patch

We also introduce “extremal coordinates” for AdS3,

t =
1

2

(
T +X − RH

R2 −R2
H

− e2RH(X−T )

2RH

)
(2.5a)

z =
eRH(X−T )√
R2 −R2

H

(2.5b)
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x =
1

2

(
T +X − RH

R2 −R2
H

+
e2RH(X−T )

2RH

)
, (2.5c)

bringing the metric into the form

ds2 = −(R2 − 2R2
H)dT 2 +

R2

(R2 −R2
H)2

dR2 − 2R2
HdTdX +R2dX2. (2.6)

These coordinates cover the region R > RH , which is bounded by the past Poincaré

horizon τ− and a globally translated and rotated Poincaré horizon τH defined by2

τH = arcsin (sin Ω sinχ). (2.7)

We refer to this patch τ ∈ (τ−, τH) as the extremal patch (figure 1 middle and right).

We call the bounding null surfaces τ− and τH the past and future horizons (respectively),

since these will become the event horizons of the extremal BTZ black hole after the iden-

tification X ∼ X + 2π. These horizons are described by R = RH in extremal coordinates,

but the patch itself is independent of RH .3

The inverse transformation is given by

T =
2x2 − 2t2 + z2

4(x− t)
− 1

4RH
log (2RH(x− t)) (2.8a)

R = RH

√
1 +

2(x− t)
RHz2

(2.8b)

X =
2x2 − 2t2 + z2

4(x− t)
+

1

4RH
log (2RH(x− t)). (2.8c)

2.4 Horizon coordinates

Finally, it will be useful to consider “horizon coordinates” (V,R,Φ) defined by

T = V +
R

2(R2 −R2
H)
− 1

4RH
log

R−RH
R+RH

(2.9a)

X = Φ + V +
R

2(R2 −R2
H)

+
1

4RH
log

R−RH
R+RH

, (2.9b)

where the metric becomes

ds2 = 2dRdV + 2(R2 −R2
H)dΦdV +R2dΦ2. (2.10)

These coordinates cover the future horizon R = RH , with the null generators given by

Φ = const. When Φ ∼ Φ + 2π, these are ingoing, corotating coordinates for the extremal

BTZ black hole. The horizon-generating Killing field is given by

ζ =
∂

∂V
=

∂

∂T
+

∂

∂X
. (2.11)

2In global coordinates, R > RH corresponds to αβ > 0 with α = sin Ω sinχ − sin τ and β = cos τ −
cos Ω sinχ. The zeros of β bound a set of Poincaré patches including our choice (2.4), while the zeros of

α bound an interleaving set related by the symmetries τ → τ + π/2 and φ → φ + π/2. As our Poincaré

patch (2.4) has β > 0, we require α > 0 as well, giving rise to τ ∈ (τ−, τH).
3Note that the original transformation given by BTZ does entail a different patch for each value of

RH ; these patches approach Poincaré patch as RH → 0. Our extremal patch remains distinct in the

RH → 0 limit.
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2.5 Extremal Killing field and BTZ

The extremal BTZ black hole is obtained by identifying points separated by parameter

distance 2π along the integral curves of the Killing field

ξ =
∂

∂X
=

∂

∂Φ
. (2.12)

This means we identify X ∼ X + 2π in extremal coordinates (2.6) and (equivalently)

Φ ∼ Φ + 2π in horizon coordinates (2.9). We will call ξ the extremal Killing field. Its

integral curves connect the two ends of the “conformal bifurcation line” where the future

and past horizons meet at the boundary (figure 1).

3 Scalar field

We consider a massive scalar field ψ,(
2− µ2

)
ψ = 0. (3.1)

The AdS3/BTZ spacetimes are not globally hyperbolic, and well-posed evolution requires

specification of the behavior of the field on the boundary. We will consider so-called

“Dirichlet” conditions, where ψ is required to vanish on the boundary. We define an

associated retarded Green function by(
2− µ2

)
G(x, x′) = δ3(x, x′), (3.2)

together with the requirements that G vanish when either point approaches the boundary

or if x′ is not in the causal past of x. (Here δ3 is the covariant delta distribution, equal

to 1/
√
−g times the coordinate delta function). We assume µ2 ≥ −1 so that the Dirichlet

dynamics are well-posed [26, 27]. This Green function can be used to construct the field

from its initial value ψ0(R′,Φ′) on the null surface V ′ = 0 via the Kirchhoff representation4

ψ(V,R,Φ) = R−1
H

∫
dΦ′

∫ ∞
RH

dR′R′ (ψ0∂R′G−G∂R′ψ0) , (3.3)

where we have assumed that the field point is on or outside the event horizon.

In AdS3, the range of Φ′ is unbounded, while in BTZ it must be restricted to a fiducial

range such as 0 < Φ′ ≤ 2π. In all other respects, eqs. (3.1), (3.2), and (3.3) hold equally

well in AdS3 and extermal BTZ.

3.1 AdS3 Green function

The Dirichlet retarded Green function for AdS3 was obtained in closed form by [24]. In

appendix A we review the derivation, correct some trivial errors, and obtain a new form

of the result:

GAdS3
ret =

Θ(t− t′)Θ(Σ)

π
√
|Σ(Σ− 2)|

− cos 2ν arccos (1− Σ) if Σ < 2

sin (2πν)e−2νarccosh(Σ−1) if Σ > 2
. (3.4)

4To derive equation (3.3), we follow the steps of ref. [28] using a volume bounded by the null surface

V = 0, the future event horizon, and the boundary. The contribution at the boundary vanishes due to the

Dirichlet condition.
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Figure 2. Retarded propagation in AdS3 with Dirichlet boundary conditions. On the left, we

show the wavefront of a point source (surface of singularity of the retarded Green function), which

“bounces” off the boundary. The wavefront is described by Σ = 0 (orange) and Σ = 2 (blue). On

the right, we show the behavior of the retarded green function as a function of Σ. Two qualitative

behaviors exist: the “generic” case (middle; we have chosen ν = 1.2) and the “exceptional” case

(we have chosen ν = 0.5). In the exceptional case, the Green function vanishes for Σ > 2.

Here ν is a scaling dimension for the field defined by

ν =
1

2

√
1 + µ2, (3.5)

while Σ is a biscalar on AdS3 given by

Σ =
(t− t′)2 − (x− x′)2 − (z − z′)2

2zz′
(3.6)

= 1− cos(τ − τ ′) secχ secχ′ + cos(Ω− Ω′) tanχ tanχ′. (3.7)

The Green function is singular on the surfaces Σ = 0 and Σ = 2, whose union is the

null wave front of the propagating field. This wave front bounces off the boundary as shown

in figure 2. In the “exceptional” case where ν is a half-integer, the Green function vanishes

for Σ > 2, so that the returning wavefront appears to “cancel out” the propagating field.

Although the wavefronts appear conical in the plots, they are not precisely equal to cones.

The distinction is most graphically evident when the source point is near the boundary, in

which case the wavefronts collapse to Poincaré horizons.

