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Abstract: We address feasibility of continuous-variable quantum key distribution using bright
multimode coherent states of light and homodyne detection. We experimentally verify the
possibility to properly select signal modes by matching them with the local oscillator and this
way to decrease the quadrature noise concerned with unmatched bright modes. We apply the
results to theoretically predict the performance of continuous-variable quantum key distribution
scheme using multimode coherent states in scenarios where modulation is applied either to all
the modes or only to the matched ones, and confirm that the protocol is feasible at high overall
brightness. Our results open the pathway towards full-scale implementation of quantum key
distribution using bright light, thus bringing quantum communication closer to classical optics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum key distribution (QKD) is well known to be a practical application of quantum
information science. It is aimed at providing trusted parties with the means to share a secret
cryptographic key to be further used in classical symmetrical cryptosystems (such as widely
used AES system), so that security of the key is guaranteed by the very laws of quantum physics
(see [1–4] for reviews). The first suggestions of QKD, namely discrete-variable protocols, were
based on single-photon states [5], and are being practically realized with weak coherent pulses,
typically accompanied by so-called decoy states to reveal the photon-number splitting attacks [6].
In order to waive the need highly efficient single-photon detectors, continuous-variable (CV)

QKD was suggested on the basis of quadrature modulation of squeezed light, subsequently
measured using homodyne detectors [7]. It was later extended to the use of coherent states,
potentially enabling QKD without nonclassicality and with off-the-shelf telecommunication
components [8–10] at a cost of acceptable reduction of efficiency and robustness of the protocols
[11–13], also compared to the discrete-variable protocols [14]. This development brought QKD
closer to a border between classical and quantum communication. However, light that carries
information in classical optics is typically bright and multimode. It allows to easily operate
the intensive and stable beams and to increase information capacity by multiplexing. Thus
as the further development towards the use of bright light for QKD, far from the originally
suggested single-photon states, QKD was shown potentially applicable with multimode [15] and
macroscopically bright [16] nonclassical states.
Besides the conceptual interest in enabling QKD with macroscopic bright light, contrary to

the low-energy single-photon states, the high brightness can largely simplify manipulations with
the beams, such as pointing by a sender, beam guiding at intermediate stations (repeaters), and
signal recognition at a receiver. This can be especially fruitful for free-space applications with
quick link deployment and, in particular, in satellite-based channels, and can be further enforced
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by multiplexing techniques. Moreover, as the local oscillator (LO) beam, which serves as a phase
reference for the homodyne detection in CV QKD, can be advantageously generated locally
instead of being sent through the channel [17–19], the light arriving from the channel will not
have a bright component, which complicates beam manipulations and may deem auxiliary bright
modes necessary.

Themultimode structure of bright coherent light is imposed by the limitations on themodulation,
that can be applied in CV QKD, which is caused by imperfect post-processing [12,20]. Thus
the modulated signal must remain relatively dim and the high brightness can only be provided
by the additional modes. However, mode mismatch can be present in the detection when some
of the modes emitted by the source do not match the LO modes, which results in quadrature
noise and limits the secure distance of the protocols [16]. Therefore, in this paper we analyze the
applicability of CV QKD using bright multimode coherent states, containing up to 105 photons,
which is much larger than tens of photons used in the existing implementations of CV QKD
[20–24]. We consider the role of bright mode mismatch and show how its negative effect can
be reduced. In order to comply with the security proofs for CV QKD, we keep to the quantum
description of bright multimode light, resulting in the noise due to the mode mismatch. In our
work we consider joint homodyne detection of incoming modes, which is much more feasible than
discrimination between the modes. However, the LO should match the signal modes despite the
joint measurement. Even in such simplified scenario we experimentally confirm the possibility
to select signal modes and reduce the noise arising from the mode mismatch by increasing the
brightness of the local oscillator beam, serving as a phase reference for the homodyne detection.
This is particularly important for QKD because the unmatched modes can be tampered with by a
potential eavesdropper. The resulting noise has therefore to be assumed untrusted; this has a
strong impact on the security of CV QKD with bright multimode light as a side channel in the
receiving station [25]. Using the obtained results we predict the performance of CV QKD with
bright multimode coherent light and confirm its feasibility.

