Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Disentangling brain functional network remodeling in corticobasal syndrome: A multimodal MRI study

MPG-Autoren
/persons/resource/persons191585

Ballarini,  Tommaso
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons199212

Albrecht,  Franziska
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19872

Mueller,  Karsten
Methods and Development Unit Nuclear Magnetic Resonance, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Method and Development Group Neural Data Science and Statistical Computing, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19981

Schroeter,  Matthias L.
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic for Cognitive Neurology, University of Leipzig, Germany;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Ballarini_2020.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ballarini, T., Albrecht, F., Mueller, K., Jech, R., Diehl-Schmid, J., Fliessbach, K., et al. (2020). Disentangling brain functional network remodeling in corticobasal syndrome: A multimodal MRI study. NeuroImage: Clinical, 25: 102112. doi:10.1016/j.nicl.2019.102112.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-4E0C-8
Zusammenfassung
Objective


The clinical diagnosis of corticobasal syndrome (CBS) represents a challenge for physicians and reliable diagnostic imaging biomarkers would support the diagnostic work-up. We aimed to investigate the neural signatures of CBS using multimodal T1-weighted and resting-state functional magnetic resonance imaging (MRI).


Methods



Nineteen patients with CBS (age 67.0 ± 6.0 years; mean±SD) and 19 matched controls (66.5 ± 6.0) were enrolled from the German Frontotemporal Lobar Degeneration Consortium. Changes in functional connectivity and structure were respectively assessed with eigenvector centrality mapping complemented by seed-based analysis and with voxel-based morphometry. In addition to mass-univariate statistics, multivariate support vector machine (SVM) classification tested the potential of multimodal MRI to differentiate patients and controls. External validity of SVM was assessed on independent CBS data from the 4RTNI database.


Results


A decrease in brain interconnectedness was observed in the right central operculum, middle temporal gyrus and posterior insula, while widespread connectivity increases were found in the anterior cingulum, medial superior-frontal gyrus and in the bilateral caudate nuclei. Severe and diffuse gray matter volume reduction, especially in the bilateral insula, putamen and thalamus, characterized CBS. SVM classification revealed that both connectivity (area under the curve 0.81) and structural abnormalities (0.80) distinguished CBS from controls, while their combination led to statistically non-significant improvement in discrimination power, questioning the additional value of functional connectivity over atrophy. SVM analyses based on structural MRI generalized moderately well to new data, which was decisively improved when guided by meta-analytically derived disease-specific regions-of-interest.


Conclusions


Our data-driven results show impairment of functional connectivity and brain structure in CBS and explore their potential as imaging biomarkers.