We now discuss the geometric interpretation of Σ and its role in the Green function. In

a Poincaré patch there is always a unique geodesic connecting two points, and Σ is related

to the world function σ (one-half the squared geodesic distance) by [29]

Σ = 2

(
1− cosh2

(√
2σ

2

))
= −σ +O(σ2). (3.8)

In particular, Σ > 0 is timelike separation, Σ < 0 is spacelike separation, and Σ = 0 is

null separation. However, we have seen that Σ = 2 also represents a null wavefront of

the propagating field. This is not a contradiction, since the bouncing behavior of the wave

fronts is not reflected in the behavior of geodesics, which simply continue indefinitely toward

– 7 –
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Figure 3. Method of images for the extremal BTZ Green function. A source point (yellow) in

the fiducial portion of AdS3 defines image points (red) appearing every 2π along the integral curve

of ξ = ∂Φ.

the boundary as the affine parameter increases. Thus, at least within the Poincaré patch,

points for which Σ = 2 are indeed connected by only a single geodesic, which is timelike,

despite the fact that they are also connected by a bouncing wave front of the scalar field.

The null character of the surface Σ = 2 (fixing the prime point) can be seen directly by

observing that it corresponds to Σ = 0 for “conjugate points” τ ′ → τ ′+ nπ, Ω′ → Ω′+ nπ

for odd n (see figure 2). Finally, note that the wavefront preserves the inverse square

root character of the singularity in the Green function inherited from the local Hadamard

form. See e.g. [30] and references therein for rigorous results on the global propagation of

singularities.

3.2 Extremal BTZ Green function

As the BTZ black hole is a periodic identification of AdS3, propagation in BTZ is equivalent

to propagation on a portion of AdS3 subject to periodic boundary conditions. The retarded

Green function can then be simply constructed from the non-periodic one by

GBTZ
ret (x, x′) =

∞∑
n=−∞

GAdS3
ret (x, e2πnξx′) =

∞∑
n=−∞

GAdS3
ret |Φ′→Φ′+2πn, (3.9)

– 8 –
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where the last equation holds only in horizon coordinates. The notation e2πnξx′ indicates

the spacetime point obtained by flowing along the integral curves of ξ for a parameter

distance 2πn; when horizon coordinates are used, this simply increases Φ′ by 2πn. It is

straightforward to check that this expression satisfies all the conditions for the Dirichlet

retarded Green function, together with the additional required periodicity. From the per-

spective of AdS3, we place “image sources” at distances of 2πn along the integral curves

of ξ from the original source position (figure 3), all of which emit wave fronts. From the

perspective of BTZ, the arriving fronts are interpreted as having circled the black hole |n|
times. This method of constructing the Green function is generally called the method of

images; it has been used extensively in Euclidean signature, but apparently not for retarded

propagation.

It will be convenient to define a separate Σn for each image n. Letting

δV = V − V ′, δΦn = Φ− Φ′ − 2πn, (3.10)

then (expressing in horizon coordinates) we have

Σn = 1− eRHδΦn

2RH

(
R′ −R

2
+RH +

(
δV +

δΦn

2

)
(R′ +RH)(R−RH)

)
+
e−RHδΦn

2RH

(
R′ −R

2
−RH +

(
δV +

δΦn

2

)
(R′ −RH)(R+RH)

)
. (3.11)

The other component of the AdS3 retarded Green function (3.4) is a theta function,

Θ(t− t′), that cuts out the past of t′. We will introduce the notation

sn = t− t′|Φ′→Φ′+2πn, (3.12)

indicating that one is to express t and t′ in terms of horizon coordinates and then send

Φ′ → Φ′ + 2πn. Explicitly, we have

sn =
1

4(R+RH)(R′ +RH)

[
e2RH(Φ′+2πn)(R+RH)(R′ −RH) (3.13)

− e2RHΦ(R′ +RH)(R−RH)

+ 2RH(R′ −R+ (R+RH)(R′ +RH)(2δV + δΦn))
]
.

Putting everything together, the BTZ Dirichlet retarded Green function is written

GAdS3
ret =

∞∑
n=−∞

(
Θ(sn)Θ(Σn)

π
√
|Σn(Σn − 2)|

{
− cos 2ν arccos (1− Σn) if Σn < 2

sin (2πν)e−2νarccosh(Σn−1) if Σn > 2

)
, (3.14)

where Σn and sn are given in eqs. (3.11) and (3.13), respectively. The non-uniform behavior

of Σn in the limits V → ∞, n → ±∞, R′ → RH and R → RH is key to the phenomena

discussed below.

4 Late-time decay

We now use the explicit retarded Green function to investigate late-time decay of field

perturbations. We will discuss decay in null directions, varying V while fixing R and Φ.

When R = RH this corresponds to decay along a horizon generator Φ, measured by affine

parameter V . When R > RH the null ray remains outside the horizon.

– 9 –
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4.1 AdS3

We begin with the case of AdS3. The AdS3 Green function is simply the n = 0 term in the

sum (3.14). At large δV we have

s0 ∼ RHδV, δV →∞, (4.1)

Σ0 ∼ C0(R,R′, δΦ0) δV, δV →∞, (4.2)

with

C0 =
1

2RH

[
e−RHδΦ0(R′ −RH)(R+RH)− eRHδΦ0(R′ +RH)(R−RH)

]
, (4.3)

where we exclude the measure-zero case C0 = 0. If C0 < 0 then Σ0 is negative at late

times and the Green function vanishes: the points of fixed R and Φ with large V are out

of causal contact with the source position R′,Φ′, V ′. When C0 > 0, the Green function at

late times is

G ∼ 4−νC0

π
sin(2πν)(δV )−(2ν+1), δV →∞. (4.4)

If ν is a half-integer then this expression vanishes. In fact the Green function (3.14) vanishes

identically in this case,

G = 0, δV > V0, (4.5)

where V0 is some constant. By the Kirchhoff integral (3.3), the field sourced by generic

initial data will behave the same way,

ψ ∼ C(R,Φ)V −2h, V →∞ (2h /∈ Z+) (4.6)

ψ = 0, V > V0 (2h ∈ Z+). (4.7)

where C is some function determined by the initial data, and we introduced

h =
1

2
+ ν (4.8)

in order to be consistent with previous work [5–7]. Notice that h ≥ 1/2 given our assump-

tion on the mass µ2 ≥ −1. We will refer to the case 2h /∈ Z+ as “generic” and the case

2h ∈ Z+ as “exceptional”. This exceptional case includes the case h ∈ Z+ previously called

“discrete”.