2. Homodyne detection of bright states with mode mismatch

We first study the homodyne detection of macroscopically bright light that consists of multiple
modes. In the detection setup, multiple modes in the signal are not perfectly overlapped with
the modes of the LO beam, which serves as a phase reference for the measurement. These
unmatched modes add extra noise to the measurement results [16]. This problem was tested
in our experiment with a simplified version of the homodyne detection of bright multimode
coherent light.

In contrast to the standard scheme of homodyne detection (Fig. 1, left), where the LO overlaps
with a single mode of the radiation, we study the basic case when the input beam contains two
modes (Fig. 1, right), being in the coherent states. One of the modes (in the state |α〉) is properly
overlapped with the LO, the other one (in the state |β〉) is not. As theoretically shown in [16],
in this case the measured variance of, e.g., amplitude quadrature x̂i = âi

† + âi in the i-th signal
mode is influenced by additional noise coming from the modes that are not matched with the
LO. In the general case of M matched modes and N unmatched modes of a multimode state,
the measured variance of the difference photocurrent of the two detectors (normalized to the
measured vacuum variance) is

Var (x)meas = Var(x) + ε2totn, (1)

where Var(x) is the quadrature variance of the matched signal modes (being Var(x) = 1 for pure
coherent states, also referred to as the shot-noise unit, SNU, using the above given quadrature
definition), n is the mean number of photons in an unmatched signal mode, and

ε2tot ≡
Nε2

M |αLO |
2 , (2)



Research Article Vol. 27, No. 25 / 9 December 2019 / Optics Express 36156

where |αLO |
2 is the mean photon number of the LO and ε is the weight of the unmatched modes,

corresponding, e.g., to filtering prior to detection.

Fig. 1. The standard scheme for homodyne detection (left) and the scheme with uncompen-
sated modes in the multimode signal beam (right).

In the simplified version realized in our experiment, there was one matched and one unmatched
mode, both being coherent beams. In this case, instead of Eq. (1), one should have

Var (x)meas = 1 +
|β |2

|αLO |
2 , (3)

which is equivalent to having ε2tot = 1/|αLO |
2. Equations (1)–(3) show that the result of the

Gaussian measurement of the multi-mode bright signal is equivalent to the measurement of a
one-mode dim signal (containing few photons on average, which for a CV QKD implementation
would be imposed by an imperfect post-processing, that limits the modulation depth [12]) with a
bright unmatched mode, containing more than 105 photons on average. The bright unmatched
mode manifests itself in the form of extra noise that contributes to the overall quadrature noise
(in contrast to a possible background radiation arriving at the homodyne detector, which does
not match the LO but is as well too weak to non-negligibly contribute to the quadrature noise).
The extra noise induced by imperfect modes matching depends on the ratio of brightness (mean
photon number) of unmatched mode to LO brightness.

The above given results were verified in the experiment. The setup is shown in Fig. 2. We used
picosecond-pulsed radiation of Ti:sapphire laser with the wavelength 800 nm and 5 kHz repetition
rate. After a half-wave plate HWP1 and a polarizing beamsplitter PBS1, the beam was split into
a stronger one, further used as LO, and a weaker one, further used as a coherent state under test.
The latter was controlled in intensity by means of a half-wave plate HWP2 and a film polarizer,
and then split into two spatially displaced beams in a calcite beam displacer oriented at 45◦ to the
vertical direction. The intensity ratio between the two spatially displaced beams, whose role was
to mimic the two independent coherent modes, was controlled by means of polarizer orientation.
One of the two modes was spatially overlapped with the LO on another polarizing beamsplitter
PBS2, while the other one was spatially separated from the LO, which defined mode matching
and unmatching, respectively. The losses arising in the PBS2 do not spoil the measurement,
because the modes under test are coherent. Finally, because the LO and the coherent mode were
orthogonally polarized, they were projected on the same polarization direction on the polarizing
beamsplitter PBS3, where, at the same time, both beams were split and directed at two detectors
D1 and D2 for homodyne detection. The balancing of the homodyne detection scheme was
performed using the half-wave plate HWP3. As D1 and D2, we used charge-integrating detectors
based on p-i-n diodes [26]. Their output pulses, scaling as the photon numbers in the input light
pulses, were digitized in an Analog-to-Digit Converter (ADC) and then numerically subtracted
to obtain the signal.
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Fig. 2. The experimental setup used for the test of homodyne measurement of bright
multimode coherent light.