4.2 BTZ

For a BTZ black hole, we must consider the infinite sum (3.14). Each term in the sum is an

AdS3 Green function with a different source point, so each term behaves like sin(2πν)V −2h

at late times as above. However, this does not guarantee that the full sum shares this

behavior, and indeed we will see that it does not. To examine the full sum, it is helpful to

rewrite (3.11) as

Σn = 1 + e2πnRH (A+ +B+(δV − πn))− e−2πnRH (A− +B−(δV − πn)), (4.9)

– 10 –
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Figure 4. The BTZ retarded Green function with field point off the horizon, sampled uniformly in

log V . The field decays at different rates depending on whether the field point is on the horizon (left

plot, V −h) or off the horizon (right plot V −2h). The slower decay is due to spikes from wavefronts

that orbit many times near the black hole and cross the horizon at arbitrarily late times. Spikes

also arrive at arbitrarily late times from wavefronts that spend their time mainly far away from the

black hole, but they are exponentially narrow and are not visible in the plots at late times (and do

not affect the decay envelope). In these plots we have chosen RH = 0.01 and ν = 1.2 such that

h = 1.7, with δΦ0 = 0 and R′ = 10; in the left plot we have R = RH = 0.01, while in the right plot

we have R = 1 > RH .

with

A± =
e∓RH(Φ−Φ′)

2RH

(
R′ −R

2
∓RH

)
(4.10a)

B± =
e∓RH(Φ−Φ′)

2RH
(R′ ∓RH)(R±RH). (4.10b)

To explore the deviation of the full sum from the behavior of an individual term we consider

the regime of late times and large image numbers, i.e. large δV and large |n|. We restrict

to the generic case 2h /∈ Z+.

4.2.1 Both points outside the horizon

Suppose now that both the source and field point are outside the horizon, R > RH and

R′ > RH . Then B± are both non-zero, so in the regime of large δV and |n| we have

Σn ≈

B+e
2πnRH (δV − πn), n > 0

−B−e2π|n|RH (δV + π|n|), n < 0
, δV � 1, |n| � 1. (4.11)

The contribution of the nth term to the Green function is important when Σn is positive

and of order unity (see figure 2), with the initial spike occurring when Σn = 0. Since B±
are positive, we see that the negative n terms do not contribute (Σn is negative), while

the positive n terms are important for times of order the image number (δV ∼ n). The

importance of the contribution can be assessed from the derivative

∂Σn

∂V
≈ B+e

2πnRH , (n > 0). (4.12)
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Since this derivative is exponentially large, the width (in V ) of the region of importance is

exponentially suppressed with image number. This suggests that the large-n terms are not

very important, and (aside from brief exponentially narrowing spikes) the full behavior of

the sum will share the falloff V −2h of each individual term. Plotting the Green function

numerically supports this conclusion (figure 4 left).

The behavior of the field ψ follows from that of the Green function via the Kirchhoff

integral (3.3). It is clear from the discussion above that the Green function decays as V −2h

apart from exponentially narrowing spikes that may be safely excluded from the integral.

This late-time approximation is uniformly valid over any region of R′ outside (but not

including!) the event horizon, so the field will similarly decay as V −2h provided the initial

data is confined outside the horizon. The spikes in the Green function will be smoothed out

by the integral into finite oscillations about this decay. That is, we claim that the generic

outside-horizon, late-time behavior of fields sourced by initial data outside the horizon is

ψ ∼ ψ0V
−2h, R > RH , V →∞ (4.13)

where ψ0 is an arbitrary function of R,Φ and an O(1) function of V .

4.2.2 Field point on the horizon and source point outside

If the field point is now on the horizon (R = RH) while the source is still outside (R′ > RH),

then B− = 0 and at large δV and |n| we have

Σn ≈

B+e
2πnRH (δV − πn), n > 0

B+e
−2π|n|RH (δV − πn)−A−e2π|n|RH , n < 0

, δV � 1, |n| � 1. (4.14)

which may be compared with eq. (4.11). The formula for the positive n terms is identical,

and these terms again contribute at δV ∼ n. However, now the negative n terms contribute

as well, starting at even later times δV ∼ e4π|n|RH (where Σn becomes positive). The

derivatives in these regimes are given by

n > 0 :
∂Σn

∂V
≈ B+e

2π|n|RH , (n→∞, δV & πn), (4.15)

n < 0 :
∂Σn

∂V
≈ B+e

−2π|n|RH
(
n→ −∞, δV &

A−
B+

e4π|n|RH
)
, (4.16)

which may be compared to eq. (4.12). The positive n terms again have a large derivative,

indicating an exponentially narrow contribution to the Green function. However, the newly

contributing negative n terms have a small derivative, indicating an exponentially wide

spike in the Green function as a function of V . Thus the negative n spikes should be

very important at late times, and there is no reason to expect that the sum has the same

falloff as an individual spike. Plotting the Green function (figure 4 right) confirms the

exponentially wide spikes and shows that the actual decay is V −h.

We can understand this rate through the following heuristic argument. Let us label the

exponentially wide spikes by m = −n, so that m is a positive integer. As discussed above,

– 12 –



J
H
E
P
0
5
(
2
0
2
0
)
0
9
4

Figure 5. Illustration of transient V −h decay before ultimate V −2h decay for field points near the

horizon. The parameters are the same as figure 4 except we take (R−RH)/RH = 10−3.

the mth spike arrives at a time of order δV ∼ e4πmRH . (In this discussion we drop the

m-independent constants A− and B+.) At the precise time of arrival we have Σm = 0, but

shortly thereafter (including the majority of the time before the arrival of the next spike)

we have Σm ∼ e2πmRH � 1. Thus we may approximate each image’s contribution Gm to

the green function as its large-Σ behavior Gm ∼ Σ−2h
m [eqs. (A.14) and (4.8)]. Focusing on

the period of order δV ∼ e4πmRH before the next spike has arrived, we may equivalently

express this in terms of m or δV as

Gm ∼ Σ−2h
m ∼ e−4πhmRH ∼ (δV )−h, δV ∼ e4πmRH , (4.17)

recalling that m-independent constants are dropped. This shows the (δV )−h decay visible

in figure 4. In essence, each image decays as Cm(δV )−2h, but the effective amplitudes Cm
grow as (δV )h, resulting in an overall (δV )−h decay.

By similar arguments made for eq. (4.13) above, we expect that the generic behavior

of fields sourced by initial data outside the horizon is thus

ψ ∼ ψHV −h, R = RH , V →∞ (4.18)

where ψH is an arbitrary function of Φ and an O(1) function of V .

For later comparison it will be helpful to have a more precise expression for the time

of arrival of the nth spike. This is obtained by letting δV � n and Σn = 0 for δV , giving

δV ∼ πn, n→∞, (4.19)

δV ∼ e2RH(Φ−Φ′)

4RH

R′ +RH
R′ −RH

e4π|n|RH , n→ −∞. (4.20)

If the field point is near the horizon but not exactly on it, one expects a transient

period of V −h decay followed by final decay of V −2h. Plotting the Green function confirms

this expectation (figure 5). The field ψ sourced by initial data outside the horizon will

similarly show this transition from V −h to V −2h when evaluated near the horizon.

4.2.3 Both points on the horizon

If both the source and field point are on the horizon (R = R′ = RH), then we have the

simple expression

Σn = 1− cosh (RH(δΦ0 − 2πn)) . (4.21)
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In particular, the Green function is actually independent of V (apart from the causal factor

Θ(sn)). Of course, for a source point at at any small distance off the horizon the Green

function does decay, with the rate determined by whether the field point is on or off the

horizon. That is, the late-time behavior of the Green function is highly non-uniform as the

points approach the horizon. Determining the decay rate of fields with initial data that

extends to the horizon would require a careful estimate of the Kirchhoff integral (3.3) using

the full behavior of the Green function near the horizon. We leave this to future work.

5 Null geodesics

We now study the null geodesics of the BTZ spacetime in order to understand the behavior

of the Green function that gives rise to the instability. Let pµ denote the four-momentum

of the null geodesic, where pV > 0 is our time orientation. Using the null condition and

the two Killing fields ζ = ∂V (horizon Killing field) and ξ = ∂Φ (axial Killing field), we

have three conserved quantities,

gµνξ
µpν = L, gµνζ

µpν = L− E, gµνp
µpν = 0. (5.1)

The quantity L is interpreted as the angular momentum, while E is the energy according to

the “static” Killing field ∂T = ζ−ξ = ∂V −∂Φ. Note that E can be negative for trajectories

inside the “ergoregion” R <
√

2RH , where ∂T is spacelike [31].

The special case E = L = 0 corresponds to the horizon generators,

E = L = 0 : p ∝ ∂V , R = RH (horizon generators). (5.2)

Henceforth we will consider the region outside and including the horizon,

R ≥ RH > 0. (5.3)

We will further assume E 6= 0 and introduce

b =
L

E
, kµ =

dxµ

dλ
=

pµ

|E|
, (5.4)

which introduces an energy-rescaled affine parameter λ that increases toward the future.

The case E = 0, L 6= 0 can be handled straightforwardly by the limit b → ∞, and we

shall see that the case E = L = 0 is recovered (more subtly) by b → 1. Solving eqs. (5.1)

assuming R ≥ RH > 0 and E 6= 0, we find

kV =
s(R2 − bR2

H) +R2kR

(R2 −R2
H)2

, (5.5a)

kR = ±

√
(1− b)(−2bR2

H + (1 + b)R2)

R
, (5.5b)

kΦ = −s(1− b) + kR

(R2 −R2
H)

, (5.5c)

where s = sgn(E).

– 14 –



J
H
E
P
0
5
(
2
0
2
0
)
0
9
4

Figure 6. Trajectories of the b→ 1− null geodesics that account for the Aretakis instability. The

angle Φ used in the text co-rotates with the black hole, so we instead use ϕ = Φ+V for these plots,

treating (R,ϕ) as polar coordinates in the plane. The curves begin at a fixed R = R0 > RH and

are terminated when the particle enters the horizon at R = RH . The number of orbits scales as

1/(1− b).

The requirement that kR be real imposes an allowed region of R for each value of b.

Taking into account the assumption (5.3), we find

RH ≤R ≤ Rturn, |b| > 1 (5.6a)

RH ≤R <∞, |b| < 1, (5.6b)

with turning point radius (for |b| > 1 only)

Rturn =

√
2b

b+ 1
RH . (5.7)

Thus there are three kind of trajectories outside the horizon: transits from the (white hole)

horizon to the boundary (|b| < 1), transits from the boundary to the (black hole) horizon

(also with |b| < 1), and transits from the white hole to the black hole (|b| > 1). There are

no trajectories that begin at the boundary, turn, and end at the boundary.

The sign s = sgn(E) is fixed by the time orientation kV > 0 (equivalently pV > 0)

and may be expressed directly in terms of b, as follows. Since | − bR2
H +R2| ≥ |R2kR| for

R ≥ RH , we have sgn(kV ) = s × sgn(R2 − bR2
H) so that s = sgn(R2 − bR2

H) to ensure

kV > 0. Given the allowed ranges (5.6) of R, we find that

s = sgn(1− b). (5.8)

In the case b = 1 the sign is indeterminate, with the limits b → 1± having qualitatively

different behavior.

It is possible to solve eqs. (5.5a) entirely for the trajectory xµ(λ). Choosing the inte-

gration constants for simplicity, we find

V (λ) =
1

2

(
1 + b

1− b

)
s(1 + b)λ± sgn((1− b2)λ)R(λ)

(R2
H − (1 + b)2λ2)

− 1

2
Φ±(λ) (5.9a)
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R(λ) =

√
2bR2

H + (1− b)(1 + b)2λ2

1 + b
(5.9b)

Φ(λ) = ∓ 1

RH
log

∣∣∣∣∣
√∣∣∣∣1 + b

1− b

∣∣∣∣R(λ)− sgn((1− b2)λ)RH
RH ± s(1 + b)λ

∣∣∣∣∣ , (5.9c)

where ± is the sign of dR/dλ (i.e. + when outgoing and − when ingoing). The three

integration constants may be restored by shifting V , Φ, and λ by (separate) constant

values. With the above choices, the range of λ is

−∞ < λ ≤ RH/(1 + b) |b| < 1, ingoing (5.10a)

RH/(1 + b) < λ <∞ |b| < 1, outgoing (5.10b)

−RH/(1 + b) < λ ≤ RH/(1 + b), |b| > 1, turning at λ = 0 (5.10c)

As λ → ±RH/(1 + b) the particle approaches the horizon R → RH , whereas as λ → ±∞
the particle approaches the boundary R→∞.

We now fix a starting radius R0 > RH and compute the total change in time (∆V =

V − V0) and angle (∆Φ = Φ−Φ0) before the particle enters the horizon. These quantities

also depends on the initial radial direction (ingoing or outgoing) when |b| > 1, since the

particle will encounter a turning point if initially directed outwards. Considering only

trajectories that end at the horizon, We will label initially ingoing trajectories (present for

all b) with “nt” (for “no turning point”) and initially outgoing trajectories (present only

for |b| > 1) with “t” for “has a turning point”. Eqs. (5.9) show that the lapse in time and

angle is

∆Vnt =
b

2RH(1− b)
− Ra − sgn(1− b)R0

2(R2
0 −R2

H)
− 1

2
∆Φnt, ∀b (5.11a)

∆Φnt = −sgn(1− b)
RH

log

∣∣∣∣ R0 +RH
RH + sgn(1− b)Ra

∣∣∣∣ , ∀b (5.11b)

∆Vt =
b

2RH(1− b)
− −Ra + sgn(b)R0

2(R2
0 −R2

H)
− 1

2
∆Φt, |b| > 1 (5.11c)

∆Φt = −sgn(b)

RH
log

∣∣∣∣(1 + b

1− b

)
R0 −RH

RH − sgn(b)Ra

∣∣∣∣ , |b| > 1 (5.11d)

where

Ra =

√
R2

0(1 + b)− 2bR2
H

1− b
. (5.12)

If the quantity Ra is not real, then there are no geodesics linking R0 to the horizon. This

occurs when |b| < 1 and the associated turning point is smaller than R0.