The experimental results are shown in Fig. 3 along with the theoretical prediction given by
Eq. (3). In agreement with the theory, the variance of the difference signal (quadrature variance,
normalized to the variance of vacuum measurements) depends linearly on the mean photon
number in the unmatched mode (normalized to the LO power of 1.04 · 105 mean photons), as
can be seen from Fig. 3 (left panel). This fact can considerably reduce the applicability of
bright multimode radiation to CV QKD. As a remedy against the increase in the quadrature
variance, one can increase the LO brightness. The corresponding dependence of the normalized
quadrature variance on the LO power (in terms of the mean photon number normalized to that of
the unmatched mode, being 1.1 · 105) is given in Fig. 3 (right panel), along with the theoretical
line defined by Eq. (3). Note that our system was optimized to work in the linear regime in the
tested range of LO brightness between 105 and 2 · 106 photons on average, but the further drastic
increase of LO brightness may lead to nonlinear detection regime. It is evident from the plot,
that the experimental results are well matching the theory and that by ten-fold increase in the LO
mean photon number the additional noise is reduced from 0.6 SNU to 0.06 SNU. Our results
therefore confirm that the excess noise in the quadrature variance scales as the brightness of
the unmatched mode (Fig. 3, left) and as the inverse brightness of the LO (Fig. 3, right). The
coefficient ε2 in our scheme was equal to 1, because no additional filtering, aimed at reducing
the impact of the unmatched modes, was performed.

Fig. 3. Dependence of the normalized variance in SNU, experimentally measured (points)
and theoretically predicted, according to Eq. (3) (lines), on unmatched mode power (left
panel) and on LO power (right panel).
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This was confirmed in various settings, including and excluding the unmatched mode, as shown
in the histograms in Fig. 4, plotted for an intermediate LO setting with the power, normalized to
the power of the unmatched mode, of 6.25, the latter having 1.14 · 105 mean photon number.
Note that the measured quadrature variance of the coherent sate |α〉 was slightly above 1 SNU. It
is evident from the histograms, that the appearance of an additional bright mode in the state |β〉
leads to a drastic increase of the detected quadrature noise, even though the mode is not matched
to the LO. This increase is observed both in the absence of the signal (i.e., at |α |2 = 0) and in
its presence (i.e., when |α |2 > 0). Note that the coherent state |α〉 representing the signal in
our experiment was dim (as it would be in a practical CV QKD implementation), containing
few photons on average. The experimental verification gave us an estimate of the multimode
homodyne detection for N = M = 1 unmatched and matched modes, respectively, in the absence
of the filtration prior to detection, i.e., with ε = 1.

Fig. 4. Normalized variance of the quadrature measurements in SNU in the absence
and presence of matched |α〉 and unmatched |β〉 modes, |β |2 = 0.16|αLO |

2. Theoretical
prediction according to Eq. (3) is given in blue dashed lines.

Normalized variance of the quadrature noise in Fig. 3 (right) decreases with |αLO |
2. However,

the impact of a small residual noise can be still detrimental in applications such as CV QKD.
Therefore, we apply the experimentally obtained results and parameters in order to evaluate the
performance of CV QKD with multimode bright coherent states.

3. CV QKD with bright multimode coherent states and mode mismatch

Based on the experimental evidence obtained in the previous Section we can evaluate the
feasibility of CV QKD with bright multimode coherent states using homodyne detection. We
consider prepare-and-measure CV QKD protocol based on Gaussian modulation of multimode
coherent states of light and homodyne detection, and analyze its security against collective attacks
(which also implies security against general attacks in the asymptotic limit [27] and can be directly
extended to finite-size regime up to data-size-dependent correction to the key rate [28,29]). In
this protocol, the sender, Alice, modulates coherent states according to two Gaussian distributed
zero-centered random variables by applying random quadrature displacements with variance
VM , further referred to as the modulation variance. The signal states travel through the quantum
channel to a remote party, Bob, who performs quadrature detection in either of the conjugate
quadratures: above defined x̂ = â† − â or p̂ = i(â† − â), so that Alice and Bob estimate the channel
parameters and evaluate the information leakage. The channel is parametrized by transmittance
T , which stands for the ratio of the signal coupling to a vacuum mode, corresponding to the signal
loss, and the excess noise VN , which contributes to the overall variance of the modulated signal
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upon channel transmittance. Both the excess noise and the noise due to losses are attributed
and assumed to be fully controlled (purified) by an eavesdropper Eve. We assess the security of
the scheme by evaluating the lower bound on the secure key rate in the reverse reconciliation
scenario (which is known to be robust against high loss and is therefore suitable for long-distance
quantum communication [21]). The key rate reads