Eqs. (5.11) display divergences as b → 1, corresponding to geodesics that circle the

horizon many times before falling in. However, as b → 1+ (i.e. from above) the turning

point moves to the horizon and there are no longer any trajectories linking R0 > RH to the

horizon (also seen by Ra becoming imaginary). These b→ 1+ trajectories emerge from the

past horizon and orbit arbitrarily many times near the horizon radius before falling in, and
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are not relevant to the late-time behavior of fields from initial data confined outside the

horizon, for which R0 can be considered fixed.5 For the relevant trajectories b → 1− (i.e.

from below) that originate from some fixed R0 > RH , we may expand to obtain (dropping

the label “nt”)

∆V =
1

2RH(1− b)
− 1√

1− b
1√

2(R2
0 −R2

H)
+

1

4RH
log

∣∣∣∣1− b2

(
R0 +RH
R0 −RH

)∣∣∣∣+O (1)

(5.13a)

∆Φ = − 1

2RH
log

∣∣∣∣1− b2

(
R0 +RH
R0 −RH

)∣∣∣∣+O (1) . (5.13b)

To leading order we thus have

∆V ∼ R0 +RH
R0 −RH

e2RH∆Φ

4RH
, b→ 1−. (5.14)

We now relate this result to the BTZ Green function between points (V ′, R′,Φ′) and

(V,RH ,Φ). Recall that the BTZ Green function consists of a sum over image charges, such

that the spikes in the Green function correspond to geodesics with initial values at the

image charges. These initial values are given by

V0 = V ′, R0 = R′, Φ0 = Φ′ + 2πn, (5.15)

where n is any integer. These equations also imply ∆V = δV and ∆Φ = Φ − Φ′ − 2πn.

Substituting in, we see that (5.14) agrees exactly with the arrival times of the n → −∞
BTZ spikes (4.20), confirming that the b→ 1− geodesics are “responsible” for the Aretakis

instability. In figure 6 we plot a selection of these trajectories.

Eqs. (5.11) also display weaker, logarithmic divergences as b → −1−, corresponding

to geodesics that are initially outgoing and reach a turning point at very large radius.

As opposed to the b → 1− that spend a lot of time near the black hole, these b → −1−

geodesics spend a lot of time near the boundary. Expanding eqs. (5.11a) and (5.11b) (and

dropping the label “t”), we find

∆V = − 1

2RH
log

∣∣∣∣(1 + b)
R0 −RH

4RH

∣∣∣∣+O(1) (5.16a)

∆Φ =
1

RH
log

∣∣∣∣(1 + b)
R0 −RH

4RH

∣∣∣∣+O(1) (5.16b)

Thus to leading order we have

∆V ∼ −1

2
∆Φt, b→ −1− (5.17)

Making the substitutions ∆V = δV and ∆Φ = Φ − Φ′ − 2πn (see eq. (5.15)) now with

n > 0 to make ∆V positive, eq. (5.17) agrees precisely with the arrival times (4.19) of the

5If we scale R0 → RH at the same rate as b→ 1+ then we can recover the geodesics that turn arbitrarily

close to the horizon. These are likely relevant to the case where initial data extends to the horizon.

– 17 –



J
H
E
P
0
5
(
2
0
2
0
)
0
9
4

weak late-time spikes n → ∞ in the BTZ Green function. Thus these weaker spikes are

associated with the b→ −1− geodesics.

As discussed in detail in section 3.1, the Green function also contains spikes that

are associated with wavefronts that bounce off the boundary. Each such spike is in effect

associated with two geodesics (one outgoing and one ingoing), which must be glued together

by some rule determined by solving the wave equation near the boundary. Since the

Aretakis instability is visible from the above analysis of the ordinary geodesics alone, we

do not study this phenomenon further.

To summarize, we have shown that geodesics originating from a fixed point R0 > RH
spend arbitrarily long time outside the horizon only near the special limits b → 1− and

b→ −1−. The first limit b→ 1− corresponds to geodesics that orbit many times near the

horizon and contribute wide, important spikes to the BTZ Green function at late times.

The second limit b→ −1− corresponds to geodesics that spend a long time near the timelike

boundary of the spacetime and contribute narrow, unimportant spikes at late times.
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A AdS3 Green function

Here, we review the derivation of the Dirichlet retarded Green function in AdS3 given

in [24], correcting some trivial errors and applying some identities to obtain a nice form.

The Green function equation (3.2) in Poincaré coordinates (2.4) becomes(
∂2
z −

1

z
∂z − ∂2

t + ∂2
x −

µ2

z2

)
G = zδ(t− t′)δ(z − z′)δ(x− x′). (A.1)

Mode solutions to the homogeneous equation are given by

ψkω(z)e−iωteikx, (A.2)

where ψkω(z) are related to Bessel functions [32]. We satisfy the Dirichlet condition by

choosing

ψkω = zJ2ν(qz), ω2 = q2 + k2, ν =
1

2

√
1 + µ2. (A.3)

We may use these to construct the inhomogeneous solution for G as follows. Integrat-

ing (A.1) over small interval around t′ replaces one of the delta functions with a jump

condition,

∂tG|t→t′+ − ∂tGt→t′− = −zδ(x− x′)δ(z − z′). (A.4)
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The retarded Green function vanishes for t < t′ by definition, so (A.4) reduces to an initial

condition

∂tG|t→t′+ = −zδ(x− x′)δ(z − z′). (A.5)

We resolve the remaining delta functions using the relevant completeness relations

δ(x− x′) =
1

2π

∫ ∞
−∞

dkeik(x−x′), δ(z − z′) = z′
∫ ∞

0
dqqJ2ν(qz)J2ν(qz′), (A.6)

giving

∂tG|t→t′+ = −zz
′

2π

∫ ∞
−∞

dkeik(x−x′)
∫ ∞

0
dqqJ2ν(qz)J2ν(qz′). (A.7)

The retarded Green function must vanish for t < t′, satisfy (A.7) at t = t′, and be a

homogeneous solution of (A.1) for t > t′. In light of the homogeneous mode solutions (A.2)–

(A.3), we may satisfy the latter two conditions by multiplying the right-hand side of (A.7)

by −iωe−iω(t−t′). Adjoining a step function Θ(t − t′) fulfills the first condition, giving

simply time evolve this condition to get

G = −Θ(t− t′)2zz′

π

∫ ∞
0

dk

∫ ∞
0

dq
q√

q2 + k2

× sin(
√
q2 + k2(t− t′)) cos(k(x− x′))J2ν(qz)J2ν(qz′), (A.8)

where we also use that fact that the integrand is odd in k and even in q. Since the Green

function vanishes as we approach the boundary z → 0 (or z′ → 0), this is the Dirichlet

retarded Green function as desired. Note that with our choice of Dirichlet boundary con-

ditions, G is conformal to the retarded propagator on the upper-half plane of Minkowski

space with a mirror at infinity [29] with conformal factor zz′.