K = max{0, ζIAB − χBE}, (4)

where ζ ∈ (0, 1) is the post-processing efficiency, which shows how close the trusted parties are
able to reach IAB, the classical (Shannon) mutual information shared between Alice and Bob, and
χBE is the Holevo bound. The latter upper-limits the information accessible to Eve on Bob’s
measured data and is relevant in the reverse reconciliation scenario. Following the optimality of
Gaussian attacks and the purification-based approach to security analysis, we evaluate IAB and
χBE from the covariance matrix of the equivalent entangled state shared between Alice and Bob.
The evaluation is in terms of von Neumann entropies, obtained from symplectic eigenvalues of
the covariance respective matrices (see details on covariance matrix formalism for Gaussian
states in [30] and on symplectic security analysis in CV QKD in [31]). The influence of the
multimode structure and the mode mismatch then consists in the contribution of the respective
detection noise ε2totn to the excess noise induced by the channel. As it was mentioned, since
Eve can tamper with the unmatched modes, the noise contribution from these modes has to be
assumed untrusted. Then the two-mode covariance matrix, which corresponds to the CV QKD
protocol with multimode coherent light and homodyne detection with mode mismatch, reads

γAB =
©«

VI
√

T(V2 − 1)σz√
T(V2 − 1)σz

[
T(V + VN) + 1 − T + ε2totn

]
I

ª®¬ , (5)

where V = 1 + VM , the diagonal matrices I = diag(1, 1) and σz = diag(1,−1) are the unity
matrix and the Pauli z-matrix, respectively. Now if Alice conducts heterodyne measurement
on mode A, matrix Eq. (5) corresponds to the purification of the prepare-and-measure scheme
with multimode coherent states and detection mode mismatch. The mutual information then
straightforwardly reads IAB = (1/2) log2(1 + Σ), where Σ = T(V − 1)/(1 + TVN + ε

2
totn) is the

signal-to-noise ratio. Now, using symplectic security analysis methodology we evaluate and plot
the lower bound on the key rate Eq. (4).

In our analysis we consider two different scenarios: i) when only matched modes are modulated,
while the unmatched ones remain in the bright coherent state and ii) when all the modes are
modulated. The two scenarios can in principle be combined so that part of the modes are
modulated and a nonequivalent part of the modes is matched to a generally multimode LO.
However, if the same modulation is applied to the signal modes and some of the modes do not
arrive at the detection, this may lead to side channels concerned with excessive modulation in
CV QKD [32] and should be avoided. In our work we therefore study the cases when either only
matched modes or all the modes are modulated and the modulation is different in different modes
so that the side channel is ruled out (independent multimode modulation and joint homodyne
detection is discussed in context of CV QKD in [15]). In the first scenario the contribution from
different modes can be effectively joined into one mode up to the scaling of the mean photon
number. Indeed, the mean photon number of the multimode coherent state, containing N modes
with n mean photons in each, has the mean total of Nn photons. In the second scenario the
overall brightness of the unmatched modes will be defined by the total number of modes and
by the modulation variance. This is because the latter is related to the mean photon number
in the modulated mode as VM = 2n, because Gaussian modulated coherent states have thermal
quadrature distribution. Therefore, in either of the scenarios the same amount of detection noise
would correspond either to different total unmatched modes brightness or to different number of
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modes for given modulation variance VM , which we optimize to improve the performance of the
protocols at given parameters (first of all, the efficiency ζ ). The results are given in Fig. 5 versus
the LO brightness, as set in the experiment (left panel) and versus total signal beam brightness at
the maximum reached LO brightness of 106 photons (right) at T = 0.5, which would correspond
to a few kilometers long free-space channel [33–35] (or cca. 15 kilometers of the telecom fiber
with attenuation of −0.2 dB/km). The modulation variance VM is optimized for the given settings,
the error correction efficiency is ζ = 0.96 (which complies with the current post-processing
techniques [36]). In Fig. 5 (left) we evaluate the key rate Eq. (4) for the experimentally obtained
values of noise (points with error bars corresponding to the uncertainty of the noise estimation)
and theoretically predict the key rate for the quadrature variance calculated as in Eq. (1) with
ε2tot = 1/|αLO |