We perform the k-integral using eq. (3.876-1) of [33], giving

G = −Θ(t− t′)Θ(t− t′ − x+ x′)zz′
∫ ∞

0
dqqJ2ν(qz)J2ν(qz′)J0(q

√
(t− t′)2 − (x− x′)2) .

(A.9)

The remaining q integral is resolved with eq. (6.578-8) of [33], giving the AdS3 Green

function as

GAdS3
ret = −Θ(t− t′)Θ(Σ)


2

π
√

2π
√

sinw
P

1/2
2ν−1/2(cosw) if Σ < 2

−1√
2π

sin (2νπ)√
sinhu

e−
iπ
2 Q

1/2
2ν−1/2(coshu) if Σ > 2

(A.10)

where

coshu = − cosw = 1− Σ, Σ =
(t− t′)2 − (x− x′)2 − (z − z′)2

2zz′
. (A.11)

This is the form given in [24], correcting a couple of typos. We can simplify further using

eqs. (14.5.17), (14.3.10), and (14.5.11) in [34] to obtain

GAdS3
ret =

Θ(t− t′)Θ(Σ)

π
√
|Σ(Σ− 2)|

− cos (2ν arccos (1− Σ)) if Σ < 2

sin (2νπ)e−2νarccosh(Σ−1) if Σ > 2
. (A.12)
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This form explicitly shows the inverse square root singularity at the wavefronts Σ = 0, 2.

Another form of the result is

GAdS3
ret =

Θ(t− t′)Θ(Σ)

2π
√
|Σ(Σ− 2)|

−
(
Q(Σ)2ν +Q(Σ)−2ν

)
if Σ < 2

2 sin (2πν)Q(Σ)−2ν if Σ > 2
, (A.13)

where Q(Σ) = |1− Σ|+
√

Σ(Σ− 2). The large-Σ behavior is

GAdS3
ret ∼ sin(2πν)

4−ν

π
Σ−2ν−1, Σ→∞. (A.14)

B Massless axisymmetric perturbations: Aretakis’ method

Using the technique employed originally by Aretakis for extreme black holes in four di-

mensions [1, 2], in this appendix we show that massless linear perturbations arising from

axisymmetric data with support extending to the horizon conserve a charge on the extremal

BTZ horizon. As in the four dimensional case, the associated conservation law prevents

derivative decay, and higher-order derivatives grow polynomially. Assuming decay of the

perturbation itself, we obtain rates for the derivatives by a hierarchy argument.

To begin we express the massless wave operator in “radially inverted” ingoing cororat-

ing coordinates (V, ρ,Φ), where ρ = RH/R,

2ψ = (ρ2 − 1)f [ψ] + ∂V (1− 2ρ∂ρ)ψ − ∂Φ

(
(1 + ρ2)− ρ

RH
∂Φ

)
ψ. (B.1)

Here, f is a 2nd-order differential operator having smooth coefficients in a neighborhood of

ρ = 1 (the horizon) whose precise form is irrelevant for the arguments to follow. Integrating

the wave equation on a cylindrical section of the horizon ρ = 1 extending from an initial

time V1 to some final time V2 leads to the conservation law∫
S1

∫ V2

V1

dV ∂V (1− 2ρ∂ρ)ψ|ρ=1 = 0, (B.2)

where we have used that
∫
S1 ∂Φψ = 0 for sufficiently smooth ψ. The conservation law is

stated locally as

∂VH|H = 0, (B.3)

where

H ≡
∫
S1

(1− 2ρ∂ρ)ψ|ρ=1. (B.4)

The conservation law implies that if ψ decays to zero on the horizon as V →∞, the radial

derivative must asymptote to a constant. Compactly,

[ψH → 0 and (B.3)] =⇒ ∂ρψH → −
H

2
. (B.5)

Furthermore, if both ψ and its tangential V derivatives along the horizon decay asymptot-

ically as V →∞, then higher-order radial derivatives grow at rates

∂nρψH ∼ cn(H)V n−1, V →∞, (B.6)

where cn is an order one constant depending on the specific choice initial data through H.
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To demonstrate the blow-up of the first derivative, take the radial derivative of the wave

equation ∂ρ2ψ = 0, pull back to the horizon, and average over the circular cross section:

0 =

∫
S1

[
8RH∂ρψ + ∂V

(
ψ − 4∂ρψ − 2∂2

ρψ
) ]
H
. (B.7)

Using our decay assumptions and results above for the horizon rates ψ → 0, ∂V ψ → 0, and

∂ρψ → −H/2 as V →∞, integration of (B.7) gives linear growth

∂2
ρψH ∼ −4RH HV, V →∞. (B.8)

The derivation of the rates for higher derivatives proceeds analogously, and straightforward

induction yields (B.6).

C Mode approach

C.1 Preliminaries

The starting point for our mode calculations is the introduction of corotating, constant

proper volume coordinates given by

T = T, y =
2R2

H

R2 −R2
H

, η = X − T. (C.1)

In these coordinates the separated mode solutions resemble those found for perturbations

of AdS2 with an electic field at small frequencies, whose properties have been exhaustively

analysed in previous studies of the Aretakis instability [5]. Decomposing into modes, the

field takes the form of a Fourier-Laplace integral

ψ =
1

2π

∞∑
m=−∞

eimη
∫ ∞
−∞

dω e−iωTψmω(y). (C.2)

For Dirichlet data, the field modes ψmω are determined by a radial convolution integral

containing mode decomposed initial data and an integral kernel called the “transfer func-

tion”. The range of the integral spans the support of the data, which we choose to be

bounded away from the event horizon and infinity. Since we are considering generic mode-

evolution of this data, we choose to work directly with the transfer function, denoted here

as gm(y, y′;ω). It satisfies the inhomogeneous equation

g′′m(y, y′;ω) +

(
ω2

16R2
H

+
ω(ω + 2m)

8R2
Hy

+
h(1− h)

y2

)
gm(y, y′;ω) =

1

4R2
H

δ(y − y′), (C.3)

where prime denotes ordinary y-differentiation. Here again, h is as defined in (4.8).

The proceeding arguments may be understood directly from the BTZ wave equation

and Kirchhoff representation of the mode decomposed retarded propagator

G =
1

2π

∞∑
m=−∞

eim(η−η′)
∫ ∞
−∞

dω gm(y, y′;ω)e−iω(T−T ′). (C.4)
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To ensure causal evolution, we choose the transfer function corresponding to the re-

tarded solution. This choice dictates our selection of homogeneous radial functions subject

to boundary conditions corresponding to ingoing waves at the horizon Rin and Dirichlet

falloff infinity RD ∼ yh as y → 0. These solutions exist provided µ2 > −1 [27]. Imposing

a C0 match of the two homogeneous solutions at the support of the delta function allows

the transfer function to be written as

gm(y, y′;ω) =
1

4R2
H

Rin(y>)RD(y<)

W [Rin(y′), RD(y′)]
, (C.5)

where y< = min(y, y′) and y> = max(y, y′). Here we have introduced the conserved Wron-

skian of the two solutions W [Rin, RD] = RinR
′
D − RDR

′
in. We express the homogeneous

solutions in terms of Whittaker functions as

Rin = Wiq,ν

(
−iωy
2RH

)
, RD = M−iq,ν

(
iωy

2RH

)
, (C.6)

where we have defined

q =
1

2RH

(
m+

ω

2

)
. (C.7)

These solutions are linearly independent provided ν is non-integer. This special case will

not be considered here. Using eq. (13.14.27) of ref. [34] for the Wronskian of these two

functions, we find that (C.5) can be written as

gm(y, y′;ω) =
(−1)h

2RH

Γ(h− iq)
iωΓ(2h)

Wiq,ν

(
−iωy>
2RH

)
M−iq,ν

(
iωy<
2RH

)
. (C.8)

The coordinates (T, y, η) do not extend to the horizon of the black hole, and thus fail

to characterize Aretakis’ instability. For a suitable extension to RH we now readopt the

“horizon coordinates” V and Φ (see eq. (2.9)) and invert y,

V = T +R∗, Y =
1

y
, Φ = η + Φ]. (C.9)

Explicitly, R∗ and Φ] are given in terms of Y by

R∗ = − 1

4RH

(√
1 + 2Y

Y
+ log

(
1 + Y +

√
1 + 2Y

Y

))
, (C.10a)

Φ] =
1

2RH
log

(
1 + Y +

√
1 + 2Y

Y

)
. (C.10b)

In these coordinates the horizon sits at Y = 0. On the horizon, ∂V is tangent and Φ labels

generators. While at infinity, V = T and Φ = η. From the T −T ′ and η−η′ dependence in

the phases e−iω(T−T ′) and eim(η−η′) of the mode decomposition (C.4), we see that, under

the coordinate transormation (C.9), the radial Green function gmω is transformed by

gm → e−im(Φ]−Φ′])+iω(R∗−R′∗)gm. (C.11)

Both the primed and unprimed phases may be determined from the expression

eiωR∗−imΦ] =

(
Y

1 + Y +
√

1 + 2Y

)iq
exp

(
− iω

4RH

√
1 + 2Y

Y

)
(C.12)

by complex conjugating at the primed point.
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C.2 Modes at late times near the horizon

To obtain the late-time behavior of a fixed m mode, we apply the asymptotic theory of

Fourier-Laplace transforms [35] wherein the functional behavior as T → ∞ is determined

by the leading-order non-analytic term in an asymptotic expansion of the Laplace transform

about its uppermost singular point in the complex ω plane.

Inspection of (C.8) reveals that the transfer function has its uppermost singular point

at ω = 0. To determine the late-behavior near the horizon, we expand gmω in an asymptotic

series about ω = 0, keeping ω/Y held fixed. This limit motivates the definition of the near-

far late-time transfer function

gnf,lt
m := gm(ω → 0) fixing ω/Y, (C.13)

which excludes all terms analytic in ω with the exception of those involving ω/Y . In the

late-time limit the M function simplifies via eq. (13.14.14) of ref. [34], and we find

gnf,lt
m = −Γ(h− iq0)

4R2
HΓ(2h)

[
Y iq0Y ′

−h
e2iRHq0Φ′]

]
(−iω/2RH)h−1Wiq0,ν

(
− iω

2RHY

)
e
− iω

4RHY .

(C.14)

Here we have defined

q0 = q|ω=0 =
m

2RH
. (C.15)

To perform the inverse transform, we use the identity eq. (9) in section 5.20, of ref. [36].

With this, the late-time result, stated terms of the shifted time coordinate

δV = (V − V ′) (C.16)

introduced previously, is

gnf,lt
m (Y, Y ′; δV ) = −Y

′−he2iRHq0Φ′]Γ(h− iq0)

4R2
HΓ(2h)Γ(1− h− iq0)

[
(2RHδV )−h−iq0(1 + 2RH Y δV )−h+iq0

]
.

(C.17)

We conclude this section with a few remarks regarding our result for gnf,lt
m . On the

horizon, the decay of a fixed m-mode is given by δV −h. Higher transverse derivatives

∂nR|H exhibit the Aretakis instability, growing at rate δV −h+n. These decay and instability

rates are consistent with those determined from the sum over images using the method

of images above in the main text. However, at large m, the magnitude of gnf,lt
m grows as

m2h−1, indicating that the mode sum does not converge pointwise (recall that h ≥ 1/2).

The high-m regime of the transfer function probes the roughest part of the initial data’s

Φ-dependence. If the data is sufficiently regular, with differentiability exceeding 2h − 1,

then its Fourier coefficients will decay in m at a faster rate than the m-growth exhibited

by the coefficients in the transfer function, such that formal application of the Kirchhoff

integral (3.3) provides a finite result for the field. However, the field will then be less regular

than the initial data, in contradiction with rigorous results of Warnick [37]. Thus our results

for each m-mode cannot be straightforwardly promoted to results about the whole field,

indicating some nonuniformity in the late-time and large-m limits. Nevertheless, the rates

predicted by the mode expansion do agree with those of the image sum. We hope to explore

these issues further in future work.
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C.3 Non-periodic limit — AdS3

The late-time behavior (C.17) of each angular mode displays growth of transverse deriva-

tives, consistent with the full extremal BTZ spacetime possessing the Aretakis instability.

However, the angular modes also apply to the AdS3 spacetime, which has no such insta-

bility. From the perspective of the mode approach, the only difference between AdS3 and

BTZ is that the latter admits only a subset of modes compatible with the periodicity of Φ

(i.e., m is continuous for AdS3 and quantized for BTZ). That is, formally speaking we have

Gnf,lt
BTZ =

∞∑
m=−∞

eim(Φ−Φ′)gnf,lt
m , (C.18)

Gnf,lt
AdS3

=
1

2π

∫ ∞
−∞

eim(Φ−Φ′)gnf,lt
m dm. (C.19)

We have already noted that the mode sum (C.18) does not converge due to gnf,lt
m behaving

as m2h−1 at large m, and the integral (C.19) is likewise divergent. However, the following

formal manipulation assigns it a value that agrees with AdS3 expectations. Using eq. (C.17)

and expressing the integral (C.19) in terms of q0 defined in eq. (C.15), we have

Gnf,lt
AdS3

= − [Y ′(2RHδV )(1 + 2RHY δV )]−h

2RHΓ(2h)

∫ ∞
−∞

dq0
Γ(h− iq0)

Γ(1− h− iq0)
eiq0a. (C.20)

where a =
[
2RH(Φ− Φ′ + Φ′]) + log

(
1+2RHY δV

2RHδV

)]
.

Assuming the generic case 2h /∈ Z+, the integrand contains poles at q0 = −i(h + n)

with n ∈ Z+. By Cauchy’s theorem we may express the integral as a sum over these poles,

together with a contribution from a semicircular arc at large radius in the lower-half plane.