2 as observed in the experiment (solid lines). We compare it to the ideal case of
the perfect matching (horizontal solid lines), the key rate with mode mismatch then approaches
the one with a perfect matching for higher LO intensities. In Fig. 5 (right) we theoretically
evaluate the key rate Eq. (4), similarly predicting the measured quadrature variance Eq. (1)
for the given LO brightness and varying the brightness of the unmatched modes. It is evident
from the plots in Fig. 5 (left) that for relatively low attenuation (higher values of T) the key rate
saturates with the brightness of the LO (similarly to the saturated decrease of the normalized
variance in Fig. 3, right) and that 106 photons on average in the LO mode should be sufficient
for CV QKD with the same brightness in the unmatched modes. Stronger attenuation (lower
values of T) however puts higher demand on the LO brightness, which should contain at least one
order of magnitude more photons on average to provide non-negligible key rates. Similarly, for a
fixed LO brightness and transmittance T = 0.5, corresponding to a mid-range free-space channel,
we show how the key rate is continuously degraded with the increase in the brightness of the
unmatched modes and is bound by cca 8 · 104 mean photons (equivalent to 1.5 · 104 modes with
a weak optimized modulation on the order of a few SNU) at the maximum LO brightness. This
limitation is even more strict once the LO brightness is lower. However, already at 104 photons
(or 2 ·103 modulated modes) the performance of CV QKDwith bright coherent states and a bright
LO is comparable (with the key rate being roughly 15% lower) to that with the conventional
low-energy signal. Thus we have shown that coherent-state CV QKD is possible at very high
brightness, even despite the mode mismatch, in either of the modulation scenarios, i.e., if all the
modes or only matching modes are modulated, provided a bright LO is used. The applicability
of the method can be limited by nonlinear detection response for very high brightness, but we
demonstrated drastic reduction of excess noise concerned with mode mismatch already in the
accessible linear regime. Increase of LO brightness can therefore be a feasible alternative to
filtering of unmatched modes as the latter would increase set-up complexity and additionally
attenuate the matched signals. Note that we consider the LO brightness at the detection input.
In order to maintain such a strong LO, either proportionally higher brightness is needed at the
channel input or the "local" LO scheme [17–19] with a locally generated LO can be applied.
Furthermore, for a heavily multimode light the coupling efficiency between the signal and LO or
vacuum may vary and be not exactly balanced for some modes, which may lead to slight increase
of the noise concerned with unmatched modes observed in the detection [16].
In addition to the increase of the LO brightness, the trusted parties may also increase the

number of matched modes M by properly constructing the multimode modulated signal and LO
states. It is evident from Eqs. (1) and (2) that this would reduce the quadrature excess noise
concerned with the mode mismatch in the detection. For example, the use of M = 10 matched
modes would then be equivalent to increase of the LO brightness by the factor of ten, allowing to
achieve key rates as shown in Fig. 5 (left) for 2 · 106 LO mean photon number upon much weaker
LO of 2 · 105 photons on average. This illustrates the promising application of signal multiplexing
in CV QKD even for a homodyne detector with joint measurement of the multiple signal modes.
The obtained results can be further combined with the use of bright nonclassical states [16,26],
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Fig. 5. Left: the key rate for multimode coherent-state CV QKD in the presence of mode
mismatch versus the LO brightness at different values of the channel transmittance T, obtained
from the experimentally measured noise (points with error bars) and from the calculated
quadrature variance Eq. (1), N/M = 1 (lines). The straight horizontal lines represent
the ideal case where all the modes match perfectly. Right: the key rate for multimode
coherent-state CV QKD in the presence of mode mismatch (theoretically evaluated using Eq.
(1) for the given parameters) versus the unmatched mode brightness, |β |2, when only the
matched mode is modulated, or, equivalently, versus the number of unmatched modes, N,
when all the modes are modulated, and the LO brigthness is varied, T = 0.5. In both plots,
the modulation variance is optimized, ζ = 0.96 and ε2 = 1 as confirmed in the experiment.

broadband homodyne detection [37] and channel multiplexing [38] to increase secure key rate
of the CV QKD protocol with bright light. Although in our work we have addressed spatially
multimode light, frequency modes can be considered as well. Furthermore, the broadband signal
can be combined with multimode homodyne detection, addressing the modes individually [39],
in order to further improve the key rate of bright-light CV QKD using signal multiplexing.

4. Conclusion

In a proof-of-principle experiment we have demonstrated the homodyne detection of bright
multimode coherent light with some of the modes not matching the local oscillator. We have
shown that their influence leads to the noise in the measurement, which, however, can be overcome
by increasing the LO brightness. These tests, along with the numerical modeling, confirm the
feasibility of quantum key distribution with macroscopically bright (intense and multimode)
coherent states, which can be now fully implemented in real optical channels. Indeed, we show
that key rates of about 0.25 bits per channel should be achievable with the states containing 104
photons at attenuation of 50%, which corresponds to a few kilometers long atmospheric link
[33–35] (or 15 kilometers of a telecom fiber) and at local oscillator brightness of 106 photons, so
that the key rate is only 15% reduced compared to the standard quantum key distribution with
low-energy signals. In addition to increasing the LO brightness, the trusted parties can suppress
the noise, concerned with the mode mismatch, by increasing the number of matched modes,
which shows the potential of multiplexed continuous-variable quantum key distribution even in
the case of join measurement of the multiple signal modes. Our results therefore demonstrate
that quantum key distribution can be realized with beams similar to classical ones and thus shift
quantum cryptography even closer to classical optical technology.

Funding

Grantová Agentura České Republiky (19-23739S); Ministerstvo Školství, Mládeže a Tělovýchovy
(7AMB17DE034, LTC17086); European Cooperation in Science and Technology (CA15220);



Research Article Vol. 27, No. 25 / 9 December 2019 / Optics Express 36162

Deutscher Akademischer Austauschdienst (57319488); Univerzita Palackého v Olomouci (IGA-
PrF-2019-010); Horizon 2020 Framework Programme (820466 ’CiViQ’).

References
1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
2. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical

quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
3. E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf.

2(1), 16025 (2016).
4. S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C.

Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden,
“Advances in quantum cryptography,” arXiv:1906.01645[quant-ph] (2019).

5. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of
International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.

6. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005).
7. T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A 61(1), 010303 (1999).
8. F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett.

88(5), 057902 (2002).
9. C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. K. Lam, “Quantum cryptography without

switching,” Phys. Rev. Lett. 93(17), 170504 (2004).
10. V. C. Usenko and F. Grosshans, “Unidimensional continuous-variable quantum key distribution,” Phys. Rev. A 92(6),

062337 (2015).
11. R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys.

Rev. Lett. 102(13), 130501 (2009).
12. V. C. Usenko and R. Filip, “Squeezed-state quantum key distribution upon imperfect reconciliation,” New J. Phys.

13(11), 113007 (2011).
13. L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution

with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
14. M. Lasota, R. Filip, and V. C. Usenko, “Robustness of quantum key distribution with discrete and continuous

variables to channel noise,” Phys. Rev. A 95(6), 062312 (2017).
15. V. C. Usenko, L. Ruppert, and R. Filip, “Entanglement-based continuous-variable quantum key distribution with

multimode states and detectors,” Phys. Rev. A 90(6), 062326 (2014).
16. V. C. Usenko, L. Ruppert, and R. Filip, “Quantum communication with macroscopically bright nonclassical states,”

Opt. Express 23(24), 31534–31543 (2015).
17. D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced

continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
18. B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator “locally” in continuous-

variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
19. D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution

without sending a local oscillator,” Opt. Lett. 40(16), 3695–3698 (2015).
20. J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-

Brouri, S.W.McLaughlin, and P. Grangier, “Quantum key distribution over 25 kmwith an all-fiber continuous-variable
system,” Phys. Rev. A 76(4), 042305 (2007).

21. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using
gaussian-modulated coherent states,” Nature 421(6920), 238–241 (2003).

22. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance
continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).

23. D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key
distribution with 1 mbps secure key rate,” Opt. Express 23(13), 17511–17519 (2015).

24. D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling
excess noise,” Sci. Rep. 6(1), 19201 (2016).

25. I. Derkach, V. C. Usenko, and R. Filip, “Preventing side-channel effects in continuous-variable quantum key
distribution,” Phys. Rev. A 93(3), 032309 (2016).

26. T. Iskhakov, M. V. Chekhova, and G. Leuchs, “Generation and direct detection of broadband mesoscopic polarization-
squeezed vacuum,” Phys. Rev. Lett. 102(18), 183602 (2009).

27. A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution
against general attacks,” Phys. Rev. Lett. 110(3), 030502 (2013).