This arc contribution does not vanish, and in fact it is infinite on account of the behavior

q2h−1
0 of the integrand at large |q0|. Ignoring this infinite contribution provides a natural

regulator that leaves a finite result for the integral, namely the residue sum. This sum can

be done in closed form using the formula

∞∑
n=0

(−1)ne(n+h)a

Γ(n+ 1)Γ(1− 2h− n)
=
eah(1− ea)−2h

Γ(1− 2h)
. (C.21)

The result for Gnf,lt
AdS3

, regulated by dropping the arc contribution, is then

Gnf,lt
AdS3

= −Y
′−he2RHh(Φ−Φ′+Φ′])

2RHΓ(1− 2h)Γ(2h)

[
1− e2RH(Φ−Φ′+Φ′])

(
Y +

1

2RHδV

)]−2h

(2RHδV )−2h .

(C.22)

The dependence on Y δV in the mode result (C.17) has now disappeared, and correspond-

ingly eq. (C.22) shows no Aretakis instability (all transverse derivatives decay). In fact,

the second term in square brackets is subleading in the limit we consider (δV →∞ fixing

Y δV ),6 so that to leading order we have simply

Gnf,lt
AdS3

= −Y
′−he2RHh(Φ−Φ′+Φ′])

2RHΓ(1− 2h)Γ(2h)
(2RHδV )−2h . (C.23)

6The corresponding term appeared in a phase in eq. (C.20) and could not be dropped at that stage.
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Although there are many unresolved issues with convergence and regulators, the dis-

cussion in this appendix supports the following general picture: each angular mode in BTZ

or AdS3 displays the Aretakis instability, but these are only promoted to an instability

arising from compactly supported initial data in the BTZ spacetime, where a subset of

modes is selected out by the periodic identification. This is consistent with the simple idea

that a single angular mode in BTZ has compact spatial support, while a corresponding

mode in the AdS3 spacetime does not.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[INSPIRE].

[3] S. Aretakis, Horizon instability of extremal black holes, Adv. Theor. Math. Phys. 19 (2015)

507 [arXiv:1206.6598] [INSPIRE].

[4] J. Lucietti, K. Murata, H.S. Reall and N. Tanahashi, On the horizon instability of an

extreme Reissner-Nordström black hole, JHEP 03 (2013) 035 [arXiv:1212.2557] [INSPIRE].

[5] S.E. Gralla and P. Zimmerman, Scaling and universality in extremal black hole perturbations,

JHEP 06 (2018) 061 [arXiv:1804.04753] [INSPIRE].

[6] S.E. Gralla and P. Zimmerman, Critical exponents of extremal Kerr perturbations, Class.

Quant. Grav. 35 (2018) 095002 [arXiv:1711.00855] [INSPIRE].

[7] S.E. Gralla, A. Zimmerman and P. Zimmerman, Transient instability of rapidly rotating

black holes, Phys. Rev. D 94 (2016) 084017 [arXiv:1608.04739] [INSPIRE].

[8] S. Aretakis, A note on instabilities of extremal black holes under scalar perturbations from

afar, Class. Quant. Grav. 30 (2013) 095010 [arXiv:1212.1103] [INSPIRE].

[9] S. Aretakis, The characteristic gluing problem and conservation laws for the wave equation

on null hypersurfaces, arXiv:1310.1365 [INSPIRE].

[10] E.W. Leaver, Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in

general relativity, and the two-center problem in molecular quantum mechanics, J. Math.

Phys. 27 (1986) 1238.

[11] M. Casals, S.E. Gralla and P. Zimmerman, Horizon instability of extremal Kerr black holes:

nonaxisymmetric modes and enhanced growth rate, Phys. Rev. D 94 (2016) 064003

[arXiv:1606.08505] [INSPIRE].

[12] M. Casals and P. Zimmerman, Perturbations of an extremal Kerr spacetime: analytic

framework and late-time tails, Phys. Rev. D 100 (2019) 124027 [arXiv:1801.05830]

[INSPIRE].

– 25 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1006.0283
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0283
https://doi.org/10.1007/s00023-011-0110-7
https://arxiv.org/abs/1110.2009
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2009
https://doi.org/10.4310/ATMP.2015.v19.n3.a1
https://doi.org/10.4310/ATMP.2015.v19.n3.a1
https://arxiv.org/abs/1206.6598
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6598
https://doi.org/10.1007/JHEP03(2013)035
https://arxiv.org/abs/1212.2557
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2557
https://doi.org/10.1007/JHEP06(2018)061
https://arxiv.org/abs/1804.04753
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.04753
https://doi.org/10.1088/1361-6382/aab140
https://doi.org/10.1088/1361-6382/aab140
https://arxiv.org/abs/1711.00855
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.00855
https://doi.org/10.1103/PhysRevD.94.084017
https://arxiv.org/abs/1608.04739
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.04739
https://doi.org/10.1088/0264-9381/30/9/095010
https://arxiv.org/abs/1212.1103
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1103
https://arxiv.org/abs/1310.1365
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1365
https://doi.org/10.1063/1.527130
https://doi.org/10.1063/1.527130
https://doi.org/10.1103/PhysRevD.94.064003
https://arxiv.org/abs/1606.08505
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.08505
https://doi.org/10.1103/PhysRevD.100.124027
https://arxiv.org/abs/1801.05830
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.05830


J
H
E
P
0
5
(
2
0
2
0
)
0
9
4

[13] P. Bizon and H. Friedrich, A remark about wave equations on the extreme

Reissner-Nordström black hole exterior, Class. Quant. Grav. 30 (2013) 065001

[arXiv:1212.0729] [INSPIRE].

[14] H. Godazgar, M. Godazgar and C.N. Pope, Aretakis charges and asymptotic null infinity,

Phys. Rev. D 96 (2017) 084055 [arXiv:1707.09804] [INSPIRE].

[15] S. Bhattacharjee et al., On late time tails in an extreme Reissner-Nordström black hole:

frequency domain analysis, Class. Quant. Grav. 35 (2018) 205002 [arXiv:1805.10655]

[INSPIRE].

[16] J. Lucietti and H.S. Reall, Gravitational instability of an extreme Kerr black hole, Phys. Rev.

D 86 (2012) 104030 [arXiv:1208.1437] [INSPIRE].

[17] S. Hadar and H.S. Reall, Is there a breakdown of effective field theory at the horizon of an

extremal black hole?, JHEP 12 (2017) 062 [arXiv:1709.09668] [INSPIRE].

[18] K. Murata, H.S. Reall and N. Tanahashi, What happens at the horizon(s) of an extreme

black hole?, Class. Quant. Grav. 30 (2013) 235007 [arXiv:1307.6800] [INSPIRE].

[19] L.M. Burko and G. Khanna, Linearized stability of extreme black holes, Phys. Rev. D 97

(2018) 061502 [arXiv:1709.10155] [INSPIRE].
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