28. A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,”
Phys. Rev. A 81(6), 062343 (2010).

29. A. Leverrier, “Security of continuous-variable quantum key distribution via a gaussian de finetti reduction,” Phys.
Rev. Lett. 118(20), 200501 (2017).

https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1038/npjqi.2016.25
https://doi.org/10.1103/PhysRevLett.94.230504
https://doi.org/10.1103/PhysRevA.61.010303
https://doi.org/10.1103/PhysRevLett.88.057902
https://doi.org/10.1103/PhysRevLett.93.170504
https://doi.org/10.1103/PhysRevA.92.062337
https://doi.org/10.1103/PhysRevLett.102.130501
https://doi.org/10.1103/PhysRevLett.102.130501
https://doi.org/10.1088/1367-2630/13/11/113007
https://doi.org/10.1038/ncomms2097
https://doi.org/10.1103/PhysRevA.95.062312
https://doi.org/10.1103/PhysRevA.90.062326
https://doi.org/10.1364/OE.23.031534
https://doi.org/10.1103/PhysRevX.5.041010
https://doi.org/10.1103/PhysRevX.5.041009
https://doi.org/10.1364/OL.40.003695
https://doi.org/10.1103/PhysRevA.76.042305
https://doi.org/10.1038/nature01289
https://doi.org/10.1038/nphoton.2013.63
https://doi.org/10.1364/OE.23.017511
https://doi.org/10.1038/srep19201
https://doi.org/10.1103/PhysRevA.93.032309
https://doi.org/10.1103/PhysRevLett.102.183602
https://doi.org/10.1103/PhysRevLett.110.030502
https://doi.org/10.1103/PhysRevA.81.062343
https://doi.org/10.1103/PhysRevLett.118.200501
https://doi.org/10.1103/PhysRevLett.118.200501


Research Article Vol. 27, No. 25 / 9 December 2019 / Optics Express 36163

30. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian
quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).

31. V. C. Usenko and R. Filip, “Trusted noise in continuous-variable quantum key distribution: A threat and a defense,”
Entropy 18(1), 20 (2016).

32. I. Derkach, V. C. Usenko, and R. Filip, “Continuous-variable quantum key distribution with a leakage from state
preparation,” Phys. Rev. A 96(6), 062309 (2017).

33. V. C. Usenko, B. Heim, C. Peuntinger, C. Wittmann, C. Marquardt, G. Leuchs, and R. Filip, “Entanglement of
gaussian states and the applicability to quantum key distribution over fading channels,” New J. Phys. 14(9), 093048
(2012).

34. D. Vasylyev, A. A. Semenov, W. Vogel, K. Günthner, A. Thurn, O. Bayraktar, and C. Marquardt, “Free-space quantum
links under diverse weather conditions,” Phys. Rev. A 96(4), 043856 (2017).

35. I. Derkach, V. C. Usenko, and R. Filip, “Squeezing-enhanced quantum key distribution over atmospheric channels,”
arXiv:1809.10167 [quant-ph] (2018).

36. P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous-variable quantum key distribution with a
gaussian modulation,” Phys. Rev. A 84(6), 062317 (2011).

37. Y. Shaked, Y. Michael, R. Z. Vered, L. Bello, M. Rosenbluh, and A. Pe’er, “Lifting the bandwidth limit of optical
homodyne measurement with broadband parametric amplification,” Nat. Commun. 9(1), 609 (2018).

38. T. A. Eriksson, T. Hirano, B. J. Puttnam, G. Rademacher, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka,
N. Wada, and M. Sasaki, “Wavelength division multiplexing of continuous variable quantum key distribution and
18.3 tbit/s data channels,” Commun. Phys. 2(1), 9 (2019).

39. G. Ferrini, J. P. Gazeau, T. Coudreau, C. Fabre, and N. Treps, “Compact gaussian quantum computation by multi-pixel
homodyne detection,” New J. Phys. 15(9), 093015 (2013).

https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.3390/e18010020
https://doi.org/10.1103/PhysRevA.96.062309
https://doi.org/10.1088/1367-2630/14/9/093048
https://doi.org/10.1103/PhysRevA.96.043856
https://doi.org/10.1103/PhysRevA.84.062317
https://doi.org/10.1038/s41467-018-03083-5
https://doi.org/10.1038/s42005-018-0105-5
https://doi.org/10.1088/1367-2630/15/9/093015

